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glmperm: A Permutation of Regressor
Residuals Test for Inference in
Generalized Linear Models
by Wiebke Werft and Axel Benner

Abstract We introduce a new R package called
glmperm for inference in generalized linear
models especially for small and moderate-sized
data sets. The inference is based on the per-
mutation of regressor residuals test introduced
by Potter (2005). The implementation of glm-
perm outperforms currently available permuta-
tion test software as glmperm can be applied in
situations where more than one covariate is in-
volved.

Introduction

A novel permutation test procedure for inference in
logistic regression with small- and moderate-sized
datasets was introduced by Potter (2005) and showed
good performance in comparison to exact condi-
tional methods. This so-called permutation of re-
gressor residuals (PRR) test is implemented in the R
package logregperm. However, the application field
is limited to logistic regression models. The new
glmperm package offers an extension of the PRR
test to generalized linear models (GLMs) especially
for small and moderate-sized data sets. In contrast
to existing permutation test software, the glmperm
package provides a permutation test for situations in
which more than one covariate is involved, e.g. if es-
tablished covariates need to be considered together
with the new predictor under test.

Generalized linear models

Let Y be a random response vector whose compo-
nents are independently distributed with means µ.
Furthermore, let the covariates x1, ..., xp be related to
the components of Y via the generalized linear model

E(Yi) = µi , (1)

g(µi) = β0 +
p

∑
j=1

xijβ j , (2)

Var(Yi) =
φ

wi
V(µi) , (3)

with i = 1, ...,n, g a link function and V(·) a known
variance function; φ is called the dispersion parame-
ter and wi is a known weight that depends on the un-
derlying observations. The dispersion parameter is
constant over observations and might be unknown,
e.g. for normal distributions and for binomial and

Poisson distributions with over-dispersion (see be-
low).

One is now interested in testing the null hypoth-
esis that the regression coefficient for a covariate of
interest, say without loss of generality x1, is zero, i.e.
H0 : β1 = 0 vs. H1 : β1 6= 0. Let y be the observed
vector of the outcome variable Y . Inference is based
on the likelihood-ratio test statistic LR(y; x1, ..., xp),
which is defined as the difference in deviances of the
models with and without the covariate of interest di-
vided by the dispersion parameter. For simplicity we
assume that each variable is represented by a single
parameter that describes the contribution of the vari-
able to the model. Therefore, the test statistic has an
asymptotic chi-squared distribution with one degree
of freedom. (For a deeper look into generalized lin-
ear models McCullagh and Nelder (1989) is recom-
mended.)

The PRR test

The basic concept of the PRR test is that it replaces
the covariate of interest by its residual r from a linear
regression on the remaining covariates x2, ..., xp. This
is a simple orthogonal projection of x1 on the space
spanned by x2, ..., xp and ensures that r by its defini-
tion is not correlated with x2, ..., xp while x1 may be
correlated. An interesting feature of this projection is
that the maximum value of the likelihood for a gen-
eralized linear model of y on r, x2, ..., xp is the same as
that for y on x1, x2, ..., xp. Hence, the likelihood-ratio
test is the same when using the residuals r instead
of the covariate x1. This leads to the idea of using
permutations of the residuals r to estimate the null
distribution and thus the p-value.

The algorithm for the PRR test to obtain a p-value
for testing the null hypothesis H0 : β1 = 0 of the
model

g(µ) = β0 + β1x1 + β2x2 + ... + βpxp (4)

is as follows:

1. Calculate least squares residuals r = (r1, ...,rn)
via

r = x1 −
(
γ̂0 + γ̂1x2 + ... + γ̂p−1xp

)
(5)

where γ̂0, γ̂1, ..., γ̂p−1 are least squares estimates
of the coefficients from the linear model

E(x1) = γ0 + γ1x2 + ... + γp−1xp . (6)

Then derive the p-value p̃ of the likelihood-
ratio test statistic LR(y; r, x2, ..., xp) based on r
replacing the covariate x1.

The R Journal Vol. 2/1, June 2010 ISSN 2073-4859



40 CONTRIBUTED RESEARCH ARTICLES

2. For resampling iterations b = 1, ..., B

� Randomly draw r∗ from r = (r1, ...,rn)
without replacement.

� Calculate p-values p∗b of the likelihood-
ratio test statistic LR(y; r∗, x2, ..., xp).

3. Calculate a permutation p-value for the PRR
test according to

p f =
#(p∗b ≤ f · p̃)

B
. (7)

Thus, the permutation p-value p f is the fraction of
permutations that have a likelihood-based p-value
less than or equal to that for the unpermuted data
times a factor f . This factor f is equal or slightly big-
ger than one, i.e. f ∈ {1;1.005;1.01;1.02;1.04}. It was
introduced by Potter (2005) to account for numerical
instabilities which might occur when the algorithms
to maximize the likelihood do not converge to ex-
actly the same value for different configurations of
the data. Note that varying the factor only changes
the results by a few per cent or less. In the R pack-
age glmperm various factors are implemented and
are displayed in the summary output. Here, the re-
sult presentations will be restricted to factors 1 and
1.02.

The number of resampling iterations B of the
algorithm is implemented as nrep in the function
prr.test. By default nrep=1000. However, depend-
ing on the precision that is desired, the number of it-
erations could be increased at the cost of longer com-
putation time. We recommend using nrep=10000.

In order to provide an estimate of the variance of
the result, the permutation p-value p f could be re-
garded as a binomial random variable B(B, p), where
B is the number of resampling iterations and p is the
unknown value of the true significance level (Good,
2005). As estimate of p the observed p-value p̃ is
used multiplied by the factor f . Hence, the standard
error for the permutation p-value p f is provided by√

f p̃(1− f p̃)/B.
For binary outcome variables the PRR test is a

competitive approach to exact conditional logistic re-
gression described by Hirji et al. (1987) and Mehta
and Patel (1995). The commercial LogXact software
has implemented this conditional logistic regression
approach. At present, statistical tests employing un-
conditional permutation methods are not commer-
cially available and the package glmperm bridges
this gap.

The rationale of exact conditional logistic regres-
sion is based on the exact permutation distribution
of the sufficient statistic for the parameter of interest,
conditional on the sufficient statistics for the speci-
fied nuisance parameters. However, its algorithmic
constraint is that the distribution of interest will be
degenerate if a conditioning variable is continuous.
The difference between the two procedures lies in

the permutation scheme: While the conditional ap-
proach permutes the outcome variable, the PRR test
permutes the residuals from the linear model. Note
that if one considers regressions with only a single re-
gressor the residuals r are basically equal to x1, and
the PRR test reduces to a simple permutation test
(shuffle-Z method, see below).

An overview of the methodologic differences be-
tween these two and other permutation schemes is
provided by Kennedy and Cade (1996). In the con-
text of their work the permutation method used
for the PRR test can be viewed as an extension of
their shuffle-R permutation scheme for linear mod-
els. The variable associated with the parameter un-
der the null hypothesis is regressed on the remain-
ing covariables and replaced by the corresponding
residuals; these residuals are then permuted while
the response and the covariates are held constant.
Freedman and Lane (1983) introduced the shuffle-
R method in combination with tests of significance
and a detailed discussion of this permutation scheme
is provided by ter Braak (1992). The conditional
method can be implied with the shuffle-Z method
which was first mentioned in the context of multi-
ple regression by Draper and Stoneman (1966). Here
the variables associated with the parameters being
tested under the null hypothesis are randomized
while the response and the covariates are held con-
stant. Kennedy and Cade (1996) discuss the potential
pitfalls of the shuffle-Z method and point out that
this method violates the ancillarity principle by not
holding constant the collinearity between the covari-
ables and the variable associated with the parame-
ter under the null hypothesis. Therefore, Kennedy
and Cade (1996) do not recommend the shuffle-Z
method unless it employs a pivotal statistic or the
hypothesized variable and the remaining covariables
are known to be independent.

Modifications for the extension to
GLMs

Three main modifications have been implemented in
the glmperm package in comparison to the logreg-
perm package. Note that the new package glmperm
includes all features of the package logregperm. At
present, the logregperm package is still available on
CRAN. In general, the glmperm package could re-
place the logregperm package.

1. The extension of the prr.test function in the
glmperm package provides several new ar-
guments compared to the version in logreg-
perm. The input is now organised as a for-
mula expression equivalent to fitting a gener-
alized linear model with glm (R package stats).
Hence, for easier usage the syntax of prr.test
is adapted from glm. The covariable of inter-
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est about which inference is to be made is to be
included as argument var=’x1’. An argument
seed is provided to allow for reproducibility.

2. The implicit function glm.perm is extended to
calculate not only the deviances for the dif-
ferent resampling iterations but also the dis-
persion parameter for each permutation sepa-
rately. For Poisson and logistic regression mod-
els the dispersion parameters are pre-defined
as φ = 1 for all iterations; the likelihood-ratio
test statistic is then simply the difference of de-
viances. For all other GLM the dispersion pa-
rameters will be estimated for each resampling
iteration based on the underlying data. This
ensures that the p-value of the likelihood-ratio
test statistic for this precise resampling itera-
tion is accordingly specified given the data.

3. A new feature of the package is that it in-
cludes a summary function to view the main
results of prr.test. It summarises the per-
mutation of regressor residual-based p-value
p f for the various factors f , the observed
likelihood-ratio test statistic and the observed
p-value p̃ based on the chi-squared distribu-
tion with one degree of freedom. For Pois-
son and logistic regression models a warn-
ing occurs in case of possible overdispersion
(φ > 1.5) or underdispersion (φ < 0.5) and rec-
ommends use of family=quasibinomial() or
quasipoisson() instead.

An example session

To illustrate the usage of the glmperm package for
a GLM, an example session with simulated data is
presented. First, we simulated data for three inde-
pendent variables with n = 20 samples and binary
and discrete response variables for the logistic and
Poisson regression model, respectively.

# binary response variable
n <- 20
set.seed(4278)
x1 <- rnorm(n)
x0 <- rnorm(n)+x1
y1 <- ifelse(x0+x1+2*rnorm(n)>0,1,0)
test1 <- prr.test(y1~x0+x1,

var="x0", family=binomial())
x2 <- rbinom(n,1,0.6)
y2 <- ifelse(x1+x2+rnorm(n)>0,1,0)
test2 <- prr.test(y2~x1+x2, var="x1",

nrep=10000,family=binomial())

# Poisson response variable
set.seed(4278)
x1 <- rnorm(n)
x0 <- rnorm(n) + x1

nu <- rgamma(n, shape = 2, scale = 1)
y <- rpois(n, lambda = exp(2) * nu)
test3 <- prr.test(y~x0+x1,

var="x0", family=poisson())
test4 <- prr.test(y~x0, var="x0",

nrep=1000,family=poisson())

A condensed version of the displayed result sum-
mary of test2 (only factors f = 1 and f = 1.02 are
shown) is given by:

> summary(test2)
-----------------------------------------
Results based on chi-squared distribution
-----------------------------------------
observed p-value: 0.0332
--------------------
Results based on PRR
--------------------
permutation p-value for simulated p-values <=
observed p-value: 0.0522 (Std.err: 0.0018)
permutation p-value for simulated p-values <=
1.02 observed p-value: 0.0531 (Std.err: 0.0018)

For the above example test2 the exact conditional lo-
gistic regression p-value calculated via LogXact-4 is
0.0526, whereas the p-value of the PRR test is 0.0522
for factor f = 1, and based on the chi-squared distri-
bution it is 0.0332. The example demonstrates that
the p-value obtained via PRR test (or LogXact) leads
to a different rejection decision than a p-value calcu-
lated via an approximation by the chi-squared dis-
tribution. Hence, when small sample sizes are con-
sidered the PRR test should be preferred over an ap-
proximation via chi-squared distribution.

Special case: Overdispersion

For the computation of GLM the dispersion parame-
ter φ for the binomial and Poisson distribution is set
equal to one. However, there exist cases of data dis-
tribution which violate this assumption. The vari-
ance in (3) can then be better described when us-
ing a dispersion parameter φ 6= 1. The case of φ > 1
is known as overdispersion as the variance is larger
than expected under the assumption of binomial or
Poisson distribution. In practice, one can still use the
algorithms for generalized linear models if the esti-
mation of the variance takes account of the disper-
sion parameter φ > 1. As a consequence of overdis-
persion the residual deviance is then divided by the
estimation φ̂ of the dispersion factor instead of φ = 1.
Hence, this has direct influence on the likelihood-
ratio test statistic which is the difference in deviances
and therefore is also scaled by φ̂. The correspond-
ing p-values differ if overdispersion is considered
or not, i.e. if φ = 1 or φ = φ̂ is used. In the PRR
test one can account for overdispersion when using
family=quasipoisson() or quasibinomial() instead
of family=poisson() or binomial().
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We experienced a stable performance of the PRR
test for overdispersed data. The following treepipit
data (Müller and Hothorn, 2004) provides an ex-
ample of overdispersed data. We show the results
of the chi-squared approximation of the likelihood-
ratio test statistic as well as the results of the
PRR test for the usage of family=poisson() and
family=quasipoisson(), respectively.

# example with family=poisson()
data(treepipit, package="coin")
test5<-prr.test(counts~cbpiles+coverstorey
+coniferous+coverregen,data=treepipit,
var="cbpiles",family=poisson())

summary(test5)
-----------------------------------------
Results based on chi-squared distribution
-----------------------------------------
observed p-value: 0.0037
--------------------
Results based on PRR
--------------------
permutation p-value for simulated p-values <=
observed p-value: 0.083 (Std.err: 0.0019)
permutation p-value for simulated p-values <=
1.02 observed p-value: 0.084 (Std.err: 0.0019)

# example with family=quasipoisson()
test6<-prr.test(counts~cbpiles+coverstorey
+coniferous+coverregen,data=treepipit,
var="cbpiles",family=quasipoisson())

summary(test6)
-----------------------------------------
Results based on chi-squared distribution
-----------------------------------------
observed p-value: 0.0651
--------------------
Results based on PRR
--------------------
permutation p-value for simulated p-values <=
observed p-value: 0.07 (Std.err: 0.0078)
permutation p-value for simulated p-values <=
1.02 observed p-value: 0.071 (Std.err: 0.0079)

The p-values based on the chi-squared distribution
of the likelihood-ratio test statistic are p = 0.0037
and p = 0.0651 when using family=poisson() and
family=quasipoisson(), respectively. Hence, a dif-
ferent test decision is made whereas the test decision
for the PRR test is the same for both cases (p = 0.083
and p = 0.07).

Summary

The glmperm package provides a permutation of re-
gressor residuals test for generalized linear models.
This version of a permutation test for inference in
GLMs is especially suitable for situations in which
more than one covariate is involved in the model.

The key input feature of the PRR test is to use the
orthogonal projection of the variable of interest on
the space spanned by all other covariates instead of
the variable of interest itself. This feature provides a
reasonable amendment to existing permutation test
software which do not incorporate situations with
more than one covariate. Applications to logistic and
Poisson models show good performance when com-
pared to gold standards. For the special case of data
with overdispersion the PRR test is more robust com-
pared to methods based on approximations of the
test statistic distribution.
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