
16 CONTRIBUTED RESEARCH ARTICLES

Source References
by Duncan Murdoch

Abstract Since version 2.10.0, R includes ex-
panded support for source references in R code
and ‘.Rd’ files. This paper describes the origin
and purposes of source references, and current
and future support for them.

One of the strengths of R is that it allows “compu-
tation on the language”, i.e. the parser returns an R
object which can be manipulated, not just evaluated.
This has applications in quality control checks, de-
bugging, and elsewhere. For example, the codetools
package (Tierney, 2009) examines the structure of
parsed source code to look for common program-
ming errors. Functions marked by debug() can be
executed one statement at a time, and the trace()
function can insert debugging statements into any
function.

Computing on the language is often enhanced by
being able to refer to the original source code, rather
than just to a deparsed (reconstructed) version of
it based on the parsed object. To support this, we
added source references to R 2.5.0 in 2007. These are
attributes attached to the result of parse() or (as of
2.10.0) parse_Rd() to indicate where a particular part
of an object originated. In this article I will describe
their structure and how they are used in R. The arti-
cle is aimed at developers who want to create debug-
gers or other tools that use the source references, at
users who are curious about R internals, and also at
users who want to use the existing debugging facili-
ties. The latter group may wish to skip over the gory
details and go directly to the section “Using Source
References".

The R parsers

We start with a quick introduction to the R parser.
The parse() function returns an R object of type
"expression". This is a list of statements; the state-
ments can be of various types. For example, consider
the R source shown in Figure 1.

1: x <- 1:10 # Initialize x
2: for (i in x) {
3: print(i) # Print each entry
4: }
5: x

Figure 1: The contents of ‘sample.R’.

If we parse this file, we obtain an expression of
length 3:

> parsed <- parse("sample.R")
> length(parsed)

[1] 3

> typeof(parsed)

[1] "expression"

The first element is the assignment, the second ele-
ment is the for loop, and the third is the single x at
the end:

> parsed[[1]]

x <- 1:10

> parsed[[2]]

for (i in x) {
print(i)

}

> parsed[[3]]

x

The first two elements are both of type "language",
and are made up of smaller components. The dif-
ference between an "expression" and a "language"
object is mainly internal: the former is based on the
generic vector type (i.e. type "list"), whereas the
latter is based on the "pairlist" type. Pairlists are
rarely encountered explicitly in any other context.
From a user point of view, they act just like generic
vectors.

The third element x is of type "symbol". There are
other possible types, such as "NULL", "double", etc.:
essentially any simple R object could be an element.

The comments in the source code and the white
space making up the indentation of the third line are
not part of the parsed object.

The parse_Rd() function parses ‘.Rd’ documenta-
tion files. It also returns a recursive structure contain-
ing objects of different types (Murdoch and Urbanek,
2009; Murdoch, 2010).

Source reference structure

As described above, the result of parse() is essen-
tially a list (the "expression" object) of objects that
may be lists (the "language" objects) themselves, and
so on recursively. Each element of this structure from
the top down corresponds to some part of the source
file used to create it: in our example, parse[[1]] cor-
responds to the first line of ‘sample.R’, parse[[2]] is
the second through fourth lines, and parse[[3]] is
the fifth line.

The comments and indentation, though helpful
to the human reader, are not part of the parsed object.
However, by default the parsed object does contain a
"srcref" attribute:

> attr(parsed, "srcref")

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 17

[[1]]
x <- 1:10

[[2]]
for (i in x) {
print(i) # Print each entry

}

[[3]]
x

Although it appears that the "srcref" attribute con-
tains the source, in fact it only references it, and the
print.srcref() method retrieves it for printing. If
we remove the class from each element, we see the
true structure:

> lapply(attr(parsed, "srcref"), unclass)

[[1]]
[1] 1 1 1 9 1 9
attr(,"srcfile")
sample.R

[[2]]
[1] 2 1 4 1 1 1
attr(,"srcfile")
sample.R

[[3]]
[1] 5 1 5 1 1 1
attr(,"srcfile")
sample.R

Each element is a vector of 6 integers: (first line, first
byte, last line, last byte, first character, last character).
The values refer to the position of the source for each
element in the original source file; the details of the
source file are contained in a "srcfile" attribute on
each reference.

The reason both bytes and characters are
recorded in the source reference is historical. When
they were introduced, they were mainly used for re-
trieving source code for display; for this, bytes are
needed. Since R 2.9.0, they have also been used to
aid in error messages. Since some characters take up
more than one byte, users need to be informed about
character positions, not byte positions, and the last
two entries were added.

The "srcfile" attribute is also not as simple as it
looks. For example,

> srcref <- attr(parsed, "srcref")[[1]]
> srcfile <- attr(srcref, "srcfile")
> typeof(srcfile)

[1] "environment"

> ls(srcfile)

[1] "Enc" "encoding" "filename"
[4] "timestamp" "wd"

The "srcfile" attribute is actually an environment
containing an encoding, a filename, a timestamp,
and a working directory. These give information
about the file from which the parser was reading.
The reason it is an environment is that environments
are reference objects: even though all three source ref-
erences contain this attribute, in actuality there is
only one copy stored. This was done to save mem-
ory, since there are often hundreds of source refer-
ences from each file.

Source references in objects returned by
parse_Rd() use the same structure as those returned
by parse(). The main difference is that in Rd objects
source references are attached to every component,
whereas parse() only constructs source references
for complete statements, not for their component
parts, and they are attached to the container of the
statements. Thus for example a braced list of state-
ments processed by parse() will receive a "srcref"
attribute containing source references for each state-
ment within, while the statements themselves will
not hold their own source references, and sub-
expressions within each statement will not generate
source references at all. In contrast the "srcref" at-
tribute for a section in an ‘.Rd’ file will be a source
reference for the whole section, and each component
part in the section will have its own source reference.

Relation to the "source" attribute

By default the R parser also creates an attribute
named "source" when it parses a function definition.
When available, this attribute is used by default in
lieu of deparsing to display the function definition.
It is unrelated to the "srcref" attribute, which is in-
tended to point to the source, rather than to duplicate
the source. An integrated development environment
(IDE) would need to know the correspondence be-
tween R code in R and the true source, and "srcref"
attributes are intended to provide this.

When are "srcref" attributes added?

As mentioned above, the parser adds a "srcref"
attribute by default. For this, it is assumes that
options("keep.source") is left at its default setting
of TRUE, and that parse() is given a filename as argu-
ment file, or a character vector as argument text.
In the latter case, there is no source file to refer-
ence, so parse() copies the lines of source into a
"srcfilecopy" object, which is simply a "srcfile"
object that contains a copy of the text.

Developers may wish to add source references in
other situations. To do that, an object inheriting from
class "srcfile" should be passed as the srcfile ar-
gument to parse().

The other situation in which source references
are likely to be created in R code is when calling

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

18 CONTRIBUTED RESEARCH ARTICLES

source(). The source() function calls parse(), cre-
ating the source references, and then evaluates the
resulting code. At this point newly created functions
will have source references attached to the body of
the function.

The section “Breakpoints” below discusses how
to make sure that source references are created in
package code.

Using source references

Error locations

For the most part, users need not be concerned with
source references, but they interact with them fre-
quently. For example, error messages make use of
them to report on the location of syntax errors:

> source("error.R")

Error in source("error.R") : error.R:4:1: unexpected
'else'
3: print("less")
4: else

^

A more recent addition is the use of source ref-
erences in code being executed. When R evaluates
a function, it evaluates each statement in turn, keep-
ing track of any associated source references. As of
R 2.10.0, these are reported by the debugging sup-
port functions traceback(), browser(), recover(),
and dump.frames(), and are returned as an attribute
on each element returned by sys.calls(). For ex-
ample, consider the function shown in Figure 2.

1: # Compute the absolute value
2: badabs <- function(x) {
3: if (x < 0)
4: x <- -x
5: x
6: }

Figure 2: The contents of ‘badabs.R’.

This function is syntactically correct, and works
to calculate the absolute value of scalar values, but is
not a valid way to calculate the absolute values of the
elements of a vector, and when called it will generate
an incorrect result and a warning:

> source("badabs.R")
> badabs(c(5, -10))

[1] 5 -10

Warning message:
In if (x < 0) x <- -x :
the condition has length > 1 and only the first
element will be used

In this simple example it is easy to see where the
problem occurred, but in a more complex function
it might not be so simple. To find it, we can convert
the warning to an error using

> options(warn=2)

and then re-run the code to generate an error. After
generating the error, we can display a stack trace:

> traceback()

5: doWithOneRestart(return(expr), restart)
4: withOneRestart(expr, restarts[[1L]])
3: withRestarts({

.Internal(.signalCondition(
simpleWarning(msg, call), msg, call))

.Internal(.dfltWarn(msg, call))
}, muffleWarning = function() NULL) at badabs.R#2

2: .signalSimpleWarning("the condition has length
> 1 and only the first element will be used",
quote(if (x < 0) x <- -x)) at badabs.R#3

1: badabs(c(5, -10))

To read a traceback, start at the bottom. We see our
call from the console as line “1:”, and the warning
being signalled in line “2:”. At the end of line “2:”
it says that the warning originated “at badabs.R#3”,
i.e. line 3 of the ‘badabs.R’ file.

Breakpoints

Users may also make use of source references when
setting breakpoints. The trace() function lets us set
breakpoints in particular R functions, but we need to
specify which function and where to do the setting.
The setBreakpoint() function is a more friendly
front end that uses source references to construct a
call to trace(). For example, if we wanted to set a
breakpoint on ‘badabs.R’ line 3, we could use

> setBreakpoint("badabs.R#3")

D:\svn\papers\srcrefs\badabs.R#3:
badabs step 2 in <environment: R_GlobalEnv>

This tells us that we have set a breakpoint in step 2 of
the function badabs found in the global environment.
When we run it, we will see

> badabs(c(5, -10))

badabs.R#3
Called from: badabs(c(5, -10))

Browse[1]>

telling us that we have broken into the browser at the
requested line, and it is waiting for input. We could
then examine x, single step through the code, or do
any other action of which the browser is capable.

By default, most packages are built without
source reference information, because it adds quite
substantially to the size of the code. However, setting

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 19

the environment variable R_KEEP_PKG_SOURCE=yes
before installing a source package will tell R to keep
the source references, and then breakpoints may be
set in package source code. The envir argument to
setBreakpoints() will need to be set in order to tell
it to search outside the global environment when set-
ting breakpoints.

The #line directive

In some cases, R source code is written by a program,
not by a human being. For example, Sweave() ex-
tracts lines of code from Sweave documents before
sending the lines to R for parsing and evaluation. To
support such preprocessors, the R 2.10.0 parser rec-
ognizes a new directive of the form

#line nn "filename"

where nn is an integer. As with the same-named
directive in the C language, this tells the parser to
assume that the next line of source is line nn from
the given filename for the purpose of constructing
source references. The Sweave() function doesn’t
currently make use of this, but in the future, it (and
other preprocessors) could output #line directives
so that source references and syntax errors refer to
the original source location rather than to an inter-
mediate file.

The #line directive was a late addition to R
2.10.0. Support for this in Sweave() appeared in R
2.12.0.

The future

The source reference structure could be improved.
First, it adds quite a lot of bulk to R objects in mem-
ory. Each source reference is an integer vector of

length 6 with a class and "srcfile" attribute. It is
hard to measure exactly how much space this takes
because much is shared with other source references,
but it is on the order of 100 bytes per reference.
Clearly a more efficient design is possible, at the ex-
pense of moving support code to C from R. As part of
this move, the use of environments for the "srcfile"
attribute could be dropped: they were used as the
only available R-level reference objects. For develop-
ers, this means that direct access to particular parts
of a source reference should be localized as much as
possible: They should write functions to extract par-
ticular information, and use those functions where
needed, rather than extracting information directly.
Then, if the implementation changes, only those ex-
tractor functions will need to be updated.

Finally, source level debugging could be imple-
mented to make use of source references, to single
step through the actual source files, rather than dis-
playing a line at a time as the browser() does.

Bibliography

D. Murdoch. Parsing Rd files. 2010. URL http:
//developer.r-project.org/parseRd.pdf.

D. Murdoch and S. Urbanek. The new R help system.
The R Journal, 1/2:60–65, 2009.

L. Tierney. codetools: Code Analysis Tools for R, 2009. R
package version 0.2-2.

Duncan Murdoch
Dept. of Statistical and Actuarial Sciences
University of Western Ontario
London, Ontario, Canada
murdoch@stats.uwo.ca

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://developer.r-project.org/parseRd.pdf
http://developer.r-project.org/parseRd.pdf
mailto:murdoch@stats.uwo.ca

