
48 CONTRIBUTED RESEARCH ARTICLES

cudaBayesreg: Bayesian Computation in
CUDA
by Adelino Ferreira da Silva

Abstract Graphical processing units are rapidly
gaining maturity as powerful general parallel
computing devices. The package cudaBayesreg
uses GPU–oriented procedures to improve the
performance of Bayesian computations. The
paper motivates the need for devising high-
performance computing strategies in the con-
text of fMRI data analysis. Some features of the
package for Bayesian analysis of brain fMRI data
are illustrated. Comparative computing perfor-
mance figures between sequential and parallel
implementations are presented as well.

A functional magnetic resonance imaging (fMRI)
data set consists of time series of volume data in 4D
space. Typically, volumes are collected as slices of
64 x 64 voxels. The most commonly used functional
imaging technique relies on the blood oxygenation
level dependent (BOLD) phenomenon (Sardy, 2007).
By analyzing the information provided by the BOLD
signals in 4D space, it is possible to make inferences
about activation patterns in the human brain. The
statistical analysis of fMRI experiments usually in-
volve the formation and assessment of a statistic im-
age, commonly referred to as a Statistical Paramet-
ric Map (SPM). The SPM summarizes a statistic in-
dicating evidence of the underlying neuronal acti-
vations for a particular task. The most common
approach to SPM computation involves a univari-
ate analysis of the time series associated with each
voxel. Univariate analysis techniques can be de-
scribed within the framework of the general linear
model (GLM) (Sardy, 2007). The GLM procedure
used in fMRI data analysis is often said to be “mas-
sively univariate”, since data for each voxel are in-
dependently fitted with the same model. Bayesian
methodologies provide enhanced estimation accu-
racy (Friston et al., 2002). However, since (non-
variational) Bayesian models draw on Markov Chain
Monte Carlo (MCMC) simulations, Bayesian esti-
mates involve a heavy computational burden.

The programmable Graphic Processor Unit
(GPU) has evolved into a highly parallel proces-
sor with tremendous computational power and
very high memory bandwidth (NVIDIA Corpora-
tion, 2010b). Modern GPUs are built around a scal-
able array of multithreaded streaming multipro-
cessors (SMs). Current GPU implementations en-
able scheduling thousands of concurrently executing
threads. The Compute Unified Device Architecture
(CUDA) (NVIDIA Corporation, 2010b) is a software
platform for massively parallel high-performance

computing on NVIDIA manycore GPUs. The CUDA
programming model follows the standard single-
program multiple-data (SPMD) model. CUDA
greatly simplifies the task of parallel programming
by providing thread management tools that work
as extensions of conventional C/C++ constructions.
Automatic thread management removes the bur-
den of handling the scheduling of thousands of
lightweight threads, and enables straightforward
programming of the GPU cores.

The package cudaBayesreg (Ferreira da Silva,
2010a) implements a Bayesian multilevel model
for the analysis of brain fMRI data in the CUDA
environment. The statistical framework in cud-
aBayesreg is built around a Gibbs sampler for multi-
level/hierarchical linear models with a normal prior
(Ferreira da Silva, 2010c). Multilevel modeling may
be regarded as a generalization of regression meth-
ods in which regression coefficients are themselves
given a model with parameters estimated from data
(Gelman, 2006). As in SPM, the Bayesian model
fits a linear regression model at each voxel, but
uses uses multivariate statistics for parameter esti-
mation at each iteration of the MCMC simulation.
The Bayesian model used in cudaBayesreg follows
a two–stage Bayes prior approach to relate voxel
regression equations through correlations between
the regression coefficient vectors (Ferreira da Silva,
2010c). This model closely follows the Bayesian
multilevel model proposed by Rossi, Allenby and
McCulloch (Rossi et al., 2005), and implemented
in bayesm (Rossi and McCulloch., 2008). This ap-
proach overcomes several limitations of the classi-
cal SPM methodology. The SPM methodology tra-
ditionally used in fMRI has several important limi-
tations, mainly because it relies on classical hypoth-
esis tests and p–values to make statistical inferences
in neuroimaging (Friston et al., 2002; Berger and Sel-
lke, 1987; Vul et al., 2009). However, as is often the
case with MCMC simulations, the implementation of
this Bayesian model in a sequential computer entails
significant time complexity. The CUDA implemen-
tation of the Bayesian model proposed here has been
able to reduce significantly the runtime processing
of the MCMC simulations. The main contribution
for the increased performance comes from the use
of separate threads for fitting the linear regression
model at each voxel in parallel.

Bayesian multilevel modeling

We are interested in the following Bayesian mul-
tilevel model, which has been analyzed by Rossi

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=cudaBayesreg
http://cran.r-project.org/package=bayesm

CONTRIBUTED RESEARCH ARTICLES 49

et al. (2005), and has been implemented as
rhierLinearModel in bayesm. Start out with a gen-
eral linear model, and fit a set of m voxels as,

yi = Xiβi + εi, εi
iid∼ N

(
0,σ2

i Ini

)
, i = 1, . . . ,m. (1)

In order to tie together the voxels’ regression equa-
tions, assume that the {βi} have a common prior dis-
tribution. To build the Bayesian regression model we
need to specify a prior on the {βi} coefficients, and a
prior on the regression error variances {σ2

i }. Follow-
ing Ferreira da Silva (2010c), specify a normal regres-
sion prior with mean ∆′zi for each β,

βi = ∆′zi + νi, νi
iid∼ N

(
0,Vβ

)
, (2)

where z is a vector of nz elements, representing char-
acteristics of each of the m regression equations.

The prior (2) can be written using the matrix form
of the multivariate regression model for k regression
coefficients,

B = Z∆ + V (3)

where B and V are m × k matrices, Z is a m × nz
matrix, ∆ is a nz × k matrix. Interestingly, the prior
(3) assumes the form of a second–stage regression,
where each column of ∆ has coefficients which de-
scribes how the mean of the k regression coefficients
varies as a function of the variables in z. In (3), Z
assumes the role of a prior design matrix.

The proposed Bayesian model can be written
down as a sequence of conditional distributions (Fer-
reira da Silva, 2010c),

yi | Xi, βi,σ2
i

βi | zi,∆,Vβ

σ2
i | νi, s2

i

Vβ | ν,V

∆ | Vβ, ∆̄, A.

(4)

Running MCMC simulations on the set of full condi-
tional posterior distributions (4), the full posterior for
all the parameters of interest may then be derived.

GPU computation

In this section, we describe some of the main de-
sign considerations underlying the code implemen-
tation in cudaBayesreg, and the options taken for
processing fMRI data in parallel. Ideally, the GPU
is best suited for computations that can be run
on numerous data elements simultaneously in par-
allel (NVIDIA Corporation, 2010b). Typical text-
book applications for the GPU involve arithmetic
on large matrices, where the same operation is per-
formed across thousands of elements at the same
time. Since the Bayesian model of computation out-
lined in the previous Section does not fit well in this

framework, some design options had to be assumed
in order to properly balance optimization, memory
constraints, and implementation complexity, while
maintaining numerical correctness. Some design re-
quirements for good performance on CUDA are as
follows (NVIDIA Corporation, 2010a): (i) the soft-
ware should use a large number of threads; (ii) dif-
ferent execution paths within the same thread block
(warp) should be avoided; (iii) inter-thread commu-
nication should be minimized; (iv) data should be
kept on the device as long as possible; (v) global
memory accesses should be coalesced whenever pos-
sible; (vi) the use of shared memory should be pre-
ferred to the use of global memory. We detail be-
low how well these requirements have been met
in the code implementation. The first requirement
is easily met by cudaBayesreg. On the one hand,
fMRI applications typically deal with thousands of
voxels. On the other hand, the package uses three
constants which can be modified to suit the avail-
able device memory, and the computational power
of the GPU. Specifically, REGDIM specifies the maxi-
mum number of regressions (voxels), OBSDIM speci-
fies the maximum length of the time series observa-
tions, and XDIM specifies the maximum number of re-
gression coefficients. Requirements (ii) and (iii) are
satisfied by cudaBayesreg as well. Each thread ex-
ecutes the same code independently, and no inter-
thread communication is required. Requirement (iv)
is optimized in cudaBayesreg by using as much con-
stant memory as permitted by the GPU. Data that
do not change between MCMC iterations are kept in
constant memory. Thus, we reduce expensive mem-
ory data transfers between host and device. For in-
stance, the matrix of voxel predictors X (see (1)) is
kept in constant memory. Requirement (v) is insuf-
ficiently met in cudaBayesreg. For maximum per-
formance, memory accesses to global memory must
be coalesced. However, different fMRI data sets
and parameterizations may generate data structures
with highly variable dimensions, thus rendering co-
alescence difficult to implement in a robust manner.
Moreover, GPU devices of Compute Capability 1.x
impose hard memory coalescing restrictions. Fortu-
nately, GPU devices of Compute Capability 2.x are
expected to lift some of the most taxing memory co-
alescing constraints. Finally requirement (vi) is not
met by the available code. The current kernel im-
plementation does not use shared memory. The rel-
ative complexity of the Bayesian computation per-
formed by each thread compared to the conventional
arithmetic load assigned to the thread has prevented
us from exploiting shared memory operations. The
task assigned to the kernel may be subdivided to re-
duce kernel complexity. However, this option may
easily compromise other optimization requirements,
namely thread independence. As detailed in the next
paragraph, our option has been to keep the compu-
tational design simple, by assigning the whole of the

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

50 CONTRIBUTED RESEARCH ARTICLES

univariate regression to the kernel.
The computational model has been specified as

a grid of thread blocks of dimension 64 in which a
separate thread is used for fitting a linear regression
model at each voxel in parallel. Maximum efficiency
is expected to be achieved when the total number
of required threads to execute in parallel equals the
number of voxels in the fMRI data set, after appropri-
ate masking has been done. However, this approach
typically calls for the parallel execution of several
thousands of threads. To keep computational re-
sources low, while maintaining significant high effi-
ciency it is generally preferable to process fMRI data
slice-by-slice. In this approach, slices are processed
in sequence. Voxels in slices are processed in paral-
lel. Thus, for slices of dimension 64× 64, the required
number of parallel executing threads does not exceed
4096 at a time. The main computational bottleneck in
sequential code comes from the necessity of perform-
ing Gibbs sampling using a (temporal) univariate re-
gression model for all voxel time series. We coded
this part of the MCMC computation as device code,
i.e. a kernel to be executed by the CUDA threads.
CUDA threads execute on the GPU device that oper-
ates as a coprocessor to the host running the MCMC
simulation. Following the proposed Bayesian model
(4), each thread implements a Gibbs sampler to draw
from the posterior of a univariate regression with a
conditionally conjugate prior. The host code is re-
sponsible for controlling the MCMC simulation. At
each iteration, the threads perform one Gibbs itera-
tion for all voxels in parallel, to draw the threads’
estimators for the regression coefficients βi as speci-
fied in (4). In turn, the host, based on the simulated
βi values, draws from the posterior of a multivariate
regression model to estimate Vβ and ∆. These values
are then used to drive the next iteration.

The bulk of the MCMC simulations for Bayesian
data analysis is implemented in the kernel (device
code). Most currently available RNGs for the GPU
tend to be have too high time- and space-complexity
for our purposes. Therefore, we implemented and
tested three different random number generators
(RNGs) in device code, by porting three well-known
RNGs to device code. Marsaglia’s multicarry RNG
(Marsaglia, 2003) follows the R implementation, is
the fastest one, and is used by default; Brent’s
RNG (Brent, 2007) has higher quality but is not-
so-fast; Matsumoto’s Mersenne Twister (Matsumoto
and Nishimura, 1998) is slower than the others. In
addition, we had to ensure that different threads re-
ceive different random seeds. We generated random
seeds for the threads by combining random seeds
generated by the host with the threads’ unique iden-
tification numbers. Random deviates from the nor-
mal (Gaussian) distribution and chi-squared distri-
bution had to be implemented in device code as well.
Random deviates from the normal distribution were
generated using the Box-Muller method. In a similar

vein, random deviates from the chi-squared distri-
bution with ν number of degrees of freedom, χ2(ν),
were generated from gamma deviates, Γ(ν/2,1/2),
following the method of Marsaglia and Tsang speci-
fied in (Press et al., 2007).

The next Sections provide details on how to use
cudaBayesreg (Ferreira da Silva, 2010b) for fMRI
data analysis. Two data sets, which are included and
documented in the complementary package cud-
aBayesregData (Ferreira da Silva, 2010b), have been
used in testing: the ‘fmri’ and the ‘swrfM’ data sets.
We performed MCMC simulations on these data
sets using three types of code implementations for
the Bayesian multilevel model specified before: a
(sequential) R-language version, a (sequential) C-
language version, and a CUDA implementation.
Comparative runtimes for 3000 iterations in these
three situations, for the data sets ‘fmri’ and ‘swrfM’,
are as follows.

Runtimes in seconds for 3000 iterations:

slice R-code C-code CUDA
fmri 3 1327 224 22
swrfM 21 2534 309 41

Speed-up factors between the sequential versions
and the parallel CUDA implementation are summa-
rized next.

Comparative speedup factors:

C-vs-R CUDA-vs-C CUDA-vs-R
fmri 6.0 10.0 60.0
swrfM 8.2 7.5 61.8

In these tests, the C-implementation provided,
approximately, a 7.6× mean speedup factor relative
to the equivalent R implementation. The CUDA im-
plementation provided a 8.8× mean speedup factor
relative to the equivalent C implementation. Over-
all, the CUDA implementation yielded a significant
60× speedup factor. The tests were performed on a
notebook equipped with a (low–end) graphics card:
a ‘GeForce 8400M GS’ NVIDIA device. This GPU de-
vice has just 2 multiprocessors, Compute Capability
1.1, and delivers single–precision performance. The
compiler flags used in compiling the source code are
detailed in the package’s Makefile. In particular, the
optimization flag -O3 is set there. It is worth noting
that the CUDA implementation in cudaBayesreg af-
fords much higher speedups. First, the CUDA im-
plementation may easily be modified to process all
voxels of a fMRI volume in parallel, instead of pro-
cessing data in a slice-by-slice basis. Second, GPUs
with 16 multiprocessors and 512 CUDA cores and
Compute Capability 2.0 are now available.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=cudaBayesregData
http://cran.r-project.org/package=cudaBayesregData

CONTRIBUTED RESEARCH ARTICLES 51

Experiments using the fmri test
dataset

The data set ‘fmri.nii.gz’ is available from the FM-
RIB/FSL site (www.fmrib.ox.ac.uk/fsl). This data
set is from an auditory–visual experiment. Au-
ditory stimulation was applied as an alternating
“boxcar” with 45s-on-45s-off and visual stimula-
tion was applied as an alternating “boxcar” with
30s-on-30s-off. The data set includes just 45 time
points and 5 slices from the original 4D data.
The file ‘fmri_filtered_func_data.nii’ included in cud-
aBayesregData was obtained from ‘fmri.nii.gz’ by
applying FSL/FEAT pre-preprocessing tools. For
input/output of NIFTI formatted fMRI data sets
cudaBayesreg depends on the R package oro.nifti
(Whitcher et al., 2010). The following code runs the
MCMC simulation for slice 3 of the fmri dataset, and
saves the result.

> require("cudaBayesreg")
> slicedata <- read.fmrislice(fbase = "fmri",
+ slice = 3, swap = TRUE)
> ymaskdata <- premask(slicedata)
> fsave <- "/tmp/simultest1.sav"
> out <- cudaMultireg.slice(slicedata,
+ ymaskdata, R = 3000, keep = 5,
+ nu.e = 3, fsave = fsave, zprior = FALSE)

We may extract the posterior probability (PPM)
images for the visual (vreg=2) and auditory (vreg=4)
stimulation as follows (see Figures 1 and 2).

> post.ppm(out = out, slicedata = slicedata,
+ ymaskdata = ymaskdata, vreg = 2,
+ col = heat.colors(256))

Figure 1: PPM images for the visual stimulation

> post.ppm(out = out, slicedata = slicedata,
+ ymaskdata = ymaskdata, vreg = 4,
+ col = heat.colors(256))

Figure 2: PPM images for the auditory stimulation

To show the fitted time series for a (random) ac-
tive voxel, as depicted in Figure 3, we use the code:

> post.tseries(out = out, slicedata = slicedata,
+ ymaskdata = ymaskdata, vreg = 2)

range pm2: -1.409497 1.661774

Figure 3: Fitted time–series for an active voxel

Summary statistics for the posterior mean values
of regression coefficient vreg=2, are presented next.
The same function plots the histogram of the pos-
terior distribution for vreg=2, as represented in Fig-
ure 4.

> post.simul.hist(out = out, vreg = 2)

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

www.fmrib.ox.ac.uk/fsl
http://cran.r-project.org/package=oro.nifti

52 CONTRIBUTED RESEARCH ARTICLES

Call:
density.default(x = pm2)

Data: pm2 (1525 obs.); Bandwidth 'bw' = 0.07947

x y
Min. :-1.6479 Min. :0.0000372
1st Qu.:-0.7609 1st Qu.:0.0324416
Median : 0.1261 Median :0.1057555
Mean : 0.1261 Mean :0.2815673
3rd Qu.: 1.0132 3rd Qu.:0.4666134
Max. : 1.9002 Max. :1.0588599

[1] "active range:"
[1] 0.9286707 1.6617739
[1] "non-active range:"
[1] -1.4094965 0.9218208
hpd (95%)= -0.9300451 0.9286707

Figure 4: Histogram of the posterior distribution of
the regression coefficient β2 (slice 3).

An important feature of the Bayesian model used
in cudaBayesreg is the shrinkage induced by the
hyperprior ν on the estimated parameters. We
may assess the adaptive shrinkage properties of the
Bayesian multilevel model for two different values of
ν as follows.

> nu2 <- 45
> fsave2 <- "/tmp/simultest2.sav"
> out2 <- cudaMultireg.slice(slicedata,
+ ymaskdata, R = 3000, keep = 5,
+ nu.e = nu2, fsave = fsave2,
+ zprior = F)
> vreg <- 2
> x1 <- post.shrinkage.mean(out = out,
+ slicedata$X, vreg = vreg,
+ plot = F)
> x2 <- post.shrinkage.mean(out = out2,
+ slicedata$X, vreg = vreg,
+ plot = F)
> par(mfrow = c(1, 2), mar = c(4,

+ 4, 1, 1) + 0.1)
> xlim = range(c(x1$beta, x2$beta))
> ylim = range(c(x1$yrecmean, x2$yrecmean))
> plot(x1$beta, x1$yrecmean, type = "p",
+ pch = "+", col = "violet",
+ ylim = ylim, xlim = xlim,
+ xlab = expression(beta), ylab = "y")
> legend("topright", expression(paste(nu,
+ "=3")), bg = "seashell")
> plot(x2$beta, x2$yrecmean, type = "p",
+ pch = "+", col = "blue", ylim = ylim,
+ xlim = xlim, xlab = expression(beta),
+ ylab = "y")
> legend("topright", expression(paste(nu,
+ "=45")), bg = "seashell")
> par(mfrow = c(1, 1))

Figure 5: Shrinkage assessment: variability of mean
predictive values for ν = 3 and ν = 45.

Experiments using the SPM audi-
tory dataset

In this Section, we exemplify the analysis of the ran-
dom effects distribution ∆, following the specifica-
tion of cross-sectional units (group information) in
the Z matrix of the statistical model. The Bayesian
multilevel statistical model allows for the analysis
of random effects through the specification of the Z
matrix for the prior in (2). The dataset with pre-
fix swrfM (argument fbase="swrfM") in the pack-
age’s data directory, include mask files associated
with the partition of the fMRI dataset ‘swrfM’ in 3
classes: cerebrospinal fluid (CSF), gray matter (GRY)
and white matter (WHT). As before, we begin by
loading the data and running the simulation. This
time, however, we call cudaMultireg.slice with the
argument zprior=TRUE. This argument will launch
read.Zsegslice, that reads the segmented images
(CSF/GRY/WHT) to build the Z matrix.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 53

> fbase <- "swrfM"
> slice <- 21
> slicedata <- read.fmrislice(fbase = fbase,
+ slice = slice, swap = TRUE)
> ymaskdata <- premask(slicedata)
> fsave3 <- "/tmp/simultest3.sav"
> out <- cudaMultireg.slice(slicedata,
+ ymaskdata, R = 3000, keep = 5,
+ nu.e = 3, fsave = fsave3,
+ zprior = TRUE)

We confirm that areas of auditory activation have
been effectively selected by displaying the PPM im-
age for regression variable vreg=2.

> post.ppm(out = out, slicedata = slicedata,
+ ymaskdata = ymaskdata, vreg = 2,
+ col = heat.colors(256))

Figure 6: PPM images for the auditory stimulation

Plots of the draws of the mean of the random ef-
fects distribution are presented in Figure 7.

> post.randeff(out)

Figure 7: Draws of the mean of the random effects
distribution

Random effects plots for each of the 3 classes are
obtained by calling,

> post.randeff(out, classnames = c("CSF",
+ "GRY", "WHT"))

Plots of the random effects associated with the 3
classes are depicted in Figures 8–10.

Figure 8: Draws of the random effects distribution
for class CSF

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

54 CONTRIBUTED RESEARCH ARTICLES

Figure 9: Draws of the random effects distribution
for class GRY

> post.randeff(out, classnames = c("CSF",
+ "GRY", "WHT"))

Figure 10: Draws of the random effects distribution
for class WHT

Conclusion

The CUDA implementation of the Bayesian model in
cudaBayesreg has been able to reduce significantly
the runtime processing of MCMC simulations. For
the applications described in this paper, we have
obtained speedup factors of 60× compared to the
equivalent sequential R code. The results point out
the enormous potential of parallel high-performance
computing strategies on manycore GPUs.

Bibliography

J. Berger and T. Sellke. Testing a point null hypothe-
sis: the irreconciability of p values and evidence.
Journal of the American Statistical Association, 82:
112–122, 1987.

R. P. Brent. Some long-period random number gen-
erators using shifts and xors. ANZIAM Journal,
48 (CTAC2006):C188–C202, 2007. URL http://
wwwmaths.anu.edu.au/~brent.

A. R. Ferreira da Silva. cudaBayesreg: CUDA Par-
allel Implementation of a Bayesian Multilevel Model
for fMRI Data Analysis, 2010a. URL http://CRAN.
R-project.org/package=cudaBayesreg. R pack-
age version 0.3-8.

A. R. Ferreira da Silva. cudaBayesregData: Data
sets for the examples used in the package cud-
aBayesreg, 2010b. URL http://CRAN.R-project.
org/package=cudaBayesreg. R package version
0.3-8.

A. R. Ferreira da Silva. A Bayesian multilevel model
for fMRI data analysis. Comput. Methods Programs
Biomed., in press, 2010c.

K. J. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hin-
ton, and J. Ashburner. Classical and Bayesian In-
ference in Neuroimaging: Theory. NeuroImage, 16:
465– 483, 2002.

A. Gelman. Multilevel (hierarchical) modeling: What
it can and cannot do. Technometrics, 48(3):432–435,
Aug. 2006.

G. Marsaglia. Random number generators. Journal of
Modern Applied Statistical Methods, 2, May 2003.

M. Matsumoto and T. Nishimura. Mersenne
twister: a 623-dimensionally equidistributed uni-
form pseudorandom number generator. ACM
Transactions on Modeling and Computer Simulation,
8:3–30, Jan. 1998.

NVIDIA Corporation. CUDA C Best Practices Guide
Version 3.2, Aug. 2010a. URL http://www.nvidia.
com/CUDA.

NVIDIA Corporation. NVIDIA CUDA Programming
Guide, Version 3.2, Aug. 2010b. URL http://www.
nvidia.com/CUDA.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes, The Art of Scien-
tific Computing. CUP, third edition, 2007.

P. Rossi and R. McCulloch. bayesm: Bayesian Infer-
ence for Marketing/Micro-econometrics, 2008. URL
http://faculty.chicagogsb.edu/peter.rossi/
research/bsm.html. R package version 2.2-2.

P. E. Rossi, G. Allenby, and R. McCulloch. Bayesian
Statistics and Marketing. John Wiley and Sons, 2005.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://wwwmaths.anu.edu.au/~brent
http://wwwmaths.anu.edu.au/~brent
http://CRAN.R-project.org/package=cudaBayesreg
http://CRAN.R-project.org/package=cudaBayesreg
http://CRAN.R-project.org/package=cudaBayesreg
http://CRAN.R-project.org/package=cudaBayesreg
http://www.nvidia.com/CUDA
http://www.nvidia.com/CUDA
http://www.nvidia.com/CUDA
http://www.nvidia.com/CUDA
http://faculty.chicagogsb.edu/peter.rossi/research/bsm.html
http://faculty.chicagogsb.edu/peter.rossi/research/bsm.html

CONTRIBUTED RESEARCH ARTICLES 55

G. E. Sardy. Computing Brain Activity Maps from fMRI
Time-Series Images. Cambridge University Press,
2007.

E. Vul, C. Harris, P. Winkielman, and H. Pashler. Puz-
zlingly high correlations in fMRI studies of emo-
tion, personality, and social cognition. Perspectives
on Psychological Science, 4(3):274–290, 2009.

B. Whitcher, V. Schmid, and A. Thornton. oro.nifti:

Rigorous - NIfTI Input / Output, 2010. URL http://
CRAN.R-project.org/package=oro.nifti. R Pack-
age Version 0.1.4.

Adelino Ferreira da Silva
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Portugal
afs@fct.unl.pt

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://CRAN.R-project.org/package=oro.nifti
http://CRAN.R-project.org/package=oro.nifti
mailto:afs@fct.unl.pt

