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spikeslab: Prediction and Variable
Selection Using Spike and Slab

Regression

by Hemant Ishwaran, Udaya B. Kogalur and |. Sunil Rao

Abstract Weighted generalized ridge regres-
sion offers unique advantages in correlated high-
dimensional problems. Such estimators can be
efficiently computed using Bayesian spike and
slab models and are effective for prediction.
For sparse variable selection, a generalization
of the elastic net can be used in tandem with
these Bayesian estimates. In this article, we de-
scribe the R-software package spikeslab for im-
plementing this new spike and slab prediction
and variable selection methodology.

The expression spike and slab, originally coined
by Mitchell and Beauchamp (1988), refers to a type
of prior used for the regression coefficients in lin-
ear regression models (see also Lempers (1971)).
In Mitchell and Beauchamp (1988), this prior as-
sumed that the regression coefficients were mutu-
ally independent with a two-point mixture distribu-
tion made up of a uniform flat distribution (the slab)
and a degenerate distribution at zero (the spike).
In George and McCulloch (1993) a different prior for
the regression coefficient was used. This involved a
scale (variance) mixture of two normal distributions.
In particular, the use of a normal prior was instru-
mental in facilitating efficient Gibbs sampling of the
posterior. This made spike and slab variable selec-
tion computationally attractive and heavily popular-
ized the method.

As pointed out in Ishwaran and Rao (2005),
normal-scale mixture priors, such as those used
in George and McCulloch (1993), constitute a wide
class of models termed spike and slab models. Spike
and slab models were extended to the class of
rescaled spike and slab models (Ishwaran and Rao,
2005). Rescaling was shown to induce a non-
vanishing penalization effect, and when used in tan-
dem with a continuous bimodal prior, confers useful
model selection properties for the posterior mean of
the regression coefficients (Ishwaran and Rao, 2005,
2010).

Recently, Ishwaran and Rao (2010) considered the
geometry of generalized ridge regression (GRR), a
method introduced by Hoerl and Kennard to over-
come ill-conditioned regression settings (Hoerl and
Kennard, 1970a,b). This analysis showed that GRR
possesses unique advantages in high-dimensional
correlated settings, and that weighted GRR (WGRR)
regression, a generalization of GRR, is potentially
even more effective. Noting that the posterior mean
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of the regression coefficients from a rescaled spike
and slab model is a type of WGRR estimator, they
showed that this WGRR estimator, referred to as the
Bayesian model averaged (BMA) estimator, when
coupled with dimension reduction, yielded low test-
set mean-squared-error when compared to the elastic
net (Zou and Hastie, 2005).

Additionally, Ishwaran and Rao (2010) intro-
duced a generalization of the elastic net, which they
coined the gnet (short for generalized elastic net).
The gnet is the solution to a least-squares penaliza-
tion problem in which the penalization involves an
overall /;-regularization parameter (used to impose
sparsity) and a unique /{-regularization parameter
for each variable (these latter parameters being in-
troduced to combat multicollinearity). To calculate
the gnet, a lasso-type optimization is used by fix-
ing the {-regularization parameters at values de-
termined by finding the closest GRR to the BMA.
Like the BMA, the gnet is highly effective for predic-
tion. However, unlike the BMA, which is obtained by
model averaging, and therefore often contains many
small coefficient values, the gnet is much sparser,
making it more attractive for variable selection.

The gnet and BMA estimators represent attractive
solutions for modern day high-dimensional data set-
tings. These problems often involve correlated vari-
ables, in part due to the nature of the data, and in part
due to an artifact of the dimensionality [see Cai and
Lv (2007); Fan and Lv (2008) for a detailed discus-
sion about high-dimensional correlation]. The BMA
is attractive because it addresses the issue of corre-
lation by drawing upon the properties of WGRR es-
timation, a strength of the Bayesian approach, while
the gnet achieves sparse variable selection by draw-
ing upon the principle of soft-thresholding, a power-
ful frequentist regularization concept.

Because high-dimensional data is becoming in-
creasingly common, it would be valuable to have
user friendly software for computing the gnet and
BMA estimator. With this in mind, we have devel-
oped an R package spikeslab for implementing this
methodology (Ishwaran, Kogalur and Rao, 2010).

The main purpose of this article is to describe this
package. Because this new spike and slab approach
may be unfamiliar to users in the R-community, we
start by giving a brief high-level description of the al-
gorithm [for further details readers should however
consult Ishwaran and Rao (2010)]. We then highlight
some of the package’s key features, illustrating its
use in both low- and high-dimensional settings.
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The spike and slab algorithm

The spikeslab R package implements the rescaled
spike and slab algorithm described in Ishwaran and
Rao (2010). This algorithm involves three key steps:

1. Filtering (dimension reduction).
2. Model Averaging (BMA).
3. Variable Selection (gnet).

Step 1 filters all but the top nF variables, where
n is the sample size and F > 0 is the user specified
fraction. Variables are ordered on the basis of their
absolute posterior mean coefficient value, where the
posterior mean is calculated using Gibbs sampling
applied to an approximate rescaled spike and slab
posterior. Below is a toy-illustration of how filter-
ing works [p is the total number of variables and
V) ,le are the ordered variables]:

Vay - Vnr) V1) Vip)-
—_———

retain these variables filter these variables

The value for F is set using the option
bigp.smalln.factor, which by default is set to the
value F = 1. The use of an approximate posterior in
the filtering step is needed in high dimensions. This
yields an ultra-fast Gibbs sampling procedure, with
each step of the Gibbs sampler requiring O(np) op-
erations. Thus, computational effort for the filtering
step is linear in both dimensions.

Step 2 fits a rescaled spike and slab model using
only those variables that are not filtered in Step 1.
Model fitting is implemented using a Gibbs sampler.
Computational times are generally rapid as the num-
ber of variables at this point are a fraction of the orig-
inal size, p. A blocking technique is used to further
reduce computational times. The posterior mean of
the regression coefficients, which we refer to as the
BMA, is calculated and returned. This (restricted)
BMA is used as an estimator for the regression co-
efficients.

Step 3 calculates the gnet. In the optimization,
the gnet’s /-regularization parameters are fixed
(these being determined from the restricted BMA ob-
tained in Step 2) and its solution path with respect
to its ¢1-regularization parameter is calculated using
the lars R package (Hastie and Efron, 2007) [a pack-
age dependency of spikeslab]. The lars wrapper is
called with type="1lar” to produce the full LAR path
solution (Efron et al., 2004). The gnet is defined as
the model in this path solution minimizing the AIC
criterion. Note importantly, that cross-validation is
not used to optimize the /;-regularization parameter.
The gnet estimator is generally very stable, a prop-
erty that it inherits from the BMA, and thus even
simple model selection methods such as AIC work
quite well in optimizing its path solution. This is
different than say the elastic net (Zou and Hastie,
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2005) where cross-validation is typically used to de-
termine its regularization parameters (often this in-
volves a double optimization over both the /- and
ly-regularization parameters). This is an important
feature which reduces computational times in big-p
problems.

Low-dimensional settings

Although the spike and slab algorithm is especially
adept in high-dimensional settings, it can be used ef-
fectively in classical settings as well. In these low-
dimensional scenarios when p < n, the algorithm is
implemented by applying only Steps 2 and 3 (i.e.,
Step 1 is skipped). The default setting for spikeslab,
in fact, assumes a low-dimensional scenario.

As illustration, we consider the benchmark dia-
betes data (n = 442, p = 64) used in Efron et al. (2004)
and which is an example dataset included in the
package. The response Y is a quantitative measure
of disease progression for patients with diabetes. The
data includes 10 baseline measurements for each pa-
tient, in addition to 45 interactions and 9 quadratic
terms, for a total of 64 variables for each patient. The
following code implements a default analysis:

data(diabetesI, package = "spikeslab")
set.seed(103608)

obj <- spikeslab(Y ~ . , diabetesI)
print (obj)

The print call outputs a basic summary of the analy-
sis, including a list of the selected variables and their
parameter estimates (variables selected are those
having nonzero gnet coefficient estimates):

bma gnet bma.scale gnet.scale
bmi 24.076 23.959 506.163 503.700
ltg 23.004 22.592 483.641 474.965
map 14.235 12.894 299.279 271.089
hdl -11.495 -10.003 -241.660 -210.306
sex -7.789 -6.731 -163.761 -141.520
age.sex 6.523 5.913 137.143 124.322
bmi.map  3.363 4.359 70.694 91.640
glu.2 2.185 3.598 45.938 75.654
age.ltg 1.254 0.976 26.354 20.528
bmi.2 1.225 1.837 25.754 38.622
age.map 0.586 0.928 12.322 19.515
age.2 0.553 0.572 11.635 12.016
sex.map  0.540 0.254 11.349 5.344
glu 0.522 0.628 10.982 13.195
age.glu 0.417 0.222 8.757 4.677

In interpreting the table, we note the following;:

(i) The first column with the heading bma lists the
coefficient estimates for the BMA estimator ob-
tained from Step 2 of the algorithm. These val-
ues are given in terms of the standardized co-
variates (mean of 0 and variance of 1).
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(if) The second column with the heading gnet lists
the coefficient estimates for gnet obtained from
Step 3 of the algorithm. These values are also
given in terms of the standardized covariates.

(iii) The last two columns are the BMA and gnet
estimators given in terms of the original scale
of the variables. These columns are used for
prediction, while the first two columns are use-
ful for assessing the relative importance of vari-
ables.

Note that all columns can be extracted from the spike
and slab object, obj, if desired.

Stability analysis

Even though the gnet accomplishes the goal of vari-
able selection, it is always useful to have a measure
of stability of a variable. The wrapper cv.spikeslab
can be used for this purpose.

The call to this wrapper is very simple. Here we
illustrate its usage on the diabetes data:

y <- diabetesI[, 1]
x <- diabetesI[, -1]
cv.obj <- cv.spikeslab(x = x, v =y, K = 20)

This implements 20-fold validation (the number of
folds is set by using the option K). The gnet estima-
tor is fit using the training data and its test-set mean-
squared-error (MSE) for its entire solution-path is de-
termined. As well, for each fold, the optimal gnet
model is determined by minimizing test-set error.
The average number of times a variable is selected
in this manner defines its stability (this is recorded in
percentage as a value from 0%-100%). Averaging the
gnet’s test-set MSE provides an estimate of its MSE
as a function of the number of variables.

The gnet’s coefficient values (estimated using the
full data) and its stability values can be obtained
from the cv.obj using the following commands:

cv.stb <- as.data.frame(cv.obj$stability)
gnet <- cv.stbS$gnet
stability <- cv.stb$stability

Figure 1 (top) plots the gnet’s cross-validated MSE
curve as a function of the model size. The plot was
produced with the command

plot (cv.obj, plot.type = "cv")

Close inspection (confirmed by considering the ob-
ject, cv.obj) shows that the optimal model size
is somewhere between 9 and 17, agreeing closely
with our previous analysis. The bottom plot shows
how gnet coefficient estimates vary in terms of their
stability values (obtained by plotting gnet versus
stability). There are 10 variables having stability
values greater than 80%.
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Figure 1: Stability analysis for diabetes data.

High-dimensional settings

To analyze p > n data, users should use the option
bigp.smalln=TRUE in the call to spikeslab. This will
invoke the full spike and slab algorithm including
the filtering step (Step 1) which is crucial to suc-
cess in high-dimensional settings (note that p > n for
this option to take effect). This three-step algorithm
is computationally efficient, and because the bulk
of the computations are linear in p, the algorithm
should scale effectively to very large p-problems.
However, in order to take full advantage of its speed,
there are a few simple, but important rules to keep in
mind.

First, users should avoid using the formula and
data-frame call to spikeslab when p is large. In-
stead they should pass the x-covariate matrix and y-
response vector directly. This avoids the tremendous
overhead required to parse formula in R.

Second, the final model size of the BMA and gnet
are controlled by two key options; these must be set
properly to keep computations manageable. These
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options are: bigp.smalln.factor and max.var. The
first option restricts the number of filtered variables
in Step 1 of the algorithm to be no larger than
Fn, where F > 0 is the value bigp.smalln.factor.
The default setting F = 1 should be adequate in
most scenarios [one exception is when n is very
large (but smaller than p); then F should be de-
creased to some value 0 < F < 1]. The second op-
tion, max.var, restricts the number of selected vari-
ables in both Steps 1 and 3 of the algorithm. Its
function is similar to bigp.smalln. factor, although
unlike bigp.smalln.factor, it directly controls the
size of gnet. The default value is max.var=500.
In most examples, it will suffice to work with
bigp.smalln.factor.

Thus, if x is the x-matrix, y is the y-response
vector, and f and m are the desired settings for
bigp.smalln.factor and max.var, then a generic call
in high-dimensional settings would look like:

obj <- spikeslab(x=x, y=y, bigp.smalln = TRUE,
bigp.small.n.factor = f, max.var = m)

Although spikeslab has several other options, most
users will not need these and the above call should
suffice for most examples. However, if computa-
tional times are a still of concern even after tuning
f and m, users may consider changing the default
values of n.iterl and n.iter2. The first controls the
number of burn-in iterations used by the Gibbs sam-
pler, and the second controls the number of Gibbs
sampled values following burn-in (these latter val-
ues are used for inference and parameter estimation).
The default setting is 500 in both cases. Decreas-
ing these values will decrease computational times,
but accuracy will suffer. Note that if computational
times are not a concern, then both values could be
increased to 1000 (but not much more is needed) to
improve accuracy.

As illustration, we used a simulation with n =
100 and p = 2000. The data was simulated inde-
pendently in blocks of size 40. Within each block,
the x-variables were drawn from a 50-dimensional
multivariate normal distribution with mean zero and
equicorrelation matrix with p = 0.95. With probabil-
ity 0.9, all regression coefficients within a block were
set to zero, otherwise with probability 0.1, all regres-
sion coefficients were set to zero except for the first 10
coefficients, which were each assigned a randomly
chosen value from a standard normal distribution.
Random noise € was simulated independently from
aN(0,0?) distribution with o = 0.4.

The top plot in Figure 2 displays the path solution
for the gnet. Such a plot can be produced by a call to
the lars wrapper plot.lars using the gnet.ob3j ob-
tained from the spikeslab call. As gnet.objis a lars-
type object it is fully interpretable by the lars pack-
age, and thus it can be parsed by the packages’” var-
ious wrappers. For convenience, the path solution
can be produced by a direct call to plot; a typical call

The R Journal Vol. 2/2, December 2010

being:

obj <- spikeslab(x=x, y=y, bigp.smalln = TRUE)
plot (obj, plot.type = "path")

Actually Figure 2 was not produced by a call to plot
but in fact was obtained by slightly modifying the
plot.lars wrapper so as to display the paths of a
variable color coded by its true coefficient value (blue
for truly zero and red for truly nonzero). We did this
in order to facilitate comparison to the lasso. The
lasso path (obtained using the LAR-solution) is dis-
played in the bottom plot of Figure 2. Notice how
in contrast to gnet, the path solution for the lasso
has a wiggly "spaghetti"-like shape and that many of
the truly nonzero coefficients are hard to identify be-
cause of this. This a direct consequence of the high-
correlation in the x-variables of this example. This
correlation creates instability in the lasso-LAR solu-
tion, and this ultimately impacts its performance.
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Figure 2: Path solutions for the gnet (top) and the
lasso (bottom) from a correlated high-dimensional
simulation (n = 100 and p = 2000). Blue and red
lines correspond to truly zero and truly nonzero co-
efficient values, respectively.
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Summary map 4.7111022 4.83179363 95
hdl -2.5520177 -2.66839785 95
The gnet incorporates the strength of Bayesian | bmi.2 3.6204750 0.46308305 40
WGRR estimation with that of frequentist soft x.61746 0.0000000 -0.74646210 35
thresholding. These combined strengths make it an x.42036 4.8342736 0.41993669 30
effective tool for prediction and variable selection in x.99041 0.0000000 -0.70183515 30
correlated high-dimensional settings. If variable se- x.82308 5.2728011 0.75420320 25
lection is not of concern, and the key issue is ac- glu 1.3105751 0.16714059 25
curate prediction, than the BMA may be preferred. x.46903 0.0000000 -0.65188451 25
Both the gnet and BMA can be computed using the x.57061 0.0000000 0.73203633 25
spikeslab R package. This package is computation- x.99367 -2.7695621 -0.22110463 20
ally efficient, and scales effectively even to massively | tch 0.2542299 0.14837708 20
x.51837 0.0000000 -0.09707276 20

large p-problems.

As one example of this scalability, we added
100,000 noise variables to the diabetes data set
and then made a call to cv.spikeslab with the
added options bigp.smalln = TRUE, max.var = 100
and parallel = TRUE (as before we used K = 20
fold validation). The parallel option invokes par-
allel processing that is implemented via the package
snow (Tierney et al., 2008) [note that sending in an
integer for the option parallel sets the number of
socket clusters on the local machine on which the ses-
sion is being initiated; in our example we actually
used parallel = 8]. The snow package should be
loaded prior to making the cv.spikeslab call.

100 200 300 400 500

Standardized Coefficients

12 14 97

-100 O

04 06
|betal/max|beta|

0.2

Figure 3: Path solution for the gnet for diabetes data
with p = 100,000 noise variables.

Figure 3 displays the gnet’s path solution (ob-
tained using the full data). While only 4 variables
have path-profiles that clearly stand out, impres-
sively these variables are the top 4 from our previous
analysis. The gnet estimates (scaled to standardized
covariates), its averaged cv-estimates, and the stabil-
ity values for the top 15 variables were:

Importantly, note that the top 4 variables have
greater than or equal to 95% stability (variables start-
ing with “x.” are noise variables). It is also interest-
ing that 3 other non-noise variables, "bmi.2", "glu",
and "tch" were in the top 15 variables. In fact, when
we inspected the 100 variables that passed the filter-
ing step of the algorithm (applied to the full data),
we found that 10 were from the original 64 variables,
and 6 were from the top 15 variables from our earlier
analysis. This demonstrates stability of the filtering
algorithm even in ultra-high dimensional problems.

Finally, we remark that in illustrating the
spikeslab package in this article, we focused pri-
marily on the spikeslab wrapper, which is the main
entry point to the package. Other available wrap-
pers include predict.spikeslab for prediction on
test data, and sparsePC.spikeslab. The latter imple-
ments variable selection for multiclass gene expres-
sion data (Ishwaran and Rao, 2010).

In future work we plan to extend the rescaled
spike and slab methodology to high-dimensional
generalized linear models. At that time we will in-

troduce a corresponding wrapper.
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