
CONTRIBUTED RESEARCH ARTICLES 19

Rmetrics - timeDate Package
by Yohan Chalabi, Martin Mächler, and Diethelm Würtz

Figure 1: World map with major time zones. 1

Abstract The management of time and holidays
can prove crucial in applications that rely on his-
torical data. A typical example is the aggregation
of a data set recorded in different time zones and
under different daylight saving time rules. Be-
sides the time zone conversion function, which is
well supported by default classes in R, one might
need functions to handle special days or holi-
days. In this respect, the package timeDate en-
hances default date-time classes in R and brings
new functionalities to time zone management
and the creation of holiday calendars.

Chronological data sets recorded in different time
zones play an important role in industrial applica-
tions. For example, in financial applications, it is
common to aggregate time series that have been
recorded in financial centers with different daylight
saving time (DST) rules and time zones.

R includes different classes to represent dates
and time. The class that holds particular interest
for us is the "POSIXct" one. It internally records
timestamps as the number of seconds from “1970-
01-01 UTC”, where UTC stands for universal time
coordinated. Moreover, it supports the DST and
time zone functions by using the rules provided by
the operating system (OS). However, at the time
timeDate (Würtz et al. (2011))—formerly known as
fCalendar—was first released, the implementation
of the DST function was not consistent across OSs.
Back then, the main purpose of the package was
to have DST rules directly available to bring con-
sistency over OSs. Today, DST support by OSs is
not a problematic question as it used to be. As we
will show later, the "timeDate" class is based on the
"POSIXct" one. Both classes hence share common
functionalities. However, the timeDate package has
some additional functionalities, which we will em-
phasize in this note. For related date-time classes in

R, see Ripley & Hornik (2001) and Grothendieck &
Petzoldt (2004).

Another problem commonly faced in managing
time and dates is the midnight standard. Indeed, the
problem can be handled in different ways depending
on the standard in use. For example, the standard C
library does not allow for the “midnight” standard
in the format “24:00:00” (Bateman (2000)). However,
the timeDate package supports this format.

Moreover, timeDate includes functions for cal-
endar manipulations, business days, weekends, and
public and ecclesiastical holidays. One can handle
day count conventions and rolling business conven-
tions. Such periods can pertain to, for example, the
last working day of the month. The below examples
illustrate this point.

In the remaining part of this note, we first present
the structure of the "timeDate" class. Then, we ex-
plain the creation of "timeDate" objects. The use of
financial centers with DST rules is described next.
Thereafter, we explain the management of holidays.
Finally, operations on "timeDate" objects such as
mathematical operations, rounding, subsetting, and
coercions are discussed. Throughout this note, we
provide many examples to illustrate the functionali-
ties of the package.

Structure of the "timeDate" class

The "timeDate" S4 class is composed of a "POSIXct"
object that is always in Greenwich Mean Time (GMT)
and of a financial center that keeps track of DST. We
use the term financial center to denote geographical
locations. This terminology stems from the main ap-
plication of the Rmetrics packages. However, this de-
nomination should not stop programmers from us-
ing the package in other fields. By default, the local
financial center is set to GMT. The default setting can
be changed via setRmetricsOptions(myFinCenter =
....). The formal S4 class is defined as

> showClass("timeDate")

Class "timeDate" [package "timeDate"]

Slots:

Name: Data format FinCenter
Class: POSIXct character character

where the slot Data contains the timestamps in the
POSIXct class, format is the format typically applied
to Data, and FinCenter is the financial center.

Note: we use the abbreviation GMT equivalently
to UTC, the universal time coordinated.

1The original data set of the world map with time zones is available at http://efele.net/maps/tz/world/. Full and reduced rda
versions were kindly contributed by Roger Bivand.

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://cran.r-project.org/package=timeDate
http://cran.r-project.org/package=timeDate
http://cran.r-project.org/package=timeDate
http://cran.r-project.org/package=timeDate
http://efele.net/maps/tz/world/

20 CONTRIBUTED RESEARCH ARTICLES

"timeDate" object creation

There are different ways to generate a "timeDate"
object. It can be generated using either timeDate(),
timeSequence(), or timeCalendar().

The function timeDate() creates a "timeDate" ob-
ject from scratch. It requires a character vector of
timestamps and optional arguments to specify the
format of this vector and the financial center. The
financial center can be specified, as mentioned, via
setRmetricsOptions() or (more cleanly) with the ar-
gument FinCenter. By default, it is set to GMT2.

In the following, we illustrate the creation of
"timeDate" objects as well as the method used to
convert timestamps from different time zones.

We first create character vectors of two times-
tamps with the default financial center (GMT):

> Dates <- c("2009-09-28","2010-01-15")
> Times <- c("23:12:55", "10:34:02")
> charvec <- paste(Dates, Times)
> getRmetricsOption("myFinCenter")

myFinCenter
"GMT"

> timeDate(charvec)

GMT
[1] [2009-09-28 23:12:55] [2010-01-15 10:34:02]

As a second step, we set the local financial center
to Zurich and create a "timeDate" object.

> setRmetricsOptions(myFinCenter = "Zurich")
> timeDate(charvec)

Zurich
[1] [2009-09-28 23:12:55] [2010-01-15 10:34:02]

The third example shows how the timestamps
can be conveniently converted into different time
zones; charvec is recorded in Tokyo and subse-
quently converted to our local center, i.e., Zurich (see
above):

> timeDate(charvec, zone = "Tokyo")

Zurich
[1] [2009-09-28 16:12:55] [2010-01-15 02:34:02]

or converted from Zurich to New York:

> timeDate(charvec, zone = "Zurich",
+ FinCenter = "NewYork")

NewYork
[1] [2009-09-28 17:12:55] [2010-01-15 04:34:02]

It is also possible to use the function finCenter()
to view or modify the local center:

> td <- timeDate(charvec, zone = "Zurich",
+ FinCenter = "NewYork")
> finCenter(td)

[1] "NewYork"

> finCenter(td) <- "Zurich"
> td

Zurich
[1] [2009-09-28 23:12:55] [2010-01-15 10:34:02]

If the format of charvec is not specified, timeDate
uses an automated date-time format identifier called
whichFormat() that supports common date-time for-
mats.

> whichFormat(charvec)

[1] "%Y-%m-%d %H:%M:%S"

The function timeSequence() creates a
"timeDate" object representing an equidistant se-
quence of points in time. You can specify the range
of dates with the arguments from and to. If from
is missing, length.out defines the length of the se-
quence. In the case of a monthly sequence, you can
define specific rules. For example, you can generate
the sequence with the last days of the month or with
the last or n-th Friday of every month. This can be of
particular interest in financial applications.

Let us first reset the financial center to an interna-
tional environment:

> setRmetricsOptions(myFinCenter = "GMT")
> # 'timeDate' is now in the financial center "GMT"
> timeDate(charvec)

GMT
[1] [2009-09-28 23:12:55] [2010-01-15 10:34:02]

A sequence of days or months can be created as fol-
lows:

> # first three days in January 2010,
> timeSequence(from = "2010-01-01",
+ to = "2010-01-03", by = "day")

GMT
[1] [2010-01-01] [2010-01-02] [2010-01-03]

> # first 3 months in 2010:
> timeSequence(from = "2010-01-01",
+ to = "2010-03-31", by = "month")

GMT
[1] [2010-01-01] [2010-02-01] [2010-03-01]

The function timeCalendar() creates "timeDate"
objects from calendar atoms. You can specify values
or vectors of equal length denoting year, month, day,
hour, minute, and seconds as integers. For example,
the monthly calendar of the current year or a specific
calendar in a given time zone can be created as fol-
lows:

> timeCalendar()

GMT
[1] [2011-01-01] [2011-02-01] [2011-03-01]
[4] [2011-04-01] [2011-05-01] [2011-06-01]
[7] [2011-07-01] [2011-08-01] [2011-09-01]

[10] [2011-10-01] [2011-11-01] [2011-12-01]

2GMT can be considered as a “virtual” financial center.

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://cran.r-project.org/package=timeDate

CONTRIBUTED RESEARCH ARTICLES 21

The following represents the first four days of
January recorded in Tokyo at local time “16:00” and
converted to the financial center Zurich:

> timeCalendar(2010, m=1, d=1:4, h=16,
+ zone = "Tokyo", FinCenter = "Zurich")

Zurich
[1] [2010-01-01 08:00:00] [2010-01-02 08:00:00]
[3] [2010-01-03 08:00:00] [2010-01-04 08:00:00]

Midnight standard

The "timeDate" printing format is designed in ac-
cordance with the ISO-8601 (1988) standard. It uses
the 24-hour clock format. Dates are expressed in
the “%Y-%m-%d” format while time-dates are stated
in the “%Y-%m-%d %H:%M:%S” format. A special
case in the 24-hour clock system is the representa-
tion of midnight. It can be equivalently represented
by “00:00” and “24:00”. The former is usually used
to denote the beginning of the day whereas the lat-
ter denotes the end. timeDate supports the midnight
standard as described by the ISO-8601 (1988) stan-
dard as illustrated here:

> timeDate(ch <- "2010-01-31 24:00:00")

GMT
[1] [2010-02-01]

Note, following the revision of this paper, the R
source has been amended in May 2011 to also al-
low “24:00” time specifications, such that a midnight
standard will be part of standard R.

Financial centers – via daylight sav-
ing time rules

As mentioned earlier, the global financial center can
be set with the function setRmetricsOptions() and
accessed with the function getRmetricsOption(). Its
default value is set to “GMT”:

> getRmetricsOption("myFinCenter")

myFinCenter
"GMT"

> # change to Zurich:
> setRmetricsOptions(myFinCenter = "Zurich")

From now on, all dates and times are handled
in accordance with the Central European time zone
and the DST rule for Zurich. Note that setting the
financial center to a continent/city that lies outside
the time zone used by your OS does not change any
of the time settings or environment variables of your
computer.

There are almost 400 financial centers supported
thanks to the Olson database. They can be accessed
by the function listFinCenter(), and partial lists
can be extracted through the use of regular expres-
sions.

> # first few financial centers:
> head(listFinCenter())

[1] "Africa/Abidjan" "Africa/Accra"
[3] "Africa/Addis_Ababa" "Africa/Algiers"
[5] "Africa/Asmara" "Africa/Bamako"

> # European centers starting with A or B:
> listFinCenter("Europe/[AB].*") # -> nine

[1] "Europe/Amsterdam" "Europe/Andorra"
[3] "Europe/Athens" "Europe/Belgrade"
[5] "Europe/Berlin" "Europe/Bratislava"
[7] "Europe/Brussels" "Europe/Bucharest"
[9] "Europe/Budapest"

Each financial center has an associated func-
tion that returns its DST rules in the form of a
"data.frame". These functions share the name of
their financial center, e.g., Zurich().

> Zurich()[64:67,]

Zurich offSet isdst TimeZone
64 2010-03-28 01:00:00 7200 1 CEST
65 2010-10-31 01:00:00 3600 0 CET
66 2011-03-27 01:00:00 7200 1 CEST
67 2011-10-30 01:00:00 3600 0 CET

numeric
64 1269738000
65 1288486800
66 1301187600
67 1319936400

The returned "data.frame" shows when the
clock was changed in Zurich, the offset in seconds
with respect to GMT, a flag that tells us if DST is in ef-
fect or not, the time zone abbreviation, and the num-
ber of seconds since “1970-01-01” in GMT. The reader
interested in the history of DST is referred to Bartky
& Harrison (1979).

Note new centers can be easily added as long
as their associated functions return a "data.frame"
with the same structure as described above.

Holidays and calendars

Holidays are usually grouped by their origins. The
first category, as the etymology suggests, is based
on religious origin. For example, the ecclesiastical
calendars of Christian churches are based on cycles
of movable and immovable feasts. Christmas, De-
cember 25, is the principal immovable feast, whereas
Easter is the principal movable feast. Most of the
other dates are movable feasts that are determined
with respect to Easter, Montes (1996). A second cat-
egory of holidays is secular holidays, which denotes
days that are celebrated internationally and in differ-
ent cultures, such as Labor Day. Another category
of holidays includes days that are relative to natural
events. For example, the dates can be related to as-
tronomical events such as cycles of the moon or the
equinox. Moreover, there are also country-specific
national holidays.

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

22 CONTRIBUTED RESEARCH ARTICLES

The calculation of holidays might prove tedious
in some circumstances. Indeed, the estimation of
the Easter date is a complex procedure with differ-
ent algorithms involved in its computation. The
algorithm implemented in the package is the one
of Oudin (1940) as quoted in Seidelmann (1992).
This approach is valid for any Gregorian calendar
year. Further details about holiday calculation can
be found in Tøndering (2008).

The dates of Easter for the next five years can be
calculated with

> thisYear <- getRmetricsOption("currentYear")
> Easter(thisYear:(thisYear+5))

Zurich
[1] [2011-04-24] [2012-04-08] [2013-03-31]
[4] [2014-04-20] [2015-04-05] [2016-03-27]

The timeDate package includes functions for
bank holidays in Canada, France, Germany, Great
Britain, Italy, Japan3, Switzerland, and the US. These
holidays can be grouped in calendars. At the mo-
ment, the package provides functions for the New
York stock exchange, holidayNYSE(); for the North
American Reliability Council, holidayNERC()4; for
the Toronto stock exchange holidayTSX(), and for
Zurich, holidayZURICH(). Other calendars can be
easily implemented given that the package already
provides many holidays functions. A list of all holi-
days is provided in the appendix.

Logical test

It is possible to construct tests for weekdays, week-
ends, business days, and holidays with the func-
tions isWeekday(), isWeekend(), isBizday() and
isHoliday(), respectively.

Let us take a sequence of dates around Easter:

> Easter(2010)

Zurich
[1] [2010-04-04]

> (tS <- timeSequence(Easter(2010, -2),
+ Easter(2010, +3)))

Zurich
[1] [2010-04-02] [2010-04-03] [2010-04-04]
[4] [2010-04-05] [2010-04-06] [2010-04-07]

We can now extract the weekdays or business days
according to a holiday calendar.

> (tS1 <- tS[isWeekday(tS)])

Zurich
[1] [2010-04-02] [2010-04-05] [2010-04-06]
[4] [2010-04-07]

> (tS2 <- tS[isBizday(tS, holidayZURICH(2010))])

Zurich
[1] [2010-04-06] [2010-04-07]

> dayOfWeek(tS2)

2010-04-06 2010-04-07
"Tue" "Wed"

Thank to the comments of one of the referees, we
have added a new argument, wday, in the func-
tions isWeekend(), isWeekday(), isBizday() and
isHoliday() that can be used to specify which days
should be considered as business days. This is im-
portant when using calendars in Islamic countries or
in Israel. By default, wday specifies the weekdays as
Monday to Friday.

Special dates

As mentioned earlier, holidays often refer to a spe-
cific date or event. It is therefore crucial to have func-
tions to compute: the first day in a given month, the
last day in a given month and year, a given day be-
fore or after a date, the n-th occurrences of a day in a
specified year/month, or a given last day for a spec-
ified year/month. We have summarized these func-
tions in a table in the appendix.

In the following, we demonstrate how to retrieve
the last day in each quarter or the second Sunday of
each month. Note that days are numbered from 0 to
6 where 0 corresponds to Sunday and 6 to Saturday.

> charvec <- c("2011-03-01", "2011-04-01")
> # Last day in quarter
> timeLastDayInQuarter(charvec)

Zurich
[1] [2011-03-31] [2011-06-30]

> # Second Sunday of each month:
> timeNthNdayInMonth(charvec, nday = 0, nth = 2)

Zurich
[1] [2011-03-13] [2011-04-10]

> # Closest Friday that occurred before:
> timeNdayOnOrBefore(charvec, nday = 5)

Zurich
[1] [2011-02-25] [2011-04-01]

Operations on "timeDate" objects

Just like the other date-time classes in R, the
"timeDate" class supports common operations. It
allows for mathematical operations such as addi-
tion, subtraction, and comparisons to be performed.
Moreover, methods for the generic functions to con-
catenate, replicate, sort, re-sample, unify, revert, or
lag are available as the well known calls c(), rep(),
sort(), sample(), unique(), rev(), and diff(), re-
spectively. We spare the reader superfluous exam-
ples of functions that are common to other date-
time classes. In the rest of the section, we empha-
size methods that are not available for other classes
or are not strictly identical. The reader is referred
to the ebook “Chronological Objects with Rmetrics”
(Würtz, Chalabi & Ellis, 2010) for more examples.

3The Japanese holidays were contributed by Parlamis Franklin.
4holidayNERC() was contributed by Joe W. Byers.

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://cran.r-project.org/package=timeDate

CONTRIBUTED RESEARCH ARTICLES 23

Subsetting methods

The timeDate package has different functions to sub-
set a timeDate object. The usual function ‘[’ ex-
tracts or replaces subsets of "timeDate" objects as ex-
pected. However, the package provides some addi-
tional functions. For example, the function window()
extracts a sequence from a starting and ending point.
The functions start() and end() extract the first and
last timestamps, respectively.

Coercion methods

The package provides both S3 and S4 methods to co-
erce to and from "timeDate" objects. Below, we list
the S4 coercion methods available. The equivalent S3
methods as.* are also provided, although the mixing
of S4 classes and S3 methods is discouraged. Note
that information can be lost in the coercion process if
the destination class does not support the same func-
tionality.

> showMethods("coerce", class = "timeDate")

Function: coerce (package methods)
from="ANY", to="timeDate"
from="Date", to="timeDate"
from="POSIXt", to="timeDate"
from="timeDate", to="Date"
from="timeDate", to="POSIXct"
from="timeDate", to="POSIXlt"
from="timeDate", to="character"
from="timeDate", to="data.frame"
from="timeDate", to="list"
from="timeDate", to="numeric"

We would like to point out a particular difference
between the as.numeric methods of "timeDate" and
"POSIXct" classes. Indeed, the as.numeric-timeDate
method returns the time in minutes, in contrast
to as.numeric.POSIXct, which returns the results
in seconds. However, the as.numeric-timeDate
method has an additional argument, unit, to select
other units. These include seconds, hours, days, and
weeks.

Concatenation method

The concatenation c() method for "timeDate" ob-
jects takes care of the different financial centers of the
object to be concatenated. In such cases, all times-
tamps are transformed to the financial center of the
first "timeDate" object. This feature is now also sup-
ported by R’s "POSIXct" class. However, it was not
available in previous versions of the class.

> ZH <- timeDate("2010-01-01 16:00", zone = "GMT",
+ FinCenter = "Zurich")
> NY <- timeDate("2010-01-01 18:00", zone = "GMT",
+ FinCenter = "NewYork")
> c(ZH, NY)

Zurich
[1] [2010-01-01 17:00:00] [2010-01-01 19:00:00]

> c(NY, ZH)

NewYork
[1] [2010-01-01 13:00:00] [2010-01-01 11:00:00]

Rounding and truncation methods

The rounding and truncation methods have similar
functionalities to those of their counterparts in other
date-time classes. However, the default unit argu-
ment is not the same.

Summary

The timeDate package offers functions for calen-
dar manipulations for business days, weekends, and
public and ecclesiastical holidays that are of inter-
est in financial applications as well as in other fields.
Moreover, the Financial Center concept facilitates the
mixing of data collected in different time zones and
the manipulation of data recorded in the same time
zone but with different DST rules.

Acknowledgments

We thank the anonymous referees and the editor for
their valuable comments as well as all R users and
developers who have helped us to improve the time-
Date package.

Bibliography

R.I. Bartky and E. Harrison. Standard and Daylight
Saving Time. Scientific American, 240:46–53, 1979.

R. Bateman. Time Functionality in the Standard C Li-
brary, Novell AppNotes, September Issue, 73–85,
2000.

N. Dershowitz and E.M. Reingold. Calendrical Cal-
culations. Software - Practice and Experience, 20:899–
928, 1990.

N. Dershowitz and E.M. Reingold. Calendrical Calcu-
lations. Cambridge University Press, 1997.

G. Grothendieck and T. Petzoldt. Date and Time
Classes in R. R News, 4(1):29-32, 2004.

ISO-8601. Data Elements and Interchange Formats –
Information Interchange, Representation of Dates and
Time. International Organization for Standardiza-
tion, Reference Number ISO 8601, 1988.

M.J. Montes. Butcher’s Algorithm for Calculating the
Date of Easter in the Gregorian Calendar, 1996.

B.D. Ripley and K. Hornik. Date-Time Classes. R-
News, 1(2):8–12, 2001.

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://cran.r-project.org/package=timeDate
http://cran.r-project.org/package=timeDate
http://cran.r-project.org/package=timeDate
http://cran.r-project.org/package=timeDate

24 CONTRIBUTED RESEARCH ARTICLES

P.K. Seidelmann (Editor). Explanatory Supplement
to the Astronomical Almanac. University Science
Books, Herndon, 1992.

C. Tøndering. Frequently Asked Questions about
Calendars, 2008. URL http://www.tondering.dk/
claus/calendar.html.

D. Würtz and Y. Chalabi with contribution from
M. Maechler, J.W. Byers, and others. timeDate:
Rmetrics - Chronological and Calendarical Ob-
jects, 2011. URL http://cran.r-project.org/
web/packages/timeDate/.

D. Würtz, Y. Chalabi and A. Ellis Chronological
Objects with Rmetrics, 2010. URL http://www.
rmetrics.org/ebooks.

Yohan Chalabi
Finance Online GmbH, Zurich &
Institute of Theoretical Physics, ETH Zurich,
Switzerland
chalabi@phys.ethz.ch

Martin Mächler
Seminar für Statistik, ETH Zurich,
Switzerland
maechler@stat.math.ethz.ch

Diethelm Würtz
Institute of Theoretical Physics, ETH Zurich,
Switzerland
wuertz@phys.ethz.ch

Appendix

Session Info

> toLatex(sessionInfo())

• R version 2.13.0 (2011-04-13),
x86_64-apple-darwin10.7.0

• Locale: C ...

• Base packages: base, datasets, grDevices, graphics,
methods, stats, utils

• Other packages: timeDate 2130.93

Tables

1. Special dates

timeFirstDayInMonth First day in a given month
timeLastDayInMonth Last day in a given month
timeFirstDayInQuarter First day in a given quarter
timeLastDayInQuarter Last day in a given quarter
timeNdayOnOrAfter Day "on-or-after" n-days
timeNdayOnOrBefore Day "on-or-before" n-days
timeNthNdayInMonth N-th occurrence of a n-day

in month
timeLastNdayInMonth Last n-day in month

2. List of holidays

Advent1st JPBunkaNoHi
Advent2nd JPChildrensDay
Advent3rd JPComingOfAgeDay
Advent4th JPConstitutionDay
AllSaints JPEmperorsBirthday
AllSouls JPGantan
Annunciation JPGreeneryDay
Ascension JPHealthandSportsDay
AshWednesday JPKeirouNOhi
AssumptionOfMary JPKenkokuKinenNoHi
BirthOfVirginMary JPKenpouKinenBi
BoxingDay JPKinrouKanshaNoHi
CACanadaDay JPKodomoNoHi
CACivicProvincialHoliday JPKokuminNoKyujitu
CALabourDay JPMarineDay
CAThanksgivingDay JPMidoriNoHi
CAVictoriaDay JPNatFoundationDay
CHAscension JPNationHoliday
CHBerchtoldsDay JPNationalCultureDay
CHConfederationDay JPNewYearsDay
CHKnabenschiessen JPRespectForTheAgedDay
CHSechselaeuten JPSeijinNoHi
CaRemembranceDay JPShuubunNoHi
CelebrationOfHolyCross JPTaiikuNoHi
ChristTheKing JPTennouTanjyouBi
ChristmasDay JPThanksgivingDay
ChristmasEve JPUmiNoHi
CorpusChristi LaborDay
DEAscension MassOfArchangels
DEChristmasEve NewYearsDay
DECorpusChristi PalmSunday
DEGermanUnity Pentecost
DENewYearsEve PentecostMonday
Easter PresentationOfLord
EasterMonday Quinquagesima
EasterSunday RogationSunday
Epiphany Septuagesima
FRAllSaints SolemnityOfMary
FRArmisticeDay TransfigurationOfLord
FRAscension TrinitySunday
FRAssumptionVirginMary USCPulaskisBirthday
FRBastilleDay USChristmasDay
FRFetDeLaVictoire1945 USColumbusDay
GBBankHoliday USDecorationMemorialDay
GBMayDay USElectionDay
GBMilleniumDay USGoodFriday
GBSummerBankHoliday USInaugurationDay
GoodFriday USIndependenceDay
ITAllSaints USLaborDay
ITAssumptionOfVirginMary USLincolnsBirthday
ITEpiphany USMLKingsBirthday
ITImmaculateConception USMemorialDay
ITLiberationDay USNewYearsDay
ITStAmrose USPresidentsDay
JPAutumnalEquinox USThanksgivingDay
JPBankHolidayDec31 USVeteransDay
JPBankHolidayJan2 USWashingtonsBirthday
JPBankHolidayJan3

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://www.tondering.dk/claus/calendar.html
http://www.tondering.dk/claus/calendar.html
http://cran.r-project.org/web/packages/timeDate/
http://cran.r-project.org/web/packages/timeDate/
http://www.rmetrics.org/ebooks
http://www.rmetrics.org/ebooks
mailto:chalabi@phys.ethz.ch
mailto:maechler@stat.math.ethz.ch
mailto:wuertz@phys.ethz.ch

