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Differential Evolution with DEoptim

An Application to Non-Convex Portfolio Optimiza-
tion

by David Ardia, Kris Boudt, Peter Carl, Katharine M.
Mullen and Brian G. Peterson

Abstract The R package DEoptim implements
the Differential Evolution algorithm. This al-
gorithm is an evolutionary technique similar to
classic genetic algorithms that is useful for the
solution of global optimization problems. In this
note we provide an introduction to the package
and demonstrate its utility for financial appli-
cations by solving a non-convex portfolio opti-
mization problem.

Introduction

Differential Evolution (DE) is a search heuristic intro-
duced by Storn and Price (1997). Its remarkable per-
formance as a global optimization algorithm on con-
tinuous numerical minimization problems has been
extensively explored (Price et al.,, 2006). DE has
also become a powerful tool for solving optimiza-
tion problems that arise in financial applications: for
fitting sophisticated models (Gilli and Schumann,
2009), for performing model selection (Maringer and
Meyer, 2008), and for optimizing portfolios under
non-convex settings (Krink and Paterlini, 2011). DE
is available in R with the package DEoptim.

In what follows, we briefly sketch the DE algo-
rithm and discuss the content of the package DEop-
tim. The utility of the package for financial applica-
tions is then explored by solving a non-convex port-
folio optimization problem.

Differential Evolution

DE belongs to the class of genetic algorithms (GAs)
which use biology-inspired operations of crossover,
mutation, and selection on a population in order
to minimize an objective function over the course
of successive generations (Holland, 1975). As with
other evolutionary algorithms, DE solves optimiza-
tion problems by evolving a population of candi-
date solutions using alteration and selection opera-
tors. DE uses floating-point instead of bit-string en-
coding of population members, and arithmetic op-
erations instead of logical operations in mutation, in
contrast to classic GAs.

Let NP denote the number of parameter vectors
(members) x € R? in the population, where d de-
notes dimension. In order to create the initial genera-
tion, NP guesses for the optimal value of the param-
eter vector are made, either using random values be-
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tween upper and lower bounds (defined by the user)
or using values given by the user. Each generation
involves creation of a new population from the cur-
rent population members {x;|i =1,...,NP}, where
i indexes the vectors that make up the population.
This is accomplished using differential mutation of
the population members. An initial mutant parame-
ter vector v; is created by choosing three members of
the population, x; , x;, and x;,, at random. Then v; is
generated as

v = + F - (xj, — xi5),

where F is a positive scale factor, effective values for
which are typically less than one. After the first mu-
tation operation, mutation is continued until d mu-
tations have been made, with a crossover probability
CR € [0,1]. The crossover probability CR controls the
fraction of the parameter values that are copied from
the mutant. Mutation is applied in this way to each
member of the population. If an element of the trial
parameter vector is found to violate the bounds after
mutation and crossover, it is reset in such a way that
the bounds are respected (with the specific protocol
depending on the implementation). Then, the ob-
jective function values associated with the children
are determined. If a trial vector has equal or lower
objective function value than the previous vector it
replaces the previous vector in the population; oth-
erwise the previous vector remains. Variations of
this scheme have also been proposed; see Price et al.
(2006).

Intuitively, the effect of the scheme is that the
shape of the distribution of the population in the
search space is converging with respect to size and
direction towards areas with high fitness. The closer
the population gets to the global optimum, the more
the distribution will shrink and therefore reinforce
the generation of smaller difference vectors.

For more details on the DE strategy, we refer
the reader to Price et al. (2006) and Storn and Price
(1997).

The package DEoptim

DEoptim (Ardia et al., 2011) was first published on
CRAN in 2005. Since becoming publicly available, it
has been used by several authors to solve optimiza-
tion problems arising in diverse domains. We refer
the reader to Mullen et al. (2011) for a detailed de-
scription of the package.

DEoptim consists of the core function DEoptim
whose arguments are:

e fn: the function to be optimized (minimized).

* lower, upper: two vectors specifying scalar real
lower and upper bounds on each parameter to

ISSN 2073-4859


http://cran.r-project.org/package=DEoptim

28

CONTRIBUTED RESEARCH ARTICLES

be optimized. The implementation searches be-
tween lower and upper for the global optimum
of fn.

® control: a list of tuning parameters, among
which: Np (default: 10 - d), the number of pop-
ulation members and itermax (default: 200),
the maximum number of iterations (i.e., pop-
ulation generations) allowed. For details on
the other control parameters, the reader is re-
ferred to the documentation manual (by typ-
ing ?DEoptim). For convenience, the function
DEoptim.control () returns a list with default
elements of control.

e ...: allows the user to pass additional argu-
ments to the function fn.

The output of the function DEoptim is a member
of the S3 class DEopt im. Members of this class have a
plot and a summary method that allow to analyze the
optimizer’s output.

Let us quickly illustrate the package’s usage with
the minimization of the Rastrigin function in R?,
which is a common test for global optimization:

> Rastrigin <- function(x) {
+ sum(x”2 - 10 * cos(2 * pi * x)) + 20
}

The global minimum is zero at point x = (0,0)’. A
perspective plot of the function is shown in Figure 1.
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Figure 1: Perspective plot of the Rastrigin function.
The function DEoptim searches for a minimum

of the objective function between lower and upper
bounds. A call to DEopt im can be made as follows:
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> set.seed(1234)

> DEoptim(fn = Rastrigin,

+ lower = c(-5, -5),

+ upper = c(5, 5),

+ control = list (storepopfrom = 1)

The above call specifies the objective function to
minimize, Rastrigin, the lower and upper bounds
on the parameters, and, via the control argument,
that we want to store intermediate populations from
the first generation onwards (storepopfrom = 1).
Storing intermediate populations allows us to exam-
ine the progress of the optimization in detail. Upon
initialization, the population is comprised of 50 ran-
dom values drawn uniformly within the lower and
upper bounds. The members of the population gen-
erated by the above call are plotted at the end of
different generations in Figure 2. DEoptim consis-
tently finds the minimum of the function (market
with an open white circle) within 200 generations us-
ing the default settings. We have observed that DE-
optim solves the Rastrigin problem more efficiently
than the simulated annealing method available in the
R function optim (for all annealing schedules tried).
Note that users interested in exact reproduction of
results should set the seed of their random number
generator before calling DEoptim (using set.seed).
DE is a randomized algorithm, and the results may
vary between runs.

Finally, note that DEoptim relies on repeated
evaluation of the objective function in order to move
the population toward a global minimum. Therefore,
users interested in making DEoptim run as fast as
possible should ensure that evaluation of the objec-
tive function is as efficient as possible. Using pure R
code, this may often be accomplished using vector-
ization. Writing parts of the objective function in a
lower-level language like C or Fortran may also in-
crease speed.

Risk allocation portfolios

Mean-risk models were developed in early fifties for
the portfolio selection problem. Initially, variance
was used as a risk measure. Since then, many al-
ternative risk measures have been proposed. The
question of which risk measure is most appropriate is
still the subject of much debate. Value-at-Risk (VaR)
and Conditional Value-at-Risk (CVaR) are the most
popular measures of downside risk. VaR is the neg-
ative value of the portfolio return such that lower
returns will only occur with at most a preset prob-
ability level, which typically is between one and five
percent. CVaR is the negative value of the mean of
all return realizations that are below the VaR. There
is a voluminous literature on portfolio optimization
problems with VaR and CVaR risk measures, see,
e.g., Fabidn and Veszprémi (2008) and the references
therein.
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Figure 2: The population (market with black dots) associated with various generations of a call to DEoptin as
it searches for the minimum of the Rastrigin function at point x = (0,0)" (market with an open white circle).
The minimum is consistently determined within 200 generations using the default settings of DEopt im.
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Modern portfolio selection considers additional
criteria such as to maximize upper-tail skewness and
liquidity or minimize the number of securities in the
portfolio. In the recent portfolio literature, it has
been advocated by various authors to incorporate
risk contributions in the portfolio allocation prob-
lem. Qian’s (2005) Risk Parity Portfolio allocates port-
folio variance equally across the portfolio compo-
nents. Maillard et al. (2010) call this the Equally-
Weighted Risk Contribution (ERC) Portfolio. They de-
rive the theoretical properties of the ERC portfolio
and show that its volatility is located between those
of the minimum variance and equal-weight portfo-
lio. Zhu et al. (2010) study optimal mean-variance
portfolio selection under a direct constraint on the
contributions to portfolio variance. Because the re-
sulting optimization model is a non-convex quadrat-
ically constrained quadratic programming problem,
they develop a branch-and-bound algorithm to solve
it.

Boudt et al. (2010a) propose to use the contribu-
tions to portfolio CVaR as an input in the portfolio
optimization problem to create portfolios whose per-
centage CVaR contributions are aligned with the de-
sired level of CVaR risk diversification. Under the
assumption of normality, the percentage CVaR con-
tribution of asset i is given by the following explicit
function of the vector of weights w = (wy,...,w;)’,
mean vector p = (yi1,...,14)" and covariance matrix
I

—w'p + VwTw)

with z, the a-quantile of the standard normal distri-
bution and ¢(-) the standard normal density func-
tion. Throughout the paper we set & = 5%. As we
show here, the package DEoptim is well suited to
solve these problems. Note that it is also the evo-
lutionary optimization strategy used in the package
PortfolioAnalytics (Boudt et al., 2010b).

To illustrate this, consider as a stylized example a
five-asset portfolio invested in the stocks with tickers
GE, IBM, JPM, MSFT and WMT. We keep the dimen-
sion of the problem low in order to allow interested
users to reproduce the results using a personal com-
puter. More realistic portfolio applications can be
obtained in a straightforward manner from the code
below, by expanding the number of parameters opti-
mized. Interested readers can also see the DEoptim
package vignette for a 100-parameter portfolio opti-
mization problem that is typical of those encountered
in practice.

We first download ten years of monthly data us-
ing the function getSymbols of the package quant-
mod (Ryan, 2010). Then we compute the log-return
series and the mean and covariance matrix estima-
tors. For on overview of alternative estimators of the
covariance matrix, such as outlier robust or shrink-
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age estimators, and their implementation in portfolio
allocation, we refer the reader to Wiirtz et al. (2009,
Chapter 4). These estimators might yield better per-
formance in the case of small samples, outliers or de-
partures from normality.

library ("quantmod")
tickers <- c("GE", "IBM", "JPM", "MSFT", "WMT")
getSymbols (tickers,
from = "2000-12-01",
to = "2010-12-31")
P <- NULL
for(ticker in tickers) {
tmp <- Cl(to.monthly(eval (parse(text = ticker))))
P <- cbind (P, tmp)
}
colnames (P) <- tickers
R <- diff(log(P))
R <- R[-1,]
mu <- colMeans (R)
sigma <- cov(R)

V V V V V + 4+ + V V + + V V V

We first compute the equal-weight portfolio. This
is the portfolio with the highest weight diversifica-
tion and often used as a benchmark. But is the risk
exposure of this portfolio effectively well diversified
across the different assets? This question can be an-
swered by computing the percentage CVaR contribu-
tions with function ES in the package Performance-
Analytics (Carl and Peterson, 2011). These percent-
age CVaR contributions indicate how much each as-
set contributes to the total portfolio CVaR.

> library ("PerformanceAnalytics")
> pContribCVaR <- ES(weights = rep(0.2, 5),
+ method = "gaussian",

portfolio_method = "component",

sigma = sigma) $pct_contrib_ES
rbind(tickers, round(100 * pContribCVaR, 2))
[,/1] [,2] [,3] [,4] [,5]
tickers "GE" "IBM" "JpM" "MSFT"  "WMT"
"21.61" "18.6" "25.1" "25.39" "9.3"

n
+  mu = mu,
n
>

We see that in the equal-weight portfolio, 25.39%
of the portfolio CVaR risk is caused by the 20%
investment in MSFT, while the 20% investment in
WMT only causes 9.3% of total portfolio CVaR. The
high risk contribution of MSFT is due to its high stan-
dard deviation and low average return (reported in
percent):

> round (100 * mu , 2)
GE IBM JPM MSFT WMT
-0.80 0.46 -0.06 -0.37 0.0
> round (100 * diag(sigma)”(1/2), 2)
GE IBM JPM MSFT WMT
8.90 7.95 9.65 10.47 5.33

We now use the function DEopt im of the package
DEoptim to find the portfolio weights for which the
portfolio has the lowest CVaR and each investment
can contribute at most 22.5% to total portfolio CVaR
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risk. For this, we first define our objective function
to minimize. The current implementation of DEop-
tim allows for constraints on the domain space. To
include the risk budget constraints, we add them to
the objective function through a penalty function. As
such, we allow the search algorithm to consider in-
feasible solutions. A portfolio which is unacceptable
for the investor must be penalized enough to be re-
jected by the minimization process and the larger the
violation of the constraint, the larger the increase in
the value of the objective function. A standard ex-
pression of these violations is a x |violation|?. Crama
and Schyns (2003) describe several ways to calibrate
the scaling factors & and p. If these values are too
small, then the penalties do not play their expected
role and the final solution may be infeasible. On the
other hand, if « and p are too large, then the CVaR
term becomes negligible with respect to the penalty;
thus, small variations of w can lead to large varia-
tions of the penalty term, which mask the effect on
the portfolio CVaR. We set « = 10° and p = 1, but
recognize that better choices may be possible and de-
pend on the problem at hand.

> obj <- function(w) {
if (sum(w) == 0) { w <- w + le-2 }
w <- w / sum(w)
CVaR <- ES(weights = w,
method = "gaussian",
portfolio_method = "component",
mu = mu,
sigma = sigma)
tmpl <- CVaRS$ES
tmp2 <- max (CVaR$pct_contrib_ES - 0.225, 0)
out <- tmpl + le3 * tmp2

+ + + + A+ A+ 4+

The penalty introduced in the objective func-
tion is non-differentiable and therefore standard
gradient-based optimization routines cannot be
used. In contrast, DEoptimis designed to consistently
find a good approximation to the global minimum of
the optimization problem:

> set.seed(1234)

> out <- DEoptim(fn = obj,
+ lower = rep(0, 5),

+ upper = rep(l, 5))

> outS$Soptim$bestval

[1] 0.1143538

> wstar <- out$optim$bestmem

> wstar <- wstar / sum(wstar)

> rbind(tickers, round (100 * wstar, 2))

parl par?2 par3 par4 parb

tickers "GE" "IBM" "JpM" "MSET"  "WMT"
"18.53" "21.19" "11.61"™ "13.37" "35.3"
> 100 * (sum(wstar * mu) - mean (mu))

[1] 0.04827935
Note that the main differences with the equal-

weight portfolio is the low weights given to JPM and
MSFT and the high weight to WMT. As can be seen
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from the last two lines, this minimum risk portfolio
has a higher expected return than the equal weight
portfolio. The following code illustrates that DEop-
tim yields superior results than the gradient-based
optimization routines available in R.

> out <- optim(par = rep(0.2, 5),
+ fn = obj,

+ method = "L-BFGS-B",

+ lower = rep(0, 5),

+ upper = rep(l, 5))

> out$value

[1] 0.1255093

> out <- nlminb(start = rep(0.2, 5),
+ objective = obj,

+ lower = rep(0, 5),

+ upper = rep(l, 5))

> out$objective

[1] 0.1158250

Even on this relatively simple stylized example,
the optim and nlminb routines converged to local
minima.

Suppose now the investor is interested in the
most risk diversified portfolio whose expected re-
turn is higher than the equal-weight portfolio. This
amounts to minimizing the largest CVaR contribu-
tion subject to a return target and can be imple-
mented as follows:

> obj <- function(w) {

+ if(sum(w) == 0) { w <- w + le-2 }
+ w <- w / sum(w)

+ contribCVaR <- ES(weights = w,

+ method = "gaussian",

+ portfolio_method = "component",
+ mu = mu,

+ sigma = sigma) $contribution

+ tmpl <- max (contribCVaR)

+ tmp2 <- max(mean(mu) - sum(w * mu), 0)
+ out <- tmpl + le3 * tmp2

+ )

> set.seed(1234)

> out <- DEoptim(fn =
+ lower = rep(0, 5),
+ upper = rep(l, 5))
> wstar <- outS$Soptim$bestmem

> wstar <- wstar / sum(wstar)

> rbind(tickers, round (100 * wstar, 2))
parl par2 par3 pard pard

obj,

tickers "GE" "IBM" "JpM" "MSFT"  "WMT"
"17.38" "19.61" "14.85" "15.19" "32.98"
> 100 * (sum(wstar * mu) - mean (mu))

[1] 0.04150506

This portfolio invests more in the JPM stock and
less in the GE (which has the lowest average return)
compared to the portfolio with the upper 22.5% per-
centage CVaR constraint. We refer to Boudt et al.
(2010a) for a more elaborate study on using CVaR al-
locations as an objective function or constraint in the
portfolio optimization problem.

A classic risk/return (i.e., CVaR/mean) scatter
chart showing the results for portfolios tested by

ISSN 2073-4859



32

CONTRIBUTED RESEARCH ARTICLES

DEoptim is displayed in Figure 3. Gray elements
depict the results for all tested portfolios (using
hexagon binning which is a form of bivariate his-
togram, see Carr et al. (2011); higher density regions
are darker). The yellow-red line shows the path of
the best member of the population over time, with
the darkest solution at the end being the optimal port-
folio. We can notice how DEoptim does not spend
much time computing solutions in the scatter space
that are suboptimal, but concentrates the bulk of the
calculation time in the vicinity of the final best port-
folio. Note that we are not looking for the tangency
portfolio; simple mean/CVaR optimization can be
achieved with standard optimizers. We are looking
here for the best balance between return and risk con-
centration.

We have utilized the mean return/CVaR concen-
tration examples here as more realistic, but still styl-
ized, examples of non-convex objectives and con-
straints in portfolio optimization; other non-convex
objectives, such as drawdown minimization, are also
common in real portfolios, and are likewise suitable
to application of Differential Evolution. One of the
key issues in practice with real portfolios is that a
portfolio manager rarely has only a single objective
or only a few simple objectives combined. For many
combinations of objectives, there is no unique global
optimum, and the constraints and objectives formed
lead to a non-convex search space. It may take sev-
eral hours on very fast machines to get the best an-
swers, and the best answers may not be a true global
optimum, they are just as close as feasible given poten-
tially competing and contradictory objectives.

When the constraints and objectives are relatively
simple, and may be reduced to quadratic, linear, or
conical forms, a simpler optimization solver will pro-
duce answers more quickly. When the objectives
are more layered, complex, and potentially contra-
dictory, as those in real portfolios tend to be, DE-
optim or other global optimization algorithms such
as those integrated into PortfolioAnalytics provide
a portfolio manager with a feasible option for opti-
mizing their portfolio under real-world non-convex
constraints and objectives.

The PortfolioAnalytics framework allows any ar-
bitrary R function to be part of the objective set, and
allows the user to set the relative weighting that they
want on any specific objective, and use the appropri-
ately tuned optimization solver algorithm to locate
portfolios that most closely match those objectives.

Summary

In this note we have introduced DE and DEoptim.
The package DEoptim provides a means of applying
the DE algorithm in the R language and environment
for statistical computing. DE and the package DE-
optim have proven themselves to be powerful tools
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for the solution of global optimization problems in
a wide variety of fields. We have referred interested
users to Price et al. (2006) and Mullen et al. (2011) for
a more extensive introduction, and further pointers
to the literature on DE. The utility of using DEoptim
was further demonstrated with a simple example of a
stylized non-convex portfolio risk contribution allo-
cation, with users referred to PortfolioAnalytics for
portfolio optimization using DE with real portfolios
under non-convex constraints and objectives.

The latest version of the package includes the
adaptive Differential Evolution framework by Zhang
and Sanderson (2009). Future work will also be di-
rected at parallelization of the implementation. The
DEoptim project is hosted on R-forge at https://
r-forge.r-project.org/projects/deoptim/.
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