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glm2: Fitting Generalized Linear Models
with Convergence Problems
by Ian C. Marschner

Abstract The R function glm uses step-halving to
deal with certain types of convergence problems
when using iteratively reweighted least squares
to fit a generalized linear model. This works
well in some circumstances but non-convergence
remains a possibility, particularly with a non-
standard link function. In some cases this is be-
cause step-halving is never invoked, despite a
lack of convergence. In other cases step-halving
is invoked but is unable to induce convergence.
One remedy is to impose a stricter form of step-
halving than is currently available in glm, so that
the deviance is forced to decrease in every iter-
ation. This has been implemented in the glm2
function available in the glm2 package. Aside
from a modified computational algorithm, glm2
operates in exactly the same way as glm and pro-
vides improved convergence properties. These
improvements are illustrated here with an iden-
tity link Poisson model, but are also relevant in
other contexts.

It is not too uncommon for iteratively reweighted
least squares (IRLS) to exhibit convergence problems
when fitting a generalized linear model (GLM). Such
problems tend to be most common when using a non-
standard link function, such as a log link binomial
model or an identity link Poisson model. Conse-
quently, most commonly used statistical software has
the provision to invoke various modifications of IRLS
if non-convergence occurs.

In the stats package of R, IRLS is implemented in
the glm function via its workhorse routine glm.fit.
This routine deals with specific types of convergence
problems by switching to step-halving if iterates dis-
play certain undesirable properties. That is, if a full
Fisher scoring step of IRLS will lead to either an infi-
nite deviance or predicted values that are invalid for
the model being fitted, then the increment in parame-
ter estimates is repeatedly halved until the updated
estimates no longer exhibit these features. This is
achieved through repeated application of the call

start <- (start + coefold)/2

where coefold and start contain estimates from the
previous and current iterations, respectively.

Although this approach works well in some con-
texts, it can be prone to fail in others. In particular, al-
though the step-halving process in glm.fit will throw
an errant iterative sequence back into the desired re-
gion, the sequence may repeatedly try to escape that
region and never converge. Furthermore, it is even

possible for the IRLS iterative sequence to be such that
step-halving is never invoked in glm.fit, yet the se-
quence does not converge. Such behavior is typically
accompanied by a deviance sequence that increases
in one or more of the iterations. This suggests a mod-
ification to glm.fit which has been implemented in
the glm2 package (Marschner, 2011).

As motivation for the proposed modification, we
begin by discussing the potential for non-convergence
using some numerical examples of the above types of
behavior. The glm2 package is then discussed, which
consists of a main function glm2 and a workhorse rou-
tine glm.fit2. These are modified versions of glm
and glm.fit, in which step-halving is used to force
the deviance to decrease from one iteration to the next.
It is shown that this modification provides improved
convergence behavior.

Non-convergence

We start by providing illustrations of the two types
of non-convergence alluded to above. Specifically,
we will consider situations in which standard IRLS
does not converge, and for which either: (i) the step-
halving in glm.fit is invoked but cannot induce con-
vergence; or (ii) the step-halving in glm.fit is never
invoked despite the non-convergence of IRLS. These
two types of behavior will be illustrated using an
identity link Poisson regression model, which can be
prone to convergence problems as the link function
does not automatically respect the non-negativity of
the Poisson means. This context is useful for studying
the convergence properties of algorithms based on
IRLS, because for this particular GLM a reliable alter-
native algorithm exists which is not based on IRLS,
as described by Marschner (2010). While we focus on
the identity link Poisson model here, the same behav-
ior can occur in other models and the documentation
for the glm2 package includes a log link binomial
example.

In Table 3.2 of Agresti (2007) a data set is presented
that is amenable to analysis using a linear Poisson
model. The data set consists of a count response vari-
able yi, i = 1, . . . ,173, called Sa in Agresti (2007), with
observed values ranging from 0 through 15 and a
mean of 2.9. Also presented are a number of potential
covariates. Here we define three covariates, xi1, xi2
and xi3, i = 1, . . . ,173, similarly to Marschner (2010).
The first two of these covariates, xi1 and xi2, are de-
fined by dichotomizing the covariates called C and
S in Agresti (2007), such that {xi1} = 1{C > 3} and
{xi2} = 1{S < 3}. This yields two 0/1 binary covari-
ates with means 0.4 and 0.3, respectively. The third
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covariate, xi3, is a continuous covariate called W in
Agresti (2007), which is shifted here by subtracting
the smallest value, so that it ranges from 0 through
12.5 with a mean of 5.3.

Assuming yi is an observation from a Poisson dis-
tribution with mean µi, the identity link model is

µi = α0 + α1xi1 + α2xi2 + α3xi3

with parameter vector θ = (α0,α1,α2,α3). This
model can be fitted in R by first defining a
response vector y with y[i]= yi, and corre-
sponding covariate vectors x1, x2 and x3 with
c(x1[i],x2[i],x3[i])= (xi1, xi2, xi3), along with
a data frame poisdata through the assignment
poisdata <- data.frame(y,x1,x2,x3). The call to
fit the model is then

glm(y ~ x1 + x2 + x3, data = poisdata,
family = poisson(link = "identity"),
start = rep(1,4))

which includes an initial estimate through the start
argument because the default choice is invalid for this
model. Below we also use the control argument to
monitor the iterative behavior.

As discussed later in the paper, the above call pro-
duces satisfactory convergence for these data; how-
ever, a bootstrap analysis using the same call leads to
quite severe numerical instability. Using the sample
function, bootstrap replications were generated by
sampling with replacement from the original data,
after which glm was applied to each replication. This
process readily produced replications for which glm
failed, and a collection of 100 such replications was
generated in which non-convergence occurred. Two
of these replications are discussed as examples in this
section, while the full collection of 100 replications is
discussed further in the next section.

Figure 1 displays the lack of convergence using
glm for the two illustrative replications. Increasing
the maximum number of iterations does not allevi-
ate the problem. Also plotted in Figure 1 is the de-
viance achieved by the maximum likelihood estimate
(MLE), calculated using the non-IRLS linear Poisson
method of Marschner (2010). For Figure 1(a) this
minimum possible deviance is 604.0 with an MLE
of θ̂ = (−0.095,−0.385,0.618,0.530), while for Figure
1(b) the minimum possible deviance is 656.3 with an
MLE of θ̂ = (0.997,−1.344,−0.169,0.524). Inspection
of the score functions reveals both MLEs are station-
ary and in the interior of the parameter space.

These two examples illustrate the two scenarios of
non-convergence described at the beginning of this
section. In Figure 1(a), step-halving was invoked in
28 of the 100 iterations, showing that glm can fail to
converge even with step-halving. In Figure 1(b) step-
halving was not invoked, showing that glm can fail
to converge without ever making use of step-halving.
The latter example is indicative of a potential prob-
lem with Newton-type algorithms, which can have a

so-called attracting periodic cycle. In this case IRLS
is attracted to a cycle of two iterate values, with de-
viances of 673.2 and 691.1, and then subsequently
oscillates between those values.

Although these results use a specific starting value,
the non-convergence cannot be remedied with better
initial estimates. This is illustrated in Figure 1(a),
where the iterates get very close to the optimal value.
Only when the initial estimate is identical to the MLE
does glm converge (in one iteration).
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Figure 1: Examples of non-convergence in glm.
Dashed lines denote the optimal deviance.

The glm2 package

An important feature of Figure 1 is that the iterative
sequences display instances of increasing deviance
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from one iteration to the next. It is well known that
step-halving can be used in Newton-type algorithms
to force the objective function to improve monotoni-
cally (Lange, 2010, p. 251). This approach is used to
improve the convergence properties of IRLS in other
standard statistical software. Here we discuss its im-
plementation in the glm2 function available within
the glm2 package, and the associated improvements
in convergence properties.

The source code for glm.fit has two step-halving
blocks called inner loops 1 and 2. These occur within
the main loop immediately prior to the test of conver-
gence, and they use step-halving to rectify a divergent
deviance and invalid predicted values, respectively.
The main change implemented in the glm2 package
is that the modified routine glm.fit2 has a further
step-halving block, called inner loop 3, which tests
whether the deviance is lower than in the previous
iteration. If not, step-halving is invoked until the de-
viance is lowered, leading to an iterative sequence
that monotonically decreases the deviance.

Convergence in glm.fit occurs if abs(rel) <
control$epsilon where rel is the relative change
(dev - devold)/(0.1 + abs(dev)) from the current
deviance devold to the updated deviance dev, and
control$epsilon is a positive tolerance. In glm.fit2
the same convergence test is used, and if it is not sat-
isfied because rel <= -control$epsilon, then itera-
tions proceed as in glm.fit. However, if convergence
is not satisfied because rel >= control$epsilon,
then inner loop 3 invokes step-halving until rel <=
-control$epsilon. Thus, as well as decreasing the
deviance, the step-halving takes rel from one side of
the convergence region to the other, therefore never
causing false convergence.

The glm2 function is essentially identical to glm,
except the default fitting method is glm.fit2. This al-
lows glm2 to be called with the same calling sequence
as glm. Alternatively, in version 2.12.1 and later, it
should be possible to achieve the same effect by pass-
ing glm.fit2 to glm through the method argument,
instead of the default method glm.fit. Indeed, exist-
ing scripts calling glm should work unchanged with
the new fitting function, after first executing

glm <- function(..., method = glm2::glm.fit2){
stats::glm(..., method = method)

}

which makes glm.fit2 the default fitting method
when glm is called.

In the previous section we discussed a data set
for which 100 bootstrap replications were generated
where glm failed to converge. When glm2 was used,
convergence was achieved for all 100 replications with
an initial value of 1 for each of the four parameters.
This included the two illustrative examples plotted
in Figure 1, which both converged to the MLEs pro-
duced by the non-IRLS method of Marschner (2010).

This convergence is displayed in Figure 2, together
with the path that glm would take.
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Figure 2: Convergence of glm2 (squares) for the ex-
amples presented in Figure 1. Circles denote the path
that glm would take.

Using glm2, Figure 3 provides medians and inter-
quartile ranges of the estimates from the 100 replica-
tions that did not converge in glm. Also shown is the
same information for 100 replications where glm did
converge. In each case the two sets of estimates are
relatively consistent. This would seem to suggest that
estimates from the replications in which glm failed
to converge are not particularly unusual compared
to those for which it did converge. In particular, as
demonstrated in Figure 1, non-convergence of glm
can occur even when the MLE is a stationary point in
the interior of the parameter space.
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As well as the functions glm2 and glm.fit2, the
glm2 package provides data sets and example code il-
lustrating the usefulness of the proposed change. This
allows reproduction of the behavior described here
for the identity link Poisson model, and also provides
an example for the log link binomial model.
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Figure 3: Medians and interquartile ranges of esti-
mates in 100 replications that converged (squares)
and 100 replications that did not converge (circles) in
glm. The latter were calculated using glm2.

Discussion

This paper describes a modification that improves the
convergence properties of glm, and which is available
in the glm2 function in the glm2 package. Following
the recommendation of the editors, the modification
has been presented as a separate package rather than
as a code snippet. This has the advantage of facilitat-
ing thorough testing of the proposed change, and also
allows some example analyses to be made available
through the package. These examples are promis-
ing, but additional testing would be required before
considering a change to glm and its ancillaries in the
standard R stats package.

While glm2 should converge whenever glm con-
verges, it may take a different path to convergence.
This will occur whenever a convergent glm sequence
has an iteration where the deviance increased. The
fact that glm2 may take a different path to conver-
gence should be inconsequential in practice, particu-
larly as it will be a more stable monotone path.

Although we have found cases in which glm has
convergence problems, in other contexts it copes very
well with numerical difficulties. The data set from
which the bootstrap replications were generated is an
example. Using an identity link Poisson model, the ex-
isting step-halving in glm allows it to converge to the

non-stationary MLE θ̂ = (0.578,−0.626,0.048,0.484).
Since the fitted value for the observed covariate pat-
tern (xi1, xi2, xi3) = (1,1,0) is 0.578− 0.626+ 0.048 = 0,
and all other fitted values are positive, the estimate
produced is on the boundary of the parameter space.
Not all GLM software would be able to converge to a
non-stationary boundary point such as this.

Finally, we end with an observation on predicted
values when using a non-standard link function.
When glm (or glm2) converges with a link function
that does not respect the natural parameter restric-
tions of the error distribution, such as in the exam-
ple here, the predicted values will meet these restric-
tions for all observed covariate combinations. How-
ever, predicted values for other covariate combina-
tions may not meet these restrictions. This is true
not only for extreme covariate values outside the ob-
served ranges, but also for unobserved combinations
that are within the observed ranges. For example,
the values xi1 = 1, xi2 = 0 and xi3 = 0 are all ob-
served in the above data set, but the combination
(xi1, xi2, xi3) = (1,0,0) was not observed, and has a
negative predicted value of 0.578− 0.626 = −0.048.
Although not available in glm or glm2, in principle it
is possible to use a smaller parameter space that only
has valid predicted values for covariate combinations
that are within the observed ranges of the individual
covariates. For the above data set this leads to the
estimate θ̂ = (0.640,−0.640,0.000,0.476) (Marschner,
2010), which is slightly different to the one produced
by glm and has a valid predicted value for the combi-
nation (1,0,0). A discussion of the relative merits of
these parameter spaces is not attempted here, but it
is important to understand which one is being used
when one fits a GLM with a non-standard link.

Bibliography

A. Agresti. An Introduction to Categorical Data Analysis.
Wiley, Hoboken, USA, second edition, 2007.

K. Lange. Numerical Analysis for Statisticians. Springer,
New York, USA, second edition, 2010.

I. C. Marschner. Stable computation of maximum like-
lihood estimates in identity link Poisson regression.
Journal of Computational and Graphical Statistics, 19
(3):666–683, 2010.

I. C. Marschner. glm2: Fitting generalized linear
models. 2011. URL http://CRAN.R-project.org/
package=glm2. R package version 1.0.

Ian Marschner
Department of Statistics
Macquarie University
NSW 2109
Australia
ian.marschner@mq.edu.au

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

http://CRAN.R-project.org/package=glm2
http://CRAN.R-project.org/package=glm2
mailto:ian.marschner@mq.edu.au

