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Analysing Seasonal Data
by Adrian G Barnett, Peter Baker and Annette J Dobson

Abstract Many common diseases, such as the flu
and cardiovascular disease, increase markedly
in winter and dip in summer. These seasonal
patterns have been part of life for millennia and
were first noted in ancient Greece by both Hip-
pocrates and Herodotus. Recent interest has fo-
cused on climate change, and the concern that
seasons will become more extreme with harsher
winter and summer weather. We describe a set
of R functions designed to model seasonal pat-
terns in disease. We illustrate some simple de-
scriptive and graphical methods, a more com-
plex method that is able to model non-stationary
patterns, and the case-crossover to control for
seasonal confounding.

In this paper we illustrate some of the functions
of the season package (Barnett et al., 2012), which
contains a range of functions for analysing seasonal
health data. We were motivated by the great inter-
est in seasonality found in the health literature, and
the relatively small number of seasonal tools in R (or
other software packages). The existing seasonal tools
in R are:

• the baysea function of the timsac package and
the decompose and stl functions of the stats
package for decomposing a time series into a
trend and season;

• the dynlm function of the dynlm package and
the ssm function of the sspir package for fitting
dynamic linear models with optional seasonal
components;

• the arima function of the stats package and the
Arima function of the forecast package for fit-
ting seasonal components as part of an autore-
gressive integrated moving average (ARIMA)
model; and

• the bfast package for detecting breaks in a sea-
sonal pattern.

These tools are all useful, but most concern decom-
posing equally spaced time series data. Our package
includes models that can be applied to seasonal pat-
terns in unequally spaced data. Such data are com-
mon in observational studies when the timing of re-
sponses cannot be controlled (e.g. for a postal sur-
vey).

In the health literature much of the analysis of
seasonal data uses simple methods such as compar-
ing rates of disease by month or using a cosinor re-
gression model, which assumes a sinusoidal seasonal
pattern. We have created functions for these simple,

but often very effective analyses, as we describe be-
low.

More complex seasonal analyses examine non-
stationary seasonal patterns that change over time.
Changing seasonal patterns in health are currently
of great interest as global warming is predicted to
make seasonal changes in the weather more extreme.
Hence there is a need for statistical tools that can es-
timate whether a seasonal pattern has become more
extreme over time or whether its phase has changed.

Ours is also the first R package that includes the
case-crossover, a useful method for controlling for
seasonality.

This paper illustrates just some of the functions of
the season package. We show some descriptive func-
tions that give simple means or plots, and functions
whose goal is inference based on generalised linear
models. The package was written as a companion to
a book on seasonal analysis by Barnett and Dobson
(2010), which contains further details on the statisti-
cal methods and R code.

Analysing monthly seasonal pat-
terns

Seasonal time series are often based on data collected
every month. An example that we use here is the
monthly number of cardiovascular disease deaths in
people aged ≥ 75 years in Los Angeles for the years
1987–2000 (Samet et al., 2000). Before we examine
or plot the monthly death rates we need to make
them more comparable by adjusting them to a com-
mon month length (Barnett and Dobson, 2010, Sec-
tion 2.2.1). Otherwise January (with 31 days) will
likely have more deaths than February (with 28 or
29).

In the example below the monthmean function
is used to create the variable mmean which is the
monthly average rate of cardiovascular disease
deaths standardised to a month length of 30 days. As
the data set contains the population size (pop) we can
also standardise the rates to the number of deaths
per 100,000 people. The highest death rate is in Jan-
uary (397 per 100,000) and the lowest in July (278 per
100,000).

> data(CVD)
> mmean = monthmean(data = CVD,
resp = CVD$cvd, adjmonth = "thirty",
pop = pop/100000)

> mmean
Month Mean

January 396.8
February 360.8

March 327.3
April 311.9
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May 294.9
June 284.5
July 277.8

August 279.2
September 279.1
October 292.3

November 313.3
December 368.5

Plotting monthly data

We can plot these standardised means in a circular
plot using the plotCircular function:

> plotCircular(area1 = mmean$mean,
dp = 1, labels = month.abb,
scale = 0.7)

This produces the circular plot shown in Figure 1.
The numbers under each month are the adjusted av-
erages, and the area of each segment is proportional
to this average.

Figure 1: A circular plot of the adjusted monthly
mean number of cardiovascular deaths in Los Ange-
les in people aged ≥ 75, 1987–2000.

The peak in the average number of deaths is in
January, and the low is six months later in July in-
dicating an annual seasonal pattern. If there were
no seasonal pattern we would expect the averages
in each month to be equal, and so the plot would
be perfectly circular. The seasonal pattern is some-
what non-symmetric, as the decrease in deaths from
January to July does not mirror the seasonal increase
from July to January. This is because the increase in
deaths does not start in earnest until October.

Circular plots are also useful when we have an
observed and expected number of observations in
each month. As an example, Figure 2 shows the
number of Australian Football League players by

their month of birth (for the 2009 football season) and
the expected number of births per month based on
national data. For this example we did not adjust
for the unequal number of days in the months be-
cause we can compare the observed numbers to the
expected (which are also based on unequal month
lengths). Using the expected numbers also shows
any seasonal pattern in the national birth numbers.
In this example there is a very slight decrease in
births in November and December.

Figure 2: A circular plot of the monthly number of
Australian Football League players by their month
of birth (white segments) and the expected numbers
based on national data for men born in the same pe-
riod (grey segments). Australian born players in the
2009 football season.

The figure shows the greater than expected num-
ber of players born in January to March, and the
fewer than expected born in August to December.
The numbers around the outside are the observed
number of players. The code to create this plot is:

> data(AFL)
> plotCircular(area1 = AFL$players,
area2 = AFL$expected, scale = 0.72,
labels = month.abb, dp = 0, lines = TRUE,
auto.legend = list(
labels = c("Obs", "Exp"),
title = "# players"))

The key difference from the code to create the previ-
ous circular plot is that we have given values for both
area1 and area2. The ‘lines = TRUE’ option added
the dotted lines between the months. We have also
included a legend.

As well as a circular plot we also recommend a
time series plot for monthly data, as these plots are
useful for highlighting the consistency in the sea-
sonal pattern and possibly also the secular trend and
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any unusual observations. For the cardiovascular ex-
ample data a time series plot is created using

> plot(CVD$yrmon, CVD$cvd, type = 'o',
pch = 19,
ylab = 'Number of CVD deaths per month',
xlab = 'Time')

The result is shown in Figure 3. The January peak in
CVD was clearly larger in 1992 and 1994 compared
with 1991, 1993 and 1995. There also appears to be a
slight downward trend from 1987 to 1992.

Figure 3: Monthly number of cardiovascular deaths
in Los Angeles for people aged ≥ 75, 1987–2000.

Modelling monthly data

A simple and popular statistical model for examin-
ing seasonal patterns in monthly data is to use a
simple linear regression model (or generalised lin-
ear model) with a categorical variable of month. The
code below fits just such a model to the cardiovas-
cular disease data and then plots the rate ratios (Fig-
ure 4).

> mmodel = monthglm(formula = cvd ~ 1,
data = CVD, family = poisson(),
offsetpop = pop/100000,
offsetmonth = TRUE, refmonth = 7)

> plot(mmodel)

As the data are counts we used a Poisson model.
We adjusted for the unequal number of days in
the month by using an offset (offsetmonth = TRUE),
which divides the number of deaths in each month
by the number of days in each month to give a daily
rate. The reference month was set to July (refmonth
= 7). We could have added other variables to the
model, by adding them to the right hand side of the
equation (e.g. ’formula = cvd ~ year’ to include a
linear trend for year).

The plot in Figure 4 shows the mean rate ratios
and 95% confidence intervals. The dotted horizon-
tal reference line is at the rate ratio of 1. The mean
rate of deaths in January is 1.43 times the rate in July.
The rates in August and September are not statisti-
cally significantly different to the rates in July, as the
confidence intervals in these months both cross 1.

Figure 4: Mean rate ratios and 95% confidence inter-
vals of cardiovascular disease deaths using July as a
reference month.

Cosinor

The previous model assumed that the rate of car-
diovascular disease varied arbitrarily in each month
with no smoothing of or correlation between neigh-
bouring months. This is an unlikely assumption for
this seasonal pattern (Figure 4). The advantage of
using arbitrary estimates is that it does not constrain
the shape of the seasonal pattern. The disadvantage
is a potential loss of statistical power. Models that as-
sume some parametric seasonal pattern will have a
greater power when the parametric model is correct.
A popular parametric seasonal model is the cosinor
model (Barnett and Dobson, 2010, Chapter 3), which
is based on a sinusoidal pattern,

st = Acos
(

2πt
c
− P

)
, t = 1, . . . ,n,

where A is the amplitude of the sinusoid and P is its
phase, c is the length of the seasonal cycle (e.g. c = 12
for monthly data with an annual seasonal pattern), t
is the time of each observation and n is the total num-
ber of times observed. The amplitude tells us the size
of the seasonal change and the phase tells us where
it peaks. The sinusoid assumes a smooth seasonal
pattern that is symmetric about its peak (so the rate
of the seasonal increase in disease is equal to the de-
crease). We fit the Cosinor as part of a generalised
linear model.
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The example code below fits a cosinor model to
the cardiovascular disease data. The results are for
each month, so we used the ‘type = 'monthly'’ op-
tion with ‘date = month’.

> res = cosinor(cvd ~ 1, date = month,
data = CVD, type = 'monthly',
family = poisson(), offsetmonth = TRUE)

> summary(res)
Cosinor test
Number of observations = 168
Amplitude = 232.34 (absolute scale)
Phase: Month = 1.3
Low point: Month = 7.3
Significant seasonality based on adjusted
significance level of 0.025 = TRUE

We again adjusted for the unequal number of days
in the months using an offset (offsetmonth = TRUE).
The amplitude is 232 deaths which has been given on
the absolute scale and the phase is estimated as 1.27
months (early January).

An advantage of these cosinor models is that they
can be fitted to unequally spaced data. The exam-
ple code below fits a cosinor model to data from a
randomised controlled trial of physical activity with
data on body mass index (BMI) at baseline (Eakin
et al., 2009). Subjects were recruited as they be-
came available and so the measurement dates are not
equally spaced. In the example below we test for a si-
nusoidal seasonal pattern in BMI.

> data(exercise)
> res = cosinor(bmi ~ 1, date = date,

type = 'daily', data = exercise,
family = gaussian())

> summary(res)
Cosinor test
Number of observations = 1152
Amplitude = 0.3765669
Phase: Month = November , day = 18
Low point: Month = May , day = 19
Significant seasonality based on adjusted
significance level of 0.025 = FALSE

Body mass index has an amplitude of 0.38 kg/m2

which peaks on 18 November, but this increase is
not statistically significant. In this example we used
‘type = 'daily'’ as subjects’ results related to a spe-
cific date (‘date = date’ specifies the day when they
were measured). Thus the phase for body mass in-
dex is given on a scale of days, whereas the phase for
cardiovascular death was given on a scale of months.

Non-stationary cosinor

The models illustrated so far have all assumed a sta-
tionary seasonal pattern, meaning a pattern that does
not change from year to year. However, seasonal
patterns in disease may gradually change because of

changes in an important exposure. For example, im-
provements in housing over the 20th century are part
of the reason for a decline in the winter peak in mor-
tality in London (Carson et al., 2006).

To fit a non-stationary cosinor we expand the pre-
vious sinusoidal equation thus

st = At cos
(

2πt
c
− Pt

)
, t = 1, . . . ,n

so that both the amplitude and phase of the cosi-
nor are now dependent on time. The key unknown
is the extent to which these parameters will change
over time. Using our nscosinor function the user
has some control over the amount of change and a
number of different models can be tested assuming
different levels of change. The final model should
be chosen using model fit diagnostics and residual
checks (available in the seasrescheck function).

The nscosinor function uses the Kalman filter to
decompose the time series into a trend and seasonal
components (West and Harrison, 1997, Chapter 8),
so can only be applied to equally spaced time series
data. The code below fits a non-stationary sinusoidal
model to the cardiovascular disease data (using the
counts adjusted to the average month length, adj).

> nsmodel = nscosinor(data = CVD,
response = adj, cycles = 12, niters = 5000,
burnin = 1000, tau = c(10, 500), inits = 1)

The model uses Markov chain Monte Carlo
(MCMC) sampling, so we needed to specify the
number of iterations (niters), the number discarded
as a burn-in (burnin), and an initial value for each
seasonal component (inits). The cycles gives the
frequency of the sinusoid in units of time, in this
case a seasonal pattern that completes a cycle in
12 months. We can fit multiple seasonal compo-
nents, for example 6 and 12 month seasonal patterns
would be fitted using ‘cycles = c(6,12)’. The tau
are smoothing parameters, with tau[1] for the trend,
tau[2] for the first seasonal parameter, tau[3] for
the second seasonal parameter. They are fixed values
that scale the time between observations. Larger val-
ues allow more time between observations and hence
create a more flexible spline. The ideal values for tau
should be chosen using residual checking and trial
and error.

The estimated seasonal pattern is shown in Fig-
ure 5. The mean amplitude varies from around 230
deaths (winter 1989) to around 180 deaths (winter
1995), so some winters were worse than others. Im-
portantly the results did not show a steady decline in
amplitude, so over this period seasonal deaths con-
tinued to be a problem despite any improvements
in health care or housing. However, the residu-
als from this model do show a significant seasonal
pattern (checked using the seasrescheck function).
This residual seasonal pattern is caused because the
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seasonal pattern in cardiovascular deaths is non-
sinusoidal (as shown in Figure 1) with a sharper in-
crease in deaths than decline. The model assumed
a sinusoidal pattern, albeit a non-stationary one. A
better fit might be achieved by adding a second sea-
sonal cycle at a shorter frequency, such as 6 months.

Figure 5: Estimated non-stationary seasonal pattern
in cardiovascular disease deaths for Los Angeles,
1987–2000. Mean (black line) and 95% confidence in-
terval (grey lines).

Case-crossover

In some circumstances seasonality is not the focus
of investigation, but is important because its effects
need to be taken into account. This could be because
both the outcome and the exposure have an annual
seasonal pattern, but we are interested in associa-
tions at a different frequency (e.g. daily).

The case-crossover can be used for individual-
level data, e.g. when the data are individual cases
with their date of heart attack and their recent ex-
posure. However, we are concerned with regularly
spaced time-series data, where the data are grouped,
e.g. the number of heart attacks on each day in a year.

The case-crossover is a useful time series method
for controlling for seasonality (Maclure, 1991). It is
similar to the matched case-control design, where the
exposure of cases with the disease are compared with
one or more matched controls without the disease.
In the case-crossover, cases act as their own control,
since exposures are compared on case and control
days (also known as index and referent days). The
case day will be the day on which an event occurred
(e.g. death), and the control days will be nearby days
in the same season as the exposure but with a pos-
sibly different exposure. This means the cases and
controls are matched for season, but not for some

other short-term change in exposure such as air pol-
lution or temperature. A number of different case-
crossover designs for time-series data have been pro-
posed. We used the time-stratified method as it is
a localisable and ignorable design that is free from
overlap bias while other referent window designs
that are commonly used in the literature (e.g. sym-
metric bi-directional) are not (Janes et al., 2005). Us-
ing this design the data in broken into a number of
fixed strata (e.g. 28 days or the months of the year)
and the case and control days are compared within
the same strata.

The code below applies a case-crossover model to
the cardiovascular disease data. In this case we use
the daily cardiovascular disease (with the number of
deaths on every day) rather than the data used above
which used the number of cardiovascular deaths in
each month. The independent variables are mean
daily ozone (o3mean, which we first scale to a 10 unit
increase) and temperature (tmpd). We also control for
day of the week (using Sunday as the reference cat-
egory). For this model we are interested in the ef-
fect of day-to-day changes in ozone on the day-to-
day changes in mortality.

> data(CVDdaily)
> CVDdaily$o3mean = CVDdaily$o3mean / 10
> cmodel = casecross(cvd ~ o3mean + tmpd +
Mon + Tue + Wed + Thu + Fri + Sat,
data = CVDdaily)

> summary(cmodel, digits = 2)
Time-stratified case-crossover with a stratum
length of 28 days
Total number of cases 230695
Number of case days with available control
days 5114
Average number of control days per case day 23.2

Parameter Estimates:
coef exp(coef) se(coef) z Pr(>|z|)

o3mean -0.0072 0.99 0.00362 -1.98 4.7e-02
tmpd 0.0024 1.00 0.00059 4.09 4.3e-05
Mon 0.0323 1.03 0.00800 4.04 5.3e-05
Tue 0.0144 1.01 0.00808 1.78 7.5e-02
Wed -0.0146 0.99 0.00807 -1.81 7.0e-02
Thu -0.0118 0.99 0.00805 -1.46 1.4e-01
Fri 0.0065 1.01 0.00806 0.81 4.2e-01
Sat 0.0136 1.01 0.00788 1.73 8.4e-02

The default stratum length is 28, which means
that cases and controls are compared in blocks of 28
days. This stratum length should be short enough to
remove any seasonal pattern in ozone and tempera-
ture. Ozone is formed by a reaction between other
air pollutants and sunlight and so is strongly sea-
sonal with a peak in summer. Cardiovascular mor-
tality is at its lowest in summer as warmer temper-
atures lower blood pressures and prevent flu out-
breaks. So without removing these seasonal patterns
we might find a significant negative association be-
tween ozone and mortality. The above results sug-
gest a marginally significant negative association be-
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tween ozone and mortality, as the odds ratio for a
ten unit increase in ozone is exp(−0.0072) = 0.993 (p-
value = 0.047). This may indicate that we have not
sufficiently controlled for season and so should re-
duce the stratum length using the stratalength op-
tion.

As well as matching cases and controls by stra-
tum, it is also possible to match on another con-
founder. The code below shows a case-crossover
model that matched case and control days by a mean
temperature of ±1 degrees Fahrenheit.

> mmodel = casecross(cvd ~ o3mean +
Mon + Tue + Wed + Thu + Fri + Sat,
matchconf = 'tmpd', confrange = 1,
data = CVDdaily)

> summary(mmodel, digits = 2)
Time-stratified case-crossover with a stratum
length of 28 days
Total number of cases 205612
Matched on tmpd plus/minus 1
Number of case days with available control
days 4581
Average number of control days per case day 5.6

Parameter Estimates:
coef exp(coef) se(coef) z Pr(>|z|)

o3mean 0.0046 1 0.0043 1.07 2.8e-01
Mon 0.0461 1 0.0094 4.93 8.1e-07
Tue 0.0324 1 0.0095 3.40 6.9e-04
Wed 0.0103 1 0.0094 1.10 2.7e-01
Thu 0.0034 1 0.0093 0.36 7.2e-01
Fri 0.0229 1 0.0094 2.45 1.4e-02
Sat 0.0224 1 0.0092 2.45 1.4e-02

By matching on temperature we have restricted
the number of available control days, so there are
now only an average of 5.6 control days per case,
compared with 23.2 days in the previous example.
Also there are now only 4581 case days with at least
one control day available compared with 5114 days
for the previous analysis. So 533 days have been
lost (and 25,083 cases), and these are most likely the
days with unusual temperatures that could not be
matched to any other days in the same stratum. We
did not use temperature as an independent variable
in this model, as it has been controlled for by the
matching. The odds ratio for a ten unit increase in
ozone is now positive (OR = exp(0.0046) = 1.005) al-
though not statistically significant (p-value = 0.28).

It is also possible to match cases and control days
by the day of the week using the ‘matchdow = TRUE’
option.
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