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The crs Package: Nonparametric
Regression Splines for Continuous and
Categorical Predictors
by Zhenghua Nie and Jeffrey S Racine

Abstract A new package crs is introduced for
computing nonparametric regression (and quan-
tile) splines in the presence of both continuous
and categorical predictors. B-splines are em-
ployed in the regression model for the contin-
uous predictors and kernel weighting is em-
ployed for the categorical predictors. We also de-
velop a simple R interface to NOMAD, which is
a mixed integer optimization solver used to com-
pute optimal regression spline solutions.

Introduction

Regression splines constitute a popular approach for
the nonparametric estimation of regression functions
though they are restricted to continuous predictors
as are smoothing splines (see e.g. smooth.spline
which is limited to one numeric predictor) and
locally weighted scatterplot smoothing (see loess
which is limited to four numeric predictors). How-
ever, it is not uncommon to encounter relationships
involving a mix of numeric and categorical predic-
tors, and the crs package implements a regression
spline framework for accomplishing this task.

The crs package implements the approaches de-
scribed in Ma et al. (2012) and Ma and Racine (2012)
when the option kernel=TRUE is selected (default)
as described below. The categorical predictors can
be handled in two ways, (i) using kernel weighting
where the kernel functions are tailored to the dis-
crete support of the categorical predictors (Racine
and Li, 2004), and (ii) using indicator basis func-
tions. The fundamental difference between these two
approaches is that the use of indicator basis func-
tions consumes degrees of freedom via the number
of columns in the basis matrix, while kernel weight-
ing does not. As well, this package implements a
range of related methods and provides options that
we hope will make it appealing for applied projects,
research, and pedagogical purposes alike.

Both semiparametric additive models and
fully nonparametric models are implemented.
Data-driven methods can be used for selecting
the spline degree, number of segments/knots,
and bandwidths: leave-one-out cross-validation
(cv.func = "cv.ls") (Stone, 1974, 1977), general-
ized cross-validation (cv.func="cv.gcv") (Craven
and Wahba, 1979), and the information-based crite-
rion (cv.func="cv.aic") proposed by Hurvich et al.

(1998). Derivatives of arbitrary order can readily be
constructed. One of the computational challenges
encountered is to obtain the optimal spline degree
(non-negative integer), number of segments/knots
(positive integer), and bandwidth (bounded and
real-valued) for each predictor. We overcome this
challenge by providing an interface to NOMAD
(Abramson et al., 2011; Le Digabel, 2011).

Before proceeding we briefly provide an
overview of some important implementation details:

1. The degree of the spline and number of seg-
ments (i.e. knots minus one) for each contin-
uous predictor can be set manually as can the
bandwidths for each categorical predictor (if
appropriate).

2. Alternatively, any of the data-driven criteria
(i.e. cv.func="...") could be used to select ei-
ther the degree of the spline (holding the num-
ber of segments/knots fixed at any user-set
value) and bandwidths for the categorical pre-
dictors (if appropriate), or the number of seg-
ments (holding the degree of the spline fixed at
any user-set value) and bandwidths for the cat-
egorical predictors (if appropriate), or the num-
ber of segments and the degree of the spline for
each continuous predictor and bandwidths for
each categorical predictor (if appropriate).

3. When indicator basis functions are used in-
stead of kernel smoothing, whether to in-
clude each categorical predictor or not can be
specified manually or chosen via any cv.func
method.

4. We allow the degree of the spline for each con-
tinuous predictor to include zero, the inclu-
sion indicator for each categorical predictor to
equal zero, and the bandwidth for each cate-
gorical predictor to equal one, and when the
degree/inclusion indicator is zero or the band-
width is one, the variable is thereby removed
from the regression: in this manner, irrele-
vant predictors can be automatically removed
by any cv.func method negating the need for
pre-testing (mirroring findings detailed in Hall
et al. (2004, 2007) for kernel regression).

The design philosophy underlying the crs pack-
age aims to closely mimic the behaviour of the lm
function. Indeed, the implementation relies on lm
and its supporting functions for computation of the
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spline coefficients, delete-one residuals, fitted values,
prediction and the like. 95% confidence bounds for
the fit and derivatives are constructed from asymp-
totic formulae and automatically generated. Below
we describe in more detail the specifics of the im-
plementation for the interested reader. Others may
wish to jump to the illustrative example that appears
towards the end of this article or simply install and
load the package and run example(crs).

Differences between existing spline meth-
ods and those in the crs package

Readers familiar with existing R-functions and pack-
ages for spline modelling will naturally be wonder-
ing what the difference is between the crs package
and existing spline-based procedures such as

• smooth.spline in R base

• spm in the SemiPar package (Wand, 2010)

• gam in the mgcv package (Wood, 2006)

• ssanova in the gss package (Gu, 2012)

• gam in the gam package (Hastie, 2011)

First we note that the functions smooth.spline
and ssanova are based on smoothing spline method-
ology, while spm uses penalized splines but gam in the
gam/mgcv packages allows for smoothing splines,
penalized splines, and regression splines. The crs
package is restricted to ‘regression splines’ which
differs in a number of ways from ‘smoothing splines’
and ‘penalized splines’, the fundamental difference
being that smoothing/penalized splines use the data
points themselves as potential knots and penalize
‘roughness’ (typically the second derivative of the
estimate) while regression splines place knots at
equidistant/equiquantile points and do not explic-
itly penalize roughness, rather, they rely on vari-
ous cross-validatory approaches for model selection.
We direct the interested reader to Wahba (1990) for
a treatment of smoothing splines. The crs package
is one of the few packages devoted to regression
spline techniques. We also provide quantile regres-
sion splines via the option tau=τ (τ ∈ (0,1)).

Second, many of the aforementioned smoothing
spline implementations are semiparametric in na-
ture, the semiparametric additive model being par-
ticularly popular. Though semiparametric mod-
els exist to circumvent the curse of dimensionality,
it does not come without cost. That is, the bur-
den of determining whether semiparametric or non-
parametric approaches would be warranted in any
given situation is placed squarely on the researcher’s
shoulder. Unlike many existing spline methods in
R, the implementation in the crs package is de-
signed so that every parameter that must be cho-
sen by the researcher can be data-driven (via cross-
validation) so that such choices adapt to the data

at hand including whether to use a semiparamet-
ric or nonparametric model. This is accomplished
using options such as basis="auto", knots="auto",
and complexity="degree-knots" (basis="auto" de-
ciding whether to use an additive basis or tensor
product basis in multivariate settings, knots="auto"
whether to use equispaced knots or quantile knots,
and complexity="degree-knots" determining both
the spline degrees and number of knots).

Generally speaking, almost all of these exist-
ing smoothing spline approaches can handle mixed
datatypes though their approaches to the treatment
of categorical variables often differ (none use cate-
gorical kernel smoothing as in the crs package).

The underlying model

Regression spline methods can be limited in their po-
tential applicability as they are based on continuous
predictors. However, in applied settings we often
encounter categorical predictors such as strength of
preference (“strongly prefer”, “weakly prefer”, “in-
different”) and so forth.

We wish to model the unknown conditional mean
in the following location-scale model,

Y = g (X,Z) + σ (X,Z) ε,

where g(·) is an unknown function, X =
(
X1, . . . , Xq

)T

is a q-dimensional vector of continuous predictors,
Z = (Z1, . . . , Zr)

T is an r-dimensional vector of cat-
egorical predictors, and σ2 (X,Z) is the conditional
variance of Y given X and Z. Letting z = (zs)

r
s=1,

we assume that zs takes cs different values in
Ds ≡ {0,1, . . . , cs − 1}, s = 1, . . . ,r, and cs is a finite
positive constant.

For the continuous predictors the regression
spline model employs the B-spline routines in the
GNU Scientific Library (Galassi et al., 2009). The
B-spline function is the maximally differentiable in-
terpolative basis function (B-spline stands for ‘basis-
spline’).

Heuristically, we conduct linear (in parameter)
regression using the R function lm, however, we re-
place the continuous predictors with B-splines of po-
tentially differing order and number of segments
for each continuous predictor. For the tensor prod-
uct bases we set intercept=TRUE for each univariate
spline basis, while for the additive spline bases we
adopt the intercept=FALSE variants and include an
intercept term in the model (the B-splines will there-
fore not sum to one, i.e. an order m B-spline with one
segment (two knots/breakpoints) has m+ 1 columns
and we drop the first as is often done, though see
Zhou and Wolfe (2000) for an alternative approach
based upon shrinkage methods). This allows multi-
ple bases to coexist when there is more than one con-
tinuous predictor. The tensor product basis is given
by

B1 ⊗ B2 ⊗ · · · ⊗ Bp,
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where ⊗ is the Kronecker product where the prod-
ucts operate column-wise and Bj is the basis matrix
for predictor j as outlined above. We also support
a ‘generalized’ polynomial B-spline basis that con-
sists of a varying-order polynomial with appropriate
interactions. When additive B-spline bases are em-
ployed we have a semiparametric ‘additive’ spline
model (no interaction among variables unless explic-
itly specified). When the tensor product or general-
ized polynomial is employed we have a fully non-
parametric model (interaction among all variables).
Whether to use the additive, tensor product, or gen-
eralized polynomial bases can be pre-specified or au-
tomatically determined via any cv.func method (see
the options for basis= in ?crs).

We offer the default option to use categorical
kernel weighting (lm(...,weights=L)) to handle the
presence of categorical predictors (see below for a de-
scription of L). We also offer the option of using indi-
cator basis functions for the categorical predictors.

Weighted least-squares estimation of the
underlying model

The unknown function g (X,Z) can be approximated
by B (X)T β (Z), where β (Z) is a vector of coefficients
and B (X) the B-spline basis matrix described above.

We estimate β (z) by minimizing the following
weighted least squares criterion,

β̂ (z) = argmin
β(z)∈RKn

n

∑
i=1

{
Yi −B (Xi)

T β (z)
}2

L (Zi,z,λ) .

Placement of knots

The user can determine where knots are to be placed
using one of two methods:

1. knots can be placed at equally spaced quantiles
whereby an equal number of observations lie
in each segment (‘quantile knots’).

2. knots can be placed at equally spaced intervals
(‘uniform knots’).

If preferred, this can be determined automatically us-
ing the option knots="auto".

Kernel weighting

Let Zi be an r-dimensional vector of categori-
cal/discrete predictors. We use zs to denote the s-th
component of z, we assume that zs takes cs different
values in Ds ≡ {0,1, . . . , cs − 1}, s = 1, . . . ,r, and let
cs ≥ 2 be a finite positive constant.

For an unordered categorical predictor, we use a
variant of the kernel function outlined in Aitchison
and Aitken (1976) defined as

l(Zis,zs,λs) =

{
1, when Zis = zs,
λs, otherwise. (1)

Let 1(A) denote the usual indicator function, which
assumes the value one if A holds true, zero other-
wise. Using (1), we can construct a product kernel
weight function given by

L (Zi,z,λ) =
r

∏
s=1

l(Zis,zs,λs) =
r

∏
s=1

λ
1(Zis 6=zs)
s ,

while for an ordered categorical we use the function
defined by

l̃(Zis,zs,λs) = λ
|Zis−zs |
s

and modify the product kernel function appropri-
ately. When Z contains a mix of ordered and un-
ordered variables we select the appropriate kernel
for each variable’s type when constructing the prod-
uct kernel L (Zi,z,λ).

Note that when λs = 1 all observations are
‘pooled’ over categorical predictor s hence the vari-
able zs is removed from the resulting estimate, while
when λs = 0 only observations lying in a given cell
are used to form the estimate.

Additional estimation details

Estimating the model requires construction of the
spline bases and their tensor product (if specified)
along with the categorical kernel weighting func-
tion. Then, for a given degree and number of seg-
ments for each continuous predictor and bandwidth
for each categorical predictor (or indicator bases if
kernel=FALSE), the model is fit via least-squares.

All smoothing parameters can be set manually
by the user if so desired, however be forewarned
that you must use the option cv="none" otherwise
the values specified manually will become the start-
ing points for search when cv="nomad" (‘nonsmooth
mesh adaptive direct search (NOMAD)’, see Abram-
son et al. (2011) and Le Digabel (2011)). Currently, we
provide a simple R interface to NOMAD (see the sec-
tion below) in the crs package which also can be ap-
plied to solve other mixed integer optimization prob-
lems.

The degree, segment, and bandwidth vectors can
be jointly determined via any cv.func method by
setting the option cv="nomad" or cv="exhaustive"
(exhaustive search). Here we have to solve nonlin-
ear non-convex and non-differentiable mixed integer
constrained optimization problems to obtain the op-
timal degree, number of segments, and bandwidth
for each predictor.

Setting the option cv="nomad" (default) computes
NOMAD-based cross-validation directed search
while setting cv="exhaustive" computes exhaus-
tive cross-validation directed search for each unique
combination of the degree and segment vector for
each continuous predictor from degree=degree.min
through degree=degree.max (default 0 and 10,
respectively) and from segments=segments.min
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through segments=segments.max (default 1 and 10,
respectively).

When kernel=TRUE (default) setting the option
cv="exhaustive" computes bandwidths (∈ [0,1]) ob-
tained via numerical minimization (using optim) for
each unique combination of the degree and segment
vectors (restarting can be conducted via restarts=).
When setting cv="nomad" the number of multiple
starts can be controlled by nmulti= (default is 5). The
model possessing the lowest criterion function value
over the nmulti restarts is then selected as the final
model.

Note that cv="exhaustive" is often unfeasible
(this combinatoric problem can become impossibly
large to compute in finite time) hence cv="nomad" is
the default. However, with cv="nomad" one should
set nmulti= to some sensible value greater than zero
to avoid becoming trapped in local minima (default
nmulti=5).

Data-driven smoothing parameter criteria

We incorporate three popular approaches for setting
the smoothing parameters of the regression spline
model, namely least-squares cross-validation, gen-
eralized cross-validation, and an AIC method cor-
rected for use in nonparametric settings.

Let the fitted value from the regression spline
model be denoted Ŷi = Bm(Xi)

T β̂(Zi). Letting ε̂i =
Yi − Ŷi denote the ith residual from the categori-
cal regression spline model, the least-squares cross-
validation function is given by

CV =
1
n

n

∑
i=1

ε̂2
i

(1− hii)2

and this computation can be done with effectively
one pass through the data set, where hii denotes
the ith diagonal element of the spline basis projec-
tion matrix (see below for details). Since hii is com-
puted routinely for robust diagnostics in R, this can
be computed along with (and hence as cheaply as)
the vector of spline coefficients themselves. Thus
least-squares cross-validation is computationally ap-
pealing, particularly for large data sets.

Let H denote the n×n weighting matrix such that
Ŷ = HY with its ith diagonal element given by Hii
where tr(H) means the trace of H which is equal to
∑n

i=1 hii. The matrix H is often called the ‘hat matrix’
or ‘smoother matrix’ and depends on X but not on
Y. The ‘generalized’ cross-validation function is ob-
tained by replacing hii in the above formula with its
average value denoted tr(H)/n (Craven and Wahba,
1979).

The information-based criterion proposed by
Hurvich et al. (1998) is given by

AICc = ln(σ̂2) +
1 + tr(H)/n

1− {tr(H) + 2}/n

where

σ̂2 =
1
n

n

∑
i=1

ε̂2
i = Y′(I − H)′(I − H)Y/n.

Each of these criterion functions can be minimized
with respect to the unknown smoothing parameters
either by numerical optimization procedures or by
exhaustive search.

Though each of the above criteria are asymptoti-
cally equivalent in terms of the bandwidths they de-
liver (tr(H)/n → 0 as n → ∞), they may differ in
finite-sample settings for a small smoothing parame-
ter (large tr(H)/n) with the AICc criterion penalizing
more heavily when undersmoothing than either the
least-squares cross-validation or generalized cross-
validation criteria (the AICc criterion effectively ap-
plies an infinite penalty for tr(H)/n ≥ 1/2).

Pruning

Once a model has been selected via cross-validation
(i.e. degree, segments, include or lambda have
been selected), there is the opportunity to (poten-
tially) further refine the model by adding the option
prune=TRUE to the crs function call. Pruning is ac-
complished by conducting stepwise cross-validated
variable selection using a modified version of the
stepAIC function in the R MASS package where the
function extractAIC is replaced with the function
extractCV with additional modifications where nec-
essary. Pruning of potentially superfluous bases is
undertaken, however, the pruned model (potentially
containing a subset of the bases) is returned only if
its cross-validation score improves upon the model being
pruned. When this is not the case a warning is is-
sued to this effect. A final pruning stage is com-
monplace in spline frameworks and may positively
impact on the finite-sample efficiency of the result-
ing estimator depending on the rank of the model
being pruned. Note that this option can only be ap-
plied when kernel=FALSE (or when there exist only
numeric predictors).

A simple R interface to NOMAD

The crs package has included a simple R interface
to the NOMAD optimization solver called snomadr.
snomadr implements the NOMAD library which is
an open source C++ implementation of the Mesh
Adaptive Direct Search (MADS) algorithm designed
for constrained optimization of blackbox functions
(Abramson et al., 2011; Le Digabel, 2011). snomadr
can be seen as a standalone interface to this opti-
mization solver, though we would like to point out
that the authors of NOMAD are currently working on an
R package for NOMAD that we expect to be much
more comprehensive than the simple interface pro-
vided here. The principle behind developing our in-
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terface is simply to shield the user from setting up the
optimization model underlying our regression spline
implementation. For what follows we will not dis-
cuss the performance of the solver NOMAD, rather
we direct the interested reader to Abramson et al.
(2011); Le Digabel (2011) and the references therein.

The structure of the snomadr interface is simi-
lar to the interface in the R package ipoptr (http:
//www.ucl.ac.uk/~uctpjyy/ipoptr.html) which ex-
ports the R interface to the optimization solver
IPOPT (Wächter and Biegler, 2006). The interface
is split into two major portions, one is the R code
called ‘snomadr.R’ and another is a C++ program
called ‘snomadr.cpp’. The role of ‘snomadr.R’ is to set
up the optimization model, define options and then
call the C++ code to solve the optimization problem.
‘snomadr.cpp’ will receive arguments from the R code
and then call the NOMAD library functions to solve
the problem and return results to ‘snomadr.R’. .Call
is used to transfer arguments and results between
the R and C++ languages. For further details see
?snomadr.

Illustrative example

By way of illustration we consider a simple simu-
lated example involving one continuous and one cat-
egorical predictor.

set.seed(42)
n <- 1000
x <- runif(n)
z <- rbinom(n, 1, .5)
y <- cos(2 * pi * x) + z + rnorm(n, sd=0.25)
z <- factor(z)
model <- crs(y ~ x + z)
summary(model)

Call:
crs.formula(formula = y ~ x + z)

Kernel Weighting/B-spline Bases Regression
Spline

There is 1 continuous predictor
There is 1 categorical predictor
Spline degree/number of segments for x: 3/4
Bandwidth for z: 0.0008551836
Model complexity proxy: degree-knots
Knot type: quantiles
Training observations: 1000
Trace of smoother matrix: 14
Residual standard error: 0.2453 on 993

degrees of freedom
Multiple R-squared: 0.927,

Adjusted R-squared: 0.9265
F-statistic: 962.9 on 13 and 986 DF,

p-value: 0
Cross-validation score: 0.061491531
Number of multistarts: 5

The function crs() called in this example re-
turns a "crs" object. The generic functions fitted
and residuals extract (or generate) estimated values
and residuals. Furthermore, the functions summary,
predict, and plot (options mean=FALSE, deriv=i,
ci=FALSE, plot.behavior = c("plot", "plot-data",
"data"), where i is a positive integer) support objects
of this type.

Figure 1 presents summary output in the form
of partial regression surfaces (predictors not appear-
ing on the axes are held constant at their medi-
ans/modes). Note that for this simple example
we used the option plot(model,mean=TRUE) which
presents ‘partial regression plots’.1

0.0 0.2 0.4 0.6 0.8 1.0

−
1

.0
0

.5
2

.0

x

C
o

n
d

it
io

n
a

l 
M

e
a

n

0 1

−
1

.0
0

.5
2

.0

z

C
o

n
d

it
io

n
a

l 
M

e
a

n

Figure 1: The partial regression plot for one categor-
ical and one continuous predictor.

Next we plot the first partial derivative (which
plots the partial derivative with respect to the con-
tinuous predictor holding the categorical predictor
at its modal value and next the difference between
the regression function when the categorical predic-
tor equals 0 and 1 holding the continuous predictor

1A ‘partial regression plot’ is simply a 2D plot of the outcome y versus one predictor xj when all other predictors are held constant at
their respective medians/modes (this can be changed by the user).
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at its median) for this model in Figure 2. Note that
here we used the option plot(model,deriv=1).
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Figure 2: The partial gradient plot for one categorical
and one continuous predictor.

Comparison with existing spline
methods

We now compare and contrast some existing spline
implementations in R with the regression spline im-
plementation contained in the crs package via two
illustrative Monte Carlo simulations.

The bivariate one continuous predictor
case

We first consider the simple and popular case of non-
parametrically modeling the relationship between a
response Y and univariate predictor X. Here the pur-
pose is to help the reader assess the performance
of regression splines versus smoothing splines. We
consider four data generating processes (DGPs), the
sine and cosine functions, the absolute value func-
tion, and the Doppler function given by

g(x) =
√

x(1− x)× sin

(
2π(1 + 2−7/5)

x + 2−7/5

)

For the sine, cosine, and Doppler functions X is
U[0,1], while for the absolute value function X is
U[−1,1]. We vary the signal/noise ratio by standard-
izing the DGP to have mean zero and unit variance
and setting σ for the Gaussian noise to 1/4,1/2,1,2
which produces expected in-sample fits of R2 =
0.95,0.80,0.50,0.20 for the oracle estimator (i.e. one
that uses knowledge of the DGP).

We compare crs-based regression splines with
smoothing spline methods gam in the mgcv package,
spm in the SemiPar package, ssanova in the gss pack-
age, and loess in base R. All methods in this first
simulation use default settings.

We draw M = 1,000 replications of size n = 1,000
from each DGP, compute the mean square error
(MSE) for each model, and report the median value
of each model’s MSE relative to that for crs over the
M = 1,000 replications in Table 1 below (numbers
less than one indicate that a method is more efficient
than crs).

Table 1: MSE efficiency of the various methods rela-
tive to crs (numbers less than one indicate more effi-
cient than crs).

sin(2πx) gam spm ssanova loess

σ = 0.25 0.97 1.24 1.02 8.06
σ = 0.50 0.80 0.89 0.81 2.15
σ = 1.00 0.78 0.78 0.78 0.92
σ = 2.00 0.84 0.79 0.83 0.71

sin(4πx) gam spm ssanova loess

σ = 0.25 0.89 1.43 1.11 507.85
σ = 0.50 0.78 1.15 0.98 129.41
σ = 1.00 0.81 1.01 0.95 36.72
σ = 2.00 0.77 0.84 0.85 9.89

cos(2πx) gam spm ssanova loess

σ = 0.25 1.13 1.17 1.17 39.39
σ = 0.50 0.99 1.00 1.04 11.18
σ = 1.00 0.98 0.93 1.00 3.67
σ = 2.00 0.89 0.82 0.91 1.38

cos(4πx) gam spm ssanova loess

σ = 0.25 2.78 1.54 1.30 299.88
σ = 0.50 1.31 1.25 1.12 79.85
σ = 1.00 0.93 1.02 0.97 21.42
σ = 2.00 0.82 0.89 0.87 6.09

abs(x) gam spm ssanova loess

σ = 0.25 1.55 0.91 0.98 14.59
σ = 0.50 1.20 1.05 1.11 5.97
σ = 1.00 1.23 1.18 1.26 2.73
σ = 2.00 1.41 1.36 1.43 1.61

doppler(x) gam spm ssanova loess

σ = 0.25 65.45 1.67 1.68 359.63
σ = 0.50 18.53 1.39 1.42 99.51
σ = 1.00 5.15 1.14 1.19 25.40
σ = 2.00 1.78 1.03 1.04 6.81
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Table 1 reveals some general patterns. For
smooth low frequency DGPs such as the sine and
cosine, gam, spm, and ssanova turn in similar perfor-
mances depending on the signal/noise ratio. How-
ever, loess does not do well with these DGPs. For
the absolute value and Doppler DGPs gam, spm,
ssanova and loess on balance perform worse than
crs. From a minimax perspective, the regression
spline implementation in the crs package performs
relatively well overall. Naturally by modifying tun-
ing parameters one could expect to improve the
performance of the smoothing spline methods (this
would apply to crs as well as default settings are
used throughout). The point to be made is simply
that the regression spline implementation in crs ap-
pears to adapt fairly well to the underlying DGP and
may therefore be of interest to readers.

The multivariate case, mixed predictor
types

Next we consider mixed predictor multivariate
DGPs with additive and multiplicative features. The
additive DGP is of the form

x1 <- runif(n)
x2 <- runif(n)
z <- rbinom(n, 1, .5)
dgp <- cos(2*pi*x1) + sin(2*pi*x2) + z
dgp <- (dgp - mean(dgp))/sd(dgp)
y <- dgp + rnorm(n, sd=sigma)
z <- factor(z)

while the multiplicative DGPs are of the form

x1 <- runif(n)
x2 <- runif(n)
z <- rbinom(n, 1, .5)
dgp <- cos(2*pi*x1) * sin(2*pi*x2) * z
dgp <- (dgp - mean(dgp))/sd(dgp)
y <- dgp + rnorm(n, sd=sigma)
z <- factor(z)

and the radial function given by

x1 <- runif(n, -5, 5)
x2 <- runif(n, -5, 5)
z <- rbinom(n, 1, .5)
dgp <- sin(sqrt(x1^2 + x2^2 + z))/

sqrt(x1^2 + x2^2 + z)
dgp <- (dgp - mean(dgp))/sd(dgp)
y <- dgp + rnorm(n, sd=sigma)
z <- factor(z)

We again vary the signal/noise ratio by standardiz-
ing the DGP and setting σ for the Gaussian noise to
1/4,1/2,1,2 which produces expected in-sample fits
of R2 = 0.95,0.80,0.50,0.20 for the oracle estimator
(i.e. one that uses knowledge of the DGP). We esti-
mate the following eight models,

model <- crs(y ~ x1 + x2 + z)
# gam (mgcv) additive
model <- gam(y ~ s(x1) + s(x2) + z)
# gam (mgcv) tensor to admit interactions
model <- gam(y ~ t2(x1, x2, k=k) + z)
# gam (mgcv) tensor with smooth for every z
model <- gam(y ~ t2(x1, x2, k=k, by=z) + z)
# spm (SemiPar) additive
model <- spm(y ~ f(x1) + f(x2) + z)
# spm (SemiPar) tensor product
model <- spm(y ~ f(x1, x2) + z)
# ssanova (gss) additive
model <- ssanova(y ~ x1 + x2 + z)
# ssanova (gss) tensor product
model <- ssanova(y ~ x1 * x2 + z)

We draw M = 1000 replications of size n = 1000 from
each DGP, compute the MSE for each model, and re-
port the median value of each model’s MSE relative
to that for crs over the M replications in Table 2 be-
low.
Table 2: MSE efficiency of the various methods rela-
tive to crs (numbers less than one indicate more effi-
cient than crs).

Additive DGP (cos(2πx1) + sin(2πx2) + z)
gam spm ssanova

σ (add) (int) (by) (add) (te) (add) (te)

0.25 0.60 1.57 2.11 0.64 1.71 0.62 0.70
0.50 0.57 0.94 1.56 0.57 1.24 0.57 0.65
1.00 0.55 0.83 1.44 0.51 0.95 0.54 0.65
2.00 0.52 0.75 1.35 0.49 0.72 0.51 0.60

Additive DGP (cos(4πx1) + sin(4πx2) + z))
gam spm ssanova

σ (add) (int) (by) (add) (te) (add) (te)

0.25 0.72 1.07 1.88 0.77 5.76 0.65 0.72
0.50 0.54 0.94 1.70 0.63 2.50 0.58 0.65
1.00 0.52 0.90 1.65 0.57 1.53 0.57 0.62
2.00 0.53 0.90 1.64 0.56 1.17 0.55 0.63

Multiplicative DGP (cos(2πx1)× sin(2πx2)× z)
gam spm ssanova

σ (add) (int) (by) (add) (te) (add) (te)

0.25 228.82 111.54 0.78 229.05 111.41 229.17 112.97
0.50 95.18 46.93 1.09 95.26 46.81 95.31 47.46
1.00 30.23 15.50 1.16 30.25 15.55 30.25 15.60
2.00 9.61 5.39 1.14 9.60 5.49 9.59 5.32

Multiplicative DGP (cos(4πx1)× sin(4πx2)× z)
gam spm ssanova

σ (add) (int) (by) (add) (te) (add) (te)

0.25 93.39 44.36 0.62 93.52 51.31 93.58 54.14
0.50 30.05 14.66 0.64 30.09 16.85 30.11 17.71
1.00 9.92 5.28 0.74 9.93 5.92 9.94 6.56
2.00 3.40 2.26 0.86 3.39 2.50 3.39 3.37

Multiplicative DGP (radial)
gam spm ssanova

σ (add) (int) (by) (add) (te) (add) (te)

0.25 89.66 2.18 1.16 89.07 2.29 89.60 2.21
0.50 31.35 1.27 1.30 31.18 1.29 31.35 1.21
1.00 12.65 1.19 1.72 12.56 1.09 12.68 1.08
2.00 4.49 1.10 1.82 4.44 0.88 4.51 0.99

For the mgcv routine gam, a referee noted that
?choose.k could be consulted where it suggests us-
ing gam.check() to help guide the appropriate num-
ber of knots and suggested non-stochastic values of
k=5 for the additive DGP with 2π and k=10 for the
remaining DGPs (these values were used in Table 2
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for gam via the argument k=k rather than the default
values, while crs uses stochastic values for the basis
and all smoothing parameters).

When the DGP is additive, it is clear that the
smoothing splines that presume additivity are more
efficient than crs for this DGP. Note that this is
an oracle type of property in the sense that the
user does not in general have knowledge of the
true DGP, but if they did and used this information
their model would naturally be more efficient than
a method that did not (we elaborate further on this
below). The regression spline implementation in the
crs package does not presume this knowledge when
basis="auto" is used (the default) though it allows
for the possibility. However, were one to use the in-
correct smoothing spline model when the DGP is ad-
ditive (e.g. assume interaction when it is not present),
one could do worse than crs as can be seen in Table 2.
But note that when the DGP is non-additive, crs ap-
pears to be more efficient than the smoothing spline
approaches even when they employ, say, tensor ba-
sis functions to model the non-additive relationship
and are adapted to admit the presence of the binary
factor predictor (except gam which, as noted above,
uses a number of knots k that is optimized for these
DGPs, rather than the defaults which were used for
all other methods). From a minimax perspective, the
regression spline implementation in the crs package
performs relatively well overall. Apart from select-
ing the number of knots for gam as described above,
default settings were used throughout and therefore
it is likely that efficiency could be improved in some
cases by further tuning (this would apply to crs as
well, naturally).

To elaborate further on the issue of tuning and ef-
ficiency, if instead of using defaults for crs we were
to assume additivity as done for its peers in columns
2, 5, and 7 in Table 2 (options basis="additive",
kernel=FALSE), then for the additive DGP in Ta-
ble 2 the first row would instead be 0.94, 2.43,
3.29, 1.00, 2.69, 0.98, and 1.08, and we observe that
the efficiency of crs improves substantially even
when using a stochastic choice of the B-spline de-
gree and number of knots, while the other meth-
ods use non-stochastic choices for the number of
knots that are constant over all M = 1,000 Monte
Carlo replications. And if we followed the lead of
the anonymous referee who kindly suggested us-
ing non-stochastic values for the number of knots
(i.e. k=5) for gam in mgcv based on replications from
the additive DGP used for row 1 of Table 2, we
might choose non-stochastic values degree=c(4,4)
and segments=c(3,3) based on cross-validation and
the first row of Table 2 would instead be 1.18, 3.09,
4.19, 1.25, 3.42, 1.22, and 1.36. Furthermore, if in ad-
dition we used the option prune=TRUE enabling post-
estimation pruning of the model, the first row of Ta-
ble 2 would instead be 1.48, 3.91, 5.35, 1.59, 4.28, 1.53,
and 1.72 (note that this can only be used in conjunc-

tion with the option kernel=FALSE). The point to be
made is that indeed efficiency can be improved in
some cases by tuning of smoothing parameters and
choice of the basis, and this also holds for crs itself.

Demos, data, and additional infor-
mation

There exist a range of demonstrations available via
demo() including

1. radial_persp: R code for fitting and plotting a
3D perspective plot for the ‘radial’ function.

2. radial_rgl: R code for fitting and generating
a 3D real-time rendering plot for the ‘radial’
function using OpenGL (requires the rgl pack-
age (Adler and Murdoch, 2012)).

3. sine_rgl: R code for fitting and generating a
3D real-time rendering plot for a product sine
function using OpenGL.

4. radial_constrained_mean: R code for con-
strained radial function estimation.

5. cqrs.R: R code for fitting and plotting quantile
regression splines.

There exist a number of datasets including

1. cps71: Canadian cross-section wage data con-
sisting of a random sample taken from the 1971
Canadian Census Public Use Tapes for male
individuals having common education (grade
13). There are 205 observations in total (con-
tributed by Aman Ullah).

2. Engel95: British cross-section data consisting
of a random sample taken from the British
Family Expenditure Survey for 1995. The
households consist of married couples with an
employed head-of-household between the ages
of 25 and 55 years. There are 1655 household-
level observations in total (contributed by
Richard Blundell).

3. wage1: Cross-section wage data consisting of
a random sample taken from the U.S. Current
Population Survey for the year 1976. There are
526 observations in total (contributed by Jeffrey
Wooldridge).

We have tried to overload the crs method and as-
sociated S3 plot method to accommodate the needs
of a range of users and to automate a number of rou-
tine tasks. Warning messages are produced where
possible to guide the user towards the most appro-
priate choice of settings. User specified weights can
be provided to allow for weighted least squares and
weighted cross-validation. In addition, we have a
function crsiv that implements instrumental vari-
able regression splines that may be of interest to
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some users (see ?crsiv for details). Furthermore,
quantile regression splines are supported by setting
tau= a scalar in the range (0,1). Finally, we would
like to direct the reader to the vignettes crs, crs_faq,
and spline_primer for further examples, frequently
asked questions, and background information.
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