
CONTRIBUTED RESEARCH ARTICLES 65

Graphical Markov Models with Mixed
Graphs in R
by Kayvan Sadeghi and Giovanni M. Marchetti

Abstract In this paper we provide a short tuto-
rial illustrating the new functions in the package
ggm that deal with ancestral, summary and rib-
bonless graphs. These are mixed graphs (con-
taining three types of edges) that are impor-
tant because they capture the modified inde-
pendence structure after marginalisation over,
and conditioning on, nodes of directed acyclic
graphs. We provide functions to verify whether
a mixed graph implies that A is independent
of B given C for any disjoint sets of nodes and
to generate maximal graphs inducing the same
independence structure of non-maximal graphs.
Finally, we provide functions to decide on the
Markov equivalence of two graphs with the
same node set but different types of edges.

Introduction and background

Graphical Markov models have become a part of the
mainstream of statistical theory and application in
recent years. These models use graphs to represent
conditional independencies among sets of random
variables. Nodes of the graph correspond to random
variables and edges to some type of conditional de-
pendency.

Directed acyclic graphs

In the literature on graphical models the two most
used classes of graphs are directed acyclic graphs
(DAGs) and undirected graphs . DAGs have proven
useful, among other things, to specify the data gener-
ating processes when the variables satisfy an under-
lying partial ordering.

For instance, suppose that we have four observed
variables: Y, the ratio of systolic to diastolic blood
pressure and X the diastolic blood pressure, both on
a log scale; Z, the body mass and W, the age, and that
a possible generating process is the following linear
recursive regression model

Y = γYZZ + γYUU + εY

X = γXWW + γXUU + εX

Z = γZVW + εZ

W = εW ; U = εU ,

where all the variables are mean-centered and the εs
are zero mean, mutually independent Gaussian ran-
dom errors. In this model we assume that there exists
a genetic factor U influencing the ratio and levels of
blood pressure.

This model can be represented by the DAG
in Figure 1(a) with nodes associated with the
variables and edges indicating the dependencies
represented by the regression coefficients (γs).

Y

U

Z

X W

Y Z

X W

(a) (b)

Figure 1: (a) A DAG. (b) A regression chain graph.

From the graph it is seen, for instance, that the
ratio of the two blood pressures (Y) is directly influ-
enced by body mass (Z) but not by age (W). Thus a
consequence of the model is that the variables must
satisfy a set of conditional independencies: for exam-
ple, the ratio of the blood pressure is independent of
the age given the body mass, written as Y ⊥⊥W|Z.

A remarkable result is that the independencies
can be deduced from the graph alone, without ref-
erence to the equations, by using a criterion called
d-separation. In fact, in the graph of Figure 1(a), the
nodes Y and W are d-separated given Z. This can
be checked using special graph algorithms included,
for example, in packages gRain (Højsgaard, 2012)
and ggm (Marchetti et al., 2012). For more details on
DAG models and their implementation in R see the
extensive discussion in Højsgaard et al. (2012).

Hidden variables and induced graphs

The model has four observed variables but includes
an unobserved variable, that is, the genetic factor U.
When U is hidden the model for the observed vari-
ables becomes

Y = γYZZ + ηY

X = γXWW + ηX

Z = γZVW + εZ

W = εW ;

with two correlated errors ηY = γYUU + εY and ηX =
γXUU + εX , such that cov(ηY,ηX) = ωYX . As a con-
sequence the model is still a recursive model and the
parameters have a regression parameter interpreta-
tion, but contain some correlated residuals.

The induced model is said to be obtained after
marginalisation over U. In this model some of the
original independencies are lost, but we can observe
the implied independencies Y ⊥⊥W|Z and X ⊥⊥ Z|W.
Also it can be shown that it is impossible to represent
such independencies in a DAG model defined for the

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://cran.r-project.org/package=gRain
http://cran.r-project.org/package=ggm


66 CONTRIBUTED RESEARCH ARTICLES

four observed variables. Therefore, we say that DAG
models are not stable under marginalisation.

A mixed graph with arrows and arcs, as shown in
Figure 1(b), can be used to represent the induced in-
dependence model after marginalisation over U. In
this representation, beside the arrows, represented
by the γs, we have the arc Y≺ �X associated with
the (partial) correlation ωYX .

The graph of Figure 1(b) belongs to a class of
models called regression chain graph models . This
class generalises the recursive generating process of
DAGs by permitting joint responses, coupled in the
graph by arcs, and thus appears to be an essential
extension for applications; see Cox and Wermuth
(1996). Regression chain graphs can be used as a con-
ceptual framework for understanding multivariate
dependencies, for example in longitudinal studies.
The variables are arranged in a sequence of blocks,
such that (a) all variables in one block are of equal
standing and any dependence between them is rep-
resented by an arc, and (b) all variables in one block
are responses to variables in all blocks to their right,
so that any dependencies between them are directed,
represented by an arrow pointing from right to left.
The graph shows how the data analysis can be bro-
ken down into a series of regressions and informs
about which variables should or should not be con-
trolled for in each regression.

More general induced graphs

The class of regression chain graphs is not, however,
stable under marginalisation. For instance, suppose
that the generating process for the blood pressure
data is defined by the more general regression chain
graph of Figure 2(a) where L is a further variable rep-
resenting a common hidden cause of systolic blood
pressure and body mass.

Then, after marginalisation over L, the model
can still be described by a linear system of equa-
tions with correlated residuals and can be repre-
sented by the mixed graph shown in Figure 2(b).
But the resulting graph is not a DAG nor a re-
gression chain graph because it contains the pair
of variables (Y, Z) coupled by both a directed edge
and a path composed by bi-directed arcs. Thus Y
cannot be interpreted as a pure response to Z and
in addition Y and Z are not two joint responses.

X W

Y Z

L

X W

Y Z

(a) (b)

Figure 2: (a) A regression chain graph model; (b) the
mixed graph obtained after marginalisation over L,
which is not a regression chain graph.

Stable mixed graphs

The previous illustrations show that when there
are unobserved variables, DAG or regression chain
graph models are no longer appropriate. The dis-
cussion could be extended to situations where there
are some selection variables that are hidden variables
that are conditioned on.

This motivates the introduction of a more general
class of mixed graphs , which contains three types of
edges, denoted by lines, , arrows, �, and arcs
(bi-directed arrows), ≺ �. In the case of regression
models, explained above, lines generally link pairs of
joint context (explanatory) variables and arcs gener-
ally link pairs of joint response variables.

There are at least three known classes of mixed
graphs without self loops that remain in the same
class, i.e. that are stable under marginalisation and
conditioning . The largest one is that of ribbonless
graphs (RGs) (Sadeghi, 2012a), defined as a modifi-
cation of MC-graphs (Koster, 2002). Then, there is the
subclass of summary graphs (SGs) (Wermuth, 2011),
and finally the smallest class of the ancestral graphs
(AGs) (Richardson and Spirtes, 2002).

Four tasks of the current paper

In this paper, we focus on the implementation of
four important tasks performed on the class of mixed
graphs in R:

1. Generating different types of stable mixed
graphs after marginalisation and conditioning.

2. Verifying whether an independency of the
form Y ⊥⊥W|Z holds by using a separation cri-
terion called m-separation.

3. Generating a graph that induces the same in-
dependence structure as an input mixed graph
such that the generated graph is maximal , i.e.
each missing edge of the generated graph im-
plies at least an independence statement.

4. Verifying whether two graphs are Markov
equivalent , i.e. they induce the same indepen-
dencies, and whether, given a graph of a spe-
cific type, there is a graph of a different type
that is Markov equivalent to it.

Package ggm

The tasks above are illustrated by using a set of
new functions introduced into the R package ggm
(Marchetti et al., 2012). In the next section we give
the details of how general mixed graphs are defined.
The following four sections deal with the four tasks
respectively. For each task we give a brief introduc-
tion at the beginning of its corresponding section.

Some of the functions generalise previous contri-
butions of ggm discussed in Marchetti (2006). The

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://cran.r-project.org/package=ggm


CONTRIBUTED RESEARCH ARTICLES 67

ggm package has been improved and it is now more
integrated with other contributed packages related
to graph theory, such as graph (Gentleman et al.,
2012), igraph (Csardi and Nepusz, 2006), and gRbase
(Dethlefsen and Højsgaard, 2005), which are now re-
quired for representing and plotting graphs. Specifi-
cally, in addition to adjacency matrices, all the func-
tions in the package now accept graphNEL and igraph
objects as input, as well as a new character string rep-
resentation. A more detailed list of available pack-
ages for graphical models can be found at the CRAN
Task View gRaphical Models in R at http://cran.
r-project.org/web/views/gR.html.

Defining mixed graphs in R

For a comprehensive discussion on the ways of
defining a directed acyclic graph, see Højsgaard et al.
(2012). A mixed graph is a more general graph type
with at most three types of edge: directed, undi-
rected and bi-directed, with possibly multiple edges
of different types connecting two nodes. In ggm we
provide some special tools for mixed graphs that are
not present in other packages. Here we briefly il-
lustrate some methods to define mixed graphs and
we plot them with a new function, plotGraph, which
uses a Tk GUI for basic interactive graph manipula-
tion.

The first method is based on a generalisation of
the adjacency matrix. The second uses a descrip-
tive vector and is easy to use for small graphs. The
third uses a special function makeMG that allows the
directed, undirected, and bi-directed components of
a mixed graph to be combined.

Adjacency matrices for mixed graphs

In the adjacency matrix of a mixed graph we code
the three different edges with a binary indicator: 1
for directed, 10 for undirected and 100 for bi-directed
edges. When there are multiple edges the codes are
added.

Thus the adjacency matrix of a mixed graph H with
node set N and edge set F is an |N| × |N| matrix ob-
tained as A = B + S + W by adding three matrices
B = (bij), S = (sij) and W = (wij) defined by

bij =

{
1, if and only if i �j in H;
0, otherwise.

sij = sji =

{
10, if and only if i j in H;
0, otherwise.

wij = wji =

{
100, if and only if i≺ �j in H;
0, otherwise.

Notice that because of the symmetric nature of lines
and arcs S and W are symmetric, whereas B is not
necessarily symmetric.

For instance consider the following general
mixed graph.:

Q W

X

Y Z

Notice that this graph is not of much interest per se,
because it is not a stable graph, but it is introduced
just to illustrate the structure of the adjacency matrix.

This graph can be defined by the commands

> mg <- matrix(c( 0, 101, 0, 0, 110,
100, 0, 100, 0, 1,
0, 110, 0, 1, 0,
0, 0, 1, 0, 100,

110, 0, 0, 100, 0),
5, 5, byrow = TRUE)

> N <- c("X","Y","Z","W","Q")
> dimnames(mg) <- list(N, N)
> mg

X Y Z W Q
X 0 101 0 0 110
Y 100 0 100 0 1
Z 0 110 0 1 0
W 0 0 1 0 100
Q 110 0 0 100 0

and plotted with plotGraph(mg).

Defining mixed graphs by using vectors

A more convenient way of defining small mixed
graphs is based on a simple vector coding as fol-
lows. The graph is defined by a character vec-
tor of length 3 f , where f = |F| is the number of
edges, and the vector contains a sequence of triples
〈type,label1,label2〉, where the type is the edge
type and label1 and label2 are the labels of the two
nodes. The edge type accepts "a" for a directed ar-
row , "b" for an arc and "l" for a line. Notice that
isolated nodes may not be created by this method.
For example, the vector representation of the previ-
ous mixed graph is

> mgv <- c("b","X","Y","a","X","Y","l","X","Q",
"b","Q","X","a","Y","Q","b","Y","Z",
"a","Z","W","a","W","Z","b","W","Q")

Once again as in the DAG case we can use
plotGraph(mgv) to plot the defined graph.

Mixed graph using the function makeMG

Finally the adjacency matrix of a mixed graph may
be built up with the function makeMG. This function
requires three arguments dg, ug and bg, correspond-
ing respectively to the three adjacency matrices B, S
and W composing the mixed graph. These may also

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://cran.r-project.org/package=igraph
http://cran.r-project.org/package=gRbase
http://cran.r-project.org/web/views/gR.html
http://cran.r-project.org/web/views/gR.html


68 CONTRIBUTED RESEARCH ARTICLES

be obtained by the constructor functions DG and UG of
ggm for directed and undirected graphs respectively.
Thus for the previous mixed graph we can issue the
command

> mg <- makeMG(dg = DG(Y ~ X, Z ~ W, W ~ Z),
ug = UG(~ X*Q),
bg = UG(~ Y*X + X*Q + Q*W + Y*Z))

obtaining the same adjacency matrix (up to a permu-
tation).

Generating stable mixed graphs

There are four general classes of stable mixed graphs.
The more general class is that of ribbonless

graphs: these are mixed graphs without a spe-
cific set of subgraphs called ribbons. Figure 3 be-
low shows two examples of ribbons. The exact
definition of ribbons is given in Sadeghi (2012a).

h i j

k l

h

i j

(a) (b)

Figure 3: Two commonly seen ribbons 〈h, i, j〉.

The lack of ribbons ensures that, for any RG, there
is a DAG whose independence structure, i.e. the set
of all conditional independence statements that it in-
duces after marginalisation over, and conditioning
on, two disjoint subsets of its node set can be repre-
sented by the given RG. This is essential, as it shows
that the independence structures corresponding to
RGs are probabilistic, that is, there exists a proba-
bility distribution P that is faithful with respect to
any RG, i.e. for random vectors XA, XB, and XC with
probability distribution P, XA ⊥⊥ XB |XC if and only
if 〈A, B |C〉 is in the induced independence structure
by the graph. This probability distribution is the
marginal and conditional of a probability distribu-
tion that is faithful to the generating DAG.

The other classes of stable graphs are further sim-
plification of the class of ribbonless graphs. Sum-
mary graphs have the additional property that there
are neither arrowheads pointing to lines (i.e. ≺ � ◦

or � ◦ ) nor directed cycles with all ar-
rows pointing towards one direction.

Ancestral graphs have the same constraints as
summary graphs plus the additional prohibition of
bows , i.e. arcs with one endpoint that is an ances-
tor of the other endpoint; see Richardson and Spirtes
(2002).

However, for some ribbonless and summary
graphs the corresponding parametrisation is some-
times not available even in the case of a standard
joint Gaussian distribution.

If we suppose that stable mixed graphs are only
used to represent the independence structure after
marginalisation and conditioning, we can consider
all types as equally appropriate. However, each of
the three types has been used in different contexts
and for different purposes. RGs have been intro-
duced in order to straightforwardly deal with the
problem of finding a class of graphs that is closed
under marginalisation and conditioning by a simple
process of deriving them from DAGs. SGs are used
when the generating DAG is known, to trace the ef-
fects in the sets of regressions as described earlier.
AGs are simple graphs, meaning that they do not
contain multiple edges and the lack of bows ensures
that they satisfy many desirable statistical properties.

In addition, when one traces the effects in regres-
sion models with latent and selection variables (as
described in the introduction) ribbonless graphs are
more alerting to possible distortions (due to indirect
effects) than summary graphs, and summary graphs
are more alerting than ancestral graphs; see also Wer-
muth and Cox (2008). For the exact definition and a
thorough discussion of all such graphs, see Sadeghi
(2012a).

Sadeghi (2012a) also defines the algorithms for
generating stable mixed graphs of a specific type
for a given DAG or for a stable mixed graph of
the same type after marginalisation and conditioning
such that they induce the marginal and conditional
DAG-independence structure. We implement these
algorithms in this paper.

By “generating graphs” we mean applying the
defined algorithms, e.g. those for generating stable
mixed graphs to graphs, in order to generate new
graphs.

Functions to generate the three main types
of stable mixed graphs

Three main functions RG, SG, and AG are available
to generate and plot ribbonless, summary, and an-
cestral graphs from DAGs, using the algorithms in
Sadeghi (2012a). These algorithms look for the paths
with three nodes and two edges in the graph whose
inner nodes are being marginalised over or condi-
tioned on, and generate appropriate edges between
the endpoints. These have two important properties:
(a) they are well-defined in the sense that the pro-
cess can be performed in any order and will always
produce the same final graph, and (b) the generated
graphs induce the modified independence structure
after marginalisation and conditioning; see Sadeghi
(2012a) for more details.

The functions RG, SG, and AG all have three argu-
ments: a, the given input graph, M, the marginalisa-
tion set and C, the conditioning set. The graph may
be of class "graphNEL" or of class "igraph" or may
be represented by a character vector, or by an adja-
cency matrix, as explained in the previous sections.

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 69

The sets M and C (default c()) must be disjoint vec-
tors of node labels, and they may possibly be empty
sets. The output is always the adjacency matrix of
the generated graph. There are two additional logi-
cal arguments showmat and plot to specify whether
the adjacency matrix must be explicitly printed (de-
fault TRUE) and the graph must be plotted (default
FALSE).

Some examples

We start from a DAG defined in two ways, as an ad-
jacency matrix and as a character vector:

> ex <- matrix(c(0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,1,0,1,0,1,0,
0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,
0,0,0,0,0,1,1,0),

8, 8, byrow = TRUE)
>
> exvec <- c("a",1,2,"a",2,3,"a",4,3,

"a",4,5,"a",4,7,"a",5,6,
"a",7,6,"a",8,6,"a",8,7)

> plotGraph(ex)

1

2

3

45

6 7

8

Then we define two disjoint sets M and C to
marginalise over and condition on

> M <- c(5,8)
> C <- 3

and we generate the ribbonless, summary and ances-
tral graphs from the DAG with the associated plot.

> RG(ex, M, C, plot = TRUE)

1 2 4 6 7
1 0 1 0 0 0
2 0 0 10 0 0
4 0 10 0 1 1
6 0 0 0 0 100
7 0 0 0 101 0

1

24

6 7

The summary graph is also plotted:

> plotGraph(SG(ex,M,C))

1 2 4 6 7
1 0 10 0 0 0
2 10 0 10 0 0
4 0 10 0 1 1
6 0 0 0 0 100
7 0 0 0 101 0

1

24

6 7

The induced ancestral graph is obtained from the
DAG defined as a vector.

> AG(exvec, M, C, showmat = FALSE, plot = TRUE)

1

24

6 7

Verifying m-separation

To globally verify whether an independence state-
ment of the form A ⊥⊥ B |C is implied by a mixed
graph we use a separation criterion called m-
separation . This has been defined in Sadeghi (2012a)
for the general class of loopless mixed graphs and
is the same as the m-separation criterion defined in
Richardson and Spirtes (2002) for ancestral graphs.
It is also a generalisation of the d-separation criterion
for DAGs (Pearl, 1988). This is a graphical criterion
that looks to see if the graph contains special paths
connecting two sets A and B and involving a third
set C of the nodes. These special paths are said to be
active or m-connecting. For example, a directed path
from a node in A to a node in B that does not contain
any node of C is m-connecting A and B. However, if
such a path intercepts a node in C then A and B are
said to be m-separated given C. However, this be-
haviour can change if the path connecting A and B
contains a collision node or a collider for short, that
is a node c where the edges meet head-to-head, e.g.
�c≺ or �c≺ �.
In general, a path is said to be m-connecting given

C if all its collider nodes are in C or in the set of an-
cestors of C, and all its non-collider nodes are outside
C. For two disjoint subsets A and B of the node set,
we say that C m-separates A and B if there is no m-
connecting path between A and B given C.

Function for verifying m-separation

The m-separation criterion has been implemented in
ggm and is available by using the function msep.

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859



70 CONTRIBUTED RESEARCH ARTICLES

Note that there is still a function dSep in ggm for d-
separation, although it is superseded by msep.

The function has four arguments, where the first
is the graph a, in one of the forms discussed before,
and the other three are the disjoint sets A, B, and C.

Examples

For example, consider the DAG of Figure 1(a):

> a <- DAG(Y ~ U + Z, X ~ U + W, Z ~ W)

We see that Y and W are m-separated given Z:

> msep(a, "Y", "W", "Z")

[1] TRUE

and the same statement holds for the induced ances-
tral graph after marginalisation over U:

> b <- AG(a, M = "U")
> msep(b, "Y", "W", "Z")

[1] TRUE

This was expected because the induced ancestral
graph respects all the independence statements in-
duced by m-separation in the DAG, and not involv-
ing the variable U.

As a more complex example, consider the follow-
ing summary graph,

> a <- makeMG(dg= DG(W ~ Z, Z ~ Y + X),
bg= UG(~ Y*Z))

> plotGraph(a)

W Z

Y

X

Then, the two following statements verify whether X
is m-separated from Y given Z, and whether X is m-
separated from Y (given the empty set):

> msep(a, "X", "Y", "Z")

[1] FALSE

> msep(a, "X", "Y")

[1] TRUE

Verifying maximality

For many subclasses of graphs a missing edge cor-
responds to some independence statement, but for
the more complex classes of mixed graphs this is not
necessarily true. A graph where each of its miss-
ing edges is related to an independence statement is
called a maximal graph . For a more detailed discus-
sion on maximality of graphs and graph-theoretical

conditions for maximal graphs, see Richardson and
Spirtes (2002) and Sadeghi and Lauritzen (2012).
Sadeghi and Lauritzen (2012) also gave an algorithm
for generating maximal ribbonless graphs that in-
duces the same independence structure as an input
non-maximal ribbonless graph. This algorithm has
been implemented in ggm as illustrated below.

Function for generating maximal graphs

Given a non-maximal graph, we can obtain the ad-
jacency matrix of a maximal graph that induces the
same independence statements with the function
Max. This function uses the algorithm by Sadeghi
(2012b), which is an extension of the implicit algo-
rithm presented in Richardson and Spirtes (2002).
The related functions MAG, MSG, and MRG, are just
handy wrappers to obtain maximal AGs, SGs and
RGs, respectively. For example,

> H <- matrix(c(0 ,100, 1, 0,
100,0 ,100, 0,
0 ,100, 0,100,
0, 1 ,100, 0), 4, 4)

> plotGraph(H)

1

2 3

4

is a non-maximal ancestral graph, with the miss-
ing edge between nodes 1 and 4 that is not associ-
ated with any independence statement. Its associ-
ated maximal graph is obtained by

> Max(H)

1 2 3 4
1 0 100 0 100
2 100 0 100 1
3 1 100 0 100
4 100 0 100 0

> plotGraph(Max(H))

1

2 3

4

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 71

As the graph H is an ancestral graph (as may be veri-
fied by the function isAG), we obtain the same result
with

> MAG(H)

1 2 3 4
1 0 100 0 100
2 100 0 100 1
3 1 100 0 100
4 100 0 100 0

Verifying Markov equivalence

Two graphical models are said to be Markov equiv-
alent when their associated graphs, although non-
identical, imply the same independence structure,
that is the same set of independence statements.
Thus two Markov equivalent models cannot be dis-
tinguished on the basis of statistical tests of inde-
pendence, even for arbitrary large samples. For in-
stance, it is easy to verify that the two directed acyclic
graphs models X≺ U �Y and X≺ U≺ Y
both imply the same independence statements, and
are, therefore, Markov equivalent.

Sometimes, we can check whether graphs of dif-
ferent types are Markov equivalent. For instance the
DAG X �U≺ Y is Markov equivalent to the bi-
directed graph X≺ �U≺ �Z.

Markov equivalent models may be useful in ap-
plications because (a) they may suggest alternative
interpretations of a given well-fitting model or (b)
on the basis of the equivalence one can choose a
simpler fitting algorithm. For instance, the previ-
ous bi-directed graph model may be fitted, using the
Markov equivalent DAG, in terms of a sequence of
univariate regressions.

In the literature several problems related to
Markov equivalences have been discussed. These in-
clude (a) verifying the Markov equivalence of given
graphs, (b) presenting conditions under which a
graph of a specific type can be Markov equivalent
to a graph of another type, and (c) providing algo-
rithms for generating Markov equivalent graphs of a
certain type from a given graph.

Functions for testing Markov equivalences

The function MarkEqRcg tests whether two regression
chain graphs are Markov equivalent. This function
simply finds the skeleton and all unshielded collider
V-configurations in both graphs and tests whether
they are identical, see Wermuth and Sadeghi (2012).
The arguments of this function are the two graphs a
and b in one of the allowed forms. For example,

> H1 <- makeMG(dg = DAG(W ~ X, Q ~ Z),
bg = UG(~ X*Y + Y*Z + W*Q))

> H2 <- makeMG(dg = DAG(W ~ X, Q ~ Z, Y ~ X + Z),
bg = UG(~ W*Q))

> H3 <- DAG(W ~ X, Q ~ Z + W, Y ~ X + Z)

> plotGraph(H1); plotGraph(H2); plotGraph(H3)

W

X

Q

Z

Y

W

X

Q

Z

Y

W

X

Q

Z

Y

We can now verify Markov equivalence as follows

> MarkEqRcg(H1,H2)

[1] TRUE

> MarkEqRcg(H1,H3)

[1] FALSE

> MarkEqRcg(H2,H3)

[1] FALSE

To test Markov equivalence for maximal ancestral
graphs the algorithm is much more computation-
ally demanding (see Ali and Richardson (2004)) and,
for this purpose, the function MarkEqMag has been
provided. Of course, one can use this function
for Markov equivalence of regression chain graphs
(which are a subclass of maximal ancestral graphs).
For example,

> A1 <- makeMG(dg = DG(W ~ Y),
bg = UG(~ X*Y + Y*Z + Z*W))

> A2 <- makeMG(dg = DG(W ~ Y, Y ~ X),
bg = UG(~ Y*Z + Z*W))

> A3 <- makeMG(dg = DG(W ~ Y, Y ~ X, Z ~ Y),
bg = UG(~ Z*W))

> plotGraph(A1); plotGraph(A2); plotGraph(A3)

W

Y

X

Z

W

Y

X

Z

W

Y

X

Z

> MarkEqMag(H1,H2)

[1] TRUE

> MarkEqMag(H1,H3)

[1] FALSE

> MarkEqMag(H2,H3)

[1] FALSE

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859



72 CONTRIBUTED RESEARCH ARTICLES

Functions for generating Markov equiva-
lent graphs of a specific type

To obtain an alternative interpretation of an indepen-
dence structure by using different graphical models,
it is important to verify if a given graph is capable
of being Markov equivalent to a graph of a specific
class of graphs (such as DAGs, undirected graphs,
or bidirected graphs), and if so, to obtain as a result
such a graph. The functions RepMarDAG, RepMarUG,
and RepMarBG do this for DAGs, undirected graphs,
and bidirected graphs, respectively. For associated
conditions and algorithms, see Sadeghi (2012b). For
example, given the following graph

> H <- matrix(c( 0,10, 0, 0,
10, 0, 0, 0,
0, 1, 0,100,
0, 0,100, 0), 4, 4)

> plotGraph(H)

1 2 3 4

we can see that it is Markov equivalent to a DAG, by

> RepMarDAG(H)

$verify
[1] TRUE

$amat
1 2 3 4

1 0 1 0 0
2 0 0 1 0
3 0 0 0 0
4 0 0 1 0

> plotGraph(RepMarDAG(H))

1 2 3 4

On the other hand it is not Markov equivalent to an
undirected graph or to a bidirected graph.

> RepMarUG(H)

$verify
[1] FALSE

$amat
[1] NA

> RepMarBG(H)

$verify
[1] FALSE

$amat
[1] NA

Acknowledgments

The authors are grateful to Steffen Lauritzen for help-
ful suggestions on codes and comments on an earlier
version of the paper and to Nanny Wermuth, the ed-
itor, and referees for their insightful comments.

Bibliography

R. A. Ali and T. Richardson. Searching across Markov
equivalence classes of maximal ancestral graphs.
In Proceedings of the Joint Statistical Meeting of the
American Statistical Association, Toronto, Canada,
2004. [p71]

D. R. Cox and N. Wermuth. Multivariate Dependen-
cies : models, analysis and interpretation. Chapman
& Hall, London, United Kingdom, 1996. [p66]

G. Csardi and T. Nepusz. The "igraph" software
package for complex network research. InterJour-
nal, Complex Systems:1695, 2006. URL http://
igraph.sf.net. [p67]

C. Dethlefsen and S. Højsgaard. A common platform
for graphical models in R: The gRbase package.
Journal of Statistical Software, 14(17):1–12, 12 2005.
ISSN 1548-7660. URL http://www.jstatsoft.
org/v14/i17. [p67]

R. Gentleman, E. Whalen, W. Huber, and S. Falcon.
graph: A package to handle graph data structures, 2012.
R package version 1.36.0. [p67]

S. Højsgaard. Graphical independence networks
with the gRain package for R. Journal of Statisti-
cal Software, 46(10):1–26, 2012. URL http://www.
jstatsoft.org/v46/i10/. [p65]

S. Højsgaard, D. Edwards, and S. Lauritzen. Graph-
ical Models with R. Springer-Verlag, Berlin-
Heidelberg-New York, 2012. [p65, 67]

J. T. A. Koster. Marginalizing and conditioning in
graphical models. Bernoulli, 8(6):817–840, 2002.
[p66]

G. M. Marchetti. Independencies induced from a
graphical Markov model after marginalization and
conditioning: the R package ggm. Journal of Statis-
tical Software, 15(6), 2006. [p66]

G. M. Marchetti, M. Drton, and K. Sadeghi.
ggm: A package for Graphical Markov Models,
2012. URL http://CRAN.R-project.org/package=
ggm. R package version 1.995-3. [p65, 66]

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
networks of plausible inference. Morgan Kaufmann
Publishers, San Mateo, CA, USA, 1988. [p69]

T. S. Richardson and P. Spirtes. Ancestral graph
Markov models. Annals of Statistics, 30(4):962–
1030, 2002. [p66, 68, 69, 70]

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://igraph.sf.net
http://igraph.sf.net
http://www.jstatsoft.org/v14/i17
http://www.jstatsoft.org/v14/i17
http://www.jstatsoft.org/v46/i10/
http://www.jstatsoft.org/v46/i10/
http://CRAN.R-project.org/package=ggm
http://CRAN.R-project.org/package=ggm


CONTRIBUTED RESEARCH ARTICLES 73

K. Sadeghi. Stable mixed graphs. Bernoulli, to appear,
2012a. URL http://arxiv.org/abs/1110.4168.
[p66, 68, 69]

K. Sadeghi. Markov equivalences for subclasses of
mixed graphs. Submitted, 2012b. URL http://
arxiv.org/abs/1110.4539. [p70, 72]

K. Sadeghi and S. L. Lauritzen. Markov properties
for mixed graphs. Bernoulli, to appear, 2012. URL
http://arxiv.org/abs/1109.5909. [p70]

N. Wermuth. Probability distributions with sum-
mary graph structure. Bernoulli, 17(3):845–879,
2011. [p66]

N. Wermuth and D. R. Cox. Distortion of effects
caused by indirect confounding. Biometrika, 95:17–
33, 2008. [p68]

N. Wermuth and K. Sadeghi. Sequences of regres-
sions and their independences. TEST, 21(2):215–
252 and 274–279, 2012. [p71]

Kayvan Sadeghi
Department of Statistics
University of Oxford
1 South Parks Road, OX1 3TG, Oxford
United Kingdom
sadeghi@stats.ox.ac.uk

Giovanni M. Marchetti
Dipartimento di Statistica "G. Parenti"
University of Florence
viale Morgagni, 59, 50134, Florence
Italy
giovanni.marchetti@ds.unifi.it

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://arxiv.org/abs/1110.4168
http://arxiv.org/abs/1110.4539
http://arxiv.org/abs/1110.4539
http://arxiv.org/abs/1109.5909
mailto:sadeghi@stats.ox.ac.uk
mailto:giovanni.marchetti@ds.unifi.it

