
CONTRIBUTED RESEARCH ARTICLES 13

It’s Not What You Draw,
It’s What You Don’t Draw
Drawing Paths with Holes in R Graphics

by Paul Murrell

Abstract The R graphics engine has new sup-
port for drawing complex paths via the func-
tions polypath() and grid.path(). This article
explains what is meant by a complex path and
demonstrates the usefulness of complex paths
in drawing non-trivial shapes, logos, customised
data symbols, and maps.

One of the design goals of the R graphics system is
to allow fine control over the small details of plots.
One way that the R graphics system does this is by
providing access to low-level generic graphics facili-
ties, such as the ability to draw basic shapes and the
ability to control apparently esoteric, but still useful,
features of those shapes, such as the line end style
used for drawing lines.

In R version 2.12.0, another low-level graphics fa-
cility was added to R: the ability to draw complex
paths (not just polygons).

This article describes this new facility and
presents some examples that show how complex
paths might be useful.

Drawing paths with holes

The concept of a path is similar to the concept of a
polygon: a path is defined by a series of (x,y) loca-
tions that describe the boundary of the path.

For example, the following code defines a set of
(x,y) locations that describe a simple triangle.

> x <- c(.1, .5, .9)
> y <- c(.1, .8, .1)

A triangle can be drawn from these locations us-
ing either the polypath() function from the graphics
package or, as shown below and in Figure 1, using
the grid.path() function from the grid package.

> library(grid)

> grid.path(x, y, gp=gpar(fill="grey"))

Figure 1: A triangle drawn by the grid.path() func-
tion from a set of three (x,y) locations.

As for any basic shape, it is possible to control
the colour and thickness of the path border and the
colour used to fill the interior of the path.

We can also provide more than one set of (x,y)
locations when drawing a path. The following code
provides an example, defining a new set of six lo-
cations along with an id vector that can be used to
break the locations into two groups of three.

> x <- c(.1, .5, .9,
+ .1, .2, .3)
> y <- c(.1, .8, .1,
+ .7, .6, .7)
> id <- rep(1:2, each=3)

> cbind(x, y, id)

x y id
[1,] 0.1 0.1 1
[2,] 0.5 0.8 1
[3,] 0.9 0.1 1
[4,] 0.1 0.7 2
[5,] 0.2 0.6 2
[6,] 0.3 0.7 2

These locations can be used to describe a path
that consists of two distinct triangles. The following
code draws such a path using grid.path(). The id
argument is used to identify distinct groups of loca-
tions when using grid.path().1 Figure 2 shows the
result of drawing this path.

> grid.path(x, y, id=id,
+ gp=gpar(fill="grey"))

1When using polypath(), NA values must be inserted between distinct groups of (x,y) values.

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859



14 CONTRIBUTED RESEARCH ARTICLES

Figure 2: Two triangles drawn by the grid.path()
function from a set of six (x,y) locations broken into
two groups of three locations.

This output looks exactly the same as the out-
put we would get from drawing the two groups
of locations as polygons, using grid.polygon() or
polygon(), but conceptually there is a difference be-
cause the path treats the two groups of locations as
defining a single shape. We can see the difference
more clearly if we move the smaller triangle so that
it lies within the larger triangle (see Figure 3).

> x <- c(.1, .5, .9,
+ .4, .5, .6)
> y <- c(.1, .8, .1,
+ .5, .4, .5)

> grid.path(x, y, id=id,
+ gp=gpar(fill="grey"))

Figure 3: On the left is a path drawn by the
grid.path() function where the boundary of the
path consists of two distinct triangles (one within the
other). The result is a single shape with a hole in it.
On the right is the result of drawing the two bound-
aries with the grid.polygon() function, which treats
the boundaries as two separate shapes. In this case,
the smaller triangle is drawn (filled in) on top of the
larger triangle.

This example demonstrates that the two triangles
together define a single shape, which is a triangular
region with a triangular hole in it. The interior of the
shape—the area that is shaded—does not include the
region within the smaller triangle.

Fill rules

There are two ways to determine the interior of a
path like this. The default is called the non-zero
winding rule . This draws an imaginary straight line
and looks at where the straight line intersects the
boundary of the shape. A count is made of how
many times the boundary is running left-to-right at
the intersection and how many times the boundary is
running right-to-left; if the two counts are the same
then we are outside the shape and if the counts are
different, we are inside the shape.

To see this more clearly, Figure 4 uses lines with
arrows to show the directions on the boundaries of
the path from Figure 3.

●

●

●

●

Figure 4: The direction of the boundaries for the path
in Figure 3.

The outer triangle boundary is clockwise and the
inner triangle boundary is anti-clockwise, so, using
the non-zero winding rule, the region within the in-
ner triangle is actually outside the path. A straight
line from inside the inner triangle to outside the
outer triangle intersects two boundaries, one going
right-to-left and one going left-to-right.

To further demonstrate this rule, the following
code defines a more complex path, this time consist-
ing of three triangles: one large clockwise triangle,
with two smaller triangles inside, one clockwise and
one anti-clockwise.

> x <- c(.1, .5, .9,
+ .4, .5, .6,
+ .4, .6, .5)
> y <- c(.1, .8, .1,
+ .5, .4, .5,
+ .3, .3, .2)
> id <- rep(1:3, each=3)

Figure 5 shows a diagram of the boundary direc-
tions and the result of drawing this path. Because
the second smaller triangle is clockwise, the region
inside that triangle is still part of the interior of the
path, according to the non-zero winding rule.

> grid.path(x, y, id=id,
+ gp=gpar(fill="grey"))

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 15

●

●

●

●

●

●

Figure 5: A path where the boundary consists of
three triangles (two smaller ones within one larger
one). The diagram on the left shows the direction of
the boundaries for the path. On the right, the path is
drawn by the grid.path() function, with the interior
of the path determined using the non-zero winding
rule.

The other rule for determining the interior of a
path is called the even-odd rule. This just draws an
imaginary straight line through the shape and counts
how many times the straight line crosses the bound-
ary of the shape. Each time a boundary is crossed,
we toggle between outside and inside the shape.

The following code draws the same path as in
Figure 5, but uses the even-odd rule to determine the
shape’s interior. This time, the result is a larger trian-
gle with two smaller triangular holes punched out of
it (see Figure 6).

> grid.path(x, y, id=id,
+ rule="evenodd",
+ gp=gpar(fill="grey"))

Figure 6: The path from Figure 5 drawn using the
even-odd fill rule.

The SVG language specification contains a nice
simple explanation and demonstration of these
fill rules; see http://www.w3.org/TR/SVG/painting.
html#FillRuleProperty.

Applications

So what can these complex paths be used for? The
possibilities are endless, but this section describes a

couple of concrete examples. The R code for these
examples can be obtained from the online resources
that accompany this article.2

A trivial observation is that complex paths allow
us to draw complex shapes. The triangle with trian-
gular holes from the previous section is an example
of a complex shape; it is not possible to describe this
shape as a simple polygon.

Another way that paths can be useful for draw-
ing complex shapes is that they allow us to combine
several simpler shapes to construct a more complex
whole. Figure 7 shows an example of this, where the
overall shape shape has a very complex outline, but
it can be constructed as a path simply by combining
circles and triangles.

Figure 7: A complex shape constructed from simple
shapes combined together to make a path.

Figure 8 shows how this shape might be used
to dramatically highlight a point of interest within
a graph (in this case, to bring attention to the data for
the Ferrari Dino in the mtcars data set).

disp

m
pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 8: A plot with a complex path used to high-
light a special point of interest.

Another situation where the ability to draw com-
2http://www.stat.auckland.ac.nz/~paul/R/Paths/

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://www.w3.org/TR/SVG/painting.html#FillRuleProperty
http://www.w3.org/TR/SVG/painting.html#FillRuleProperty
http://www.stat.auckland.ac.nz/~paul/R/Paths/


16 CONTRIBUTED RESEARCH ARTICLES

plex paths can be useful is if we are trying to draw
a shape that someone else has created. For example,
we might want to draw the logo of a company or an
organisation as a label on a plot.

Figure 9 shows the GNU logo. This image con-
sists of a single complex path, so we must be able to
draw such paths in order to render it correctly.

Figure 9: A complex path that describes the GNU
logo.

Figure 10 shows the GNU logo being used as a
background watermark for a lattice barchart (Sarkar,
2008).

Number of Citations per Year

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

0 500 1000 1500 2000

Figure 10: A plot with the GNU logo from Figure 9
as a background watermark.

Another way that we might use external complex
shapes is as data symbols on a plot. Figure 11 shows
a bus icon. Again, this bus icon is a single path so it
must be drawn using grid.path() or polypath() in
order for it to render correctly.

Figure 11: A path that describes a bus icon.

Figure 12 shows this bus icon being used as data
symbols on a lattice scatterplot of daily bus ridership
data.

date

bu
s/

10
00

300

400

500

600

700

800

900

Jan 01
Jan 02

Jan 03
Jan 04

Jan 05
Jan 06

Jan 07

Figure 12: A plot with the bus icon from Figure 11
used as a data symbol.

Another general area where complex paths arise
is the drawing of maps. The outline of a country’s
borders or coastline represents a set of (x,y) coordi-
nates, often in a very complicated arrangement. One
situation where it can be useful to treat the map out-
line as a path is the case where a country contains
a lake; the lake can be thought of as a hole in the
country shape. Things can get quite complicated if
the lake then contains an island, and the island has a
lake, and so on. If the map is treated as a path to fill
then all of these cases are dealt with quite easily.

Figure 13 shows a map of part of the South Is-
land of New Zealand. The lake in the lower right
quadrant of this map is Lake Te Anau and at the base
of one of the westerly spurs of this lake is an island.
This map outline has been drawn as a path with a
green fill colour used to indicate land area and an
appropriate fill rule ensures that the lake is not filled
in, but the island on the lake is.

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 17

Figure 13: A map showing an island in a lake on an
island.

Although R provides many low-level graphics fa-
cilities, such as the ability to draw complex paths,
there are still some basic tricks that it does not yet
support. One example is the ability to clip output to
an arbitrary region on the page (it is currently only
possible to clip to rectangular regions with R).

Sometimes, a missing feature like this can be
worked around by making inventive use of the ex-
isting facilities. Figure 14 shows an example of this,
where a contour of earthquake events has been over-
laid on a map of New Zealand, but the contours are
only visible over land areas.

Figure 14: A map with an overlaid contour. A path
has been used to obscure the contour where it does
not overlap with land.

This result was achieved using complex paths
(see Figure 15). The starting point is the entire con-

tour overlaid on a New Zealand map (left). A path
is constructed from the New Zealand coastline (mid-
dle), and then a bounding rectangle is added to the
path (right). This combined path allows us to fill a
region that is everything outside of the New Zealand
coastline and that can be drawn on top of the original
image to obscure those parts of the contour that are
not over land.

Caveats

The polypath() and grid.path() functions are
only supported on the pdf(), postscript(),
x11(type="cairo"), windows(), and quartz()
graphics devices (and associated raster formats).

These functions are not supported on
x11(type="Xlib"), xfig(), or pictex() and support
is not guaranteed on graphics devices provided by
extension packages.

Summary

There are new functions, polypath() and
grid.path() for drawing complex paths, including
paths with holes, in R graphics output. These func-
tions can be useful for drawing non-trivial shapes,
logos, custom data symbols, and maps.

Acknowledgements

The following material and data were used in this ar-
ticle:

• The GNU logo was created by Aurelio A. Heck-
ert and is available from http://www.gnu.org/
graphics/heckert_gnu.html.

• The bus icon was created by the Geographics
Unit, School of Environment, The University of
Auckland.

• Both the GNU logo and the bus icon shape in-
formation were imported into R and drawn us-
ing the grImport package (Murrell, 2009).

• The bus data were obtained from the
City of Chicago Data Portal http://
data.cityofchicago.org/Transportation/
CTA-Ridership-Daily-Boarding-Totals/.

• The detailed map of the South Island of
New Zealand came from the Global Self-
consistent, Hierarchical, High-resolution
Shoreline Database (version 2.0; Wessel and
Smith, 1996) and was loaded into R using the
maptools package (Lewin-Koh and Bivand,
2011).

• The earthquake data came from the GeoNet
Project: http://www.geonet.org.nz/

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://www.gnu.org/graphics/heckert_gnu.html
http://www.gnu.org/graphics/heckert_gnu.html
http://cran.r-project.org/package=grImport
http://data.cityofchicago.org/Transportation/CTA-Ridership-Daily-Boarding-Totals/
http://data.cityofchicago.org/Transportation/CTA-Ridership-Daily-Boarding-Totals/
http://data.cityofchicago.org/Transportation/CTA-Ridership-Daily-Boarding-Totals/
http://cran.r-project.org/package=maptools
http://www.geonet.org.nz/


18 CONTRIBUTED RESEARCH ARTICLES

Figure 15: A map with a path used to obscure unwanted drawing.

• The New Zealand coastline information for
Figures 14 and 15 came from the maps package
(Brownrigg and Minka, 2011).

Many thanks also to the anonymous reviewers
who suggested several useful improvements to this
article.

Bibliography

R. Brownrigg and T. P. Minka. maps: Draw Geographi-
cal Maps, 2011. URL http://CRAN.R-project.org/
package=maps. R package version 2.1-6. [p18]

N. J. Lewin-Koh and R. Bivand. maptools: Tools for
reading and handling spatial objects, 2011. URL http:
//CRAN.R-project.org/package=maptools. R
package version 0.8-6. [p17]

P. Murrell. Importing vector graphics: The grImport

package for R. Journal of Statistical Software, 30(4):
1–37, 2009. URL http://www.jstatsoft.org/v30/
i04/. [p17]

D. Sarkar. Lattice: Multivariate Data Visualization with
R. Springer, New York, 2008. URL http://lmdvr.
r-forge.r-project.org. ISBN 978-0-387-75968-5.
[p16]

P. Wessel and W. H. F. Smith. A global self-consistent,
hierarchical, high-resolution shoreline database.
Journal of Geophysical Research, pages 8741–8743,
1996. [p17]

Paul Murrell
Department of Statistics
The University of Auckland
New Zealand
paul@stat.auckland.ac.nz

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://cran.r-project.org/package=maps
http://CRAN.R-project.org/package=maps
http://CRAN.R-project.org/package=maps
http://CRAN.R-project.org/package=maptools
http://CRAN.R-project.org/package=maptools
http://www.jstatsoft.org/v30/i04/
http://www.jstatsoft.org/v30/i04/
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org
mailto:paul@stat.auckland.ac.nz

