
CONTRIBUTED RESEARCH ARTICLES 171

beadarrayFilter: An R Package to Filter
Beads
by Anyiawung Chiara Forcheh, Geert Verbeke, Adetayo Kasim, Dan Lin, Ziv Shkedy, Willem Talloen,
Hinrich W.H. Göhlmann and Lieven Clement

Abstract Microarrays enable the expression levels of thousands of genes to be measured simultane-
ously. However, only a small fraction of these genes are expected to be expressed under different
experimental conditions. Nowadays, filtering has been introduced as a step in the microarray pre-
processing pipeline. Gene filtering aims at reducing the dimensionality of data by filtering redundant
features prior to the actual statistical analysis. Previous filtering methods focus on the Affymetrix
platform and can not be easily ported to the Illumina platform. As such, we developed a filtering
method for Illumina bead arrays. We developed an R package, beadarrayFilter, to implement the
latter method. In this paper, the main functions in the package are highlighted and using many
examples, we illustrate how beadarrayFilter can be used to filter bead arrays.

Introduction

Gene expression patterns are commonly assessed by microarrays that can measure thousands of genes
simultaneously. However, in a typical microarray experiment, only a small fraction of the genes
are informative which motivated the development of gene filtering methods. Gene filtering aims
at reducing the dimensionality of data by filtering redundant features prior to the actual statistical
analysis. This has been shown to improve differential expression analysis with Affymetrix microarrays
(e.g., Talloen et al., 2007; Calza et al., 2007; Kasim et al., 2010).

Although different microarrays platforms share the same principle of hybridizing DNA to a
complementary probe, they differ considerably by design. Unlike the Affymetrix microarrays which
have sets of unique probes targeting a particular gene (resulting in a probe set for a targeted gene),
Illumina microarrays have sets of identical probes. Thus, the existing filtering methods can not be
readily ported to the Illumina platform. As a result, Forcheh et al. (2012) developed a filtering method
for Illumina bead arrays. Forcheh et al. (2012) equally showed that filtering improves the analysis
of differential expression. We provide the implementation of their method in the beadarrayFilter R
software package. The beadarrayFilter package can take a normalized data frame or a normalized bead
array ExpressionSetIllumina object (obtained using the summarize or readBeadSummaryData functions
in the Bioconductor package beadarray by Dunning et al., 2007) or a normalized LumiBatch object as
input and returns a list containing a filtered data frame or a filtered bead array ExpressionSetIllumina
object or a filtered LumiBatch object, respectively. The package can also process summarized and
normalized average intensities (eSet), their standard errors (seSet) and the number of beads used for
summarization (nSet) as input and returns a list of components including the intra-cluster correlations
(ICC), which can be used to assess different filtering strategies.

The paper contains a brief background of the filtering methodology followed by the introduction
of the beadarrayFilter package with illustrative examples.

Filtering Illumina bead types

Let Ykij be the bead-level expression intensity of bead j in sample (array) i in treatment group k,
i = 1, . . . , nk, j = 1, . . . , mki, k = 1, . . . , K, then, Forcheh et al. (2012) proposed the following filtering
model:

Ykij = µ + bi + εkij, (1)

where µ represents the average expression for a bead type across all samples, bi is the array specific
random effect and εkij are the measurement errors, both normally distributed with mean zero and
variance τ2 and σ2, respectively:

bi ∼ N(0, τ2), εkij ∼ N(0, σ2).

The τ2 captures the between-array variability while σ2 models the within-array variability. Model (1)
implies a common ICC, (Verbeke and Molenberghs, 2000), given by

ρ =
τ2

τ2 + σ2 , (2)

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

http://CRAN.R-project.org/package=beadarrayFilter

CONTRIBUTED RESEARCH ARTICLES 172

which is the correlation among the replicate probes on the array.

An informative bead type is expected to have a relatively high value of ρ since all corresponding
beads have the same sequence. As such, the between-array variability is the dominant variance
component for informative bead types while the within-array variability is the largest variance
component for the non-informative bead types.

For Illumina bead arrays, within-array variability is expected to vary across all arrays and treatment
groups in the experiment. In this regard, Forcheh et al. (2012) included an array/treatment specific
variance component to adjust the model for heteroscedasticity i.e., εkij ∼ N(0, σ2

ki). Hence, the ICC
becomes bead/array/group specific,

ρki =
τ2

τ2 + σ2
ki,

(3)

and ∑K
k=1 nk ICCs are obtained for each bead type (more details can be found in Forcheh et al., 2012).

ICC based filtering of Affymetrix microarray data has been proposed in the literature (e.g., Talloen
et al., 2007; Kasim et al., 2010). Typically, an ICC cut-off δ = 0.5 has been used to declare a transcript
informative. Forcheh et al. (2012) also relied on the ICC as a filtering criterion and proposed different
thresholding schemes based on the five number summaries, i.e., a bead type can be called informative
based on thresholding (1) the minimum ICC, (2) 25, (3) 50, (4) 75 quantiles or (5) the maximum ICC
of all the arrays. Filtering is expected to become less stringent from strategy (1)–(5). These different
thresholding strategies are implemented within the package.

beadarrayFilter package

The beadarrayFilter package can either take a normalized ExpressionSetIllumina object, a normalized
LumiBatch object, a normalized data.frame or a normalized eSet, seSet and nSet as input and returns a
list. We refer the user to the documentation of the Bioconductor packages beadarray and lumi for more
details on generating ExpressionSetIllumina objects or LumiBatch objects. For each bead type, the ICCs
can be summarized using the 5 number summary or user specified quantiles. The corresponding ICC
summaries are used for obtaining informative bead types. The package contains two major functions,
which we refer to as: (1) a low level function iccFun and (2) a wrapper function beadtypeFilter.
Model fitting is done using a modified version of the MLM.beadarray function of Kim and Lin (2011).
Details on the functions can be obtained by using the help function in R (?beadtypeFilter or ?iccFun).

Installation of beadarrayFilter

The beadarrayFilter package is available at CRAN, and can be installed using
install.packages("beadarrayFilter").

beadtypeFilter function

The beadtypeFilter function is a wrapper function for the iccFun function and is designed for
users with a primary interest in obtaining filtered bead types. This function takes a normalized
ExpressionSetIllumina object, a normalized LumiBatch object or a normalized data.frame and returns
the names of the informative bead types. Optionally, the filtered ExpressionSetIllumina object or
the filtered data.frame can also be returned. The filtered ExpressionSetIllumina object, or filtered
LumiBatch object or the filtered data.frame can then be used for the downstream analysis.

iccFun function

iccFun is a low level function. It is designed for users who want to assess different filtering strategies.
It takes a normalized eSet, seSet and nSet and the bead types identification variable (ProbeID), fits the
filtering Model (1), calculates the ICC for each bead type on each array/treatment group, summaries
the ICCs at the specified quantiles, and returns the ICC summaries, the within-array variances, the
between-array variances as well as all ICCs. The ICCs output can later be used for filtering or to
assess different filtering strategies. Note the information printed as you execute the beadtypeFilter
or iccFun functions:

• [1] "Number of converged transcripts: ... "
This indicates the number of transcripts for which the filtering model has already converged
while "Now ... remaining..." tells the number of transcripts still to be processed.

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 173

• [1] "Computing ICC for each array"
This message is printed when the function begins to calculate the ICC for each array once the
filtering model has been fitted to all the transcripts.

• [1] "Summarising the ICC at supplied quantile(s)"
This message indicates the last stage of the filtering function where the ICCs are summarized at
the supplied quantiles (see Forcheh et al., 2012).

The emCDF function within the beadarrayFilter package is used to plot the empirical cumulative
density functions (edcfs) for the different threshold strategies discussed above. It processes the iccFun
output and plots the empirical cumulative density functions (ecdf) for the different threshold strategies
as discussed in Forcheh et al. (2012). It is expected that the filtering becomes more stringent as the ICC
threshold increases and/or as the the thresholded ICC quantile decreases.

Informative bead types will have larger between-array variances as compared to the within-array
variances. The varianceplot function takes the estimated between- and within-array variances from
the iccFun function as inputs and plots them. The variances of noninformative bead types are plotted
in blue while those of the informative bead types are displayed in red.

Upon filtering the MLM.beadarray function can be used for downstream analysis of single factor
designs. For more details, see Kim and Lin (2011).

A summary of the functions within the beadarrayFilter package and their use is presented in
Table 1.

Table 1: Main Functions within the beadarrayFilter package.

Function Description

beadtypeFilter() Fits the filtering model as in Forcheh et al. (2012),
computes the ICC and filters the bead types.

iccFun() Fits the filtering model as in Forcheh et al. (2012), and computes
the ICC which can later be used for filtering or to assess different

filtering strategies

MLM.beadarray() Function to fit the filtering model or for the downstream analysis
of single factor experimental designs

emCDF() Plots the ecdf for the different threshold strategies

varianceplot() Plots the the between-array and the within-array variances

Examples

The data set exampleSummaryData from the Bioconductor package beadarrayExampleData (Dunning
et al., 2007), is used to illustrate filtering of ExpressionSetIllumina objects while the publicly available
spike-in data (Dunning et al., 2008) are used to process data.frames. The log2 summarized expression
intensities, obtained from Brain and Universal Human Reference RNA (UHRR) samples in the data
set exampleSummaryData will be used. There are 12 arrays, 6 for the Brain samples and 6 for the
UHRR samples. The spike-in dataset consists of 48 arrays and an array contained ∼ 48,000 bead types
(non-spikes) and 33 bead types (spikes) targeting bacterial and viral genes absent in the mouse genome.
We use the same subset of the spike-in data as in Kim and Lin (2011). This dataset includes 34,654 bead
types targeting annotated genes with Genebank IDs and the 33 spikes. The data can be downloaded
from https://ephpublic.aecom.yu.edu/sites/rkim/Supplementary/files/KimLin2010.html with
the folder name “A normalized dataset for example analysis". We also show how the downstream
analysis can be performed upon filtering using the spike-in data. Filtering of LumiBatch objects is
illustrated using the BeadStudio output used in the vignette “beadsummary” from the beadarray
package, which can be downloaded from http://www.switchtoi.com/datasets.ilmn.

beadtypeFilter function

This subsection shows how to use the beadtypeFilter function to filter normalized ExpressionSetIllu-
mina objects, LumiBatch objects and data.frames. For an ExpressionSetIllumina, this is done using the

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

https://ephpublic.aecom.yu.edu/sites/rkim/Supplementary/files/KimLin2010.html
http://www.switchtoi.com/datasets.ilmn

CONTRIBUTED RESEARCH ARTICLES 174

exampleSummaryData data set from the beadarrayExampleData package.

Normalize the log2 transformed data
> library("beadarrayFilter")
> data("exampleSummaryData", package = "beadarrayExampleData")
> exampleSummaryDataNorm <- normaliseIllumina(channel(exampleSummaryData, "G"),
+ method = "quantile", transform = "none")
Filter the ExpressionSetIllumina
> iccResults <- beadtypeFilter(exampleSummaryDataNorm, Quantile = 1,
+ keepData = TRUE, delta = 0.5)

By specifying iccQuant = 1 and delta = 0.5, the bead types are filtered using the maximum ICC at a
cutoff of 50%. The output of the beadtypeFilter function can then be observed as follows:

> head(iccResults$InformProbeNames)
[1] "ILMN_1802380" "ILMN_1736104" "ILMN_1792389" "ILMN_1705423" "ILMN_1697642"
[6] "ILMN_1788184"
> exprs(iccResults$informData)[1:6, 1:5]

4613710017_B 4613710052_B 4613710054_B 4616443079_B 4616443093_B
ILMN_1802380 8.216547 8.229713 8.097047 8.343822 8.249190
ILMN_1736104 5.317065 5.470957 5.054653 5.100678 5.446530
ILMN_1792389 6.725049 7.003632 6.783809 7.214921 7.257032
ILMN_1705423 5.496207 4.845898 5.394206 5.422772 5.479191
ILMN_1697642 7.977234 7.912246 7.668253 7.850134 7.758535
ILMN_1788184 5.291988 5.614500 5.565426 5.473346 5.573395
> head(fData(iccResults$informData))

ArrayAddressID IlluminaID Status
ILMN_1802380 10008 ILMN_1802380 regular
ILMN_1736104 10017 ILMN_1736104 regular
ILMN_1792389 10019 ILMN_1792389 regular
ILMN_1705423 10039 ILMN_1705423 regular
ILMN_1697642 10044 ILMN_1697642 regular
ILMN_1788184 10048 ILMN_1788184 regular
> dim(exampleSummaryDataNorm)
Features Samples Channels

49576 12 1
> dim(iccResults$informData)
Features Samples Channels

23419 12 1

23419 out of the 49576 bead types were declared informative using the maximum ICC at a cutoff point
of 50%.

For a LumiBatch object, filtering is illustrated using the non-normalized data, an output of Bead-
Studio used in the “beadsummary” vignette from the beadarray package. The data file,
‘AsuragenMAQC_BeadStudioOutput.zip’, can be downloaded from http://www.switchtoi.com/datasets.
ilmn. Once the file has been downloaded, unzip its content to your R working directory.

> require(lumi)

Set the working directory to the directory where the unzipped data file was saved.
> setwd("C:/Multi_level_Illumina_feb2011/RPackageFinal/beadstudiooutputData")
Read in the data using lumiR to obtain a LumiBatch object
> x.lumi <- lumiR("AsuragenMAQC-probe-raw.txt")
Normalize the data without any further transformation step
> lumi.N <- lumiN(x.lumi, "rsn")
Filter the LumiBatch
> iccResult <- beadtypeFilter(lumi.N, Quantile = 1, keepData = TRUE, delta = 0.5)

By specifying iccQuant = 1 and delta = 0.5, the bead types are filtered using the maximum ICC at a
cutoff of 50%.

> dim(lumi.N)
Features Samples

48701 6
> dim(iccResult$informData)
Features Samples

1195 6

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

http://www.switchtoi.com/datasets.ilmn
http://www.switchtoi.com/datasets.ilmn

CONTRIBUTED RESEARCH ARTICLES 175

Only 1195 of the 48701 bead types were declared informative using the maximum ICC at a cutoff of
50%. This may be due to the way the data was summarized and normalized. How the processing of
bead array data affects bead types filtering is a topic of future research.

For a data.frame, the beadtypeFilter function is illustrated using the Illumina spike-in data. Read
the data from the file location where the data had been downloaded, unzipped and saved.

> filepath <- "C:/Multi_level_Illumina_feb2011/log2scale.normalized.txt"
> dt <- read.delim(filepath, header = TRUE, as.is = TRUE, row.names = NULL)[,-1]
> dt[1:6,1:5]
ProbeID X1377192001_A.AVG_Signal X1377192001_A.Detection.Pval

1 50014 6.150486 0.579207900
2 50017 6.616132 0.074257430
3 50019 8.164317 0.000000000
4 50020 7.414991 0.001856436
5 50022 5.804593 0.974628700
6 50025 6.412067 0.173267300
X1377192001_A.Avg_NBEADS X1377192001_A.BEAD_STDERR

1 27 0.09889349
2 40 0.05644992
3 25 0.06384269
4 27 0.07853792
5 38 0.08098911
6 28 0.08153830

Note, that the data.frame supplied to the beadtypeFilter function should contain the summarized
intensities (eSet), standard errors (seSet) and the number of beads used for the summarization (nSet).
When using a data frame, column names should be conform to BeadStudio output, i.e., the column
names for eSet should end on "Signal", those for seSet on "STDERR" and the columns corresponding
to nSet should end on "NBEADS". It is preferable to use an identification variable with a unique ID
for each bead type. In the spike-in data, the spikes all have the same TargetID, thus the ProbeID is
preferred. Similar to the ExpressionSetIllumina example, the beadtypeFilter function is used for
filtering.

> iccResults <- beadtypeFilter(dt, Quantile = 0.5, keepData = TRUE, delta = 0.5)

By specifying Quantile = 0.5, bead types are filtered using the median ICC.

> head(iccResults$InformProbeNames)
[1] 50280 50440 70594 110138 110685 130402
> dim(dt)
[1] 34687 193
> dim(iccResults$informData)
[1] 238 193

238 of the 34687 bead types were declared informative based on thresholding the median ICC at a
cutoff of 50%. A large number of bead types have been filtered out. It should be noted that this is
probably due to the artificial nature of the spike-in data and we would expect lesser bead types to be
filtered out in real life data.

iccFun function

The examples in this section show how the iccFun function can be used to process different data types,
observe its output and assess the filtering strategies.

Processing data using the iccFun function

1. Processing a data.frame

> filepath <- "C:/Multi_level_Illumina_feb2011/log2scale.normalized.txt"
> dt <- read.delim(filepath, header = TRUE, as.is = TRUE, row.names = NULL)[,-1]
> eSet <- dt[, grep("Signal", names(dt))]
> seSet <- dt[, grep("STDERR", names(dt))]
> nSet <- dt[, grep("NBEADS", names(dt))]
> ProbeID <- dt[, 2]
> iccResults <- iccFun(eSet, seSet, nSet, ProbeID = ProbeID,

iccQuant = c(0, 0.25, 0.5, 0.75, 0.8, 1),
diffIcc = TRUE, keepData = TRUE)

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 176

2. Processing a LumiBatch object

> setwd("C:/Multi_level_Illumina_feb2011/RPackageFinal/beadstudiooutputData")
Read in the data using \code{lumiR} to obtain a LumiBatch object
> x.lumi <- lumiR("AsuragenMAQC-probe-raw.txt")
> lumi.N <- lumiN(x.lumi, "rsn")
> eSet <- exprs(lumi.N)
> seSet <- se.exprs(lumi.N)
> nSet <- beadNum(lumi.N)
> group <- c(1:dim(eSet)[2])
> ProbeID = fData(lumi.N)$ProbeID
> iccResults <- iccFun(eSet, seSet, nSet, ProbeID = ProbeID,
+ iccQuant = c(0, 0.25, 0.5, 1),
+ diffIcc = TRUE, keepData = TRUE)

3. Processing an ExpressionSetIllumina object

> exampleSummaryDataNorm <-
+ normaliseIllumina(channel(exampleSummaryData, "G"),
+ method = "quantile", transform = "none")
> aaa <-
+ na.omit(data.frame(I(rownames(exprs(exampleSummaryDataNorm))),
+ exprs(exampleSummaryDataNorm)))
> ProbeID <- aaa[, 1]
> eSet <- na.omit(exprs(exampleSummaryDataNorm))
> stddev <- na.omit(se.exprs(exampleSummaryDataNorm))
> nSet <- na.omit(attributes(exampleSummaryDataNorm)$assayData$nObservations)
> seSet <- stddev/sqrt(nSet)
> iccResults <- iccFun(eSet, seSet, nSet, ProbeID = ProbeID,
+ iccQuant = c(0, 0.25, 0.5, 1))

The output of the iccFun function

In this subsection, we illustrate how the output of the iccFun function can be observed. Note that we
display the results for exampleSummaryData, the output for the spike-in data can be found in Forcheh
et al. (2012).

> head(iccResults$betweenvar)
ProbeID fit1.tau2

1 ILMN_1802380 1.3154886475
2 ILMN_1893287 0.0202718744
3 ILMN_1736104 0.7883136626
4 ILMN_1792389 0.5374776179
5 ILMN_1854015 0.0000000000
6 ILMN_1904757 0.0004272419

> iccResults$withinvar[1:6, 1:6]
ProbeID sigma2.4613710017_B sigma2.4613710052_B sigma2.4613710054_B

ILMN_1802380 ILMN_1802380 0.08024396 0.1133679 0.07562057
ILMN_1893287 ILMN_1893287 0.15510050 0.1495736 0.31645854
ILMN_1736104 ILMN_1736104 0.22109680 0.2449570 0.16237022
ILMN_1792389 ILMN_1792389 0.16305881 0.2232660 0.25316536
ILMN_1854015 ILMN_1854015 0.31302729 0.1367953 0.29684239
ILMN_1904757 ILMN_1904757 0.11065525 0.2427457 0.35319329

sigma2.4616443079_B sigma2.4616443093_B
ILMN_1802380 0.1715118 0.1282700
ILMN_1893287 0.4629203 0.1956166
ILMN_1736104 0.2781976 0.2364219
ILMN_1792389 0.1187983 0.1560972
ILMN_1854015 0.2776505 0.4338320
ILMN_1904757 0.2621982 0.4215812

> head(iccResults$iccAll)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.942507641 0.920658321 0.945640089 0.884659197 0.911155532 0.945550561
[2,] 0.115593318 0.119354803 0.060202088 0.041954058 0.093899753 0.076838800

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 177

[3,] 0.780964425 0.762930437 0.829206926 0.739151757 0.769284994 0.672257600
[4,] 0.767237213 0.706516107 0.679798133 0.818981163 0.774938161 0.794058983
[5,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
[6,] 0.003846168 0.001756947 0.001208193 0.001626811 0.001012401 0.003354805

[,7] [,8] [,9] [,10] [,11] [,12]
[1,] 0.813348960 0.2851197747 0.924933768 0.921820518 0.953747680 0.9672588084
[2,] 0.146496212 0.0086476707 0.079882094 0.046679979 0.083112294 0.0577318494
[3,] 0.862368982 0.4039671466 0.788168517 0.745235220 0.651296881 0.5468796285
[4,] 0.795226413 0.2446849630 0.818919242 0.889560842 0.859993713 0.7440351650
[5,] 0.000000000 0.0000000000 0.000000000 0.000000000 0.000000000 0.0000000000
[6,] 0.002726754 0.0005326228 0.001815729 0.005423024 0.002744552 0.0009235276
> head(iccResults$icc)
ProbeID q0 q0.25 q0.5 q1
1 ILMN_1802380 0.2851197747 0.904531448 0.923377143 0.967258808
2 ILMN_1893287 0.0086476707 0.054968882 0.078360447 0.146496212
3 ILMN_1736104 0.4039671466 0.667017420 0.754082829 0.862368982
4 ILMN_1792389 0.2446849630 0.734655400 0.784498572 0.889560842
5 ILMN_1854015 0.0000000000 0.000000000 0.000000000 0.000000000
6 ILMN_1904757 0.0005326228 0.001159245 0.001786338 0.005423024

If desired, the iccResults$icc output from the iccFun function can be used for filtering and assessing
the different filtering strategies.

Obtaining the number of informative bead types at each of the specified ICC quantiles
> apply(iccResults$icc[, -1], 2, function(x, thres) sum(x >= thres), thres = 0.5)
q0 q0.25 q0.5 q1
4699 15784 17757 23419
Obtaining the informative bead types using the minimum ICC
> filterDataNorm <- exampleSummaryDataNorm[subset(iccResults$icc,
+ iccResults$icc[, 2] >= 0.5)[, 1],]
> dim(filterDataNorm)
Features Samples Channels

4699 12 1

Assessing the filtering strategies

This is done using the emCDF function (Figure 1).

> emCDF(iccResults, iccQuant = c(0, 0.25, 0.5, 1))

Further, the within- and between-array variances at the minimum ICC can be observed using the
varianceplot function (Figure 2).

> varianceplot(iccResults, q = 1, delta = 0.8)

By specifying q = 1 and delta = 0.8, the informative beads (displayed in red) are obtained using
the minimum ICC at a cutoff of 80%.

Analysis of differential expression

Once the data have been filtered, they can be used for downstream analysis. Here, we assess differential
expression using a filtered data.frame. For the example 608 bead types were declared informative based
on the maximum ICC. We refer to the help file of the MLM.beadarray function in the beadarrayFilter
package for an example on a ExpressionSetIllumina object.

> iccResults <- beadtypeFilter(dt, Quantile = 1, keepData = TRUE, delta = 0.5)
> dim(iccResults$informData)
> dat <- iccResults$informData
> eSet <- dat[, grep("Signal", names(dat))]
> seSet <- dat[, grep("STDERR", names(dat))]
> nSet <- dat[, grep("NBEADS", names(dat))]

We define the group variable to compare concentrations 0.3 and 0.1 pM in the spike-in data. This
is done by selecting the column numbers of the arrays corresponding to the concentrations of interest.

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 178

Figure 1: The empirical cumulative density function of the ICCs at the specified quantiles.

> group1 <- c(26, 32, 38, 44)
> group2 <- c(27, 33, 39, 45)
> fit1 <- MLM.beadarray(eSet, seSet, nSet, list(group1, group2),
+ var.equal = TRUE, max.iteration = 20, method = "ML")

The output of the MLM.beadarray function can then be used to test for equality of mean expression
between the two concentrations

> df <- length(group1) + length(group2) - 2
> fit1$pvalue <- 2 * (1-pt(abs(fit1$t.statistics), df))
> fit1$pvalAdjust <- p.adjust(fit1$pvalue, method = "fdr", n = length(fit1$pvalue))
> length(which(fit1$pvalAdjust < 0.05))
[1] 29

i.e., 29 bead types were found to be differentially expressed between concentrations 0.3 and 0.1 pM.
Note that 22 of these 29 bead types are true positives (spikes).

Discussion

The beadarrayFilter package can be used to filter Illumina bead array data. The beadtypeFilter
function can filter normalized ExpressionSetIllumina objects, normalized LumiBatch objects as well as
normalized data.frames and returns the names of the informative bead types. Optionally, the user can
also obtain the filtered data. This, however, does not return the required outputs to assess different
filtering strategies nor the variances using the emCDF or the varianceplot functions, respectively. The
iccFun function can be used to customize filtering strategies. It returns the required outputs for
assessing different filtering strategies and the between- and within-array variances.

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 179

Figure 2: Variance of random intercept versus variance of measurement error. Bead types are declared
informative based on thresholding the minimum ICC at a cutoff point of 80%: noninformative bead
types (◦) and informative bead types (4).

Acknowledgements

We acknowledge the support from IAP research network grant nr. P6/03 of the Belgian government
(Belgian Science Policy), SymBioSys, the Katholieke Universiteit Leuven center of Excellence on
Computational Systems Biology, (EF/05/007), and Bioframe of the institute for the Promotion of
Innovation by Science and technology in Flanders (IWT: 060045/KUL-BIO-M$S-PLANT).

We are also grateful to Kim and Lin (2011) for making the MLM.beadarray function available.

Bibliography

S. Calza, W. Raffelsberger, A. Ploner, J. Sahel, T. Leveillard, and Y. Pawitan. Filtering genes to improve
sensitivity in oligonucleotide microarray data analysis. Nucleic Acids Research, 35(16), 2007. [p171]

M. Dunning, N. B. Morais, A. Lynch, S. Tavaré, and M. Ritchie. Statistical issues in the analysis of
Illumina data. BMC Bioinformatics, 9(1):85+, 2008. ISSN 1471-2105. doi: 10.1186/1471-2105-9-85.
URL http://dx.doi.org/10.1186/1471-2105-9-85. [p173]

M. J. Dunning, M. L. Smith, M. E. Ritchie, and S. Tavaré. beadarray: R classes and methods for
Illumina bead-based data. Bioinformatics, 23(16):2183–2184, Aug. 2007. ISSN 1367-4811. doi: 10.
1093/bioinformatics/btm311. URL http://dx.doi.org/10.1093/bioinformatics/btm311. [p171,
173]

A. C. Forcheh, G. Verbeke, A. Kasim, D. Lin, Z. Shkedy, W. Talloen, H. W. Göhlmann, and L. Clement.
Gene filtering in the analysis of Illumina microarray experiments. Journal of Statistical Applications in
Genetics and Molecular Biology, 11(1), 2012. [p171, 172, 173, 176]

A. Kasim, D. Lin, S. Van Sanden, D.-A. Clevert, L. Bijnens, H. Göhlmann, D. Amaratunga, S. Hochreiter,
Z. Shkedy, and W. Talloen. Informative or noninformative calls for gene expression: a latent variable
approach. Statistical applications in genetics and molecular biology, 9(1), Jan. 2010. ISSN 1544-6115. doi:
10.2202/1544-6115.1460. URL http://dx.doi.org/10.2202/1544-6115.1460. [p171, 172]

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

http://dx.doi.org/10.1186/1471-2105-9-85
http://dx.doi.org/10.1093/bioinformatics/btm311
http://dx.doi.org/10.2202/1544-6115.1460

CONTRIBUTED RESEARCH ARTICLES 180

R. S. Kim and J. Lin. Multi-level mixed effects models for bead arrays. Bioinformatics, 27:633–640,
March 2011. ISSN 1367-4803. doi: http://dx.doi.org/10.1093/bioinformatics/btq708. URL http:
//dx.doi.org/10.1093/bioinformatics/btq708. [p172, 173, 179]

W. Talloen, D.-A. Clevert, S. Hochreiter, D. Amaratunga, L. Bijnens, S. Kass, and H. W. H. Göhlmann.
I/NI-calls for the exclusion of non-informative genes: a highly effective filtering tool for microarray
data. Bioinformatics, 23(21):btm478–2902, Oct. 2007. doi: 10.1093/bioinformatics/btm478. URL
http://dx.doi.org/10.1093/bioinformatics/btm478. [p171, 172]

G. Verbeke and G. Molenberghs. Linear mixed models for longitudinal data. Springer Series in Statistics.
Springer-Verlag, New-York, 2000. [p171]

Anyiawung Chiara Forcheh
Interuniversity Institute for Biostatistics and statistical Bioinformatics, Katholieke Universiteit Leuven, Kapuci-
jnenvoer 35, Blok D, bus 7001, B3000 Leuven, Belgium,
and Universiteit Hasselt,
Belgium
forcheh@yahoo.com

Geert Verbeke and Lieven Clement
Interuniversity Institute for Biostatistics and statistical Bioinformatics, Katholieke Universiteit Leuven,
Kapucijnenvoer 35, Blok D, bus 7001, B3000 Leuven,
Belgium and Universiteit Hasselt, Belgium
Geert.Verbeke@med.kuleuven.be
lieven.clement@med.kuleuven.be

Dan Lin and Ziv Shkedy
Interuniversity Institute for Biostatistics and statistical Bioinformatics, Universiteit Hasselt,
Agoralaan 1, B3590 Diepenbeek, Belgium, and Katholieke Universiteit Leuven,
Belgium
dan.lin2@pfizer.com
ziv.shkedy@uhasselt.be

Adetayo Kasim
Wolfson Research Institute, Durham University,
Queen’s Campus, University Boulevard, Thornaby,
Stockton-on-Tees,TS17 6BH, United Kingdom
a.s.kasim@durham.ac.uk

Willem Talloen and Hinrich W.H. Göhlmann
Janssen Pharmaceutica N.V.,
Beerse, Belgium
wtalloen@its.jnj.com
hinrich@goehlmann.info

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

http://dx.doi.org/10.1093/bioinformatics/btq708
http://dx.doi.org/10.1093/bioinformatics/btq708
http://dx.doi.org/10.1093/bioinformatics/btm478
mailto:forcheh@yahoo.com
mailto:Geert.Verbeke@med.kuleuven.be \ lieven.clement@med.kuleuven.be
mailto:Geert.Verbeke@med.kuleuven.be \ lieven.clement@med.kuleuven.be
mailto:dan.lin2@pfizer.com \ ziv.shkedy@uhasselt.be
mailto:dan.lin2@pfizer.com \ ziv.shkedy@uhasselt.be
mailto:a.s.kasim@durham.ac.uk
mailto:wtalloen@its.jnj.com \ hinrich@goehlmann.info
mailto:wtalloen@its.jnj.com \ hinrich@goehlmann.info

