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rlme: An R Package for Rank-Based
Estimation and Prediction in Random
Effects Nested Models
by Yusuf K. Bilgic and Herbert Susmann

Abstract There is a lack of robust statistical analyses for random effects linear models. In practice,
statistical analyses, including estimation, prediction and inference, are not reliable when data are
unbalanced, of small size, contain outliers, or not normally distributed. It is fortunate that rank-based
regression analysis is a robust nonparametric alternative to likelihood and least squares analysis. We
propose an R package that calculates rank-based statistical analyses for two- and three-level random
effects nested designs. In this package, a new algorithm which recursively obtains robust predictions
for both scale and random effects is used, along with three rank-based fitting methods.

Introduction

Rank-based procedures retain distribution-free estimation and testing properties. These procedures
are much less sensitive to outliers than the traditional analyses when random errors are not normally
distributed. Alternative robust score functions can be accommodated with the rank-based methods
to protect analyses from influential observations in factor and response spaces. Also, the choice of
these score functions could depend on the prior knowledge on error distributions. The Wilcoxon score
function is fairly efficient for moderate to heavy-tailed error distributions. For example, rank-based
procedures with Wilcoxon scores achieve up to 95% efficiency relative to least squares methods when
the data are normal and are much more efficient than least squares methods for heavy tailed error
distributions. These properties make the rank-based methods appealing. However, to our knowledge,
statistical analyses for random effects models using the rank-based methodology have not yet been
considered in any statistical package. This article proposes an R package with three rank-based fitting
methods that estimate fixed effects and predict random effects in two- and three-level random effects
nested models.

The rank-based norm, analogous to the least squares norm, is briefly defined as

‖w‖ϕ =
n

∑
i

a [R(wi)]wi, wεRn, (1)

where the scores are generated as a(i) = ϕ[i/(n + 1)] for a non-decreasing function ϕ(u), defined
on the interval (0, 1), and R(wi) is the rank of wi among w1, w2, ..., wn. We assume without loss of
generality that the scores sum to zero. Two of the most commonly used score functions are the
Wilcoxon ϕ(u) =

√
12 · (u− 1

2 ) and the sign ϕ(u) = sgn[u-1/2].

The rank-based estimate of β for the independent error model Y = Xβ + e is given by

β̂ϕ = Argmin ‖Y− Xβ‖ϕ . (2)

Assume that the errors are independent and identically distributed with a continuous density function
f (x). Under regularity conditions, β is estimated by

β̂∼̇N(β, τ2
ϕ(XT X)−1), (3)

τϕ =

[∫
ϕ(u)ϕ f (u)du

]−1
, (4)

with ϕ f (u) = −
f ′(F−1(u))
f (F−1(u) . The parameter τϕ is a scale parameter for the error terms e. The rank-based

estimator of the fixed effects for independent linear models is asymptotically normal, shown in the
work of Jaeckel and Jureckova in the 1970’s. See Chapter 3, Hettmansperger and McKean (2011) for the
relevant theory in detail. Recently, the Rfit package was released for rank-based regression analysis
that uses rank-based norm and robust estimators for independent linear models (Kloke and McKean,
2012). We extend the rank-based regression methodology to include random effects nested models.

Random effects nested models are frequently utilized in many research areas such as: education,
survey sampling, meta-analysis, agriculture, and health. Survey sampling might happen within
organizational units, communities, clusters, or hospitals. The experimental design of interest is
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expressed in terms of fixed effects but, for these designs, nested factors are a natural part of the
experiment. These nested effects are generally considered random and must be taken into account in
the statistical analysis. For example, repeated measures design, randomized block design, and cluster
correlated data consider each subject as a cluster having a correlated structure so the observations
are nested within the subject. This subject would be a block, a cluster, an institution or a region.
These designs are examples of two-level nested structures. Compound symmetric error structure is a
natural variance-covariance form of these designs. It implies that all distinct members of a cluster or a
subcluster are equally correlated with each other. When there is one more correlated level (subclusters)
within clusters, this design could be called a three-level nested structure. Hierarchical linear models
can also deal with these nested designs.

To illustrate the issues involved in data analysis, consider a simple example of a two-level nested
design where students are nested within schools (see Model 5), and a three-level nested design where
students are nested within sections in schools (see Model 6). Students are measured on a continuous
univariate response variable of interest, y. The p-variate design data, including covariates, treatment,
etc., are stored in the x vector. The problem is summarized in the linear model as

yij = α + xT
ij β + ai + εij, (5)

with i = 1, ..., I and j = 1, ..., ni, where ai is the random effect for school i (cluster effects), I is the
number of schools, ni is the size of the ith school, and

yijk = α + xT
ijkβ + ai + wj(i) + εijk, (6)

with i = 1, ..., I, j = 1, ..., Ji and k = 1, ..., nij, where ai is the random effect for school i (cluster effects),
wj(i) is the random effect for the jth section of school i (subcluster effects), Ji is the number of sections
in school i, nij is the size of jth section in school i. Random errors are uncorrelated and independent.

The main interest with these models would be to estimate the regression parameters β as fixed
effects, to predict ai and wj(i) as random effects, and scale parameters of the error and random effects.
The intra-class correlation coefficient (ICC) for each nested level would be also estimated using the scale
parameter estimates. ICC provides information on the degree of dependencies of the observations
within the same cluster. It is a useful and contextual parameter associated with the random effects
of clusters that measures the proportion of the variability of the response to the total variability. It
is sometimes called cluster effect and applied only to random models. For example, independent
observations within- and between-cluster yield an ICC of zero.

This nested analog could be adopted for other organizational studies and hierarchical data. These
designs often address questions related to

• the examination of differences within and across clusters or contexts such as classrooms, schools,
neighborhoods, or groups on individual outcomes;

• the investigation of the degree to which individuals within a group or cluster are similar as
measured through the ICC;

• the study of the factors that explain institutional/cluster differences;

• the effects of clusters and treatment on individual scores, e.g., student’s academic achievement
— both random and fixed effects are addressed in these interests.

In this article, three rank-based fitting methods and a new prediction algorithm are briefly intro-
duced. A data analysis example using our package, rlme, is also presented.

Three rank-based methods

This section introduces three rank-based fitting methods to obtain fixed effects estimations: Joint Rank-
ing (JR), Generalized Rank Estimate (GR) and Generalized Estimating Equation (GEER). The algorithm
for robust variance estimates and random effects predictions in random effects nested models, called
Rank Prediction Procedure (RPP), is then introduced. To sketch the calculation algorithms in these
methods, Models (5) and (6) can be rewritten in the general mixed model matrix and vector notations
as follows:

Y = Xβ + e = Xβ + Zb + ε, (7)

where Y denotes a n× 1 vector of responses, X is a n× (p + 1) known fixed effects design matrix, β is
a (p + 1)× 1 fixed effects parameter vector, Z is a n× k known random effects design matrix, b is a
k× 1 vector of random effects, and ε is a n× 1 vector of random errors.
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Alternatively, the model can be written in vectors of the observations obtained from independent
I clusters. Within cluster k, let Yk, Xk, and ek denote respectively the nk × 1 vector of responses, the
nk × p design matrix, and the nk × 1 vector of errors. Then the general mixed model for Yk is

Yk = α1nk + Xkβ + ek, k = 1, ...I, (8)

where the components of the random error vector ek contain random effects and errors.

Joint ranking method: JR

This rank-based method for nested random effects models uses asymptotic results of the study by
Kloke et al. (2009) in estimating fixed effects and standard errors. Kloke et al. (2009) developed the
asymptotic theory for the rank-based estimates of fixed effects in the general mixed model using the
general rank theory of Brunner and Denker (1994). The estimation of fixed effects in the JR method
uses the dispersion function as in the independent linear model. However, the asymptotic distribution
of β̂ JR has a different covariance matrix formula due to the correlated errors in the model. This is
expressed as

var(β̂ JR)
.
= τ2

ϕ(X′X)−1(Σϕ)(X′X)−1, (9)

where Σϕ = limI→∞ ∑I
i=1 X

′

iΣϕ,iXi
.
= ∑I

i=1 X
′

iΣϕ,iXi, Σϕ,i is given by Σϕ,i = cov(ϕ(F(ei)), and F(x)
denotes the distribution function of errors.

After estimating the fixed effects in Model (7), we predict the nested random effects and estimate
the variance components using the random prediction procedure explained in the next section. In this
method, for each cluster in Model (8), simple moment estimators of Σϕ,i is calculated as in Kloke et al.
(2009).

Iteratively reweighted generalized rank method: GR

The generalized rank-based fitting for the general mixed model is an iteratively reweighted rank
method based on the Newton-type approximation. Hettmansperger and McKean (2011) developed
the asymptotic properties of linearized rank estimators for use in the linear model with the k-step
Gauss-Newton approximation without weights. Bilgic (2012) and Bilgic et al. (2013) extended this
theory to the k-step GR method in the general mixed models. After the first fitting, the estimates
are asymptotically equivalent to the independent case because residuals are no longer dependent
because of the reweighting with covariance weights. This algorithm could work for any type of
variance-covariance error structure in the general mixed models.

Consider Model (7) where ΣY is the variance-covariance matrix of the response vector Y and θ is
the vector of variance components of the model. The proposed iteratively reweighted generalized
rank-based algorithm is as follows:

(0) Set l = 0. The JR estimate serves as the initial fit.
(1) Obtain β̂(l) as the rank-based fit of the model.

Y∗ = X∗β + e∗, (10)

where Y∗ = Σ̂−1/2
Y Y, X∗ = Σ̂−1/2

Y X, and e∗ = Σ̂−1/2
Y e. Thus, β̂(l) minimizes the rank norm

with Y and X replaced by Y∗ and X∗, respectively. If l = 0 then use Σ̂Y = In; otherwise use
Σ̂Y = ΣY(θ̂

(l−1)).

(2) Use β̂(l) to calculate the residuals, ê(l) = Y− Xβ̂(l).

(3) Use ê(l) to obtain b̂(l), the predictor of b via the RPP algorithm.

(4) Use b̂(l) to estimate the variance components, θ̂(l) via the RPP algorithm.

(5) If
∥∥∥β̂(l) − β̂(l−1)

∥∥∥ < TOL1

∥∥∥β̂(l−1)
∥∥∥ and

∥∥∥θ̂(l) − θ̂(l−1)
∥∥∥ < TOL2

∥∥∥θ̂(l−1)
∥∥∥ then stop. Else let

β̂ = β̂(l), θ̂ = θ̂(l) and b̂ = b̂(l). Set l = l + 1 and return to step (1).

The estimators of the asymptotic variance-covariance matrix of β̂GR require consistent τϕ and ΣY
which are obtained from the current estimate of weighted errors.

Rank-based generalized estimating equations method: GEER

Considering an alternative representation of generalized linear models for correlated data in estimates,
Abebe et al. (2013) extended the general estimating equations (GEE) method of Liang and Zeger
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(1986) for the general mixed models in the rank-based norm, and derived the asymptotic normality
of the rank estimators. Briefly, as Abebe et al. (2013) describe, we can rewrite the general estimating
equations expression proposed by Liang and Zeger in terms of the Euclidean norm in Model (11), and
thus, the rank-based norm in Model (12) as follows:

DGEE(β) =
I

∑
i=1

(Y∗i − Di(β))2 (11)

and

DGEER(β) =
I

∑
i=1

ϕ

[
R(Y∗i − Di(β))

n + 1

]
· [Y∗i − Di(β)] , (12)

with ni × 1 vectors Y∗i = V̂i
−1/2 · Yi, the estimate of the covariance matrix of Yi is V̂i, and Di(β) =

V̂i
−1/2 · E[Yi].

Abebe et al. (2013) developed a class of nonlinear robust estimators minimizing the rank-based
norm of the residuals defined in the rank-based general estimating equations utilizing a ’working’
covariance structure in the rank-based fitting as an analogue of the GEE. Thus, the estimate of βGEER
is obtained by the usual iterated reweighted least squares algorithm applied to the rank-based fitting
in Equation (12).

Theory references and comparison

The asymptotic derivations for the proposed estimators are discussed in several papers; Kloke et al.
(2009) for the JR method; Bilgic et al. (2013) for the GR method; and Abebe et al. (2013) for the GEER
method. In these studies, the rank-based estimators are competitive with the traditional methods such
as maximum likelihood (ML), restricted maximum likelihood (REML) and least squares in the normal
case and outperform when random errors are contaminated and exhibit better efficiency properties
of the estimates when outliers exist. Among the three methods, the JR method is unweighted so
its empirical validity and efficiency for the fixed effects is reported to be poorer than the other two
methods in the Monte Carlo study performed by Bilgic (2012). The empirical validity and efficiency of
GR and GEER methods are reported to be very similar. The GR estimates and their standard errors are
obtained from the rank-based norm properties, whereas the GEER combines the rank-based norm and
least squares properties. For highly correlated data, the GR or GEER method would be preferred.

The rlme package uses the suite of R functions ww developed by Terpstra and McKean (2005) that
computes fixed estimates for the rank analysis based on Wilcoxon scores when needed for independent
linear models and initial fits. We plan to use the subroutines of the Rfit package for the next version of
our package because it allows the user to choose the estimation algorithm for general scores.

Rank-based prediction procedure: RPP

So far, fixed effects estimations are calculated with the JR, GR and GEER methods described in
the previous section. This section introduces robust predictions for random effects and variance
components for two- and three-level nested designs. Robust predictions of random effects have been
discussed in several papers, including Groggel (1983), Groggel et al. (1988), Dubnicka (2004), and
Kloke et al. (2009). These predictions based on clusters use robust scale estimators. However, these
papers only handle two-level random nested designs.

To illustrate how our recursive algorithm works, let us consider a two-level nested structure. The
random effects model is defined as

yij = xT
ij β + ai + εij = xT

ij β + eij, (13)

for i = 1, 2, ..., I and j = 1, 2, ..., ni (say, I schools, ni students in each). ai and εij are random cluster
effects and error effects, respectively. We observe the values of yij and xij, the variables ai and εij are
not observable. In cluster i, we rewrite (13) as yij − xT

ij β = eij = ai + εij. This is a location model. The
residuals êij obtained from one of rank-based fittings predict the cluster effects ai. Let â be a consistent
location estimator. The next step is that the residuals ε̂ij are obtained from the subtraction ε̂ij = êij − âi.
Hence, we are ready to estimate the scale parameters of the errors with a robust scale estimator. In the
package, RPP has two options for location and scale estimates. The options are the median (med) and
Hodges-Lehman (HL) location estimators in Equation (14), and the median absolute deviation (MAD)
and the dispersion scale estimator (Disp) in Equations (15) and (16), respectively. In the prediction
algorithm, one estimator from each is needed. Natural pairs are med-MAD and HL-Disp.
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For a vector e of errors ei in n× 1, the robust location estimate associated with the Wilcoxon scores
is the HL estimator expressed as

HL(e) = meds≤t{(es + et)/2}. (14)

Our scale estimators in the package are MAD and Disp defined as

MAD(e) = 1.483medi|ei −medj{ej}| (15)

and

Disp(e) =
2
√

π

n

n

∑
i=1

(
R(ei)

n + 1
− 1

2

)
· ei. (16)

The estimator in Equation (16) is a consistent estimator of a scale parameter when the errors have
a normal distribution (Hettmansperger and McKean, 2011). Kloke et al. (2009) suggest that the MAD
is a robust and consistent estimator for scale parameter in clustered correlated designs.

For a three-level nested structure, consider Model (6). The residuals êijk obtained from the fit
predict ai + wij using the location model

yijk − xT
ijkβ = eijk = ai + wij + εijk. (17)

To separate the cluster effects ai and the subcluster effects wij, we need location estimates for each
subcluster wij, which is nested within the cluster ai. Proceeding over all subclusters using one of our
robust location estimators, the estimates of wij are obtained. After subtracting these from the residuals
êijk, it yields the estimates of the cluster effects ai using the location model eijk − wij = ai + εijk. The
scale parameters of the errors of each type, i.e. ai, wij and εijk, are then estimated with our robust scale
estimators.

The RPP algorithm can handle k-level nestings in a hierarchical structure in the same manner. The
algorithm needs only residuals from the model fitting for predictions of the random effects. In k-level
random effects nested models, these residuals contain the estimates of errors and random effects.
Groggel (1983) calls these random effects pseudo-samples, which are formed using consistent location
estimators in this recursive way. Pseudo-samples are asymptotically equivalent to the true random
effects in the model. See Bilgic (2012) for details.

Data example

The rlme package uses linear model syntax in the lme4 package for two- and three-level models. To
illustrate how our package does nested structured data analysis, a data set was obtained from the
OECD Programme for International Student Assessment (PISA) conducted in 2009 (OECD, 2010). The
data set includes 334 observations of metacognitive scores in 11 private schools in four geographic
regions in USA. Metacognitive score is an index measure of the metacognitive aspect of learning. The
research questions to be answered are how metacognitive scores depend on gender and age, and
how the variability of the scores are explained by regional differences and school differences. Student
scores are nested in the private schools which are nested within the regions. Data are correlated within
region and school, hence, regions and schools are random effects on observations. This design would
be considered hierarchical with two- or three- levels, such as students nested in regions, or students in
schools nested within regions. In the package, this data set is called schools.

In our package, a 3-level nested design data analysis is done using the following syntax:

> library(rlme)
> data(schools)
> model = y ~ 1 + sex + age + (1 | region) + (1 | region:school)
> rlme.fit = rlme(model, schools, method="gr")

# For robust predictions, include rprpair="med-mad"

The formula syntax, the same as in the lmer function, expects the random effect terms to be
enclosed with parenthesis, with nesting of variables denoted by a colon. In this example, region
and school are two random effects, with school nested within region. The method is set to the rank-
based method gr along with the prediction method hl-disp and Wilcoxon scores wil (the default).
Alternatively the other rank-based fitting methods, jr or geer, and the maximum likelihood methods,
reml or ml, may be called from method.

The calculated fit can be examined using the summary function:
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Figure 1: Standardized Residuals and QQ Plots.

> summary(rlme.fit)
Linear mixed model fit by GR
Formula: y ~ 1 + sex + age + (1 | region) + (1 | region:school)
Random effects:
Groups Name Variance
region:school (Intercept) 0.14703510
region (Intercept) 0.01497416
Residual 0.81229310

Number of obs:
334 observations, 4 clusters, 11 subclusters

Fixed effects:
Estimate Std. Error .. p value

(Intercept) 0.1586624 0.2686822 .. 0.554841676
sex -0.2953611 0.1071201 .. 0.005828259
age 0.2260327 0.1621609 .. 0.163354085

Intra-class correlation coefficients
Estimates

intra-cluster 0.1509132
intra-subcluster 0.1662823

cov-var (fixed effects)
sex age

7.219013e-02 -0.0002000644 -1.672882e-05
sex -2.000644e-04 0.0114747092 9.802962e-04
age -1.672882e-05 0.0009802962 2.629616e-02

Here, intra-cluster, ρregion, is the robust estimate of the intra-class correlation coefficient for region
and intra-subcluster, ρschool(region), is for school nested within region. We can say that regional differ-
ences explain only 15.1% of the total variability in the model. The difference, 16.6%− 15.1% = 1.5%,
shows that the contribution of the school variability to the total variability could be ignored. Using the
reml method, this result is calculated around 2.1%, similar to the result of the rank analysis.

The plot function can be used to generate the standardized residuals vs. the fitted response and a
normal Q-Q plot as shown in Figure 1:

> plot(rlme.fit)

The residuals and random effects can be extracted from the fit. For example, we can extract the
raw residuals through the list element ehat:
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# Raw residuals
> rlme.fit$ehat
[,1]
1 -1.186129739
2 -1.641494973
3 -1.147704177
...
334 -0.327186795

Several other elements of interest would include the effects estimates/predictions of the fixed ef-
fects, errors, clusters, and subclusters, which are obtained from rlme.fit$fixed.effects, ..$effect.err,
..$effect.cluster, and ..$effect.subcluster, respectively. A full list can be found in the help(rlme)
command or the str command. The same model can be also evaluated with the likelihood methods,
reml or ml:

> rlme.fit = rlme(model, schools, method="reml")
> summary(rlme.fit)
Linear mixed model fit by REML
...
Fixed effects:

Estimate Std. Error .. p value
(Intercept) -0.08756901 0.2681410 .. 0.7439869
sex -0.26286182 0.1092493 .. 0.0161250
age 0.24712016 0.1720753 .. 0.1509693

Intra-class correlation coefficients
Estimates

intra-cluster 0.2433171
intra-subcluster 0.2443941
...

The REML and GR results are slightly different, but do coincide in the inference at the 5% level. A
2-level random effects nested data analysis that students are nested within regions can be done in a
similar syntax:

> data(schools)
> model = y ~ 1 + sex + age + (1 | region)
> rlme.fit = rlme(model, data = schools, method = "gr")
> summary(rlme.fit)
Linear mixed model fit by GR
Formula: y ~ 1 + sex + age + (1 | region)
...
Fixed effects:

Estimate Std. Error .. p value
(Intercept) -0.09298845 0.22061464 .. 6.733921e-01
sex -0.35939453 0.08977332 .. 6.245027e-05
age 0.11882249 0.13665390 .. 3.845660e-01

Intra-class correlation coefficients
Estimates

intra-cluster 0.1452482
intra-subcluster 1.0000000
...

Diagnostics, TDBETAS and CFITS, to detect differences in fits for various methods can be obtained
with the function fitdvcov. To compare the fixed effects estimates from any two fits, the covariance
matrix from one rank-based method is required. Here we compare the REML and GR methods for the
model:

> data(schools)
> model = y ~ 1 + sex + age + (1 | region) + (1 | region:school)
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# Extract covariates into matrix
> cov = as.matrix(data.frame(rep(1, length(schools[,"y"])),
schools[,"sex"], schools[,"age"]))

# Fit the models using each method
> reml.fit = rlme(model, schools, method="reml")
> gr.fit = rlme(model, schools, method="gr")

# Extract fixed effects estimates
> reml.beta = reml.fit$fixed.effects$Estimate
> gr.beta = gr.fit$fixed.effects$Estimate

# Extract the covariance matrix of the fixed effects estimates
> var.b = reml.fit$var.b

> fitdvcov(cov, reml.beta, gr.beta, var.b)$tdbeta
[1] 0.9406339

# The following gets CFITS. For more info about diagnostics and
# benchmarks, see help(fitdvcov) and help(compare.fits)
> fitdvcov(cov, reml.beta, gr.beta, var.b)$cfits

# Graphing alone and getting standard residuals
> getgrstplot(gr.fit)
> getgrstplot(gr.fit)$sresid

> getlmestplot(reml.fit)
> getlmestplot(reml.fit)$sresid

In our package, in case of potential outliers in factor space, high breakdown weights (hbr),
weight="hbr", are specified along with method="geer". We use the routines of the ww R codes for
independent models:

> data(schools)
> rlme.fit = rlme(y ~ 1 + sex + age, data = schools)

You have entered an independent linear model.
Continuing using the ww package.

Wald Test of H0: BETA1=BETA2=0
TS: 38.4414 PVAL: 0

Drop Test of H0: BETA1=BETA2=0
TS: 7.819 PVAL: 5e-04

EST SE TVAL PVAL
BETA0 0.2333 0.0000 9105.8041 0
BETA1 -0.4192 0.0478 -8.7664 0
BETA2 0.0000 0.0772 0.0000 1

Summary and further directions

The rlme package analyzes random effects nested models with respect to estimation, inference and
prediction for two- and three-level designs. These designs are a class of mixed models. Hierarchical
linear model users may be interested in our package for robust analysis as well.

In the rlme package, estimations and inferences are obtained from three different rank-based
methods along with the likelihood methods obtained from the nlme package (Pinheiro et al., 2013).
These three methods include the joint ranking (JR), iteratively reweighted generalized rank (GR)
and rank-based generalized estimating equations (GEER). Variance estimates and random effects
predictions are obtained along with a robust algorithm, called Rank Prediction Procedure (RPP). New
rank-based estimators are employed in these algorithm and methods. Diagnostics are included in our
package as well.
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We are planning to extend statistical analysis of iteratively generalized rank-based methods using
rank-norm properties to the general mixed models with various error structures. We would welcome
any feedback and/or collaborations.
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