
CONTRIBUTED RESEARCH ARTICLES 133

The gridSVG Package
by Paul Murrell and Simon Potter

Abstract The gridSVG package can be used to generate a grid-based R plot in an SVG format, with
the ability to add special effects to the plot. The special effects include animation, interactivity, and
advanced graphical features, such as masks and filters. This article provides a basic introduction
to important functions in the gridSVG package and discusses the advantages and disadvantages of
gridSVG compared to similar R packages.

Introduction

The SVG graphics format (Dengler et al., 2011) is a good format for including plots in web pages
because it is a vector format (so it scales well) and because it offers features for animation and
interactivity. SVG also integrates well with other important web technologies such as HTML and
JavaScript.

It is possible to produce a static R plot in an SVG format with the built-in svg() function (from the
grDevices package), but the gridSVG package (Murrell and Potter) provides an alternative way to
generate an SVG plot that allows for creating animated and interactive graphics.

There are two types of graphics functions in R: functions based on the default graphics package
and functions based on the grid graphics package. As the package name suggests, the gridSVG
package only works with a plot that is drawn using the grid graphics package. This includes plots
from several important graphics packages in R, such as lattice (Sarkar, 2008) and ggplot2 (Wickham,
2009), but gridSVG does not work with all plots that can be produced in R.

This article demonstrates basic usage of the gridSVG package and outlines some of the ways that
gridSVG can be used to produce graphical results that are not possible in standard R graphics. There
is also a discussion of other packages that provide ways to generate dynamic and interactive graphics
for the web and the strengths and weaknesses of gridSVG compared to those packages.

Basic usage

The following code draws a lattice multi-panel plot (see Figure 1).

> library(lattice)

> dotplot(variety ~ yield | site, data = barley, groups = year,
key = simpleKey(levels(barley$year), space = "right"),
subset = as.numeric(site) < 4, layout = c(1, 3))

The grid.export() function in gridSVG converts the current (grid) scene on the active graphics
device to an SVG format in an external file.

> library(gridSVG)

> grid.export("lattice.svg")

This SVG file can be viewed directly in a browser (see Figure 2) or embedded within HTML as
part of a larger web page.

This usage of gridSVG, to produce a static SVG version of an R plot for use on the web, offers
no obvious benefit compared to the built-in svg() graphics device. However, the gridSVG package
provides several other functions that can be used to enhance the SVG version of an R plot.

A simple example

In order to demonstrate, with code, some of the distinctive features of gridSVG, we introduce a simple
grid scene that is inspired by the Monty Hall problem.1

> library(grid)

1http://en.wikipedia.org/wiki/Monty_Hall_problem

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=gridSVG
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=ggplot2
http://en.wikipedia.org/wiki/Monty_Hall_problem

CONTRIBUTED RESEARCH ARTICLES 134

yield

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

15 20 25 30 35 40

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Grand Rapids
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

University Farm

1932
1931

●

●

Figure 1: A lattice multi-panel plot drawn on the standard pdf() graphics device.

Figure 2: The lattice plot from Figure 1 exported to an SVG file by gridSVG and viewed in Firefox.
This demonstrates that a static R plot can be converted to an SVG format with gridSVG for use on the
web.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 135

car goat goat

Figure 3: A diagram of the Monty Hall problem, drawn using grid. Hidden behind each rectangle is
either the word “goat” or the word “car”).

The scene consists of three words, “goat”, “goat”, and “car”, drawn in random order across the
page, with an opaque rectangle drawn on top of each word.

In relation to the Monty Hall problem, the three rectangles represent three “doors”, behind which
are hidden two goats and a car. A “contestant” must choose a door and then he or she gets the “prize”
behind that door. However, after the contestant has chosen a door, a “game show host” opens one of
the other doors to reveal a “goat” and the contestant gets the opportunity to change to the remaining
unopened door or stick with the original choice. Should the contestant stick or switch?2

The following code produces the scene and the result is shown in Figure 3. The main drawing
code is wrapped up in a function so that we can reuse it later on.

> text <- sample(c("goat", "goat", "car"))
> cols <- hcl(c(0, 120, 240), 80, 80)

> MontyHall <- function() {
grid.newpage()
grid.text(text, 1:3/4, gp = gpar(cex = 2), name = "prizes")
for (i in 1:3) {

grid.rect(i/4 - .1, width=.2, height=.8, just = "left",
gp = gpar(fill = cols[i]), name = paste0("door", i))

}
}

> MontyHall()

The code in the MontyHall() function makes use of the fact that grid functions allow names to be
associated with the objects in a scene. In this case, the three rectangles in this scene have been given
names—"door1", "door2", and "door3"—and the text has been given the name "prizes".

The grid function grid.ls() can be used to display the names of all objects in a scene.

> grid.ls(fullNames = TRUE)

text[prizes]
rect[door1]
rect[door2]
rect[door3]

These names will be used later to identify the rectangles so that we can modify them to generate
special effects.

Hyperlinks

The grid.hyperlink() function from the gridSVG package can be used to add hyperlinks to parts
of a grid scene. For example, the following code adds a link to each door so that clicking on a door
(while viewing the SVG version of the scene in a browser) leads to a Google Image Search on either
“car” or “goat” depending on what is behind the door. The first argument to grid.hyperlink() is the
name of the grid object with which to associate the hyperlink. The href argument provides the actual
link and the show argument specifies how to show the target of the link ("new" means open a new tab
or window).

2An exercise for the reader is to determine which door conceals the car based on the R code and figures presented
in this article.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 136

Figure 4: The Monty Hall image, with a hyperlink on each door. The mouse is hovering over the
middle door and the browser is showing the hyperlink target in the bottom-left of its window. If we
click the mouse, we will navigate to a Google Image Search for the word “goat”.

> library(gridSVG)

> links <- c("http://www.google.com/search?q=car&tbm=isch",
"http://www.google.com/search?q=goat&tbm=isch")

> for (i in 1:3) {
grid.hyperlink(paste0("door", i),

href = links[match(text[i], c("car", "goat"))],
show = "new")

}

After running this code, the scene is completely unchanged on a normal graphics device, but if we
use grid.export() to convert the scene to SVG, we end up with an image that contains hyperlinks.
Figure 4 shows the result, with the mouse hovering over the middle door; at the bottom-left of the
browser window, we can see from the hyperlink that there is a goat behind this door.

> grid.export("montyhall-hyper.svg")

Animation

The function grid.animate() from gridSVG allows us to animate the features of shapes in a grid
scene. For example, the following code draws the Monty Hall scene again and then animates the
width of the middle door so that it slides open (to reveal the word “goat”). The first argument to
grid.animate() is the name of the object to animate. Subsequent arguments specify which feature of
the object to animate, in this case width, plus the values for the animation. The duration argument
controls how long the animation will last.

> MontyHall()
> goatDoor <- grep("goat", text)[1]
> grid.animate(paste0("door", goatDoor), width = c(.2, 0), duration = 2)

> grid.export("montyhall-anim.svg")

Again, no change is visible on a normal R graphics device, but if we export to SVG and view the
result in a browser, we see the animation (see Figure 5).

Advanced graphics features

The gridSVG package offers several graphics features that are not available in standard R graphics
devices. These include non-rectangular clipping paths, masks, fill patterns and fill gradients, and
filters (Murrell and Potter, 2013). This section demonstrates the use of a mask on the Monty Hall scene.

A mask is a greyscale image that is used to affect the transparency (or alpha-channel) of another
image: anywhere the mask is white, the masked image is fully visible; anywhere the mask is black, the
masked image is invisible; and anywhere the mask is grey, the masked image is semitransparent.

The following code uses standard grid functions to define a simple scene consisting of a white
cross on top of a grey circle on a white background, which we will use as a mask (see Figure 6). Any
grid scene can be used to create a mask; in this case, we use the gTree() function from grid to create a
graphical object that is a collection of several other graphical objects.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 137

Figure 5: The Monty Hall image, with the middle “door” animated so that it slides open (to reveal the
word “goat”).

Figure 6: Using a mask on an image. The picture on the left shows a white cross on top of a grey circle
on a white background. This is used as a mask on the rectangles in the Monty Hall image on the right.
The effect is to create a semitransparent window in the middle door (through which we can glimpse
the word “goat”).

> circleMask <- gTree(children = gList(rectGrob(gp = gpar(col = NA, fill = "white")),
circleGrob(x = goatDoor/4, r=.15,

gp = gpar(col = NA, fill = "grey")),
polylineGrob(c(0, 1, .5, .5),

c(.5, .5, 0, 1),
id = rep(1:2, each = 2),
gp = gpar(lwd = 10, col = "white"))))

The next code shows how this crossed circle on a white background can be used as a mask to
affect the transparency of one of the rectangles in the Monty Hall scene. The functions mask() and
grid.mask() are from gridSVG. The mask() function takes a grid object (as generated above) and
turns it into a mask object. The grid.mask() function takes the name of a grid object to mask, plus the
mask object produced by mask().

> MontyHall()
> grid.mask(paste0("door", goatDoor), mask(circleMask))

> grid.export("montyhall-masked.svg")

The effect of the mask is shown in Figure 6.

Interactivity

The grid.garnish() function in the gridSVG package opens up a broad range of possibilities for
enhancing a grid scene, particularly for adding interactivity to the scene.

A simple example is shown in the code below. Here we are adding tooltips to each of the doors
in the Monty Hall scene so that hovering the mouse over a door produces a label that shows what
is behind the door (see Figure 7). The first argument to grid.garnish() is the name of the object to
modify. Subsequent arguments specify SVG attributes to add to the object; in this case, we add a title
attribute, which results in a tooltip (in some browsers).

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 138

Figure 7: The Monty Hall image with tooltips added to each door. The mouse is hovering over the
middle door, which results in a tooltip being displayed to show that there is a “goat” behind this door.

Figure 8: The Monty Hall image with interactivity. The mouse has just been clicked on the middle
door, which has resulted in an alert box popping up to show that this door has a “goat” behind it.

> MontyHall()
> for (i in 1:3) {

grid.garnish(paste0("door", i), title = text[i])
}

> grid.export("montyhall-tooltip.svg")

The grid.garnish() function can also be used to associate JavaScript code with an object in the
scene. The following code shows a simple example where clicking on one of the rectangles pops up an
alert box showing what is behind that door (see Figure 8). The attribute in this example is onclick,
which is used to define an action that occurs when the object is clicked with the mouse (in a browser).

> MontyHall()
> for (i in 1:3) {

grid.garnish(paste0("door", i),
onclick = paste0("alert('", text[i], "')"))

}

> grid.export("montyhall-alert.svg")

For more complex interactions, it is possible to include JavaScript code within the scene, using
the grid.script() function, so that an event on an object within the scene can be associated with
a JavaScript function call to perform a more sophisticated action. The code below shows a simple
example where clicking on one of the rectangles in the Monty Hall scene will call the JavaScript
function open() to “open” the door (by making the rectangle invisible; see Figure 9). The open()
function is defined in a separate file called "MontyHall.js" (shown in Figure 10).

> MontyHall()
> for (i in 1:3) {

grid.garnish(paste0("door", i), onclick = "open(evt)")
}

> grid.script(file = "MontyHall.js")

> grid.export("montyhall-js.svg")

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 139

Figure 9: The Monty Hall image with more interactivity. The mouse has just been clicked on the
middle door, which has resulted in the middle door becoming invisible, thereby revealing a “goat”
behind the door.

open = function(e) {
e.currentTarget.setAttribute("visibility", "hidden");

}

Figure 10: The JavaScript code used in Figure 9 that defines the open() function to “open” a door by
making the rectangle invisible.

A more complex demonstration

The previous section kept things very simple in order to explain the main features of gridSVG. In
this section, we present a more complex example which involves adding interactivity to a lattice
multi-panel plot. The following code generates the lattice plot from Figure 1.

> dotplot(variety ~ yield | site, data = barley, groups = year,
key = simpleKey(levels(barley$year), space = "right"),
subset = as.numeric(site) < 4, layout = c(1, 3))

Because the lattice package is built on grid, and because the lattice package names all of the
objects that it draws,3 there are names for every object drawn in this plot. The following code uses the
grid function grid.grep()4 to show some of the named objects in this plot (in this case, all objects that
have a name that contains "xyplot.points"). These are the objects that represent the data symbols
within the lattice plot.

> grid.grep("xyplot.points", grep = TRUE, global = TRUE)

[[1]]
plot_01.xyplot.points.group.1.panel.1.1

[[2]]
plot_01.xyplot.points.group.2.panel.1.1

[[3]]
plot_01.xyplot.points.group.1.panel.1.2

[[4]]
plot_01.xyplot.points.group.2.panel.1.2

[[5]]
plot_01.xyplot.points.group.1.panel.1.3

[[6]]
plot_01.xyplot.points.group.2.panel.1.3

The following code uses grid.garnish() to add event handlers to the objects that represent the
points in the plot, so that JavaScript functions are called whenever the mouse moves over a point and
whenever the mouse moves off the point again.

3http://lattice.r-forge.r-project.org/Vignettes/src/naming-scheme/namingScheme.pdf
4Introduced in R version 3.1.0.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://lattice.r-forge.r-project.org/Vignettes/src/naming-scheme/namingScheme.pdf

CONTRIBUTED RESEARCH ARTICLES 140

function highlight(evt) {
var element = evt.currentTarget;
var id = element.id;
var index = id.substring(id.search(/[.][0-9]+$/) + 1, id.length);
for (var panel=1;panel<4;panel++) {

for (var group=1;group<3;group++) {
var selid =

'plot_01.xyplot.points.group.'+group+'.panel.1.'+panel+'.1.'+index;
var dot = document.getElementById(selid);
dot.setAttribute("stroke-width", "6");

}
}

}

function unhighlight(evt) {
var element = evt.currentTarget;
var id = element.id;
var index = id.substring(id.search(/[.][0-9]+$/) + 1, id.length);
for (var panel=1;panel<4;panel++) {

for (var group=1;group<3;group++) {
var selid =

'plot_01.xyplot.points.group.'+group+'.panel.1.'+panel+'.1.'+index;
var dot = document.getElementById(selid);
dot.setAttribute("stroke-width", "1");

}
}

}

Figure 11: The JavaScript code that defines the highlight() and unhighlight() functions to imple-
ment linked selection of points for the lattice plot in Figure 12.

> numPoints <- length(levels(barley$variety))
> grid.garnish("xyplot.points", grep = TRUE, global = TRUE, group = FALSE,

onmouseover = rep("highlight(evt)", numPoints),
onmouseout = rep("unhighlight(evt)", numPoints),
"pointer-events" = rep("all", numPoints))

This use of grid.garnish() differs from the previous simple examples because it has an effect
on several grid objects, rather than just one. The grep and global arguments specify that the name,
"xyplot.points", should be treated as a regular expression and the garnish will affect all objects in the
scene with a name that matches that pattern. Furthermore, each grid object that matches represents
several data symbols, so the group argument is used to specify that the garnish should be applied
to each individual data symbol. Because, for each object, the garnish is being applied to multiple
data symbols, we must provide multiple values, which explains the use of rep() for the onmouseover,
onmouseout, and pointer-events arguments.

The JavaScript code that defines the event handlers hightlight() and unhighlight() is shown in
Figure 11. A detailed explanation of this code is beyond the scope of this article, but it should be clear
that these functions are relatively simple, just looping over the two groups in each panel, and over the
three panels, to highlight (or unhighlight) all points that share the same index.

This JavaScript code is added to the plot using grid.garnish(), and then the whole scene is
exported to SVG with grid.export().

> grid.script(file = "lattice-brush.js")
> grid.export("lattice-brush.svg")

A snapshot of the final result is shown in Figure 12, with the mouse over one point and all related
points highlighted.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 141

Figure 12: The lattice plot from Figure 1 with interaction added. Moving the mouse over a point
highlights the point and highlights every other “related” point in all panels of the plot.

Limitations

The gridSVG package provides an opportunity to produce more sophisticated, more dynamic, and
more interactive R plots compared to the standard R graphics devices. However, there are some strict
limitations on what can be achieved with this package.

First of all, the package only works for plots that are based on the grid graphics system. This
includes some major graphics packages, such as lattice and ggplot2, but excludes a large amount of
graphics functionality that is only available in the default graphics package or packages that build
on graphics. Given a plot from a function that is not based on grid, the gridSVG package will only
produce a blank SVG file.

Another limitation is that gridSVG does not generate any JavaScript code itself. This means that
anything beyond the most basic interactivity will require the user to write JavaScript code, which
imposes a burden on the user in terms of both time and knowledge.

Another point that has only briefly been acknowledged in the example R code so far is that the
gridSVG functions that add special features to a grid scene (such as hyperlinks and animation) rely
heavily on the ability to identify specific components of a grid scene. The Monty Hall examples all rely
on the fact that the rectangles that are drawn to represent doors each have a name—"door1", "door2",
and "door3"—and the code that adds hyperlinks or animation identifies the rectangles by using these
names. This means that gridSVG is dependent upon an appropriate naming scheme being used for
any grid drawing (Murrell, 2012). This requirement is met by the lattice package and, to a lesser extent
by the ggplot2 package, but cannot be relied on in general.

Alternative approaches

The gridSVG package provides one way to produce dynamic and interactive versions of R plots
for use on the web, but there are several other packages that provide alternative routes to the same
destination. This section discusses the differences between gridSVG and several other packages that
have similar goals.

The animation package (Xie, 2013) provides a convenient front-end for producing animations in
various formats (some of which are appropriate for use on the web), but the approach is frame-based
(draw lots of separate images and then stitch them together to make an animation). The advantage
of an SVG-based approach to animation is that the animation is declarative, which means that the

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=animation

CONTRIBUTED RESEARCH ARTICLES 142

animation can be described more succinctly and efficiently and the resulting animation will often
appear smoother. On the other hand, the animation package will work with any R graphics output; it
is not restricted to just grid-based output.

The SVGAnnotation package (Nolan and Temple Lang, 2012) performs a very similar role to
gridSVG, by providing functions to export R plots to an SVG format with the possiblity of adding
dynamic and interactive features. One major advantage of SVGAnnotation is that it will export R plots
that are based the standard graphics package (as well as plots that are based on grid). SVGAnnotation
also provides some higher-level functions that automatically generate JavaScript code to implement
specific sorts of more complex interactivity. For example, the linkPlots() function can be used
to generate linked plots, where moving the mouse over a data symbol in one plot automatically
highlights a corresponding point in another plot. The main disadvantage of SVGAnnotation is that it
works with the SVG that is produced by the built-in svg() device, which is much less structured than
the SVG that is generated by gridSVG. That is not a problem if the functions that SVGAnnotation
provides do everything that we need, but it makes for much more work if we need to, for example,
write our own JavaScript code to work with the SVG that SVGAnnotation has generated.

Another package that can export R graphics output to SVG is the RSVGTipsDevice package
(Plate, 2011). This package creates a standard R graphics device, so it can export any R graphics output,
but it is limited to adding tooltips and hyperlinks. This package also requires the tooltips or hyperlinks
to be added at the time that the R graphics output is produced, rather than after-the-fact using names
to refer to previously-drawn output. This makes it harder to associate tooltips or hyperlinks with
output that is produced by someone else’s code, such as a complex lattice plot.

A number of packages, including rCharts and googleVis (Vaidyanathan, 2013; Gesmann and
de Castillo, 2011), provide a quite different approach to producing dynamic and interactive plots for
the web. These packages outsource the plot drawing to JavaScript libraries such as NVD3, highcharts,
and the Google Visualisation API (Novus, 2012; Highsoft AS, 2013; Google, 2013). The difference
here is that the plots produced are not R plots. The advantage is that very little R code is required
to produce a nice result, provided the JavaScript library can produce the style of plot and the sort of
interactivity that we want.

Another approach to interactivity that is implemented in several packages, notably shiny (RStudio
Inc., 2013), involves running R as a web server and producing new R graphics in response to user
events in the browser. The difference here is that the user typically interacts with GUI widgets (buttons
and menus) outside the graphic and each user event generates a completely new R graphic. With
gridSVG, the user can interact directly with elements of the graphic itself and all of the changes to the
graphic occur in the browser with no further need of R.

In summary, using the gridSVG package is appropriate if we want to add advanced graphics
features to a grid-based R plot, or if we want to add dynamic or interactive elements to a grid-based R
plot, particularly if we want to produce a result that is not already provided by a high-level function
in the SVGAnnotation package. An approach that holds some promise is to generate SVG content
using gridSVG and then manipulate that content by adding JavaScript code based on a sophisticated
JavaScript library such as d3 (Bostock et al., 2011) and Snap.svg (Baranovskiy, 2014).

Availability

The gridSVG package is available from CRAN. The code examples in this article are known to work
for gridSVG versions 1.3 and 1.4 using Firefox 28.0 on Ubuntu 12.04.

Support for SVG varies between browsers, for example Chrome 34.0 on Ubuntu 12.04 does not
produce the tooltips in Figure 7. Several web sites provide summary tables of supported SVG features.5

Differences between browser JavaScript engines is another potential source of variation. Nevertheless,
all major browsers now provide native support of at least basic SVG features, several mature and stable
JavaScript libraries are available to abstract away browser differences, and the situation is constantly
improving.

Online versions of the figures in this article are available from http://www.stat.auckland.ac.nz/
~paul/Reports/gridSVGrjV2/. Further documentation and examples for gridSVG are available from
https://www.stat.auckland.ac.nz/~paul/R/gridSVG/.

5http://caniuse.com/svg
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_%28Scalable_Vector_Graphics%29

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=RSVGTipsDevice
http://CRAN.R-project.org/package=googleVis
http://CRAN.R-project.org/package=shiny
http://www.stat.auckland.ac.nz/~paul/Reports/gridSVGrjV2/
http://www.stat.auckland.ac.nz/~paul/Reports/gridSVGrjV2/
https://www.stat.auckland.ac.nz/~paul/R/gridSVG/
http://caniuse.com/svg
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_%28Scalable_Vector_Graphics%29

CONTRIBUTED RESEARCH ARTICLES 143

Acknowledgements

We would like to thank the anonymous reviewers for many helpful comments that lead to improve-
ments in this article.

Bibliography

D. Baranovskiy. Snap.svg, 2014. URL http://snapsvg.io/. [p142]

M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-Driven Documents. IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis), 2011. URL http://vis.stanford.edu/papers/d3. [p142]

P. Dengler, D. Jackson, C. Lilley, J. Fujisawa, C. McCormack, E. Dahlström, A. Grasso, J. Ferraiolo,
D. Schepers, and J. Watt. Scalable vector graphics (SVG) 1.1 (second edition). W3C recommendation,
W3C, Aug. 2011. http://www.w3.org/TR/2011/REC-SVG11-20110816/. [p133]

M. Gesmann and D. de Castillo. googleVis: Interface between R and the Google Visualisation API.
The R Journal, 3(2):40–44, December 2011. URL http://journal.r-project.org/archive/2011-
2/RJournal_2011-2_Gesmann+de~Castillo.pdf. [p142]

Google. Google Visualization API, 2013. URL https://developers.google.com/chart/interactive/
docs/reference. [p142]

Highsoft AS. Highcharts JS, 2013. URL http://www.highcharts.com/. [p142]

P. Murrell. What’s in a Name? The R Journal, 4(2):5–12, dec 2012. URL http://journal.r-project.
org/archive/2012-2/RJournal_2012-2_Murrell.pdf. [p141]

P. Murrell and S. Potter. gridSVG: Export grid graphics as SVG. R package version 1.4-0. [p133]

P. Murrell and S. Potter. Advanced SVG Graphics from R. Technical Report 2013-7, Department of
Statistics, The University of Auckland, 2013. URL http://stattech.wordpress.fos.auckland.ac.
nz/2013-7-advanced-svg-graphics-from-r/. [p136]

D. Nolan and D. Temple Lang. Interactive and animated scalable vector graphics and R data displays.
Journal of Statistical Software, 46(1):1–88, 1 2012. ISSN 1548-7660. URL http://www.jstatsoft.org/
v46/i01. [p142]

Novus. NVD3.js : Re-usable charts for d3.js, 2012. URL http://nvd3.org/. [p142]

T. Plate. RSVGTipsDevice: An R SVG graphics device with dynamic tips and hyperlinks, 2011. URL
http://CRAN.R-project.org/package=RSVGTipsDevice. R package version 1.0-4. [p142]

RStudio Inc. shiny: Web Application Framework for R, 2013. URL http://CRAN.R-project.org/package=
shiny. R package version 0.3.0. [p142]

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York, 2008. URL
http://lmdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5. [p133]

R. Vaidyanathan. rCharts: Interactive Charts using Polycharts.js, 2013. R package version 0.4.2. [p142]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, 2009. ISBN
978-0-387-98140-6. URL http://had.co.nz/ggplot2/book. [p133]

Y. Xie. animation: An R package for creating animations and demonstrating statistical methods. Journal
of Statistical Software, 53:1–27, 2013. URL http://www.jstatsoft.org/v53/i01/. [p141]

Paul Murrell
The University of Auckland
Auckland
New Zealand paul@stat.auckland.ac.nz

Simon Potter
The University of Auckland
Auckland
New Zealand simon@sjp.co.nz

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://snapsvg.io/
http://vis.stanford.edu/papers/d3
http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Gesmann+de~Castillo.pdf
http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Gesmann+de~Castillo.pdf
https://developers.google.com/chart/interactive/docs/reference
https://developers.google.com/chart/interactive/docs/reference
http://www.highcharts.com/
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Murrell.pdf
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Murrell.pdf
http://stattech.wordpress.fos.auckland.ac.nz/2013-7-advanced-svg-graphics-from-r/
http://stattech.wordpress.fos.auckland.ac.nz/2013-7-advanced-svg-graphics-from-r/
http://www.jstatsoft.org/v46/i01
http://www.jstatsoft.org/v46/i01
http://nvd3.org/
http://CRAN.R-project.org/package=RSVGTipsDevice
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=shiny
http://lmdvr.r-forge.r-project.org
http://had.co.nz/ggplot2/book
http://www.jstatsoft.org/v53/i01/
mailto:paul@stat.auckland.ac.nz
mailto:simon@sjp.co.nz

