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sgr: A Package for Simulating
Conditional Fake Ordinal Data
by Luigi Lombardi and Massimiliano Pastore

Abstract Many self-report measures of attitudes, beliefs, personality, and pathology include items that
can be easily manipulated by respondents. For example, an individual may deliberately attempt to
manipulate or distort responses to simulate grossly exaggerated physical or psychological symptoms
in order to reach specific goals such as, for example, obtaining financial compensation, avoiding being
charged with a crime, avoiding military duty, or obtaining drugs. This article introduces the package
sgr that can be used to perform fake data analysis according to the sample generation by replacement
approach. The package includes functions for making simple inferences about discrete/ordinal fake
data. The package allows to quantify uncertainty in inferences based on possible fake data as well as
to study the implications of fake data for empirical results.

Introduction

How can we evaluate the impact of fake information in real life contexts? In nature, some individuals
tend to distort their behaviors or actions in order to reach specific goals. In some species, for example,
wimpy animals may not signal their real social value by faking a higher status to deceive other
competitors. Similarly, in personnel selection some job applicants may misrepresent themselves on a
personality test hoping to increase the likelihood of being offered a job. Being able to discriminate
between honest and fraudulent signals and evaluating the impact of counterfeit elements crucially
depend on the way we can reason about the whole process of faking. A coherent knowledge of the
type or structure of faking processes may lead to stronger inferences that lie on or close to what we may
call the genuine, but probably hidden, representation of a manifest behavior. In general fake data may
alter a large variety of self-report measures. This problem is particularly relevant for discrete/ordinal
data collected in sensitive environments such as, for example, risky sexual behaviors, drug addictions,
tax evasion, political preferences, financial compensation, and personnel selection. More in general,
researchers interested in the study of human behavior in areas like psychology (Hopwood et al., 2006),
organizational and social science (Van der Geest and Sarkodie, 1998), psychiatry (Beaber et al., 1985),
forensic medicine (Gray et al., 2003), scientific frauds (Marshall, 2000), and economics (Crawford, 2003)
may face the fake data problem when analyzing and interpreting empirical data.

In this article, we discuss the sgr package that we have developed for running fake data analysis
according to the sample generation by replacement (SGR) approach (Lombardi and Pastore, 2012). SGR
is a data simulation procedure to generate artificial samples of fake discrete/ordinal data. The
main characteristic of the SGR approach is that it allows detailed explorations of what outcomes
are produced by particular sets of faking assumptions. By changing the input in the faking model
parameters and showing the effect on the outcome of a model, SGR provides a what-if-analysis of the
faking scenarios. Therefore, SGR can be used to quantify uncertainty in inferences based on possible
fake data as well as to evaluate the implications of fake data for statistical results. To illustrate, let us
consider the following example where a researcher is interested in studying the relationship between
therapy-uncompliance indicators (e.g., forgetting the treatment) and unsafe behaviors indicators (e.g.,
drinking alcohol) in a group of liver transplant patients. Generally, patients diagnosed with alcohol
dependence who follow a pharmaceutical regimen after the liver transplant would deliberately answer
fraudulently a question about drinking alcohol due to abstinence from ethanol and social desirability
factors (e.g. Foster et al., 1997). In this context, an SGR analysis can help in testing for potential
influence of faking the drinking alcohol self-report measure on the strength of the relationship between
therapy-uncompliance and unsafe behaviors indicators. More specifically, how sensitive are the
empirical associations to possible fake observations in the drinking alcohol self-report measure? Are
the conclusions still valid under one or more scenarios of faking (e.g., slight, moderate, and extreme
faking) for the drinking alcohol variable?

In general, SGR takes an interpretation perspective by incorporating in a global model all the
available information about the process of faking and the underlying true model representation. This
makes SGR related in spirit to other statistical approaches such as, for example, uncertainty and
sensitivity analysis (Helton et al., 2006) and prospective power analysis (Cohen, 1988) which are all
characterized by an attempt to directly quantify uncertainty of general statistics computed on the data
by means of specific hypotheses.

The rest of the paper is organized as follows. The next section reviews the SGR framework and
its basic implementations using the sgr package. The following section provides three examples
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illustrating the application of sgr to faking scenarios. The final section discusses limitations and future
implementations in sgr components beyond the general scheme presented here.

The SGR framework

SGR is characterized by a two-stage sampling procedure based on two distinct generative models:
the model defining the process that generates the data prior to any fake perturbation (data generation
process) and the model representing the faking process to perturb the data (data replacement process). By
repeatedly sampling data from the SGR procedure we can generate the so called fake data sample (FDS)
and eventually study the distribution of some relevant statistics computed on these simulated data
samples. In SGR the data generation process is modeled by means of standard Monte Carlo procedures
for ordinal data whereas the data replacement process is implemented using ad hoc probabilistic
faking models. In sum, the overall generative process is split into two conceptually independent and
possibly simpler components (divide and conquer strategy).

With regard to the fake-data problem in general, we think of the data in the generation process as
being represented by an n×m matrix D, that is to say, n i.i.d. observations (hypothetical participants)
each containing m elements (hypothetical participant’s responses). We assume that entry dij of D
(i = 1, . . . , n; j = 1, . . . , m) takes values on a small ordinal range Vq = {1, . . . , q} (for the sake
of simplicity, in this presentation we assume identical ordinal scales). In particular, let di be the
(1× m) array of D denoting the pattern of responses of participant i. The response pattern di is a
multidimensional ordinal random variable with probability distribution p(di|θD), where θD indicates
the vector of parameters of the probabilistic model for the data generation process. The main idea
of the replacement approach is to construct a new n×m ordinal data matrix F, called the fake data
matrix of D, by manipulating each element dij in D according to a replacement probability distribution.
Let fi be the (1×m) array of F denoting the replaced pattern of fake responses of participant i. The
fake response pattern fi is a multidimensional ordinal random variable with conditional replacement
probability distribution

p(fi|di, θF) =
m

∏
j=1

p( fij|dij, θF), i = 1, . . . , n (1)

where θF indicates the vector of parameters of the probabilistic faking model.

It is important to note that in the standard SGR framework the replacement distribution p(fi|di, θF)
is restricted to satisfy the conditional independence (CI) assumption (see Lombardi and Pastore, 2012;
Pastore and Lombardi, 2014). More precisely, in the replacement distribution each fake response
fij only depends on the corresponding data observation dij and the model parameter θF. Therefore,
because the patterns of fake responses are also i.i.d. observations, the simulated data array (D, F) is
drawn from the joint probability distribution

p(D, F|θD, θF) =
n

∏
i=1

p(di|θD)p(fi|di, θF) (2)

=
n

∏
i=1

p(di|θD)
m

∏
j=1

p( fij|dij, θF) (3)

In the last section of this article we will discuss some potential limitations of the conditional indepen-
dence assumption in real application domains of the SGR approach.

Data generation process

In general, several options are available to represent the data generation process (Muthén, 1984;
Jöreskog and Sörbom, 1996; Moustaki and Knott, 2000; Samejima, 1969). In the current version of the
sgr package we implemented a procedure based on the multivariate latent variable framework which
is called underlying variable approach (UVA, Muthén, 1984; Jöreskog and Sörbom, 1996). This approach
assumes that the observed ordinal variables are treated as metric through assumed underlying normal
variables. In particular, we assume that there exists a continuous data matrix D∗ underlying the ordinal
data matrix D. Let d∗i be the (1×m) array of D∗ denoting the pattern of underlying continuous values
of the ith observation. It is convenient to let d∗i have the multivariate standard normal distribution
with density function φ(0, R) where R denotes the (m×m) model correlation matrix. The connection
between the ordinal variable dij and the underlying variable d∗ij in D∗ is given by

dij = h iff τ
j
h−1 < d∗ij ≤ τ

j
h
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with h = 1, . . . , q; i = 1, . . . , n; j = 1, . . . , m and where

−∞ = τ
j
0 < τ

j
1 < τ

j
2 < . . . < τ

j
q−1, τ

j
q = +∞,

are threshold parameters. Therefore, the joint probability of di = (h1, . . . , hm) is given by

p(h|θM) =
∫ τ1

h1

τ1
h1−1

· · ·
∫ τm

hm

τm
hm−1

φ(z|0, R)dz (4)

with θM = (τ, R) and z = (z1, . . . , zm) being the parameter vector of the original data generation
model and the values for the continuous variables, respectively.

In SGR the data generation process is obtained by first generating the continuous data D∗ according
to a model correlation matrix R and then by transforming it to its discrete counterpart D using the
model thresholds τ. In the following example, we used the sgr function rdatagen to sample n = 100
random observations from a data generation model with two symmetrically distributed ordinal
variables with five levels each and correlation value .4.

> library(sgr)
> require(MASS)
> require(polycor)
> set.seed(367)
> R <- matrix(c(1,.4,.4,1),2,2)
> th <- list(c(-Inf,qnorm(c(0.04,0.27,0.73,0.96)), Inf),
+ c(-Inf,qnorm(c(0.06,0.31,0.69,0.94)),Inf))
> Dx <- rdatagen(n=100,R=R,Q=c(5,5),th=th)
> Dx$data

In this example, the threshold values are derived from the quantiles of the standard normal
distribution in such a way that the first simulated variable shows a slightly larger variance than the
second simulated variable. Generally, the threshold values can be derived in two different ways. In the
first case, we can use empirically based knowledge (e.g., an already existing data set) to estimate the
threshold values on the basis of the observed distribution function of the levels of the discrete variable
(e.g., Jöreskog and Sörbom, 1996). In the second case, some simple statistical knowledge can be used
to simulate threshold values according to desired properties. For example, the normal quantiles used
as corresponding threshold values can be computed using the inverse of the binomial cumulative
distribution function (e.g., Jöreskog and Sörbom, 1996). In the rdatagen function call the parameter Q
specifies the number of levels for each ordinal variable. To compare the model correlation matrix R
with the sample polychoric correlation, we can use the polychor function in the polycor package (Fox,
2010)

> d1 <- factor(Dx$data[,1],ordered=TRUE)
> d2 <- factor(Dx$data[,2],ordered=TRUE)
> polychor(d1,d2,ML=TRUE,std.err=TRUE)

Polychoric Correlation, ML est. = 0.3627 (0.09832)

Data replacement process

To generate the fake ordinal data we used a parametrized replacement distribution based on a discrete
beta kernel (Pastore and Lombardi, 2014). Some examples of replacement distributions are shown
in Figure 1. Let pk|h ≡ p(k|h, θF) be the conditional probability of replacing an original ordinal value
h with the new ordinal value k. In general, θF represents hypothetical a priori knowledge about the
distribution of faking (e.g., the chance of observing a fake observation in the data) or empirically based
knowledge about the process of faking (e.g., the direction of faking -fake good vs fake bad-).

The conditional replacement distribution can be described according to the following equation

pk|h =


DG(k; a+, b+, θ+F )π+, 1 ≤ h < k ≤ q
DG(k; a−, b−, θ−F )π−, 1 ≤ k < h ≤ q

1− (π+ + π−), 1 < k = h < q
1− π+, k = h = 1
1− π−, k = h = q

(5)

with DG being the generalized beta distribution for discrete variables (Pastore and Lombardi, 2014).
Note that in Eq. (5), the function DG is used with two different set of parameters. More precisely, in
the first line the function DG models the behavior of the faking distribution for fake positive values
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Figure 1: Three examples of conditional replacement distributions for a 7-point discrete r.v. Each
column in the graphical representation corresponds to a different conditional replacement distribution
(see Table 1). For each example the overall probabilities are π+ = .6 and π− = .2. Each row in the
graphical representation corresponds to a different original 7-point discrete value h.

(k > h) by means of the governing shape parameter θ+F = (γ+, δ+) with bounds (a+ = h + 1, b+ = q).
By contrast, the second line represents the behavior of the faking distribution for fake negative values
(k < h) modelled by the governing shape parameter θ−F = (γ−, δ−) with bounds (a− = 1, b− = h− 1).
Some examples of faking models with their parameters assignments are reported in Table 1 (see
also Pastore and Lombardi, 2014). In general, the governing shape parameters θ+F and θ−F must be
strictly positive. In particular, if γ+ = δ+ = 1, the right part of the replacement distribution reduces
to a uniform support fake positive distribution (Fig. 1 first column). By contrast, if 1 ≤ γ+ < δ+

(resp. 1 ≤ δ+ < γ+), the model mimics asymmetric faking configurations corresponding to moderate
positive shifts (resp. exaggerated positive shifts) in the value of the original response (Fig. 1, second
and third columns). More specifically, in the slight positive faking configuration the chance to replace
an original value h with another greater value k decreases as a function of the distance between k and h.
By contrast, in the extreme positive faking configuration the chance to replace an original value h with
another greater value k increases as a function of the distance between k and h. Unlike the asymmetric
configurations (slight faking and extreme faking), the uniform support distribution (γ+ = δ+ = 1)
mimics a kind of random world model that can be used whenever we believe to deal with purely
random fake data. This principle requires the simplest quantitative representation for the replacement
process and reflects the lack of information about the distributional properties of the faking behavior.
Similar configurations can be described also for the left part of the replacement distribution which
represents the negative faking process [θ−F = (γ−, δ−)]. However, for this latter component the ordinal
relation characterizing the shape parameters must be reversed (see Table 1). Finally, in the conditional
replacement distribution the parameters π+ and π− denote the overall probability of faking positive
and the overall probability of faking negative, respectively. These probabilities act as weights to rescale
the discrete beta distribution DG such that (π = π+ + π−) ≤ 1. In general, π+ and π− represent a
priori or empirically based knowledge about the distribution of faking for the two components (e.g.,
the chance of observing a positive or negative fake observation in the data). The third, fourth, and
fifth lines of Eq. (5) show the probability of non-replacement (k = h). Note that, if we set π+ = 0 (resp.
π− = 0), then the replacement model boils down to a pure faking negative (resp. positive) model
which corresponds to a context in which responses are exclusively subject to negative (resp. positive)
faking (see fig. 2).

In the following example, we applied a pure (slight) positive faking model (see Table 1) to generate
a fake data matrix F from the original data matrix D.

> RM <- replacement.matrix(Q=5,p=c(.5,0),fake.model="slight")
> Fx <- rdatarepl(Dx$data,RM)
46% of data replaced.
> Fx$Fx
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Figure 2: Three examples of conditional replacement distributions for a 7-point discrete r.v. Each
column in the graphical representation corresponds to a different conditional replacement distribution.
For each example the overall probabilities are π+ = .6 and π− = .0 (faking positive condition). Each
row in the graphical representation corresponds to a different original 7-point discrete value h.

We used the replacement.matrix function to construct the conditional replacement probability distri-
bution and save the result in the variable RM which is used as the argument of the the data replacement
generation function rdatarepl. Note that the argument fake.model in the replacement.matrix func-
tion allows to set the options reported in Table 1. However, all of the model parameters can be set
manually by the user to any array of consistent values if so desired. For example, an equivalent syntax
would have been

> RM <- replacement.matrix(Q=5,p=c(.5,0),gam=c(1.5,0),del=c(4,0))

We can evaluate the impact of positive faking on the new fake data matrix by comparing the
frequencies of the ordinal categories in D and F. For example, for the first ordinal variable we have

> table(Dx$data[,1])

1 2 3 4 5
5 29 40 24 2
> table(Fx$Fx[,1])

1 2 3 4 5
2 17 36 31 14

which shows how the positive faking has shifted the values of the first ordinal variable towards
larger ones. In a similar way, we could also evaluate the impact of faking on the sample polychoric
correlation matrix of F.

Model γ+ γ− δ+ δ−

uniform 1 1 1 1
slight 1.5 4 4 1.5
extreme 4 1.5 1.5 4

Table 1: Examples of default parameters assignments for some relevant faking models (Pastore and
Lombardi, 2014).
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Illustrative examples

By way of illustration we consider three simple SGR examples. The first is for the evaluation of a
correlational analysis computed on five-point rating data. This example is hypothetical and serves to
introduce the main features and functions implemented in the sgr package. The second application
considers real data about illicit drug use among young people aged 14 to 27. This second example
shows how to model directional faking hypotheses (e.g., faking good or faking bad). It is also
important because illustrates how the replacement functions can be applied to dichotomous data.
Finally, the third application extends the second example by analyzing a new set of data about cannabis
consumption in young people using log-linear models for ordinal data.

Example 1

We begin with a simple SGR analysis about a hypothetical observed difference (∆̂ = ρ̂1 − ρ̂2 = .3)
between two ordinal correlations computed on two five-point rating variables X and Y for the groups
of subjects, G1 (n1 = 50) and G2 (n2 = 50). For example, in a risky sexual behaviors scenario the rating
variables X and Y can represent, in two groups of young adults (females and males), the self-report
attitude to contraceptive use during a sexual intercourse and the declared number of sexual partners in
the last three months, respectively. Normally, an effect size of .3 denotes a relevant difference between
two correlations. However, how sensitive may this result be to possible fake data? Is this effect still
observed under one or more scenarios of faking? In this example, we are interested in testing whether
the observed correlation difference can still be consistent with a true generative model reflecting
an identical moderate correlation ρ1 = ρ2 = .25 for the two groups. Moreover, we also assume a
perturbation process represented by two distinct uniform faking models: π+

1 = .2 and π−1 = .1 for G1,
and π+

2 = .3 and π−2 = .2 for G2. We can easily reformulate this example using a Fisher significance
testing (Lehmann, 1993). More precisely, we can construct the corresponding hypothesis

H : ρ1 = ρ2 = .25 (∆ = 0),

π+
1 = π−2 = .2, π−1 = .1, π+

2 = .3,

γ+
s = γ−s = δ+s = δ−s = 1, s = 1, 2

and examine whether or not the observed correlation difference ∆̂ is consistent with H. In particular,
we are interested in the p-value

Pr[∆ > ∆̂|H].

The code below illustrates the SGR analysis

> require(polycor)
> set.seed(367)
> obs.stat <- .3; mc.stat <- NULL
> Rmc <- matrix(c(1,.25,.25,1),2)
> PM <- matrix(c(rep(1,100),rep(2,100)),ncol=2,byrow=TRUE)
> Pparm <- list(p=matrix(c(.2,.3,.1,.2),2),gam=matrix(1,2,2),del=matrix(1,2,2))
> for (b in 1:1000) {
+ mcD <- rdatagen(n=100,R=Rmc,Q=5)$data
+ Fx <- partition.replacement(mcD,PM,Pparm=Pparm)
+ for (j in 1:ncol(Fx)) {
+ Fx[,j] <- ordered(Fx[,j])
+ }
+ mcpc1 <- hetcor(Fx[1:50,])$correlations[1,2]
+ mcpc2 <- hetcor(Fx[51:100,])$correlations[1,2]
+ Delta <- mcpc1-mcpc2
+ mc.stat <- c(mc.stat,Delta)
+ }

> hist(mc.stat)
> sum(mc.stat>=obs.stat)/1000
[1] 0.226

An empirical p-value can be computed by a Monte Carlo experiment. In our example, the test
procedure ∆∗ = ρ̂∗1 − ρ̂∗2 is replicated 1000 times under the condition of the hypothesis. Next, the
approximate p-value is computed as the proportion of the simulated ∆∗ values which are larger
than the observed correlation difference .3. More precisely, for each replicate b = 1, . . . , 1000, we
first generate a 100× 2 ordinal data matrix mcD according to the generative model with correlation
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Figure 3: Distribution of the test procedure ∆∗ under H.

matrix Rmc. This matrix contains two symmetrically distributed ordinal variables (default value1

in the rdatagen function.) Next, the ordinal matrix is transformed according to the faking models.
In particular, the function partition.replacement allows to set different replacement distributions
for the two groups of subjects and returns the perturbed data matrix. This function has three main
arguments: Dx=mcD, the data frame or matrix to be replaced; PM, the partition matrix to cluster the
observations into the distinct groups; Pparm, the list of replacements parameters for each of the
different faking models. Note that the partition matrix must have the same dimension as the matrix
to be replaced and a numeric code for each distinct cluster (group) in the partition. If a cell of
the partition matrix contains 0, then the corresponding cell value in the original data matrix is
not modified (no replacement condition is applied). In our example, Pparm is a list containing three
elements. Each element is a 2 (number of groups) × 2 (faking positive vs faking negative) matrix.
So for example, p[1,1] and p[1,2] denote the overall faking positive probabilities for G1 and G2,
respectively. Similarly, gam[1,1] (resp. gam[2,1]) indicates the first shape parameter for the faking
positive (resp. faking negative) model in group G1. The same figure follows for the second shape
parameter del. Figure 3 shows the distribution of the test procedure under H (approximate p-value
= .226). According to the distribution of the test procedure the observed correlation difference ∆̂
seems consistent with the hypothesis of faking.

Example 2

Table 2 refers to a real prospective study about illicit drug use among young people aged 14-27
(Pastore et al., 2007). In particular, we evaluated the relationship between age (dichotomized into two
categories: adults, > 17, and minors) and ecstasy drug consumption. We expected that each individual
would deliberately answer the question either honestly or fraudulently depending on her/his beliefs
and intentions which, in turn, could be influenced by the context. How can the researcher evaluate
the impact of possible fake answers when trying to provide an overall picture of the investigated
phenomena? Although the example is specific, a similar problem may occur in a variety of situations
about stigmatizing characteristics (e.g., habitual gambling, experience of induced abortion, tax evasion,
rash driving, risky sexual behavior).

The result of a log linear model for independence for the two-way table showed a significant
likelihood-ratio chi-squared statistic (G2

(1) = 5.29, p < .05). Hence the independence assumption
was rejected. By a quick inspection of the counts shown in table 2 we can easily recognize that
only 29% of adults answered affirmatively to the question. By contrast, more than 50% of minors
replied affirmatively. Therefore, we suspected that the adults might have shown a larger level of

1The default setting requires that the quantiles are computed using the inverse of the binomial cumulative
distribution (see for example, Jöreskog and Sörbom, 1996).
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drug
yes (1) no (2)

adults (1) 10 25
minors (2) 32 29

Table 2: Observed frequencies for testing independence of age and drug use for the question: Have
you ever made use of ecstasy?

social desirability (Paulhus, 1984) as compared to the minors. This might have artificially boosted the
observed difference between the two groups. To test this hypothesis we performed a new SGR analysis
on the two-way table by assuming a) a generative model implementing the independence assumption
with marginal probability Pr(yes) = .75 b) a fake good model for the variable drug consumption. In
general, faking good can be conceptualized as an individual’s deliberate attempt to manipulate or
distort responses to create a positive impression (Paulhus, 1984). Notice that, the faking good (as well
as the faking bad) scenario always entails a conditional replacement model in which the conditioning
is a function of response polarity. In this application the scenario corresponds to a context in which
all fakers respond negatively to the question. Finally, we also assumed two distinct levels of faking
for the two groups: π+

1 = .8 for the adults and π+
2 = .4 for the minors. We reformulated the problem

within a pure significance test setting:

H : G2 = 0 (independence assumption),

Pr(yes) = .75,

π+
1 = .8, π+

2 = .4, π−1 = π−2 = .0,

γ+
s = δ+s = 1, γ−s = δ−s = 0, s = 1, 2

The following code illustrates the SGR analysis

> require(MASS)
> set.seed(367)
> data(smokers)
> ecstasy.table <- table(smokers$drug,smokers$age,dnn=c("drug","age"))
> obs.lrt <- loglm(~drug+age,data=ecstasy.table)$lrt
>
> PM <- matrix(0,nrow(smokers),2)
> PM[smokers$age==1,2] <- 1
> PM[smokers$age==2,2] <- 2
> Pparm <- list(p=matrix(c(.8,.4,0,0),2),gam=matrix(c(1,1,0,0),2),
+ del=matrix(c(1,1,0,0),2))
> mc.lrt <- NULL
> for (b in 1:1000) {
+ smokers$simdrug <- rdatagen(nrow(smokers),R=matrix(1),Q=2,
+ probs=list(c(.75,.25)))$data
+ Fx <- partition.replacement(smokers[,c("age","simdrug")],PM,Pparm=Pparm)
+ mc.lrt <- c(mc.lrt,loglm(~simdrug+age,data=table(Fx$simdrug,Fx$age,
+ dnn=c("simdrug","age")))$lrt)
+ }

> hist(mc.lrt)
> sum(mc.lrt>=obs.lrt)/1000
[1] 0.812

Note that for dichotomous variables (q = 2) all faking positive models reduce to the following uniform
conditional replacement distribution (Pastore and Lombardi, 2014).

pk|h =


1, h = k = 2

π+, h = 1, k = 2
1− π+, h = k = 1

0, h = 2, k = 1

(6)

Figure 4 shows the distribution of the test procedure under the hypothesis (approximate p-value
= .812). According to the approximate G2 distribution the observed likelihood ratio seems consistent
with the hypothesis of faking.
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Figure 4: Reproduced distribution for the test statistic G2 under H.

Example 3

In this application we extend the results reported in the second example by analyzing a new set
of ordinal data about illicit drug use among young people (see table 3). This new two-way table
relates an independent categorical variable, age, minors (< 18 years old) vs adults, to a dependent
ordinal variable, cannabis consumption. In particular, the dependent variable uses a four-point ordinal
scale ranging from never (1) to often (4) (with intermediate levels being once (2) and some times (3),
respectively). When response categories are ordered, logit models can directly incorporate the ordering
(Agresti, 1990). In general, this results in model representations having simpler interpretations than
ordinary multicategory logit models at least when the proportional odds model holds.

cannabis
(1) (2) (3) (4)

adults (1) 20 5 7 0
minors (2) 27 5 18 10

Table 3: Observed frequencies for testing independence of age and drug use.

The following code illustrates the results of applying an ordered logistic model to the data
represented in table 3. For the analysis we used the function polr in the MASS package (Venables
and Ripley, 2002) that allows to fit a logistic or probit regression model to an ordered factor response.

> Y <- data.frame(list(age=gl(2,4),response=gl(4,1,8,ordered=TRUE),
+ counts=c(20,5,7,0,27,5,18,10)))
> fit0 <- polr(response~1,data=Y,weight=counts)
> fit1 <- polr(response~age,data=Y,weight=counts)
> lrt.obs <- -2*(logLik(fit0)-logLik(fit1))

The likelihood ratio statistic Λ = −2(L0 − L1) for the observed sample showed a significant result
(Λ(3) = 5.22, p < .05). Hence, the independence assumption was rejected in the logit model. About
the model of faking also in this application we expected that individuals’ responses were strictly
subject to faking good manipulations. However, unlike the previous example, this time we speculated
that only the group of adults showed a social desirability bias whereas the minors’ responses were
assumed not to be fake dependent (π2 = π+

2 + π−2 = 0). In particular, we supposed that the adults
were showing a moderate level of faking good (10%) and that their responses were characterized by a
slight faking behavior (see table 1). Note that because of the meaning of the categories of the ordinal
scale for cannabis consumption, in this application the faking good manipulations are modelled by
means of the fake negative parameters (π−). Finally, for the data generation process we constructed a
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Figure 5: Reproduced distribution for the likelihood ratio statistic under H.

generative model under the assumption of no relation between age and cannabis consumption (Λ = 0)
and with true response proportions being equal to the empirical response proportions for the group of
minors. We can collect all the information in the following hypothesis:

H : Λ = 0 (independence assumption),

Pr(0) = .45, Pr(1) = .08,

Pr(2) = .30, Pr(3) = .17,

π−1 = .1, π−2 = π+
1 = π+

2 = .0,

γ−1 = 1.5, δ−1 = 4,

all the other shape parameters are set to 0

The following code illustrates the SGR analysis

> set.seed(367)
> Z <- na.omit(smokers[,c("age","druguse")])
> PM <- matrix(0,nrow(Z),ncol(Z))
> PM[Z$age==1,2] <- 1
> lrt.mc <- NULL
> for (b in 1:1000) {
+ Z$simdrug <- rdatagen(nrow(Z),R=matrix(1),Q=4,
+ probs=list(c(27,5,18,10)/60))$data
+ Dx <- Z[,-2]
+ Fx <- partition.replacement(Dx,PM,p=matrix(c(0,.1),1),fake.model="slight")
+ Tmc <- table(Fx$age,Fx$simdrug)
+ Ymc <- data.frame(list(age=gl(2,4),response=gl(4,1,8,ordered=TRUE),
+ counts=c(Tmc[1,],Tmc[2,])))
+ fit0 <- polr(response~1,data=Ymc,weight=counts)
+ fit1 <- polr(response~age,data=Ymc,weight=counts)
+ lrt.mc <- c(lrt.mc,-2*(logLik(fit0)-logLik(fit1)))
+ }

> sum(lrt.mc>=lrt.obs)/1000
[1] 0.039

Figure 5 shows the distribution of the test procedure under the hypothesis. This time the observed
likelihood ratio statistic seems not consistent with H (approximate p-value .039). In substantive
terms, the observed association between age and cannabis consumption cannot be explained by an
independent generative model and slight faking good manipulations for the adult group.
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Example 3 (continued)

In this section we provide a full exploratory SGR analysis for the data presented in table 3. In
particular, we show how it is possible to vary the parameters (γ−1 , δ−1 ) of the fake negative distribution
and evaluate how these changes effect the results of the approximate p-value. Figure 6 shows the
contour plot of the approximate p-value as a function of different levels for the shape parameters
γ−1 and δ−1 in the group of adults. More specifically, the value of parameter γ−1 was varied at 21
distinct levels from 0.5 to 5.5 (by a 0.25 step). The same set of values was also applied for the second
shape parameter δ−1 . In this application we also changed the overall probability of faking good π− by
replacing the original value 0.1 (used in the previous example) with the new value 0.2. By contrast,
all the other parameters’ values were left unchanged in the SGR simulation by keeping the same
values reported in the previous analysis. The results show how the value of the observed statistic,
Λ = 5.22, is consistent with an independent true model (Λ = 0) that has been corrupted by a moderate
amount of faking good perturbation (20%), and which is also characterized by an extreme faking
pattern in the replacement distribution. This is evident from a quick inspection of figure 6 where
the parameters assignments that resulted consistent with the earlier faking hypothesis are restricted
to the left portion of the main diagonal (γ−1 < δ−1 ) in the graphical representation. By contrast, the
parameters assignments corresponding to the right portion of the main diagonal (γ−1 > δ−1 ) are not
consistent with the hypothesis. Note that these latter values represent slight faking configurations
in the replacement distribution. In sum, the results are in line with a moderate faking good process
which is characterized by a general property of extremeness in the way the original true values are
replaced with the fake ones in the replacement distribution. That is to say, in general the chance to
replace an original true value with another lower value seem to increase as a function of the distance
between two values.

In what follows we present a short code example that the reader may easily manipulate to set the
desired values for the parameters in the simulation study (shape parameters, overall probabilities of
faking, number of runs in the SGR simulations). Note that in this exploratory setting the overall time
required to complete the SGR simulation may widely vary according to the complexity (e.g., number
of different values for the parameters) of the simulation design.

> data(smokers)
> Z <- na.omit(smokers[,c("age","druguse")])
>
> fit0 <- polr(ordered(druguse)~1,data=Z)
> fit1 <- polr(ordered(druguse)~age,data=Z)
> lrt.obs <- -2*(logLik(fit0)-logLik(fit1)) # observed LRT
>
> ### SGR algorithm

π−
1 = 0.2

γ−1

δ− 1

1

2

3

4

5

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Contour plot for the approximate p-value as a function of shape parameter γ−1 and shape
parameter δ−1 . In this example the overall probability of faking good for the adult group was set equal
to π−1 = 0.2. Note that the points represented to the left of the main diagonal correspond to extreme
faking conditions, whereas the points represented to the right of the main diagonal correspond to
slight faking conditions. The total number of runs in the SGR simulation analysis was equal to 500.
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> PI <- .2; B <- 10 # for real simulations set B at least 500
> lrt.mc <- ga.mc <- de.mc <- p.mc <- NULL
> PM <- matrix(0,nrow(Z),ncol(Z)) # partition matrix
> PM[Z$age==1,2] <- 1
>
> for (GA in seq(.5,5.5,.5)) {
+ for (DE in seq(.5,5.5,.5)) {
+
+ Pparm <- list(p=matrix(c(0,PI),1),gam=matrix(c(0,GA),1),del=matrix(c(0,DE),1))
+
+ for (b in 1:B) {
+ Z$simdrug <- rdatagen(nrow(Z),R=matrix(1),Q=4,
+ probs=list(c(27,5,18,10)/60))$data
+ Dx <- Z[,-2]
+ Fx <- partition.replacement(Dx,PM,Pparm=Pparm)
+
+ Tmc <- table(Fx$age,Fx$simdrug)
+ Ymc <- data.frame(list(age=gl(2,ncol(Tmc)),response=gl(ncol(Tmc),1,
+ ordered=TRUE,labels=colnames(Tmc)),counts=c(Tmc[1,],Tmc[2,])))
+
+ fit0 <- polr(response~1,data=Ymc,weight=counts)
+ fit1 <- polr(response~age,data=Ymc,weight=counts)
+ statval <- -2*(logLik(fit0)-logLik(fit1))
+ lrt.mc <- c(lrt.mc,statval)
+
+ ga.mc <- c(ga.mc,GA); de.mc <- c(de.mc,DE)
+ p.mc <- c(p.mc,ifelse(statval>lrt.obs,1,0))
+ }
+ }
+ }

> LRT <- data.frame(list(gam=ga.mc,del=de.mc,lrt=lrt.mc))
> aggregate(p.mc,list(gam=LRT$gam,del=LRT$del),mean)

Summary, limitations, and future works

This paper illustrated the usage of a new R package, sgr, for simulating and analyzing ordinal fake
data. As far as we know, sgr is the first statistical package that is devoted to the analysis of fake data.
Overall, the essential characteristic of this approach is its explicit use of mathematical models and
appropriate probability distributions for quantifying uncertainty in inferences based on possible fake
data. Moreover, it involves the derivation of new statistical results as well as the evaluation of the
implications of such new results: Are the substantive conclusions reasonable? How sensitive are the
results to the modeling assumptions about the process of faking? In sum, SGR takes an interpretation
perspective by incorporating in a global model all the available information about the process of
faking. In this contribution we illustrated the use of sgr on three simple scenarios of faking. More
complex examples of SGR applications can be found in Lombardi and Pastore (2012) and Pastore and
Lombardi (2014).

As with many Monte Carlo-type approaches, also SGR involves simplifying assumptions that
may result in lower external validity. For example, one relevant limitation regards the assumption
that restricts the conditional replacement distribution to satisfy the CI property. Unfortunately,
this restriction clearly limits the range of empirical faking processes that can be mimicked by the
current SGR simulation procedure. In particular, because the replacement distribution under the CI
assumption acts as a perturbation process for the original data, the resulting new fake data sets will in
general show covariance patterns that are (on average) weaker than the ones observed for the original
uncorrupted data. In general, this may not be a serious problem as different studies have shown
that self-report measures under faking motivating conditions tend to have smaller variances and
lower reliability (covariance) estimates than those observed for measures collected under uncorrupted
conditions (Ellingson et al., 2001; Eysenck et al., 1974; Hesketh et al., 2004; Topping and O’Gorman,
1997). However, opposite results have also been observed where simple fake good instructions tend to
increase the intercorrelations between the manipulated or faked items (Ellingson et al., 1999; Galic
et al., 2012; Pauls and Crost, 2005; Zickar and Robie, 1999; Ziegler and Buehner, 2009). Therefore,
although encouraging, the promise of this approach should be examined across more varied conditions.
We acknowledge that more work still needs to be done. We are in the process of extending sgr to
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include new replacement distributions other than the ones presented in this article which will allow to
modulate different levels of correlational patterns in the simulated fake data.
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