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Coordinate-Based Meta-Analysis of fMRI
Studies with R
by Andrea Stocco

Abstract This paper outlines how to conduct a simple meta-analysis of neuroimaging foci of activation
in R. In particular, the first part of this paper reviews the nature of fMRI data, and presents a brief
overview of the existing packages that can be used to analyze fMRI data in R. The second part
illustrates how to handle fMRI data by showing how to visualize the results of different neuroimaging
studies in a so-called orthographic view, where the spatial distribution of the foci of activation from
different fMRI studies can be inspected visually.

Functional MRI (fMRI) is one of the most important and powerful tools of neuroscientific research.
Although not as commonly used for fMRI analysis as some specific applications such as SPM (Friston
et al., 2006), AFNI (Cox and Hyde, 1997), or FSL (Smith et al., 2004), R does provide several packages
that can be employed in neuroimaging research. These packages deal with a variety of topics, ranging
from reading and manipulating fMRI datasets, to implementing sophisticated statistical models.

The goal of this paper is to provide a brief introduction to fMRI analysis, and the various R
packages that can be used to carry it out. As an example, it will show how to use simple R commands
to read fMRI images and plot results from previous studies, which can then be visually compared. This
is a special form of meta-analysis, and a common way to compare results from the existing literature.

A brief introduction to fMRI data analysis

Before getting into the details of the R code, it is important to have a clear picture of what type of data
and analyses are common in fMRI research. An fMRI study consists of a set of 3D images that capture
brain activity at fixed intervals of time while participants are performing a given task inside an MRI
scanner. The interval between image acquisitions is known as repetition time or TR, and is typically 2
seconds. Each image is made of thousands of almost-cubic elements called voxels. The size of a voxel
(typically on the order of 3× 3× 3 mm) represents the lower limit of the spatial resolution of an image.
Not all the voxels are acquired at the same time: each image is typically created by acquiring each
horizontal 2D plane (or “slice”) in serial order. Thus, voxels belonging to different slices are acquired
at different times within the same 2-second TR.

The MRI scanner captures brain “activity” only indirectly, by measuring the so-called Blood
Oxygen-Level Dependent (BOLD) signal—that is, the amount of oxygenated blood present in every
position in space. The BOLD signal is known to vary as a function of neural activity. Specifically, the
BOLD response to an increase of neural activity at time t = 0 follows a specific time course, which is
known as the hemodynamic response function h(t), and commonly modeled as the difference between
two gamma functions (Worsley et al., 2002):
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Figure 1 illustrates the typical shape of the hemodynamic response function, as returned by the
function fmri.stimulus of the fmri package (Polzehl and Tabelow, 2007; Tabelow and Polzehl, 2011)
using the following code.

library(fmri)
t <- seq(0, 30, 0.1) # from 0 to 30 secs, in increments of 100ms
h <- fmri.stimulus(301, durations = c(0), # h(t) for instantaneous event at t=0,

onsets = c(1), rt = 0.1), # Sampled at TR = 0.1 secs
plot(t, h, type = "l", lwd = 2, col = "red",

xlab = "Time (secs)", ylab = "h(t)", main = "Hemodynamic Response Function")

Note how the function peaks only about 6 seconds after the event that triggered neural activity: The
sluggishness of this response is one of the major drawbacks of functional neuroimaging, as it must be
accounted for when designing an experiment and analyzing the data.

After collection, fMRI images need to be preprocessed to remove various sources of noise. A
typical preprocessing procedure (e.g., Friston et al., 2006) consists of the following steps:

1. Spatial realignment, whereby head motion from one image to another is removed by means of
rigid-body transformation;
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Figure 1: The hemodynamic response function, as implemented in the fmri package.

2. Slice timing correction, whereby the temporal differences in the time at which voxels belonging
to different 2D slices are removed;

3. Normalization, where individual brains are warped onto a common anatomical template by
means of a non-linear transformation. This step is crucial to aggregate and compare data
collected from anatomically different brains;

4. Spatial smoothing, which is typically performed with a 3D Gaussian kernel and is aimed at
reducing noise and removing residual differences in individual anatomy between participants.

Specialized R packages exists that perform the first and the last of these steps. Specifically, package
RNiftyReg (Clayden, 2013) provides functions for realigning images in the NIFTI file format, while
spatial smoothing is available in the AnalyzeFMRI package (Bordier et al., 2011). In addition, the
fmri package implements an advanced smoothing procedure that adapts to the constraints of the
underlying anatomical structures.

To the best of my knowledge, and as confirmed by Tabelow and Polzehl (2011), there are currently
no R packages that support the second and third preprocessing steps, which must still be performed
using other software.

Statistical analysis of fMRI data

FMRI data is typically analyzed with a mass-univariate approach (Friston et al., 2006), where a single
model is fitted to the timecourse of hemodynamic activity of each voxel independently. This is done
by first creating a n × m matrix of regressors X, where the m columns represent the time courses
of different experimental conditions and the n rows represent the discrete time points at which the
images were acquired. To account for the sluggishness of the BOLD response (Figure 1), the matrix X is
created by convolving each column of a matrix S describing onsets and durations of the experimental
stimuli with the hemodynamic response function h, so that X = h ∗ S.

Data from all the voxels Y of a single participant is then analyzed by fitting the linear model
Y = Xβ+ ε, and thus finding the values of β that minimize the residual sum of squares εTε for each
voxel. However, the experimenter is typically interested in examining differences between conditions,
rather than the estimates of the conditions per se. These differences are often referred to as “contrasts”,
and can be expressed as the product between a contrast vector c (usually a binary vector), and the
vector of estimates β, i.e., cTβ. Thus, the null hypothesis H0 that there is no difference between
conditions corresponds to the case cTβ = 0.

The result of a neuroimaging analysis is a set of three-dimensional images. Each image is made of
tens of thousands of voxels, and each voxel contains the statistical value of a test of a contrast vector c.
These parametric images are typically thresholded at a level that corresponds to a significant value
of the corresponding statistical test, corrected for multiple comparisons (Friston et al., 2006). This
procedure yields a set of 3D clusters of spatially adjacent voxels, whose activity is similarly affected by
the experimental manipulations.

While R does not provide many tools for preprocessing, there are many R packages that can be
used to analyze preprocessed fMRI datasets. For instance, the fmri package contains functions to
fit statistical models to fMRI datasets in the way described above. In particular, the design matrix
X is generated using the function fmri.design, and a linear model can be fit using fmri.lm. In
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addition, both the AnalyzeFMRI and the fmri packages also contain functions to perform Independent
Component Analysis in both the spatial and temporal domains, as well as several procedures for
multiple-error correction, such as Bonferroni, False Discovery Rate, and various instances of family-
wise corrections. The package RfmriVC (Bothmann and Kalus, 2013) permits users to modulate
the effects of the hemodynamic response function with other variables that vary within a single
session, such as time or fatigue. The package arf3DS4 (Weeda et al., 2011) uses the estimated β- or
t-images to identify active brain regions and their patterns of functional connectivity. The package
BHMSMAfMRI (Sanyal and Ferreira, 2014) implements Bayesian multi-subject analysis. Finally, the
package neuRosim (Welvaert et al., 2011) contains functions that simulate brain imaging data for
testing purposes. A comprehensive list of these and related packages is maintained in the CRAN task
view on Medical Image Analysis (http://CRAN.R-project.org/view=MedicalImaging).

Describing the functionalities of these packages is beyond the scope of this paper; the interested
reader can check the recent and extensive review by Eloyan et al. (2014) on the subject. Instead,
the remainder of this article will introduce some simple code lines that demonstrate how to read
imaging data, plot them over a brain image, and visually compare results from different neuroimaging
studies. Incidentally, this type of comparison is a common way to familiarize oneself with a new field
in neuroimaging research, and is quite often an important step in justifying hypotheses about the
functions of one brain region.

An example of coordinate-based meta-analysis

To understand the coordinate-based meta-analysis, we need to take a step back. Remember that
the result of an fMRI analysis is a set of clusters of voxels that are jointly above a certain statistical
threshold. Because a single test might identify multiple clusters, neuroimaging papers typically focus
only on those that are deemed the most interesting, and relegate the full list of clusters to separate
tables. These tables detail various characteristics of each cluster, including its size (i.e., the number of
voxels it spans) and position within the brain.

To facilitate comparisons across studies, cluster positions are given in terms of three-dimensional
coordinates in predefined stereotactic spaces (which will be discussed in the next section). Because a
cluster spans many voxels, different conventions can be applied to determine which coordinates best
represent a cluster’s position. For instance, some authors might report the coordinates of the cluster’s
“peak” (i.e., the highest parameter value), while others report the cluster’s geometrical center or its
center of mass. Fortunately, these values tend not to differ much from each other, and for simplicity
we can consider them as functionally equivalent.

In theory, and assuming they are available and comparable, one could directly enter contrast or
statistical parameter images from different studies into a meta-analysis. This procedure is known
as image-based meta-analysis, and is generally considered the most reliable (Salimi-Khorshidi et al.,
2009). However, because cluster sizes are dependent on the statistical error correction procedures that
were adopted, most meta-analyses of fMRI data, like the Activation Likelihood Estimate (Turkeltaub
et al., 2002), focus instead on the consistency of cluster positions, i.e., how often a given region is
reported, and how the spatial distribution of cluster peaks is affected by the study parameters. This
procedure is known as coordinate-based meta-analysis, and has been successfully used to identify
possible subdivisions within the same anatomical brain regions (for example, the rostral prefrontal
cortex, Burgess et al. 2007; or the anterior cingulate cortex, Bush et al. 2000), or to suggest the
involvement, in a certain cognitive function, of a brain structure that had been previously overlooked
(e.g., the basal ganglia in language switching, Stocco et al. 2014). The remainder of this paper will
introduce the packages and the R code that will be used to visualize foci of activation on a standard
brain template. The final result will be an image like the one in Figure 2.

Although simple, the code provided herein is useful in its own right. Images like Figure 2 have
been published in many scientific papers, such as Bush et al. (2000) and Burgess et al. (2007). This
very same code, in fact, has been used to generate two figures published in Stocco et al. (2014) and
Buchweitz and Prat (2013).

Displaying the MNI template

The spatial coordinates of a cluster of voxels are given in reference to an ideal brain template, oriented
in a given stereotactic space. Two stereotactic spaces are commonly used, the Talairach-Tournoux
and the Montreal Neurological Institute (MNI) spaces. In this paper, we will assume that all the
coordinates are in the MNI space, which is preferred by the majority of researchers (Poldrack et al.,
2011). Talairach-Tournoux coordinates can be converted to their MNI equivalent using non-linear
transformations, such as those proposed by Brett et al. (2001).
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Figure 2: A visual summary of the results of four neuroimaging studies.

In the MNI space the x, y, and z axes correspond to the left-right, front-back, and up-down
orientation of a brain. The origin of the space is located in a point in the middle of the brain, so that
the brain volume spans both positive and negative coordinates along all axes.

The first step to producing Figure 2 is to visualize the MNI template brain on an R plot. Many
versions of the MNI template exist; in this paper, I am going to use the so-called "Colin27" version
(Holmes et al., 1998). This template is available on various websites, and is included in many common
software packages for fMRI, such as MRICron (Rorden et al., 2000). This example will use the template
that is available at http://packages.bic.mni.mcgill.ca/mni-models/colin27/mni_colin27_1998_
nifti.zip.

The template is encoded in a particular file format known as NIfTI, which is, by far, the most
common file format for functional neuroimages. All the packages mentioned above contain functions
to read and write NIfTI files. In this example, I will use the oro.nifti package (Whitcher et al., 2011),
which has been developed specifically for this purpose. Assuming that the template’s URL is stored in
the variable colin.url, the image can be easily loaded with this code:

library(oro.nifti)
temp <- file.path(tempdir(), "mni_colin27_1998_nifti.zip")
colin.url <-
"http://packages.bic.mni.mcgill.ca/mni-models/colin27/mni_colin27_1998_nifti.zip"

download.file(colin.url, dest = temp)
unzip(temp, exdir = tempdir())
colin <- readNIfTI(file.path(tempdir(), "colin27_t1_tal_lin.nii"))

The colin object is simply a 3D matrix. The matrix dimensions are of 181× 217× 181 voxels, and can
be accessed by calling the dim function: dim(colin). Each slice of this matrix is in itself a 2D image,
and can be visualized with any standard 2D plotting tools in R. For instance, a professional-looking
sagittal (i.e., lateral) view of the brain can be visualized by calling the image function on the 80th 2D
slice across the x axis, e.g., image(colin[80, , ], col = grey(0:255 / 255)), as shown in Figure 3.

Notice that the original template, as shown in Figure 3, contains the brain as well as a surrounding
skull. For clarity purposes, the skull has been omitted in Figure 2. The Colin27 archive that had been
downloaded in the previous step also contains a “brain mask”, i.e., a binary image that spans the
entire brain but leaves out the skull. An skull-stripped image of the brain can be generated as the
point-wise product of the colin image and the mask:

mask <- readNIfTI(file.path(tempdir(), "colin27_t1_tal_lin_mask.nii"))
colin <- colin * mask
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Figure 3: The 80th 2D sagittal slice of the colin template.

The three axes of the colin object are already aligned with the three axes of the colin template.
However, the coordinate system of the image and the coordinate system of the colin image have
different centers. In the colin object, the point of coordinates x = 0, y = 0, z = 0 is located at the
leftmost voxel of the first row of the bottom slice. In the MNI space, however, the origin is located in the
middle of the brain. The MNI origin corresponds to the voxel of coordinates x = 91, y = 126, z = 72
in the image space. Thus, the MNI coordinates need to be translated in space to be visualized correctly.
Because each voxel in colin is a 1× 1× 1 mm cube, this affine translation can be easily implemented
using sweep:

# Origin of MNI space
origin <- c(x = 91, y = 126, z = 72)

# Converting back and forth to MNI space
mni2xyz <- function(x) sweep(x, 2, as.double(origin), "+")
xyz2mni <- function(x) sweep(x, 2, as.double(origin), "-")

Figure 2 is a rendition of the brain in so-called orthographic view, which is particularly helpful for
visualizing the relative position of foci within the brain. The orthographic view consists of three
orthogonal brain slices that intersect in a specific point. We will refer to this point as the center C of
the orthographic view, with coordinates xC, yC, zC. The three views are produced by simply selecting
the 2D slice of the 3D image with the corresponding values of C. The top left view in Figure 2 is called
coronal view, and corresponds to the case where y = yC. The top right view in Figure 2 is called sagittal
view, and corresponds to the case where x = xC. Finally, the bottom-left view is known as axial view,
and corresponds to the case where z = zC.

The package oro.nifti has its own method (orthographic) to visualize a brain in orthographic
view. In this example, however, we will implement the procedure from scratch, as it is fairly easy and
allows for more control on the proper visualization.

The first step towards producing the image in Figure 2 is to create a the plot window and divide it
into four quadrants. R’s default layout method is a convenient way to do so:

layout(matrix(1:4, ncol = 2, byrow = TRUE),
heights = c(181, 217),
widths = c(181, 217))

layout.show(4)

The heights and widths parameters in the code are used to assign non-uniform heights and widths to
the four quadrants. This is needed, in turn, because the colin template is not cubic, and it spans 181
voxels along the x and z axis, but 217 on the z axis.

Next, we need to define our center point C. Initially, I will simply assume that the center of the
orthographic view is also the origin in MNI space, i.e., the point of coordinates x = 0, y = 0, z = 0.
The coronal, sagittal, and axial views of the orthographic figure can be simply generated by subsequent
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calls of the default method image:

center <- origin
greys <- grey(1:max(colin) / max(colin))
par(mar = c(2, 2, 2, 2))
image(colin[, center["x"], ], col = greys) # Coronal
image(colin[center["y"], , ], col = greys) # Sagittal
image(colin[, , center["z"]], col = greys) # Axial
plot.new() # Empty quadrant

In the code above, the greys variable is used to create as many shades of grey as there are values of
intensity in the Colin27 template. These colors as passed as an argument to visualize the brain slices in
the canonical greyscale (instead of R’s default heat colors) like in in Figure 3. The mar variable sets the
plot margins for each image to 2 lines of text, which is the minimum amount necessary to visualize the
image axes in each view. Finally, the call to plot.new is required because R expects one plot for each
quadrant defined by layout.

Plotting the foci

Because each image in the orthographic view is a figure in itself, the individual foci can be visualized
by plotting points on top of each image with R’s points function, before proceeding to the next image.
In the example of Figure 2, the individual foci of activation were stored in a ‘data.frame’ object called
foci.

> foci
x y z Study Type

1 -30 35 8 Cole Words
2 -46 7 21 Harstra Objects
3 -40 8 36 Ruge Shapes
4 36 12 54 Ruge Shapes
5 -48 28 32 Ruge Shapes
6 44 32 32 Ruge Shapes
7 -40 32 16 Ruge Shapes
8 -40 44 8 Ruge Shapes
9 40 40 16 Ruge Shapes
10 -32 20 -4 Ruge Shapes
11 32 28 -4 Ruge Shapes
12 -44 48 -8 Stocco Numbers

This list of foci was created by examining the results of four publications that, between 2010 and 2012,
defined a rule-learning paradigm called Rapid Instructed Task Learning (Cole et al., 2013), which
can be used to study how the brain encodes abstract rules. Specifically, the foci of activation in this
list come from an analysis of the brain regions that were significantly more engaged when encoding
completely novel rules than rules that had been practiced before. For simplicity’s sake, only foci
appearing in the frontal lobe were considered. Interestingly, these four studies used rules of similar
length and complexity, but of different nature. Specifically, the rules used in the four studies applied
to pictures of common objects (Hartstra et al., 2011), geometric shapes (Ruge and Wolfensteller, 2010),
words (Cole et al., 2010), and numbers (Stocco et al., 2012). By comparing the distribution of results
across these studies, we can observe whether the nature of the rules performed determines the location
where the corresponding rule is represented. For example, the distribution of foci in Figure 2 seems to
suggest that rules that encode more abstract materials (such as words and numbers) activate more
anterior regions than rules that encode more concrete materials (such as pictures of common objects).

In the foci data frame, the x, y, and z columns represent, of course, the corresponding MNI
coordinates of each focus of activation. The fourth column Study serves to identify the specific study
the foci belong to. The last column Type defines the type of stimuli the rules were applied to in each
study.

Before plotting the foci, their coordinates need to be transformed from the three-dimensional MNI
space to the bidimensional space of each image. The procedure requires two consecutive steps. First,
the coordinates need to be transformed from MNI space to image space (using the mni2xyz function
above). Second, the image coordinates need to be properly scaled to the fit within the range [0, 1] of
the axes generated by the image function. Once we have the foci coordinates in the proper space, we
can plot them by using the appropriate coordinates as the values of the x and y parameters of points.
The following code illustrates the example.

# Transforms the coordinates
im.foci <- mni2xyz(foci[1:3])
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# Normalizes
im.foci <- sweep(im.foci, 2, dim(colin), "/")

image(colin[, center["y"], ], col = greys) # Coronal
points(x = im.foci[,"x"], y = im.foci[,"z"], lwd = 2, col = "red")

image(colin[center["x"], , ], col = greys) # Sagittal
points(x = im.foci[,"y"], y = im.foci[,"z"], lwd = 2, col = "red")

image(colin[, , center["z"]], col = greys) # Axial
points(x = im.foci[,"x"], y = im.foci[,"y"], lwd = 2, col = "red")
plot.new()

This code, however, does not efficiently convey the position of the foci. This is because, while the three
views are centered at the origin of the MNI coordinates, the foci are instead mostly distributed in the
left hemisphere and in the frontal lobe. The easiest way to solve this problem is to use the center CF of
the distribution of foci, and not the MNI origin, as the center of the orthographic view. The coordinates
of CF are simply the mean of each focus’ x, y, and z coordinates: xCF = x, yCF = y, zCF = z. In R,
these values can be easily calculated with one call of the colMeans function, and turned into integers
by using round.

im.foci <- mni2xyz(foci[1:3])
center <- round(colMeans(im.foci), 0)

While this produces a more meaningful figure, it does not resolve all the problems. For instance, the
sagittal view of Figure 2 could come from either the left or the right hemisphere. Because the left and
right hemispheres are symmetric, there is no way to know from which one a sagittal view comes from.
To avoid this ambiguity, orthographic views often outline the two planes that are perpendicular to
each view in the form of lines. Thus, each of the three images shows the position of the planes that
define the other two images. Because the three images are orthogonal with each other, each plane is
visualized as a vertical or a horizontal line (dotted white lines in Figure 2). These lines can be drawn
by calling abline before invoking the points function, and using each plane’s coordinates as the h or
v parameter of abline. The plane coordinates are, of course, those of the foci’s center CF, normalized
to be in the range [0, 1].

# Normalizes
im.foci <- sweep(im.foci, 2, dim(colin), "/")
CF <- colMeans(im.foci)

image(colin[, center["y"], ], col = greys) # Coronal
abline(v = CF["x"], h = CF["z"], lty = 2, lwd = 2, col = "white")
points(x = im.foci[,"x"], y = im.foci[,"z"], lwd = 2, col = "red")

image(colin[center["x"], , ], col = greys) # Sagittal
abline(v = CF["y"], h = CF["z"], lty = 2, lwd = 2, col = "white")
points(x = im.foci[,"y"], y = im.foci[,"z"], lwd = 2, col = "red")

image(colin[, , center["z"]], col = greys) # Axial
abline(v = CF["x"], h = CF["y"], lty = 2, lwd = 2, col = "white")
points(x = im.foci[,"x"], y = im.foci[,"y"], lwd = 2, col = "red")

plot.new() # Empty quadrant

One important feature of Figure 2 is the use of tick marks and labels representing MNI coordinates,
instead of the default [0, 1] axes that are generated otherwise. In addition, the tick marks and labels of
Figure 2 are positioned on the outside of the plotting region, bringing the three views closer together.
Both of these features increment the readability of the plot.

The precise position of tick marks is controlled by the at parameter of the axis function, which
specifies the location of the tick marks in the axis’ native range (in this case, [0, 1]). The corresponding
labels are similarly controlled by the labels parameter.

Let us start by defining a set of “useful” position marks in MNI space, e.g., every 25mm from −100
to 100, along the x, y, and z axis. These labels can then be transformed in 2D plotting coordinates by
first converting them into image space and subsequently normalizing them.

labels <- seq(-100, 100, by = 25)
ticks <- cbind(x = labels, y = labels, z = labels)
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ticks <- sweep(mni2xyz(ticks), 2, dim(colin), "/")

Now that the we have a data frame of tick marks, we can proceed to modify the position of the axes in
each image of the orthographic view. To do this, we first need to suppress the image method’s default
axes, which can be done by setting the parameters ann (for the labels) and axes (for the axes) to FALSE.
Second, we need to create custom axes with the axis function. The axis position is the first argument
of the axis function, and it is indexed by a number between 1 and 4, in clockwise order beginning
from the bottom.

Keeping this scheme in mind, we want to plot axes 1 and 3 on the coronal view; axes 3 and 4 on the
sagittal view; and axes 1 and 2 on the axial view. We also want to modify the margins (using par(mar
= ...)) of each view, so that the outside margins are larger than the inside margins to make room for
axes, tick marks, and labels. The resulting code is this:

par(mar = c(0.1, 2, 2, 0.1)) # Coronal
image(colin[, center["y"], ], ann = FALSE, axes = FALSE, col = greys)
axis(2, pos = 0, at = ticks[,"z"], labels = labels)
axis(3, pos = 1, at = ticks[,"x"], labels = labels)
abline(v = CF["x"], h = CF["z"], lty = 2, lwd = 2, col = "white")
points(x = im.foci[,"x"], y = im.foci[,"z"], lwd = 2, col = "red")

par(mar = c(0.1, 0.1, 2, 2)) # Sagittal
image(colin[center["x"], , ], ann = FALSE, axes = FALSE, col = greys)
axis(3, pos = 1, at = ticks[,"y"], labels = labels)
axis(4, pos = 1, at = ticks[,"z"], labels = labels)
abline(v = CF["y"], h = CF["z"], lty = 2, lwd = 2, col = "white")
points(x = im.foci[,"y"], y = im.foci[,"z"], lwd = 2, col = "red")

par(mar = c(2, 2, 0.1, 0.1)) # Axial
image(colin[, , center["z"]], ann = FALSE, axes = FALSE, col = greys)
axis(1, pos = 0, at = ticks[,"x"], labels = labels)
axis(2, pos = 0, at = ticks[,"y"], labels = labels)

abline(v = CF["x"], h = CF["y"], lty = 2, lwd = 2, col = "white")
points(x = im.foci[,"x"], y = im.foci[,"y"], lwd = 2, col = "red")

# Last quadrant
plot.new()

Because neuroimaging meta-analysis often aims at identifying functional specializations within or
between brain regions, it is helpful to color-code the given foci of activation according to some category.
In the example of Figure 2, the foci of activation come from four different studies that dealt with
learning rules for different types of stimuli.

The study and the stimulus type are encoded in the fourth and fifth column of the foci data frame,
and are indicated in Figure 2 by the color and point symbol of each focus of activation. Thus, the
number of colors and the number of point marks are determined by the number of unique values of the
variable foci$Study and the variable foci$Type. To visualize each point with the proper marker and
color, we need to create a color vector and a point mark vector, each of which is as long as the set of foci.
To cover all the possible combinations, the color and mark vectors need to be created by substituting
each value of the Rule and Learning columns in the foci data frame with the corresponding color and
mark.

foci.marks <- as.integer(foci$Learning)
foci.colors <- rainbow(nlevels(foci$Rule))[as.integer(foci$Rule)]

Now we can just modify the points function used above by specifying the proper parameters—col
for the colors and pch for the marks.

# Coronal view code
...
points(x = im.foci[, "x"], y = im.foci[,"z"], lwd = 2, pch = foci.marks,

col = foci.colors)

# Sagittal view code
...
points(x = im.foci[, "y"], y = im.foci[,"z"], lwd = 2, pch = foci.marks,

col = foci.colors)
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# Axial view code
...
points(x = im.foci[, "x"], y = im.foci[,"y"], lwd = 2, pch = foci.marks,

col = foci.colors)

The last step to complete Figure 2 is to add the figure legend. Because our color and point mark vectors
contain combinations of color and point mark, we need to simplify them appropriately, so that we
have only one combination of each. To do so, we will first create a data frame object holding all the
legend arguments, and then use unique to extract the unique combinations of values. Thus, the final
piece of the code will contain the following lines:

# Last quadrant
plot.new()
l.args <- data.frame(col = foci.colors, pch = foci.marks,

stringsAsFactors = FALSE)
l.args$legend <- paste(foci$Learning, foci$Rule)
l.args <- unique(l.args)
legend(x = "center", legend = l.args$legend, col = l.args$col, pch = l.args$pch)

Summary

This paper has discussed the application of R to functional neuroimaging. The first part of this
article has given an overview of the basics of functional neuroimaging data acquisition, preprocessing,
and analysis. Neuroimaging data requires specific preprocessing steps, such as spatial realignment
and normalization, that are currently not covered by R packages. The analysis and modeling of
neuroimaging data, on the other hand, is covered by many specialized packages. So, why should one
use R instead of, let’s say, AfNI or FSL? First and foremost, the existing R packages provide unique
and sophisticated features that are not available otherwise. Second, R by itself provides hundreds of
statistical packages and models that are not specific to neuroimaging, but that can be readily applied
to supplement, expand, and innovate the existing approaches. For example, one can imagine to use
the spatstat package (Baddeley and Turner, 2005) to analyze the three-dimensional spatial distribution
of foci in Figure 2, thus giving some statistical bases for our intuition that different types of stimuli
affect how rules are represented.

As an introduction on how R can be used to handle neuroimaging data, the second part of this
paper has presented an example of R code that visualizes the results of different neuroimaging studies
on an orthographic view of the brain. The code permits to visually inspect the distribution of reported
cluster of activation across studies, which is an important first step for generating more precise
hypotheses about the functions of different brain regions. It uses brain templates and coordinate
spaces that are standard in the neuroimaging literature, and can generate journal-quality images for
publication. In fact, this very same code has been used to generate figures in published reviews (Stocco
et al., 2014; Buchweitz and Prat, 2013).

In summary, although R cannot completely replace specialized software for fMRI data analysis,
it can readily integrate them—which is relatively easy after familiarizing oneself with the formats,
templates, and conventions of neuroimaging research.
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