
CONTRIBUTED RESEARCH ARTICLES 43

phaseR: An R Package for Phase Plane
Analysis of Autonomous ODE Systems
by Michael J. Grayling

Abstract When modelling physical systems, analysts will frequently be confronted by differential
equations which cannot be solved analytically. In this instance, numerical integration will usually be
the only way forward. However, for autonomous systems of ordinary differential equations (ODEs)
in one or two dimensions, it is possible to employ an instructive qualitative analysis foregoing this
requirement, using so-called phase plane methods. Moreover, this qualitative analysis can even prove
to be highly useful for systems that can be solved analytically, or will be solved numerically anyway.
The package phaseR allows the user to perform such phase plane analyses: determining the stability
of any equilibrium points easily, and producing informative plots.

Introduction

Repeatedly, when a system of differential equations is written down, it cannot be solved analytically.
This is particularly true in the non-linear case, which unfortunately habitually arises when modelling
physical systems. As such, it is common that numerical integration is the only way for a modeller to
analyse the properties of their system. Consequently, many software packages exist today to assist
in this step. In R, for example, the package deSolve (Soetaert et al., 2010) deals with many classes of
differential equation. It allows users to solve first-order stiff and non-stiff initial value problem ODEs,
as well as stiff and non-stiff delay differential equations (DDEs), and differential algebraic equations
(DAEs) up to index 3. Moreover, it can tackle partial differential equations (PDEs) with the assistance
ReacTran (Soetaert and Meysman, 2012). For such PDE problems users also have available the package
rootSolve (Soetaert et al., 2009), which is additionally particularly suited to analysing the equilibrium
of differential equations. Finally, bvpSolve (Soetaert et al., 2013) can tackle boundary value problems
of systems of ODEs, whilst sde (Iacus, 2009) is available for stochastic differential equations (SDEs).
However, for autonomous ODE systems in either one or two dimensions, phase plane methods, as
developed by mathematicians such as Henri Poincaré in the 19th Century (Farlow, 2006), allow for a
qualitative analysis of the system’s properties without the need for numerical integration. Specifically,
it is usually possible to determine the long-term behaviour of the system for any initial condition, via
a highly graphical procedure coupled with algorithmic mathematical analysis.

As a result of these considerations, phase plane analysis is an important device in any modeller’s
toolbox. It stands as a key technique not only for mathematicians, but biologists, physicists and
engineers amongst others. See for example Jordan and Smith (2007), Barnes and Fulford (2009),
Choudhury (2005), and Mooney (1999) for descriptions of uses in various fields. Since the method is
extremely algorithmic in nature, software tools would clearly provide a powerful system by which to
execute the techniques. Despite this, few programmes are available for implementing phase plane
methods. Presently, a programme entitled pplane that employs a simple GUI system is available
for Matlab (MATLAB, 2014; Polking, 2009). In addition, several java applets are available across the
internet for executing phase plane methods. But, they vary widely in quality and often struggle when
confronted with complex systems, whilst they also provide no simple way to export produced plots.
Now, with R ever growing in popularity as an open-source general purpose scientific computing
lenguage, it is logical that available code to implement phase plane methods would serve as a
valuable resource. The first attempts in this direction were implemented by Kaplan and Flath (2004)
at Macalester College who created several short programmes to analyse two dimensional ODEs and
provided several example systems. phaseR extends their initial ideas in order to create a complete
package; one providing phase plane novices with the opportunity for independent learning, instructors
with a useful package for practical sessions, and experienced modellers with an easy means by which
to produce quality plots.

Overall, phaseR maintains the original structure of Kaplan and Flath’s code; with key functions
available for each of the steps of a full phase plane analysis. Specifically, it can assist in identifying
and classifying equilibrium points, allows direction fields as well as nullclines to be plotted, and
allows trajectories to be added to plots for user specified initial conditions. phaseR, however, extends
the functionality of the code to allow analysis of both one and two dimensional systems, whilst also
allowing for far greater control over the final produced plot. Moreover, phaseR comes complete
with an extensive guide detailing the techniques of phase plane analysis, also containing numerous
examples and exercises. Finally, phaseR makes use of available R packages for finding numerical
solutions to ODEs in order to ensure maximum stability of the required integration step. I will now
proceed by briefly reviewing the techniques of phase plane analysis, before discussing the usage of the

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=deSolve
http://CRAN.R-project.org/package=ReacTran
http://CRAN.R-project.org/package=rootSolve
http://CRAN.R-project.org/package=bvpSolve
http://CRAN.R-project.org/package=sde
http://CRAN.R-project.org/package=phaseR


CONTRIBUTED RESEARCH ARTICLES 44

package through several examples.

One dimensional autonomous ODE systems

Any one dimensional autonomous ODE, of a function y = y(t) = yt, can be written in the following
form

dyt
dt

= f (yt) .

Thus, autonomous systems are characterised by not explicitly depending on the independent variable
t. For such systems, phase plane analysis begins by plotting at a range of values for both the dependent
and the independent variable, a small arrow indicating the rate of change of yt as provided by the
ODE. This plot, commonly referred to as the direction field, is useful because solutions to the ODE
must pass through the arrows in a tangential manner. Therefore, once produced, it provides an easy
construction from which to draw trajectories for any initial condition without the need to solve the
ODE.

Following this, so-called equilibrium points are determined. Defined as the points y∗ where
f (y∗) = 0, the reason for their name is easy to see: beginning at such a point, because of the lack of
explicit dependence upon t in f , means the solution will remain there for all values of t. Moreover,
these points are then classified as either stable or unstable, depending upon whether solutions converge
towards, or diverge away, from them. Stability may here be determined from a ’phase portrait plot’ of
f (yt) against yt ; on which arrows are placed indicating the direction of change of yt with t. Arrows
pointing towards each other on either side of an equilibrium point denote stability, whilst arrows
pointing away from each other indicate the presence of an unstable point. Alternatively, a Taylor
Series argument can be utilised to define a simple criterion. The argument proceeds by supposing the
system begins a small distance δ0 away from the fixed point y∗, i. e. y0 = y∗ + δ0. Then, writing our
general expression for yt as yt = y∗ + δt, we use the Taylor Series expansion of f to form a differential
equation for how δt changes with t

f (y∗ + δt) = f (y∗) + δt
∂ f
∂yt

(y∗) + o(δt),

where we have assumed higher order terms are negligible. Recalling f (y∗) = 0, our ODE becomes

d
dt

f (y∗ + δt) = δt
∂ f
∂yt

(y∗) ,

⇒ dδt
dt

= δt
∂ f
∂yt

(y∗) = kδt.

This autonomous ODE for δt can be solved easily to give δt = δ0ekt. This analysis is useful to us since
stability can be determined based upon whether δt grows, or decays, as t increases, i. e. using the
simple criterion

k =
∂ f
∂yt

(y∗) =

{
> 0 Stable,
< 0 Unstable

.

Two dimensional autonomous ODE systems

In the two dimensional case, for functions x = x(t) = xt and y = y(t) = yt, any autonomous ODE
system can be written as

dxt
dt

= f (xt, yt) ,
dyt
dt

= g (xt, yt) .

Thus as before, these systems are characterised by a lack of explicit dependence upon the independent
variable t in the functional forms of f and g.

The direction field, more commonly referred to here as the velocity field, is again produced to
provide a powerful way by which to plot trajectories for any initial condition. However, here this is
done so in the xt-yt plane, rather than that containing the independent variable. This visualisation
proves to be the best way by which to examine an autonomous two dimensional system.

Commonly, to assist the plotting of the velocity field, nullclines are first computed. These are
defined as the location where f (xt, yt) = 0 or g (xt, yt) = 0. Thus they define the curves across which
either xt or yt does not change in t. Any velocity arrows produced will therefore either be perfectly
horizontal or vertical. Since a velocity field must vary continuously across a particular nullcline, by
the uniqueness of solutions to ODEs, nullclines can be used to check that no arrows have been plotted

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 45

incorrectly.

As one would expect, equilibrium points retain their great importance in two dimensions. Here,
their definition generalises as the locations (x∗, y∗) where f (x∗, y∗) = g (x∗, y∗) = 0. Consequently,
the intersection of the xt and yt nullclines can be used to determine their location. Stability here is
defined in an analogous manner to the one dimensional case, whilst a Taylor Series argument again
allows the formulation of a simple rule for determining said stability. As before, it supposes that we
have an equilibrium point, now given by (x∗, y∗), and that the system initially lies slightly away from
this point at (x∗ + δ0, y∗ + ε0), and in general we have (xt, yt) = (x∗ + δt, y∗ + εt). Then using the
Taylor expansion for f , the differential equation for xt becomes

dδt
dt

= f (x∗ + δt, y∗ + εt) ,

= f (x∗, y∗) + δt
∂ f
∂xt

(x∗, y∗) + εt
∂ f
∂yt

(x∗, y∗) + o(δt) + o(εt),

= δt
∂ f
∂xt

(x∗, y∗) + εt
∂ f
∂yt

(x∗, y∗) + o(δt) + o(εt).

Similarly, the differential equation for yt becomes

dεt
dt

= δt
∂g
∂xt

(x∗, y∗) + εt
∂g
∂yt

(x∗, y∗) + o(δt) + o(εt).

In both equations we have again assumed terms of second order and higher are negligible. Now if we
write this system in matrix form we acquire

dδt
dt

=

 ∂ f
∂xt

∂ f
∂yt

∂g
∂xt

∂g
∂yt

∣∣∣∣∣∣
(x∗ ,y∗)

δt = Jδt.

Here J is called the Jacobian of the system, and δ = (δ, ε)>. It is consideration of the characteristic
equation of J, and the values of its eigenvalues it provides, that allows equilibrium points to be
classified, not only as either stable or unstable, but also in to sub-categories. Full details of this can be
found in the guide that accompanies phaseR, available in the documentation folder of its installation.
However, classification ultimately, and simply, depends upon the values of the determinant and trace
of J.

Thus, in both the one and two dimensional cases, phase plane methods allow trajectories to be
easily plotted, and the long-term behaviour of a system identified by classifying the equilibria. We
shall next see how phaseR can be used to perform such analyses using several simple commands.

Key functions

phaseR employs six key functions for the employment of phase plane analysis.

• flowField: Plots the direction or velocity field of one or two dimensional autonomous ODE
systems.

• nullclines: Plots the nullclines of two dimensional autonomous ODE systems. Alternatively, it
can be used to plot horizontal lines at equilibrium points for one dimensional autonomous ODE
systems.

• numericalSolution: For two dimensional systems, this function numerically solves the ODEs
for a given initial condition via deSolve, and then plots the dependent variables against the
independent variable. Thus, it behaves as a wrapper for the user to deSolve, allowing for easier
implementation and subsequent plotting.

• phasePortrait: For one dimensional autonomous ODEs, it plots the phase portrait i. e. the
derivative against the dependent variable. In addition, it adds arrows to the dependent variable
axis from which the stability of any equilibrium points can be determined.

• stability: Classifies equilibrium points, using the criteria that result from the aforementioned
Taylor Series arguments.

• trajectory: Plots trajectories in the xt-yt plane by performing numerical integration of the
chosen ODE system, again via deSolve. Initial conditions can be specified as an argument, or
by clicking with the cursor on locations in a pre-existing plot.

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 46

As an example, standard phase plane analyses for a two dimensional ODE system would proceed
by using flowField, nullclines and then trajectory to create a summarising plot, and finally
stability to classify the equilibria.

Example 1: logistic growth model

To describe how phaseR can be used to analyse a one dimensional autonomous system of interest, we
will consider the logistic growth model. Originally proposed by Verhulst (1838), this ODE is frequently
used in Biology to model the growth of a population under density dependence. It is given in its most
general case by

dyt
dt

= βyt

(
1− yt

K

)
.

To analyse any system using phaseR, a function must first be created to return the value of the
derivative at any point (t, y), in a style compatible with deSolve. For this model such a function is
already present in the package as logistic, which comprises the following code

logistic <- function(t, y, parameters){
beta <- parameters[1]
K <- parameters[2]
dy <- beta*y*(1 - y/K)
list(dy)

}

The general format of this derivative function should be a common one: given t, y and a vector
parameters, it should simply return a list with first element the value of the derivative.

With this, we can then proceed with our desired analysis. From here we shall consider the
particular case beta = 1 and K = 2. The following code creates Figure 1; adding the direction field,
several trajectories and horizontal lines at any equilibrium points.

> logistic.flowField <-
+ flowField(logistic, x.lim = c(0, 5), y.lim = c(-1, 3),
+ parameters = c(1, 2), points = 21,
+ system = "one.dim", add = FALSE, xlab = "t")
> grid()
> logistic.nullclines <-
+ nullclines(logistic, x.lim = c(0, 5), y.lim = c(-1, 3),
+ parameters = c(1, 2), system = "one.dim")
> logistic.trajectory <-
+ trajectory(logistic, y0 = c(-0.5, 0.5, 1.5, 2.5), t.end = 5,
+ parameters = c(1, 2), system = "one.dim", colour = rep("black", 4))

Here we have tailored our result by setting a suitable range for the dependent and independent
variables, whilst by default suitable axes labels have been added to the plot. These are just several
input variables that can be changed to suit the needs of your particular system.

Now, we can observe from Figure 1 that two equilibrium points have been identified; appearing to
be y∗ = 0 and y∗ = 2. We can confirm their location analytically however by setting the right hand
side of the ODE to zero

y∗
(

1− y∗
2

)
= 0,

⇒ y∗ = {0, 2}.

It appears from the trajectories in Figure 1 that the point y∗ = 2 is stable, and y∗ = 0 unstable. We
can confirm this by plotting the phase portrait with the following code, producing Figure 2

> logistic.phasePortrait <- phasePortrait(logistic, y.lim = c(-0.5, 2.5),
+ parameters = c(1, 2), points = 10)
> grid()

Alternatively, if we use our Taylor Series method we can draw this same conclusion

d
dy

(
dy
dt

)∣∣∣∣
y=y∗

= 1− y∗ =

{
+1 y∗ = 0,
−1 y∗ = 2

.

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 47

Figure 1: The direction field and several trajectories for the logistic growth model with β = 1 and
K = 2. It can be seen that two equilibrium points have been located.

Figure 2: The phase portrait for the logistic growth model with β = 1 and K = 2. The line y = 0 has
been identified as unstable, and the line y = 2 as stable.

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 48

Thus we have drawn the same conclusion; y∗ = 0 is indeed unstable, and y∗ = 2 stable. The following
code can perform this analysis for us using stability

> logistic.stability.1 <-
+ stability(logistic, y.star = 0, parameters = c(1, 2), system = "one.dim")

Discriminant: 1 Classification: Unstable

> logistic.stability.2 <-
+ stability(logistic, y.star = 2, parameters = c(1, 2), system = "one.dim")

Discriminant: -1 Classification: Stable

This completes our phase plane analysis of the logistic growth model. We have successfully
identified that for this model, if y0 > 0, which it must be for the model to make physical sense, the
system will eventually approach the line yt = 2, regardless of the exact initial condition. phaseR
clearly provided a capacity by which to either check, or perform, the analyses that would take time by
hand using several short lines of code.

Example 2: Lotka-Volterra model

As an example of the capabilities of phaseR for a two dimensional system, we will study a particular
case of the Lotka-Volterra model (Lotka, 1925; Volterra, 1926) for interacting predator and prey. This
model can be written in its general form as

dxt
dt

= λxt − εxtyt,

dyt
dt

= ηxtyt − δyt.

Again, we must first specify a derivative function. As before, this is already provided in the
package as lotkaVolterra, which consists of the following code

lotkaVolterra <- function(t, y, parameters) {
x <- y[1]
y <- y[2]
lambda <- parameters[1]
epsilon <- parameters[2]
eta <- parameters[3]
delta <- parameters[4]
dy <- numeric(2)
dy[1] <- lambda*x - epsilon*x*y
dy[2] <- eta*x*y - delta*y
list(dy)

}

deSolve again requires us here to create a function taking values for t, y and parameters, but here
returning a list whose first element is a vector of the two derivatives, and also accepting y as a vector
argument.

From here we shall focus on the particular case λ = 2, ε = 1, η = 3 and δ = 2. We begin by
determining the nullclines; by setting the two derivatives to zero in turn, starting with xt

2xt − xtyt = 0⇒ xt(2− yt) = 0⇒ xt = 0, yt = 2,

and then yt
3xtyt − 2yt = 0⇒ yt(3xt − 2) = 0⇒ yt = 0, xt = 2/3.

Requiring that both derivatives are zero identifies the equilibrium points of the model; clearly
given here by (0, 0) and (2/3, 2). To classify them we turn to the Jacobian

J =
(

2− y∗ −x∗
3y∗ 3x∗ − 2

)
.

Thus for (0, 0); det(J) = −4, which classifies the point as a saddle. Additionally, for (2/3, 2) we have
that det(J) = 4, and tr(J) = 0, which classifies the point as a centre. Readers are again pointed to the
package guide for further details of classification using the Jacobian.

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 49

We can repeat all of the above analyses easily using phaseR; plotting the nullclines along with the
velocity field and several trajectories with the following code that produces Figure 3

> lotkaVolterra.flowField <-
+ flowField(lotkaVolterra, x.lim = c(0, 5), y.lim = c(0, 10),
+ parameters = c(2, 1, 3, 2), points = 19, add = FALSE)
> grid()
> lotkaVolterra.nullclines <-
+ nullclines(lotkaVolterra, x.lim = c(-1, 5), y.lim = c(-1, 10),
+ parameters = c(2, 1, 3, 2), points = 500)
> y0 <- matrix(c(1, 2, 2, 2, 3, 4), ncol = 2, nrow = 3, byrow = TRUE)
> lotkaVolterra.trajectory <-
+ trajectory(lotkaVolterra, y0 = y0, t.end = 10,
+ parameters = c(2, 1, 3, 2), colour = rep("black", 3))

Figure 3: The velocity field, nullclines and several trajectories for the Lotka-Volterra model with λ = 2,
ε = 1, η = 3 and δ = 2. Trajectories can be seen to traverse around the point (2/3, 2).

Finally, we can verify that our stability analysis was indeed correct

> lotkaVolterra.stability.1 <-
+ stability(lotkaVolterra, y.star = c(0, 0), parameters = c(2, 1, 3, 2))

T: 0 Delta: -4 Discriminant: 16 Classification: Saddle

> lotkaVolterra.stability.2 <-
+ stability(lotkaVolterra, y.star = c(2/3, 2), parameters = c(2, 1, 3, 2))

T: 0 Delta: 4 Discriminant: -16 Classification: Centre

Biologically, we have seen that no matter what the exact initial starting values are, according to
this model the numbers of predator and prey will oscillate around the centre (2/3, 2). Alternatively,
this oscillation can be seen by plotting the dependent variables against the independent using the
following code, producing Figure 4

> lotkaVolterra.numericalSolution <-
+ numericalSolution(lotkaVolterra, y0 = c(3, 4), t.end = 10, type = "one",
+ parameters = c(2, 1, 3, 2), colour = c("green", "orange"),
+ ylab = "x, y", ylim = c(0, 10))
> legend("bottomright", col = c("green", "orange"), legend = c("x", "y"), lty = 1)

This concludes our analysis of this two dimensional system. Again phaseR allowed for the phase
plane analysis to be performed quickly and easily, bypassing the time consuming process of drawing
by hand.

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 50

Figure 4: The numerical solution of the Lotka-Volterra mode with λ = 2, ε = 1, η = 3 and δ = 2 and
(x0, y0) = (3, 4). The number of each species can be seen to oscillate.

Concluding remarks and future developments

Rarely can a system of differential equations be solved in closed form. Consequently, numerical
solutions are often required and therefore much theory exists around integration techniques for each
class of differential equations. In R many of these methods have been implemented in packages such
as deSolve, bvpSolve, sde, ReacTran and rootSolve. Between them, these packages allow modellers
to deal with many classes of ODEs, DDEs, DAEs, SDEs and PDEs. However, for a one or two
dimensional system of autonomous ODEs, an alternative approach to direct numerical solution is
available. This so-called phase plane analysis allows much important inference to be made about the
system using relatively simplistic graphical and mathematical techniques. The algorithmic nature
of the phase plane approach lends itself well to software tools, and phaseR provides the first such
complete package in R for its implementation. I have demonstrated how phaseR allows users to easily
perform this qualitative analysis with little initial system set-up, and few commands for execution,
required. Sometimes, phase plane analysis is criticised on two grounds; that it is limited to systems of
two or less dimension (Mutambara, 1999), and that it is highly labour intensive. Whilst the former
still stands, and thus only problems that can be at least well approximated by a second order system
may be analysed using the methods discussed above, the latter issue is at least relieved further by the
creation of phaseR. Whilst to provide greater detail on the dimensional limitation future development
of the package will seek to incorporate further example systems from nature, including approximation
techniques for higher order problems. In addition, package development will see the one dimensional
tools extended to non-autonomous ODEs. Therefore, given all these considerations, in conjunction
with the extensive accompanying guide describing in increased detail both the above techniques
and providing many worked examples and exercises, phaseR should hopefully serve as a useful
package for both independent and group led learning, as well as for those simply seeking to produce
high-quality figures.

Bibliography

B. Barnes and G. R. Fulford. Mathematical Modelling with Case Studies: A Differential Equations Approach
Using Maple and MATLAB, pages 159–258. CRC Press, Florida, United States, second edition, 2009.
ISBN 978-1420083484. [p43]

D. R. Choudhury. Modern Control Engineering, page 755. Prentice-Hall, New Delhi, India, 2005. ISBN
978-81-203-2196-0. [p43]

S. J. Farlow. An Introduction to Differential Equations and Their Applications, page 452. Dover Publications,
2006. ISBN 978-0486445953. [p43]

S. M. Iacus. sde: Simulation and Inference for Stochastic Differential Equations, 2009. URL http://CRAN.R-
project.org/package=sde. R package version 2.0.10. [p43]

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=sde
http://CRAN.R-project.org/package=sde


CONTRIBUTED RESEARCH ARTICLES 51

D. W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations: An Introduction for Scientists and
Engineers, pages 49–88. Oxford University Press, New York, United States, fourth edition, 2007.
ISBN 978-0-19-920824. [p43]

D. Kaplan and D. Flath. Visualizing the Phase Plane using R, 2004. URL http://www.macalester.
edu/~kaplan/math135/pplane.pdf. [p43]

A. J. Lotka. Elements of Physical Biology. Williams and Wilkins, Baltimore, United States, 1925. [p48]

MATLAB. 2014a. The MathWorks Inc., Natick, Massachusetts, United States, 2014. [p43]

D. Mooney. A Course in Mathematical Modeling, page 283. The Mathematical Association of America,
1999. ISBN 978-0-88385-7120. [p43]

A. G. O. Mutambara. Design and Analysis of Control Systems, page 722. CRC Press, 1999. ISBN
978-0849318986. [p50]

J. C. Polking. pplane8, 2009. URL http://math.rice.edu/~dfield/. [p43]

K. Soetaert and F. Meysman. Reactive transport in aquatic ecosystems: Rapid model prototyping in
the open source software R. Environmental Modelling & Software, 32:49–60, 2012. [p43]

K. Soetaert, T. Petzoldt, and R. W. Setzer. A Practical Guide to Ecological Modelling. Using R as a Simulation
Platform. Springer, 2009. ISBN 978-1402086236. [p43]

K. Soetaert, T. Petzoldt, and R. W. Setzer. Solving Differential Equations in R: Package deSolve. Journal
of Statistical Software, 33(9):1–25, 2010. [p43]

K. Soetaert, J. Cash, and F. Mazzia. bvpSolve: Solvers for boundary value problems of ordinary differential
equations, 2013. URL http://CRAN.R-project.org/package=bvpSolve. R package version 1.2.4.
[p43]

P.-F. Verhulst. Notice sur la loi que la population poursuit dans son accroissement. Correspondance
mathamatique et physique, 10:113–121, 1838. [p46]

V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem Acad
Lincei Roma, 2:31–113, 1926. [p48]

Michael J. Grayling
MRC Biostatistics Unit
Cambridge
CB2 0SR
United Kingdom
mjg211@cam.ac.uk

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

http://www.macalester.edu/~kaplan/math135/pplane.pdf
http://www.macalester.edu/~kaplan/math135/pplane.pdf
http://math.rice.edu/~dfield/
http://CRAN.R-project.org/package=bvpSolve
mailto:mjg211@cam.ac.uk

