
CONTRIBUTED RESEARCH ARTICLES 96

sgof: An R Package for Multiple Testing
Problems
by Irene Castro-Conde and Jacobo de Uña-Álvarez

Abstract In this paper we present a new R package called sgof for multiple hypothesis testing. The
principal aim of this package is to implement SGoF-type multiple testing methods, known to be
more powerful than the classical false discovery rate (FDR) and family-wise error rate (FWER) based
methods in certain situations, particularly when the number of tests is large. This package includes Bi-
nomial and Conservative SGoF and the Bayesian and Beta-Binomial SGoF multiple testing procedures,
which are adaptations of the original SGoF method to the Bayesian setting and to possibly correlated
tests, respectively. The sgof package also implements the Benjamini-Hochberg and Benjamini-Yekutieli
FDR controlling procedures. For each method the package provides (among other things) the number
of rejected null hypotheses, estimation of the corresponding FDR, and the set of adjusted p values.
Some automatic plots of interest are implemented too. Two real data examples are used to illustrate
how sgof works.

Introduction

Multiple testing refers to any instance that involves the simultaneous testing of several null hypotheses,
i.e.,

H01, H02, . . . , H0n.

Nowadays, we find many statistical inference problems in areas such as genomics and proteomics
which involve the simultaneous testing of thousands of null hypotheses producing as a result a
number of significant p values or effects (an increase in gene expression, or RNA/protein levels).
Moreover, these hypotheses may have complex and unknown dependence structures. An example
from genomics is the following one involving the nulls:

H0i : Gene i is equally expressed in groups A and B (i = 1, 2, . . . , n).

The goal here is to decide which H0i are false, based on the p values, u1, u2, . . . , un, corresponding to a
suitable test statistic (e.g., a t-test for comparison of normally distributed ‘gene expression levels’).

It is well known that the smaller the p value ui, the greater the evidence against H0i and, indi-
vidually, H0i is rejected at level α when ui ≤ α. One of the main problems in multiple hypothesis
testing is that, if one does not take the multiplicity of tests into account, then the probability that
some of the true null hypotheses are rejected may be overly large. So, in the multiple testing setting,
a specific procedure for deciding which null hypotheses should be rejected is needed. In this sense,
the family-wise error rate (FWER) and the false discovery rate (FDR) have been proposed as suitable
significance criteria to perform the multiple testing adjustment. See Benjamini and Hochberg (1995),
Nichols and Hayasaka (2003) or Dudoit and van der Laan (2007) for more information. But the FDR
and FWER based methods have the drawback of a rapidly decreasing power as the number of tests
grows, being unable to detect even one effect in particular situations such as when there is a small to
moderate proportion of weak effects.

In this paper we introduce the sgof package which implements, for the first time in R, SGoF-type
methods (Carvajal-Rodríguez et al., 2009; de Uña-Álvarez, 2011), which have been proved to be more
powerful than FDR and FWER based methods in certain situations, particularly when the number of
tests is large (Castro-Conde and de Uña-Álvarez, in press). BH (Benjamini and Hochberg, 1995) and
BY (Benjamini and Yekutieli, 2001) methods are included in the package for completeness. Users can
easily obtain from this package a complete list of results of interest in the multiple testing context. The
original SGoF procedure (Carvajal-Rodríguez et al., 2009) is also implemented in the GNU software
SGoF+ (Carvajal-Rodríguez and de Uña-Álvarez, 2011), see http://webs.uvigo.es/acraaj/SGoF.htm,
while a MATLAB version was also developed (Thompson, 2010). However, none of these tools work
within R, nor do they include the several existing corrections of SGoF for dependent tests. These
limitations are overcome by package sgof.

Recent contributions in which the SGoF method has been found to be a very useful tool include
protein evolution (Ladner et al., 2012) and neuroimaging (Thompson et al., 2014).
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Existing software

The Bioconductor software (Gentleman et al., 2004) provides tools for the analysis and comprehension
of high-throughput genomics data. Bioconductor uses the R statistical programming language and is
open source and open development. It has two releases each year, nearly thousand software packages,
and an active user community. Some of the tools of Bioconductor related to multiple testing methods
are the following.

1. The qvalue package (Dabney and Storey, 2014) takes the list of p values and estimates their
q-values. The q-value of a test measures the proportion of false positives incurred when that
particular test is called significant. Various plots are automatically generated, allowing one to
make sensible significance cutoffs.

2. The HybridMTest package (Pounds and Fofana, 2011) performs hybrid multiple testing that
incorporates method selection and assumption evaluations into the analysis using empirical
Bayes probability estimates obtained by Grenander density estimation.

3. The multtest package (Pollard et al., 2005) performs non-parametric bootstrap and permutation
resampling-based multiple testing procedures (including empirical Bayes methods) for con-
trolling the FWER, generalized FWER, tail probability of the proportion of false positives, and
FDR. Results are reported in terms of adjusted p values, confidence regions and test statistic
cutoffs. The procedures are directly applicable to identify differentially expressed genes in DNA
microarray experiments.

Other R packages for multiple testing problems include the following.

1. The mutoss package (MuToss Coding Team et al., 2014) is designed to the application and com-
parison of multiple hypotheses testing procedures like the LSL method presented in Hochberg
and Benjamini (1990) or the Storey et al. (2004) adaptive step-up procedure.

2. The multcomp package (Hothorn et al., 2008) performs simultaneous tests and confidence
intervals for general linear hypotheses in parametric models, including linear, generalized linear,
linear mixed effects and survival models.

3. The stats package includes the function p.adjust which, given a set of p values, returns adjusted
p values using one of several methods like "holm" (Holm, 1979), "hochberg" (Hochberg, 1988),
"hommel" (Hommel, 1988) and "BH" (Benjamini and Hochberg, 1995).

The rest of the paper is organized as follows. First we introduce the methodological background
for SGoF- and FDR-type methods. Then the sgof package is described and its usage is illustrated
through the analysis of two real data sets. Finally, the last section contains the main conclusions of this
work.

Methodology

SGoF multiple testing procedure

Carvajal-Rodríguez et al. (2009) proposed a new multiple comparisons adjustment, called SGoF (from
sequential goodness-of-fit) which is based on the idea of comparing the number of p values falling
below an initial significance threshold γ (typically γ = 0.05, 0.01, 0.001) to the expected amount under
the complete null hypothesis that all the n nulls are true (i.e., no effects), which is nγ.

In order to formalize things, let F and Fn be the underlying distribution function of the p values
and their empirical distribution, respectively. SGoF multitest performs a standard one-sided binomial
test (we will refer to this method as Binomial SGoF) for H0 : F(γ) = γ; therefore, H0 is rejected at level
α if and only if nFn(γ) ≥ bn,α(γ), where

bn,α(γ) = inf {b ∈ {0, . . . , n} : P(Bin(n, γ) ≥ b) ≤ α} (1)

is the (1− α)-quantile of the Bin(n, γ) distribution. This relates to the notion of higher criticism
introduced by Tukey (1976). When H0 is rejected, the null hypotheses corresponding to the Nn,α(γ) =
nFn(γ) − bn,α(γ) + 1 smallest p values are declared as false by Binomial SGoF, which is just the
excess of significant cases in the binomial test. Note that, when n is large, Nn,α(γ) approximates

n[Fn(γ) − γ] − n
√

Var(0)(Fn(γ))zα + 1, where Var(0)(Fn(γ)) = γ(1 − γ)/n and zα is the (1− α)-
quantile of the standard normal.

A slightly different version of the SGoF procedure is obtained when declaring as true effects

the N(1)
n,α (γ) = n[Fn(γ)− γ]− n

√
Var(1)(Fn(γ))zα + 1 smallest p values, where the variance of the
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proportion of p values below gamma (Var(1)(Fn(γ)) = Fn(γ)(1− Fn(γ))/n) is estimated without
assuming that all the null hypotheses are true; this typically results in a more conservative decision
(thus the method’s name). Since Conservative SGoF is based on the asymptotic binomial-normal
approximation, it should not be used when the number of tests is small. When the number of tests is
large, Conservative SGoF will often approximate Binomial SGoF since the variance term has a smaller
order of magnitude compared to n[Fn(γ)− γ].

The main properties of SGoF-type procedures were analyzed in detail by de Uña-Álvarez (2011,
2012). In particular, it was shown that SGoF gives flexibility to the FDR by controlling it at level α only
under the complete null (i.e. weak control of FDR), which results in an increasing power compared to
classical FDR controlling methods. It was also shown that the power of SGoF procedures increases
with the number of tests, and that α is a bound for the undesirable event that the number of false
positives is greater than the number of false negatives among the p values smaller than γ.

Bayesian SGoF procedure

The SGoF Bayesian procedure is an adaptation of the original SGoF to the Bayesian paradigm (Castro-
Conde and de Uña-Álvarez, 2013). In this context, it is assumed that the probability θ = P(ui ≤ γ) =
F(γ) follows a prior density π(θ) supported on the unit interval. The relevant ‘sample information’ is
given by −→x = (I{u1≤γ}, . . . , I{un≤γ}).

The Bayesian SGoF procedure consists of two main steps. In the first step Bayesian SGoF decides
if the complete null hypothesis is true or false, by using a pre-test rule which works as follows.
First, the usual default prior probabilities for H0 and H1 (P0 = P1 = 1/2) are taken and a beta
distribution, with location γ and dispersion parameter ρ, is assumed as prior distribution of θ under
the alternative. Then, using this a priori information, the posterior probability that H0 is true P(H0|−→x )
is computed. Since P(H0|−→x ) heavily depends on the dispersion of the beta prior, lower bounds
P(H0|−→x ) = infρ P(H0|−→x ) are used in practice. P(H0|−→x ) has been proposed as the suitable way of
looking for evidence against a point null hypothesis in the Bayesian setting (Berger and Delampady,
1987; Berger and Sellke, 1987). Let s be the number of p values below γ, and let sα − 1 be the first
value of s when going from n to 0 for which P(H0|−→x ) ≥ α (note that −→x essentially reduces to s). The
complete null hypothesis is rejected when s ≥ sα. Of course, sα may be done dependent on others
choices for P0 by including them in the computation of P(H0|−→x ) (see Section Small number of tests:
Needleman data for illustration).

The second step in Bayesian SGoF is to compute the number of rejected nulls. Proceeding anal-
ogously to the frequentist SGoF, a one-sided 100(1− α)% credible interval for θ is constructed. Let
lα(π,−→x ) be the α-quantile of the posterior density π(θ|−→x ) computed from the non-informative prior
π(θ) (i.e., the uniform density). Then, the Bayesian SGoF method declares as non-true the null hy-
potheses with the smallest Nb

n,α(γ) p values (which represents the ‘excess of significant cases’), where
Nb

n,α(γ) = max
(
n(lα(π,−→x )− γ), 0

)
. When the pre-test does not reject the complete null (s < sα), this

is automatically set to zero.

Compared to frequentist versions of SGoF (Binomial SGoF, Conservative SGoF), Bayesian SGoF
may result in a more conservative approach, particularly when the number of tests is low to moderate.
This is so because of the Bayesian perspective for testing for point nulls, on which the pre-test rule
is based That is, Bayesian SGoF will accept the absence of features in situations when classical SGoF
detects a signal. Another feature of Bayesian SGoF is the interpretation of the results. It should be
taken into account that Bayesian SGoF controls for the probability of type I errors conditionally on the
given set of p values and, hence, it refers to all the situations with the same amount of evidence as the
data at hand. This departs from frequentist methods which aim to control error rates when averaging
the results among all the possible samples. On the other hand, as n grows, the sampling information
becomes more relevant and, accordingly, the prior density has a vanishing effect; from this, it is not
surprising that Bayesian SGoF and frequentist SGoF may report similar results in large number of
tests settings.

Beta-Binomial SGoF procedure

It has been quoted that the SGoF multiple testing procedure is very sensitive to correlation among the
tests, in the sense that it may become too liberal when the p values are dependent (Carvajal-Rodríguez
et al., 2009). A correction of SGoF for serially dependent tests was proposed in de Uña-Álvarez (2012).
Since the correction is based on a beta-binomial model (which is an extension of the binomial model
allowing for positive correlation), it is termed Beta-Binomial SGoF or BB-SGoF. A quick description of
the main ideas behind BB-SGoF is the following.

Given the initial significance threshold γ, BB-SGoF transforms the original p values u1, . . . , un
into n realizations of a Bernoulli variable: Xi = I{ui≤γ}, i = 1, . . . , n; and assumes that there are
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k independent blocks of p values. Then, the number of successes (Xi = 1) sj within each block j,
j = 1, . . . , k, is computed, where sj is assumed to be a realization of a beta-binomial variable with
parameters (nj, θ, ρ). Here nj is the size of the block j, θ = F(γ), and ρ is the correlation between two
different indicators Xi and Xj inside the same block (the within-block correlation). Note that, if ρ = 0,
then we come back to the binomial model and therefore to the original SGoF method for independent
tests.

Analogously to original SGoF, BB-SGoF proceeds by computing a one-sided confidence interval
for the difference between the observed and expected amounts of p values below γ. For this, however,
estimates based on a beta-binomial (rather than binomial) likelihood and their standard errors are
obtained; the bounds are easily computed from the asymptotic normal theory for maximum-likelihood
estimation. Of course, due to the allowed correlation, there is a variance increase which results in a
smaller amount of rejected nulls, NBB

α (γ; k) let’s say. This is more evident when the number of existing
blocks is small (stronger dependence structure). Otherwise, BB-SGoF shares the main properties of the
SGoF procedure regarding weak control of FWER and relatively large power, which increases with n.
An extensive simulation study on the method’s performance was provided in Castro-Conde and de
Uña-Álvarez (in press).

A practical issue in the application of BB-SGoF is the choice of the number and the size of the
blocks (otherwise these blocks are assumed to be located following the given sequence of p values,
which therefore should not be sorted before their analysis). As a compromise, BB-SGoF takes blocks
of the same size. Regarding the number of blocks k, a data-driven solution is the automatic choice
kN = arg mink NBB

α (γ; k), corresponding to the most conservative decision of declaring the smallest
number of effects along a grid of k-values. This of course may (and will) entail some extra loss of
power. In order to mitigate this, a preliminary test of no correlation is recommended; in the setting
of the beta-binomial model, such a test was suggested by Tarone (1979). When the null hypothesis
of zero correlation is accepted, one goes back to the application of Binomial or Conservative SGoF
methods for independent tests.

FDR-controlling step-up procedures

Unlike SGoF-type procedures, FDR based methods aim to control the expected proportion of false
discoveries at a given level α. The Benjamini-Hochberg (BH; Benjamini and Hochberg, 1995) step-up
procedure achieves this by proceeding as follows:

1. For a given α, let j be the largest i for which u(i) ≤ i
n α, where u(1) ≤ u(2) ≤ . . . ≤ u(n) are the

ordered p values.

2. Then reject (i.e., declare positive discoveries) all H0(i) for i = 1, 2, . . . , j, where H0(i) is the null
hypothesis attached to u(i).

The BH procedure controls the FDR al level α when the n tests are independent or in the case of
positive regression dependence. Benjamini and Yekutieli (2001) introduced an alternative procedure
(termed BY in this paper) which ensures FDR control under arbitrary forms of dependence. BY
proceeds similarly to BH but replaces u(i) ≤ i

n α by u(i) ≤ i
n ∑n

i=1 1/i α in Step 1 above. Obviously, this
results in a more conservative decision on the number of non-true nulls.

FDR based methods are often used nowadays to take the multiplicity of tests into account. How-
ever, as mentioned, they may exhibit a poor power in particular scenarios, namely, those with a large
number of tests and a small to moderate proportion of ’weak effects’ (true alternatives close to the
corresponding nulls). In such settings, application of alternative methods like SGoF-type procedures
is recommended.

The q-value procedure

A method closely related to BH is the q-value approach (Storey, 2003). The q-value of an individual
test is the expected proportion of false positives incurred when calling that test significant. Formally,
define the positive false discovery rate (pFDR) as follows:

pFDR = E
(

V
R

∣∣∣∣R > 0
)

,

where V and R stand for the number of type I errors and the number of rejections, respectively. For a
nested set of rejection regions {Γα}1

α=0 and for an observed statistic T = t, the q-value of t is defined
to be:
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q(t) = inf
{Γα : t∈Γα}

{pFDR(Γα)}

Therefore, the q-value is the minimum possible pFDR when rejecting a statistic with value t for
the set of nested significance regions.

The q-value procedure rejects all the null hypotheses with a q-value below the nominal level
α, attaining a FDR ≤ α under weak dependence (Storey and Tibshirani, 2003). According to this
definition, the q-value method may report power gains compared to the standard BH procedure.

Adjusted p values

A very important concept in the multiple testing context is that of adjusted p values. The adjusted
p value ũi, for null hypothesis H0i with p value ui, is the smallest level of the multiple testing procedure
at which H0i is still rejected. Adjusted p values for the Binomial SGoF method were introduced by
Castro-Conde and de Uña-Álvarez (2015) by linking the significance threshold γ and the level at which
the binomial test is performed. This gives the following definition for ũi:

ũi ≡ inf{α ∈ [0, 1] : nFn(ui) ≤ Nn,α(α)}, if {α ∈ [0, 1] : nFn(ui) ≤ Nn,α(α)} 6= ∅.

ũi ≡ 1, otherwise, i = 1, . . . , n.

Adjusted p values for the other SGoF-type methods may be defined in the same way. Note that,
however, this definition entails the searching for an infimum, which may be very computationally
intensive, particularly when n is large. In order to speed up the procedure, we approximate the
infimum by a minimum over the set of original p values: α ∈ {u1, . . . , un}. Interestingly, Castro-Conde
and de Uña-Álvarez (2015) proved that this simplification does not induce any real change in the
definition of the adjusted p values for Binomial SGoF (since the infimum is attained on the set of
p values). For other methods there is no such result but, clearly, a sufficiently good approximation
is expected as the number of tests grow. Regarding the interpretation of the ũi’s note that, when
an adjusted p value is smaller than or equal to u, then it is known that there exists η ≤ u such that
the corresponding SGoF-type method based on γ = α = η rejects the null; this does not imply by
force that the null will be also rejected at level u since the number of rejections of SGoF-type methods
is roughly a concave function of the significance threshold, increasing up to a maximum and then
decreasing.

On the other hand, the adjusted p values of the BH and BY methods are defined, respectively, as
follows (Dudoit and van der Laan, 2007):

ũBH
i ≡ minh∈[i,...,n]{min{ n

h ui, 1}} i = 1, . . . , n.

ũBY
i ≡ minh∈[i,...,n]{min{(∑n

i=1 1/i) n
h ui, 1}} i = 1, . . . , n.

In this case, the adjusted p value gives information about the minimum possible FDR when
declaring it as a true effect.

Package sgof in practice

As mentioned, the sgof package implements different procedures for solving multiple testing problems.
This section illustrates the usage of sgof by describing its main features and by analyzing two real data
sets. The first data set refers to a situation in which the number of tests (n) is small; the tests correspond
to a sequence of 11 p values coming from a study of the neuropsychologic effects of unidentified
childhood exposure to lead performances between two groups of children. The second example of
application is related to a large number of test settings where more than 3,000 tests are performed,
corresponding to the comparison of mean gene expression levels in two groups of patients. This
second data set is included in the sgof package as Hedenfalk. The package sgof implements for the
first time the four SGoF-type methods which have been reviewed in the previous section.

The sgof package includes six functions: Binomial.SGoF, SGoF, Bayesian.SGoF, BBSGoF, BH and BY.
All of the six functions estimate the FDR by the simple method proposed by Dalmasso et al. (2005) by
taking n = 1 in their formula. The structure and performance of the six functions are summarized
below. More information is available in the package documentation.

Table 1 shows a list of the arguments in the six functions. It should be noted that only the argument
u (the vector of p values) is a required argument since the other ones have a default value. This is
the reason why all the functions check the arguments. For example, if the user forgets to write the
argument u in the function SGoF(), the following message will be returned:

> SGoF(alpha = 0.05, gamma = 0.05)
Error in SGoF(alpha = 0.05, gamma = 0.05) : data argument is required
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BH() and BY() arguments

u The (non-empty) numeric vector of p values.
alpha Numerical value. The significance level of the metatest. Default is alpha = 0.05.

Binomial.SGoF(), SGoF(), Bayesian.SGoF() and BBSGoF() arguments

u The (non-empty) numeric vector of p values.
alpha Numerical value. The significance level of the metatest. Default is alpha = 0.05.
gamma Numerical value. The p value threshold, so that the SGoF-type method looks for

significance in the amount of p values below gamma. Default is gamma = 0.05.

Bayesian.SGoF() arguments

P0 Numerical value. The a priori probability of the null hypothesis. Default is P0 = 0.5.
a0 Numerical value. The first parameter of the a priori beta distribution. Default is a0 = 1.
b0 Numerical value. The second parameter of the a priori beta distribution. Default is b0 = 1.

BBSGoF() arguments

kmin Numerical value. The smallest allowed number of blocks of correlated tests. Default is kmin = 2.
kmax Numerical value. The largest allowed number of blocks of correlated tests. Default is

kmax = min(length(u)/10,100).
tol Numerical value. The tolerance in model fitting. Default is tol = 10. It allows for a

stronger (small tol) or weaker (large tol) criterion when removing poor fits of the
beta-binomial model. When the variance of the estimated beta-binomial parameters
for a given k is larger than tol times the median variance along k = kmin, . . . , kmax, the
particular value of k is discarded.

adjusted.pvaluesLogical. Default is FALSE. If TRUE, the adjusted p values are computed.
blocks Numerical value. The number of existing blocks in order to compute the adjusted p values.

Table 1: Arguments of the six functions of the sgof package.

Moreover, in the event the user chooses the option adjusted.pvalues = TRUE in the function BBSGoF()
and forgets to write the argument blocks, then this function will return the following message:

> BBSGoF(u, adjusted.pvalues = TRUE)
Error in BBSGoF(u, adjusted.pvalues = TRUE) :
blocks argument is required to compute the Adjusted p-values

Note also that kmax should be larger than kmin and smaller than the number of tests n (if the number
of blocks is n then one is indeed assuming independence and we should rather use SGoF() instead of
BBSGoF()), otherwise BBSGoF() will return the following messages:

> BBSGoF(u, kmin = 5, kmax = 3)
Error in BBSGoF(u, kmin = 5, kmax = 3) : kmax should be larger than kmin

> BBSGoF(u, kmax = length(u))
Error in BBSGoF(u, kmax = length(u)) : kmax should be lower than n

Finally, note that BBSGoF() usually returns a warning message indicating which blocks k are removed
because they provided negative or atypical variance estimates. The set of removed blocks depends
on the parameter tol which allows for a stronger or weaker criterion when removing poor fits of the
beta-binomial model (see Section Package sgof in practice for an example).

On the other hand, Table 2 shows a summary of the results given by each of the functions. It can be
seen that the number of rejections and the estimation of the FDR are a common returned value whereas
the adjusted p values are computed by every function except by Bayesian.SGoF(). Moreover, the
Bayesian.SGoF() function also computes the posterior probability that the complete null hypothesis
is true, based on the default a priori probabilities P0 = P1 = 1/2 and the non-informative prior
π(θ) = 1 (unless indicated otherwise), as well as the amount of p values falling below gamma (s) and
the critical point at level alpha for the Bayesian pre-test for the complete null (s.alpha). Finally, the
BBSGoF() function also computes some parameters of interest like (among others) a vector with the
number of effects declared by BBSGoF() for each value of k (effects), the automatic number of blocks
(automatic.blocks), a vector with the values of k for which the model fitted well (n.blocks), a vector
with the estimated within-block correlation (cor), a vector with the p values of Tarone’s test for no
correlation (Tarone.pvalues), and the estimated parameters of the Beta(a, b) and Betabinomial(p, rho)
models for the automatic k.

Finally, the sgof package implements three different methods for the returned objects of classes
‘Binomial.SGoF’, ‘SGoF’, ‘BBSGoF’, ‘BH’ and ‘BY’ classes. The print method which prints the correspond-
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Binomial.SGoF(), SGoF(), Bayesian.SGoF(), BBSGoF(), BH() and BY()

Rejections The number of declared effects.
FDR The estimated false discovery rate.
Adjusted.pvalues The adjusted p values∗.

BBSGoF()

effects A vector with the number of effects declared by BBSGoF() for each value of k.
SGoF The number of effects declared by SGoF().
automatic.blocks The automatic number of blocks.
deleted.blocks A vector with the values of k for which the model gave a poor fit.
n.blocks A vector with the values of k for which the model fitted well.
p The average ratio of p values below gamma.
cor A vector with the estimated within-block correlation.
Tarone.pvalues A vector with the p values of Tarone’s test for no correlation.
Tarone.pvalue.auto The p values of Tarone’s test for the automatic k.
beta.parameters The estimated parameters of the Beta(a, b) model for the automatic k.
betabinomial.parameters The estimated parameters of the Betabinomial(p, rho) model for the automatic k.
sd.betabinomial.parametersThe standard deviation of the estimated parameters of the

Betabinomial(p, rho) model for the automatic k.

Bayesian.SGoF()

Posterior The posterior probability that the complete null hypothesis is true considering the
prior information a0, b0 and P0.

s The amount of p values falling below gamma.
s.alpha Critical point at level alpha of the Bayesian pre-test for the complete null

depending on P0.

Table 2: Summary of the results reported by the six functions of the sgof package.
∗ Bayesian.SGoF() does not compute the adjusted p values.

ing object in a nice way, the summary method which prints a summary of the main results reported,
and the plot method which provides a graphical representation of the adjusted p values versus the
original ones; and, in the case of BBSGoF(), four more plots of interest: the fitted beta density, the
Tarone’s p values, the number of effects, and the within-block correlation for each particular number
of blocks in the grid (except the deleted ones). As an exception, the ‘Bayesian.SGoF’ class does not
have a plot method as the adjusted p values given by the Bayesian SGoF procedure are not computed.

Small number of tests: Needleman data

Needleman et al. (1979) compared various psychological and classroom performances between two
groups of children in order to study the neuropsychologic effects of unidentified childhood exposure
to lead. Needleman’s study was attacked because it presented three families of endpoints but carried
out separate multiplicity adjustments within each family. For illustration of sgof, we will focus
on the family of endpoints corresponding to the teacher’s behavioral ratings. Table 3 shows the
original p values (saved in the vector u) as well as the adjusted p values reported by the BH() and
Binomial.SGoF() functions, computed using the following code:

> u <- c(0.003, 0.003, 0.003, 0.01, 0.01, 0.04, 0.05, 0.05, 0.05, 0.08, 0.14)
> BH(u)$Adjusted.pvalues
> Binomial.SGoF(u)$Adjusted.pvalues

Note that tied p values are present in this data set; in particular, it is clear that one would reject
3, 5, 6, 9, 10 or 11 nulls, depending on the level. On the other hand, there are 9 p values below 0.05,
which is greater than the expected amount under the complete null (0.55).

We will use Needleman’s p values (that we saved in the vector u) to illustrate the performance of
the BH(), Binomial.SGoF() and Bayesian.SGoF() functions, using default argument values. SGoF()
and BBSGoF() are not applied in this case because these are asymptotic methods and here the sample
size is small (n = 11).

The first step to analyze Neddleman data is to load the sgof package by using the code line:
library(sgof). We start then by applying the BH() function:

> m1 <- BH(u)
> summary(m1)
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Adjusted p values
p values BH Binomial.SGoF

Distractible 0.003 0.011 0.010
Does not follows sequence of directions 0.003 0.011 0.010
Low overall functioning 0.003 0.011 0.010
Impulsive 0.010 0.022 0.050
Daydreamer 0.010 0.022 0.050
Easily frustrated 0.040 0.061 0.050
Not persistent 0.050 0.061 1.000
Dependent 0.050 0.061 1.000
Does not follow simple directions 0.050 0.061 1.000
Hyperactive 0.080 0.088 1.000
Disorganized 0.140 0.140 1.000

Table 3: Needleman data.

Call:
BH(u = u)

Parameters:
alpha= 0.05

$Rejections
[1] 5

$FDR
[1] 9e-04

$Adjusted.pvalues
>alpha <=alpha

6 5

The output of the summary shows that the BH procedure with 5% FDR control is rejecting 5 null
hypotheses (corresponding to the five smallest p values) with a estimated FDR of 0.09%. Besides, the
summary indicates that there are five adjusted p values falling below alpha, which is by force the case.
If we apply the BY procedure to this set of p values we obtain a number of rejections (3) smaller than
that given by BH, something expected since BY takes the dependence into account.

> BY(u)$Rejections

[1] 3

Now, we illustrate the usage of the Binomial.SGoF() function:

> m2 <- Binomial.SGoF(u)
> summary(m2)

Call:
Binomial.SGoF(u = u)

Parameters:
alpha= 0.05
gamma= 0.05

$Rejections
[1] 6

$FDR
[1] 0.0031

$Adjusted.pvalues
>gamma <=gamma

5 6

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 104

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

BH Adjusted p−values

Unadjusted p−values

A
d
ju

s
te

d
 p

−
v
a
lu

e
s

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Binomial SGoF Adjusted p−values

Unadjusted p−values

A
d
ju

s
te

d
 p

−
v
a
lu

e
s

Figure 1: Needleman data. Adjusted p values reported by BH (left) and Binomial SGoF (right) methods
versus the original ones.

In this case, the summary indicates that the default Binomial SGoF procedure (α = γ = 0.05) declares
six effects (estimated FDR of 0.31%), which represents one rejection more than the BH method. We
should also point out that, in this example, the number of adjusted p values below gamma is equal to
the number of rejections, which will not be the case in general (recall that the number of rejections
of SGoF is an increasing-decreasing function of γ). When an adjusted p value is smaller than the
threshold γ, what one actually knows is that there exists some γ′ ≤ γ such that the corresponding
null H0i is rejected by SGoF at level α′ = γ′.

Figure 1 reports the graphical displays from the plot method applied to the m1 and m2 objects
(plot(m1), plot(m2)), where the adjusted p values versus the original ones are depicted.

In the multiple testing setting, these plots are often used to inspect the relative size and distribution
of the adjusted p values. Of course, all the points in these plots fall above the diagonal. The adjusted
p values are also given in Table 3, where we see that the first six adjusted p values of Binomial SGoF
method are smaller than those pertaining to BH, suggesting that SGoF entails an increase in power.

Results of Bayesian.SGoF() are as follows:

> m3 <- Bayesian.SGoF(u)
> summary(m3)

Call:
Bayesian.SGoF(u = u)

Parameters:
alpha= 0.05
gamma= 0.05
P0= 0.5
a0= 1
b0= 1

$Rejections
[1] 6

$FDR
[1] 0.0031

$Posterior
[1] 0

$s
[1] 9

$s.alpha
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[1] 5

By using the Bayesian.SGoF() function one obtains the same number of declared effects and estimated
FDR as those reported by the Binomial SGoF procedure. Besides, the summary of the ‘Bayesian.SGoF’
object shows that, while there are nine original p values falling below gamma, the critical point at level
alpha for the Bayesian pre-test is five, which is lower than s as expected (if s.alpha > s then Bayesian
SGoF would have accepted the complete null). Besides, the posterior probability that the complete null
is true is zero. By choosing the default values of Bayesian.SGoF() one considers as non-informative
π(θ) the uniform density in the [0,1] interval. When there is a priori information on this distribution
then the arguments a0 and b0 may be used to include such information. Below we provide the results
when choosing a0 = 2 and b0 = 8, which corresponds to a Beta(2, 8) distribution with mean 0.2 (the
mean of the default distribution is 0.5). It is seen that this leads, as expected, to a fewer number of
rejections (3). Note that s.alpha is not depending on a0 and b0.

> m32 <- Bayesian.SGoF(u, a0 = 2, b0 = 8)
> summary(m32)

Call:
Bayesian.SGoF(u = u, a0 = 2, b0 = 8)

Parameters:
alpha= 0.05
gamma= 0.05
P0= 0.5
a0= 2
b0= 8

$Rejections
[1] 3

$FDR
[1] 5e-04

$Posterior
[1] 0

$s
[1] 9

$s.alpha
[1] 5

Now, by choosing P0 = 0.2 to represent a small a priori probability that the complete null is true, one
obtains the same number of rejections but the lower bound of the Bayesian pre-test changes (which
depends on P0 but not on a0 or b0), being s.alpha = 3. That is, if the number of existing p values
below gamma were 4 (rather than 9), the complete null would be rejected with P0 = 0.2 but not with
the default option P0 = 0.5. This means that, by choosing a lower a priory probability, P0, Bayesian
SGoF is more likely to reject the complete null hypothesis.

> m33 <- Bayesian.SGoF(u, a0 = 2, b0 = 8, P0 = 0.2)
> summary(m33)

...

$Rejections
[1] 3

$FDR
[1] 5e-04

$Posterior
[1] 0

$s
[1] 9
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$s.alpha
[1] 3

In order to illustrate how some of these results change when changing the value for the argument
alpha, we apply the Binomial.SGoF(), Bayesian.SGoF(), BH() and BY() functions to the Needleman
data with alpha = 0.01. While the number of rejections reported by the Binomial SGoF procedure
remains the same, Bayesian SGoF becomes more conservative declaring one less effect. Stronger
consequences are found for BH and BY procedures, which are unable to find any effect with such a
restrictive FDR level.

> Binomial.SGoF(u, alpha = 0.01)$Rejections

[1] 6

> Bayesian.SGoF(u, alpha = 0.01)$Rejections

[1] 5
> BH(u, alpha = 0.01)$Rejections

[1] 0
> BY(u, alpha = 0.01)$Rejections

[1] 0

Large number of tests: Hedenfalk data

As an illustrative example of a large number of dependent tests, we consider the microarray study of
hereditary breast cancer of Hedenfalk et al. (2001). The principal aim of this study was to find genes
differentially expressed between BRCA1- and BRCA2-mutation positive tumors. For that, a p value
was assigned to each gene based on a suitable statistical test for the comparison. Some of them were
eliminated as a result of previous analysis leaving 3170 p values. This set of p values is included in
sgof package as Hedenfalk.

The first step to analyze the Hedenfalk data is to load the package and the data set. To do so, we
use the next code lines:

> library(sgof)
> u <- Hedenfalk$x

Here we use the Hedenfalk data to illustrate the BH() and BBSGoF() functions which are suitable
because these p values present a positive dependence (de Uña-Álvarez, 2012). We also apply to
this data set the BY(), SGoF(), Binomial.SGoF() and Bayesian.SGoF() functions, and the qvalue
procedure, to compare the results. Starting with the BH() function (with default argument α = 0.05):

> m41 <- BH(u)
> summary(m41)

Call:
BH(u = u)

Parameters:
alpha= 0.05

$Rejections
[1] 94

$FDR
[1] 0.0356

$Adjusted.pvalues

>alpha <=alpha
3076 94

The summary of the object m41 reveals that the Benjamini and Hochberg procedure (with a FDR of 5%)
is able to reject 94 null hypotheses. Next, we apply the BY() function with default argument α = 0.05:
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> m42 <- BY(u)
> summary(m42)

Call:
BY(u = u)

Parameters:
alpha= 0.05

$Rejections
[1] 0

$FDR
[1] 0

$Adjusted.pvalues
>alpha
3170

The output of the summary indicates that the Benjamini and Yekutieli FDR controlling procedure (with
a FDR of 5%) does not declare any effect and accordingly, all the adjusted p values reported are greater
than alpha. In fact, the smallest adjusted p value for this method is 0.0863886 (min(m42$Adjusted.pvalues))
which means that, to find at least one effect, a FDR greater than 8% should be allowed for.

In third place, we apply to the Hedenfalk data the qvalue() function of the qvalue package for
comparison purposes. We obtain that the qvalue procedure declares 162 effects at a 5% FDR level,
being clearly more powerful than the BH procedure.

> m43 <- qvalue(u)
> summary(m43)

Call:
qvalue(p = u)

pi0: 0.6635185

Cumulative number of significant calls:

<1e-04 <0.001 <0.01 <0.025 <0.05 <0.1 <1
p-value 15 76 265 424 605 868 3170
q-value 0 0 1 73 162 319 3170

When applying the BBSGoF() function to the Hedenfalk data and printing the results (saved in the
m5 object), a warning alerts the user that blocks 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, and 19 have been removed
because they provided negative or atypical variances (see output below). We see that the BBSGoF
procedure rejects 393 nulls. In this case, we have chosen the option adjusted.pvalues = TRUE in order
to compute the adjusted p values with blocks = 13 (the automatic number of blocks obtained in a
preliminary application of the same function). We note that the output is not immediately obtained
in this case since the computation of the adjusted p values is time-consuming. Following this, we
can use again the summary method to obtain more relevant information. The summary of the m5
object indicates that BBSGoF’s decision entails an estimated FDR of 12.96%. Moreover, this summary
reports the automatic number of blocks, 13, corresponding to the minimum number of declared effects
(searching from kmin = 2 to kmax = 100), as well as the p value of the Tarone test of no correlation for
this number of blocks (5e-04), and the parameters of the fitted beta and beta-binomial distributions.

> m5 <- BBSGoF(u, adjusted.pvalues = TRUE, blocks = 13)
> m5

Call:
BBSGoF(u = u, adjusted.pvalues = TRUE, blocks = 13)

Parameters:
alpha= 0.05
gamma= 0.05
kmin= 2
kmax= 100
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Warning:
Blocks 2 3 4 5 6 7 8 9 11 15 18 19 have been removed because they provided negative or
atypical variances.

Rejections:
[1] 393
> summary(m5)

...

$Rejections
[1] 393

$FDR
[1] 0.1296

$Adjusted.pvalues
>gamma <=gamma

2777 393

$Tarone.pvalue.auto
[1] 5e-04

$beta.parameters
[1] 35.0405 148.4139

$betabinomial.parameters
[1] 0.1910 0.0054

$sd.betabinomial.parameters
[1] 0.0106 0.0038

$automatic.blocks
[1] 13

Figure 2 depicts the graphics obtained when using the plot method (plot(m5)). In the upper
left plot, the p values of Tarone test are depicted. It can be seen that there are many p values falling
below 0.05, thus suggesting a trend of positive correlation. In the upper right plot, the within-block
correlation for each number of blocks is displayed. In the middle left plot the beta density is reported,
whereas the middle right plot shows the number of effects declared for each possible number of
existing blocks. The dashed line represents the number of effects declared by Conservative SGoF.
Roughly, it is seen that the number of declared effects tends to increase with the number of blocks,
accordingly to the weaker dependence structure. Finally, the last plot in Figure 2 represents the
adjusted p values versus the original ones (for the default adjusted.pvalues = FALSE this last plot is
not displayed).

Next, we apply the SGoF() function to the Hedenfalk data (with default values of alpha and
gamma):

> m6 <- SGoF(u)
> summary(m6)

Call:
SGoF(u = u)

Parameters:
alpha= 0.05
gamma= 0.05

$Rejections
[1] 412

$FDR
[1] 0.131

$Adjusted.pvalues
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Figure 2: Hedenfalk data. Graphical results provided by the BBSGoF() function.

>gamma <=gamma
2758 412

The Conservative SGoF procedure reports 412 effects with an estimated FDR of 13.1% which is a
more liberal decision compared to that of BBSGoF. This is not surprising since Conservative SGoF
pre-assumes independence among the tests. Figure 3 depicts the adjusted p values reported by BH()
and SGoF() versus the original ones, obtained using the code lines: plot(m41) and plot(m6).
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Figure 3: Hedenfalk data. Adjusted p values reported by SGoF (left) and BH (right) methods versus
the original ones.

We will use the Hedenfalk data example to illustrate the role of the alpha and gamma arguments of
the SGoF-type procedures too. The m61 object shows that Conservative SGoF with alpha = 0.05 and
gamma = 0.1 declares 510 effects, while 520 adjusted p values are falling below gamma. This illustrates
how the number of rejections may change depending on the initial threshold γ. Examples below
also illustrate that, when alpha is not equal to gamma, the number of rejections may be different to the
number of adjusted p values falling below gamma (if alpha = gamma, the number of rejections is always a
lower bound for the number of adjusted p values below gamma, see Castro-Conde and de Uña-Álvarez
2015; something which does not hold in general). When alpha = 0.1 and gamma = 0.05, SGoF()
reports 420 effects, which illustrates how α has a lower impact in the Conservative SGoF procedure
compared to γ. Note also that the SGoF-type methods get more liberal as the alpha argument increases
but, when γ increases, the number of rejections may increase or decrease.

> m61 <- SGoF(u, gamma = 0.1)
> m61

Call:
SGoF(u = u, gamma = 0.1)

Parameters:
alpha= 0.05
gamma= 0.1

Rejections:
[1] 510

> sum(m61$Adjusted.pvalues <= m61$gamma)

[1] 520
> m62 <- SGoF(u,alpha = 0.1)
> m62

Call:
SGoF(u = u, alpha = 0.1)

Parameters:
alpha= 0.1
gamma= 0.05

Rejections:
[1] 420
> sum(m62$Adjusted.pvalues <= m62$gamma)
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[1] 412

Finally, by applying Binomial.SGoF() (m7) and Bayesian.SGoF() (m8) functions to the Hedenfalk data
one obtains 427 and 413 rejections, respectively. Binomial SGoF rejects more nulls than Conservative
SGoF does (427 vs. 412), as expected, since the first method estimates the variance under the complete
null of no effects. On the other hand, Bayesian SGoF reports approximately the same number of effects
than Conservative SGoF, which will be generally the case with a large number of tests. Note that, as n
grows, the prior information becomes less relevant and the Bayesian SGoF approaches its frequentist
counterpart.

> m7 <- Binomial.SGoF(u)
> m7

Call:
Binomial.SGoF(u = u)

Parameters:
alpha= 0.05
gamma= 0.05

Rejections:
[1] 427

> m8 <- Bayesian.SGoF(u)
> m8

Call:
Bayesian.SGoF(u = u)

Parameters:
alpha= 0.05
gamma= 0.05
P0= 0.5
a0= 1
b0= 1

Rejections:
[1] 413

Conclusions

In this paper we introduced the sgof package which implements in R for the first time SGoF-type
multiple testing procedures; the classical FDR-controlling step-up BH and BY procedures are also
included. We reviewed the definition of the several methods and discussed their relative advantages
and disadvantages, and how they are implemented. Guidelines to decide which method is best suited
to the data at hand have been given. Specifically, if the tests are independent, Binomial SGoF is
recommended, with the possibility of using Conservative SGoF when the number of tests is moderate
to large. On the other hand, BB-SGoF is suitable for serially dependent tests, while Bayesian SGoF
allows for a stronger dependence structure with pairwise correlation depending on the user’s a
priori information. Finally, BH (independent tests or positively correlated tests) and BY (dependent
tests) methods are indicated when the aim is to strongly control for the expected proportion of false
discoveries. Existing improvements on BH and BY methods include the qvalue procedure (Storey
and Tibshirani, 2003) or the empirical Bayes procedures (Pollard et al., 2005), which are implemented
in other packages. sgof has been illustrated in practice by analyzing two real well-known data sets:
Needleman data (Needleman et al., 1979) and Hedenfalk data (Hedenfalk et al., 2001). Summarizing,
it has be shown that sgof package is very user-friendly and it is hoped that it serves the community by
providing a simple and powerful tool for solving multiple testing problems.
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