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bshazard: A Flexible Tool for
Nonparametric Smoothing of the Hazard

Function
by Paola Rebora, Agus Salim and Marie Reilly

Abstract The hazard function is a key component in the inferential process in survival analysis and
relevant for describing the pattern of failures. However, it is rarely shown in research papers due
to the difficulties in nonparametric estimation. We developed the bshazard package to facilitate the
computation of a nonparametric estimate of the hazard function, with data-driven smoothing. The
method accounts for left truncation, right censoring and possible covariates. B-splines are used to
estimate the shape of the hazard within the generalized linear mixed models framework. Smoothness is
controlled by imposing an autoregressive structure on the baseline hazard coefficients. This perspective
allows an ‘automatic’ smoothing by avoiding the need to choose the smoothing parameter, which is
estimated from the data as a dispersion parameter. A simulation study demonstrates the capability
of our software and an application to estimate the hazard of Non-Hodgkin’s lymphoma in Swedish
population data shows its potential.

Introduction

The hazard function is the basis of the inferential process in survival analysis, and although relevant
for describing the pattern of failures, is often neglected in favor of survival curves in clinical papers.
The most widely applied model in survival analysis (the Cox model) allows valid comparisons in
terms of hazard ratios without distributional assumptions concerning the baseline hazard function,
whose nonparametric estimate is rarely shown. Thus the reference against which the relative hazard
is estimated is usually ignored and a crude measure of absolute risk is sometimes provided by the
Kaplan-Meier estimator that is indirectly related to the shape of the hazard function.

In the methodological literature, some methods have been developed to obtain a nonparametric
hazard estimate, including kernel-based (Miiller and Wang, 1994; Hess et al., 1999) and spline-based
estimators (O’Sullivan, 1988; Cai et al., 2002). However, specific statistical software commands
accounting for the characteristics of survival data are lacking. An exception is the R package muhaz
(Hess and Gentleman, 2010) that estimates the hazard function from right-censored data using kernel-
based methods, but this package does not accommodate left-truncated data nor does it allow for
adjustment for possible covariates. Flexible parametric survival models can also be used to describe
and explore the hazard function (Royston and Parmar, 2002) and in R these have been implemented
in the package flexsurv (Jackson, 2014). In these models a transformation of the survival function is
modeled as a natural cubic spline function of the logarithm of time (plus linear effects of covariates).
However this approach relies on an appropriate choice of the number of knots to be used in the spline.

We have developed the bshazard package to obtain a nonparametric smoothed estimate of the
hazard function based on B-splines and generalized linear mixed models (GLMM). This perspective
enables ‘automatic’ smoothing, as the smoothing parameter can be estimated from the data as a
dispersion parameter (Lee et al., 2006; Pawitan, 2001; Eilers and Marx, 1996). Our implementation
accommodates the typical characteristics of survival data (left truncation, right censoring) and also
possible covariates. In the following sections we briefly review the methodology and demonstrate
the performance of the package in numerical examples using simulated data. We illustrate the use
of the package in an application to Swedish population data, where we estimate the incidence of
Non-Hodgkin’s lymphoma (NHL) in sisters of patients.

Methodological background

In this section we briefly review the methodology for smoothing the hazard rate inspired by Eilers
and Marx (1996) and described in Chapter 9 of Lee et al. (2006).

Let T denote the possibly right censored failure time random variable; we are interested in the
estimate of the hazard function defined as

1
h(t)= 1 — - Pt<T<t+AtT >t
(1) = Jim, 5Pt <T<t+ 0T 20

so that 11(t)At is the probability of an event in the infinitesimal interval (¢, f + At), given survival to
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Consider a sample of subjects that are observed from a common origin (e.g. start of exposure,
time of diagnosis) to the occurrence of the event of interest. Observation can be right censored if
the last follow-up time is before the occurrence of the event and/or left truncated if the observation
starts after the origin (time 0). By partitioning the time axis into very small intervals, the number of
events in each interval is approximately Poisson with mean y(t) = h(t)P(t), where P(t) is the total
person-time in the interval (in the simplest case without censoring P(¢) will be the product of the
number of individuals at risk at the beginning of the interval and the length of the interval). The
time at risk of each subject can thus be split into # bins or time intervals (common to all subjects),
similar to the life-table approach to survival analysis. For a data set with one record per individual
including entry time, exit time and censoring indicator, this splitting of time can be implemented easily
by the splitLexis function in the Epi package. Using (common) break points supplied by the user,
the function divides each data record into disjoint follow-up intervals each with an entry time, exit
time and censoring indicator, stacking these as separate ‘observations’ in the new data set. The bins
should be small enough so that /() can be considered approximately constant within each interval.

We will use ¢ to denote the vector of the midpoints of all bins, with t; representing the midpoint
for the ! bin (i = 1,...,n). The vectors y(t) and P(t) represent the total number of events observed
and the total person-time in each interval. Using the Poisson likelihood to approximate the general
likelihood for survival data (Lee et al., 2006; Lambert and Eilers, 2005; Whitehead, 1980), the hazard
can be estimated by modeling the expected number of events, yu(t), in each interval as a Poisson
variable by using P(t) as an offset term:

log[u(t)] = f(t) +log[P(£)],

where f(t) denotes the logarithm of the hazard. In this context it is straightforward to account for
possible covariates in a proportional hazards scheme. After the splitting, data can be aggregated
according to the bin (time) and also to the covariate values for each subject, so that the final data is
organised with one record for each bin and covariate combination. Denoting by X the design matrix
which contains the covariate values (fixed in time) and by p the corresponding vector of coefficients,
the model becomes:

log[p(t)] = Xp + f(t) +1og[P(t)].

Note that the coefficients B do not vary with time, so that subjects with different values of the
covariates X have proportional hazard rates, i.e. log[h(t, X = x1)] = log[h(t, X = x¢)] + (x1 — x0)B.

Smoothers, such as regression splines, can be used to estimate the function f(t) = log[h(t)], and in
particular B-splines provide a numerically efficient choice of basis functions (De Boor, 1978). B-splines
consist of polynomial pieces of degree m, joined at a number of positions, called knots, along the time
axis. The total number of knots (k) and their positions are arbitrarily chosen and are quite crucial for
the final estimate, since the function can have an inflection at these locations. By using B-splines to
estimate f(t), the expected number of events above can be rewritten as:

log[u(t)] = Xp + Zv +log[P(t)], )

where Z is the matrix whose g columns are the B-splines, i.e. the values of the basis functions at the
midpoints of the time bins (that will be repeated for each covariate combination) and v is a vector of
length g of coefficients whose magnitude determines the amount of inflection at the knot locations.
The number of basis functions g = k + m — 1, where k is the total number of knots, including minimum
and maximum, and m is the degree of the polynomial splines. Thus the problem of estimating the
hazard function reduces to the estimation of coefficients in a Generalised Linear Model framework.

B-splines are advantageous because the smoothed estimate is determined only by values at
neighboring points and has no boundary effect. Nevertheless the major criticism of this approach is
the arbitrary choice of the knots which determine the locations at which the smoothed function can
bend and this has been subject to various investigations and discussions (Kooperberg and Stone, 1992).
With a small number of knots, a B-spline may not be appealing because it is not smooth at the knots
(this problem may be avoided by higher-degree B-splines) and can lead to underfitting of the data.
The number of knots can be increased to provide a smoother estimate, but a large number of knots
may lead to serious overfitting. O’Sullivan proposed using a relatively large number of knots and
preventing overfitting by a penalty term to restrict the flexibility of the fitted curve (O’Sullivan, 1986,
1988), which is analogous to likelihood-based mixed effects modeling (Eilers and Marx, 1996; Lee et al.,
2006; Pawitan, 2001). In fact, the penalized least squares equation for a quadratic penalty corresponds
to a mixed model log-likelihood, where the set of second-order differences of the coefficients of the
B-splines (denoted A%v) have autoregressive structure and are normally distributed with mean 0 and
variance 02 I;—2 where I,_; is the identity matrix with dimension g — 2 and g is the number of basis
functions (Lee et al., 2006).
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Intuitively, since the coefficients v of the B-splines determine the change at knot locations (if the
B-splines are of degree 1, they determine the change in slope) they also determine the amount of
smoothing. Assuming the coefficients are normally distributed with mean 0 helps to control the
amount of smoothing and has the advantage of allowing an automatic smoothing in the sense that
the smoothing parameter can be estimated directly from the data as a dispersion parameter (Eilers
and Marx, 1996). Thus the main criticism of the use of B-splines is overcome: the choice of knots is no
longer crucial for the final estimate and in fact a large number of equally spaced knots can be chosen
(more than 40 knots are rarely needed) and overfitting is prevented by the penalty (Lee et al., 2006).

More formally, for model (1) the element z;; represents the value of the j”’ basis function (j =

1,...,9) at the midpoint of the ith bin (i =1,...,n) and the g — 2 second-order differences of the
coefficients are

v3 — 205 + 11
vy — 203+ 0
A2y — 4 3+ 02
Vg — 2051+ 052
Assuming these to be normally distributed with mean 0 and variance o2 I;—2 and conditioning on
these random effects, the number of observed events y is assumed to follow a Poisson distribution
with overdispersion: E(y;|v) = y; and V (y;|v) = p;¢, where ¢ represents the dispersion parameter.

The Extended Quasi-Likelihood approximation (Lee et al., 2006) facilitates an explicit likelihood
formulation (also for overdispersed Poisson data):
qg—2

log L(9,0%,0) = £ { ~5 108 279V (4(0))] = 55418, (1))} — 152 log(2med) = 5 5oTR Mo,

where R~! = (A2(I))TA%(I), AT denotes the transpose matrix of A and d[y(t;), #(t;)] is the deviance
function defined by:

(t) i) —Uu
dly(t;), u(t;)] = 2/:;) %d%

This log-likelihood can be seen as a penalized likelihood where the term v” R~1v is the roughness
penalty; the smoothing parameter is determined by A = 4 with a large A implying more smoothing
and a small A denoting rough v. The extreme situation of A = 0 corresponds to no smoothing and is
analogous to consider v as a vector of fixed parameters.

The parameter ¢, representing the dispersion parameter in the Poisson model, is usually assumed
to be 1. However, if we use ¢ = 1 when in fact ¢ > 1 (overdispersion), we are likely to undersmooth
the data, while the estimate is not influenced by underdispersion (Lee et al., 2006).

The advantage of the mixed model approach is that we have an established procedure for esti-
mating A, equivalent to estimating variance components in mixed models. In this setting the Iterative
Weighted Least Squares (IWLS) numerical algorithm works reliably and is usually used. This algo-
rithm uses a Taylor approximation to the extended likelihood and the application to mixed models is
described in detail in Chapters 6 and 17 in Pawitan (2001).

In our application, the following iterative algorithm is used:
1. Given initial/last estimated values of A, ¢ and j(t;), estimate v and B.
2. Given % and B, update the estimates of A and ¢.

3. Iterate between 1 and 2 until convergence.

We begin by implementing step 1 of the IWLS algorithm as follows. Given a fixed value of A (starting
with A = 10 is a good starting value), we compute the working vector Y

) 0
Y, = 210 + xT B0 + log(P(t) + Lo 1A

where z; is the i row of Z, y(t;) and P(t;) are the number of observed events and the total person-time
in the i interval and x; denotes the ith row of the matrix X, of covariate values centered at their mean
values. For the starting values (t;)? we take the average over all time intervals of the raw hazard,

computed as the number of events divided by the person-time at risk in the interval, }/,((tt‘% . As for the

coefficients, we take v = log[1(#)°] and B° = 0. Defining W as the variance of the working vector (Y)
with elements w; = u(t;)?, the updating formula for the random effects is the solution to

(ZTWZ + AR‘1> v =2ZTW (Y —log(P(t)) — X.B)
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where R~ = (Az(I))T A?(I) and B is the solution to
(XCTWXC) B =XTW (Y — log(P(t)) — Zov).

Note that if A is set to 0, v is estimated as a vector of fixed parameters as mentioned above.

At this point we can introduce a quantity to describe the complexity of the smoothing, that is the
effective number of parameters (or degrees of freedom) associated with v, denoted by df and given by:

-1
df = trace { (szz + /\R_l) szz} .

When A is set to 0, df is equal to the number of basis functions g, while it decreases with increasing
penalisation.

For step 2, given 9 and E, the dispersion parameter is updated by the method of moments
(Wedderburn, 1974) as follows:

y(ti) — p(t)
p(t)
An estimated variance greater than 1 would suggest overdispersion in the data. When we believe

overdispersion is not present (¢ close to 1), we suggest fixing ¢ at 1, especially when adjusting for
covariates where there is a greater risk of overfitting.

¢ = var

The quantity 02 can be updated (Lee et al., 2006) by:

~2 6\TR_1@\

o, = F-2

Once convergence is reached, a point-wise confidence band for the smooth estimate is computed
for the linear predictor log[ji(t)] with variance matrix (assuming the fixed parameters are known at
the estimated values) H = Z(ZTWZ + AR~1)~1Z". This is then transformed to the hazard scale by:

exp {log[i(1)] 2,2V |
P(t) ’

where z, /5 is the (1 — a/2) percentile of a standard normal distribution.

Getting started

This section provides explanations of the input data and output data of the package bshazard, which
estimates the hazard function nonparametrically. In order to use package bshazard, the following
R packages need to be installed: survival, Epi and splines (Therneau, 2014; Carstensen et al., 2011).
After installation, the main function can be called by:

library(bshazard)
bshazard(formula, data, nbin, nk, degree, 10, lambda, phi, alpha, err, verbose)

The only mandatory argument is formula, which should contain a survival object (interpreted by
the survival package) with the time of event (possibly in a counting process format), the censoring
indicator and (optionally) the covariates. For example, the function

output <- bshazard(formula = Surv(time_of_entry, time_of_exit,
censoring_indicator ~ covariates))

will produce a smoothed estimate of the hazard accounting for covariates with the following default
settings:

e the time axis split at each distinct observed time in the data (censoring or event);

¢ B-splines with 31 knots;

¢ degree of B-splines 1;

* smoothing parameter estimated from the data (with starting value 10);

¢ overdispersion parameter estimated from the data;

* 95% confidence intervals.
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By providing various arguments in the function call, the user can override the default settings for the
data format (e.g. specify a data frame), the number of bins (nbin), the number of knots (nk), degree of
splines (degree), smoothing and overdispersion parameters (1ambda and phi), confidence level (alpha)
and convergence criterion (err). Detailed explanations are provided in the function’s help file.

The output of the bshazard function includes a data frame with the original data split in time
intervals (raw.data), vectors containing the estimated hazard and confidence limits and the parameter
estimates (coefficients of the covariates, 43, ff,%, df).

The package also includes the following functions:

* summary(output) prints the values of the estimated hazard, with confidence limits, for each
observed time and the parameter estimates;

e plot(output) and lines(output) plot the hazard, with confidence limits.

Numerical examples

In order to test the flexibility of the proposed algorithm we simulated data from a non monotone
function that could represent, for example, the seasonality of flu incidence:

h(t) =1b- |k’ P1f’71’1€7(h1't)m} +(1-b)- [hgzpzt”z*le*(hzlt)pz} , )

where h(t) is the hazard function, b is a Bernoulli random variable with parameter 0.6, 1y = 1.2, p; = 2,
hy = 0.3, p» = 5. The choice of the parameter values was inspired by Cai et al. (2002). We considered
samples of 500 subjects and for each subject we also simulated a censoring time as U(0,5). Under this
model we simulated 500 random samples and, for each sample, we estimated the hazard function by:

fit <- bshazard(Surv(exit_time, cens) ~ 1, data = dati, nbin = 100)

The choice to pre-bin the data in 100 time intervals was for simplicity of comparison of different
estimates of hazard from different simulations at the same time point. The hazard function esti-
mate did not change when using different numbers of bins or different numbers of knots (data not
shown). The results of this simulation are summarised in Figure 1. The mean estimate of the haz-
ard function is very close to the true hazard. For comparison, we also estimated the hazard using
muhaz(exit_time, cens, max.time = 3, bw.method = "g", n.est.grid = 100) and plotted its
mean estimate in Figure 1, where it can be seen to be very close to the true hazard. Under the same
distribution we also simulated a left truncation time / as U(—1,1), with | < 0 considered as 0 (late
entry for half of the subjects). In this simulation, only subjects with event/censoring times greater
than the left truncation time were valid for analysis. This setting provided results very similar to the
previous setting (data not shown).

In a second simulation, we included a covariate X generated as a standard normal random variable
that influenced the hazard rate according to the model:

h(t) = 0.5t - exp(X).

Under this model we again simulated 500 random samples and, for each sample, estimated the hazard
function by:

fit <- bshazard(Surv(entry_time, exit_time, cens) ~ x, data = dati, nbin = 30)

Results are shown in Figure 2. The mean estimate of the hazard function is again very close to the
true hazard. Note that when adjusting for continuous covariates, the hazard is estimated under the
assumption of a linear effect of the covariates centered at their mean values. In this case, a comparison
with the muhaz function was not possible given that it does not accommodate covariates or late entry.

Results from non-Hodgkin’s lymphoma data

In this section we use the bshazard package to estimate the hazard of cancer diagnosis using data from
Swedish population registers. For all individuals born in Sweden since 1932, the Multi-Generation
Register maintained by Statistics Sweden (Statistics Sweden, 2009) identifies the biological parents,
thus enabling the construction of kinships within families. Using the individually unique national
registration number, individuals in this register can be linked to the National Cancer Register, which
records all malignancies diagnosed since 1958. In our application we use data from Lee et al. (2013)
who analyzed 3,015 sisters of 1,902 non-Hodgkin’s lymphoma (NHL) female patients and 15,697 sisters
of 3,836 matched controls who were cancer free at the time of diagnosis of the corresponding case and
who matched the case with respect to age, year of birth, sex and county of residence.
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Figure 1: Numerical example; estimated and
true hazard function (h(t) = b[1.222te~(120%] 4
(1= b)[0.3%5t4e~(030)°]) with right censoring for
n = 500. The solid black line is the true haz-
ard function, the dashed gray lines are the mean

Rate/person-year

T
0.0 0.5 1.0 1.5 2.0 25 3.0

Time

Figure 2: Numerical example; estimated and
true hazard function (h(t) = 0.5t exp(X)) with
left truncation and right censoring for n = 500.
The solid black line represents the true hazard
function, and the dashed gray lines are the mean

estimate and the empirical pointwise 95% confi-

estimate from bshazard and the empirical point- ;
dence interval.

wise 95% confidence interval. Squares represent
the mean estimate from the muhaz function.

Sisters are at risk from birth to the age at NHL diagnosis or censoring due to death, emigration or
end of study (2007). Individuals born before the start of the cancer register (1958) were considered at
risk from their age at the start of the cancer register, resulting in delayed entry. In the study period, 32
NHL diagnoses were observed in the exposed group (sisters of subjects with a diagnosis of NHL) and
39 in the unexposed group (sisters of cancer-free subjects).

In order to illustrate the automatic smoothing, we first concentrated on sisters of cancer-free

subjects and computed the smoothed hazard using the usual B-splines (i.e. setting the smoothing
parameter A = 0):

fit_notexp_10 <- bshazard(Surv(entry_age, exit_age, cens) ~ 1, lambda = 0,
data = sis[nexpol)

where [nexpo] selects only the sisters of control subjects.

The resulting hazard function, plotted in Figure 3, has several bumps, so we proceeded to estimate
the smoothing parameter from the data, again using the same number of knots (31 as default):

fit_notexp <- bshazard(Surv(entry_age, exit_age, cens) ~ 1, data = sis[nexpol)

The resulting estimate of A was 11,311.84 with 2.40 degrees of freedom and ¢ = 0.82 and the dotted
line in Figure 3 presents the corresponding hazard estimate. The estimate of the hazard function was
unchanged when using different numbers of knots or by setting the overdispersion parameter to 1 (in
fact no overdispersion was found ¢ = 0.82).

Lee et al. found that sisters of female NHL patients have hazard ratio of NHL of 4.36 (95%
confidence interval [2.74; 6.94]) compared to sisters of controls (Lee et al., 2013). For comparison with
their results we estimated the risk of NHL adjusting for ‘exposure’ (i.e. being a sister of a case rather
than a control):

fit_adj_exp <- bshazard(Surv(entry_age, exit_age, cens) ~ case, data = sis)

where the variable case indicates whether the subject is a sister of a case. We obtained a very similar

hazard ratio, exp(B) = 4.35, as expected. Note that the code provides the hazard for a subject with
covariate value equal to the mean of all subjects:

o ltx) _ e [T+ 29+ log(P(1)]
M =Ty P

Since this estimate is not meaningful for categorical variables, we obtained separate hazard
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Figure 3: Hazard estimate of NHL in sisters
of controls with smoothing parameter set to 0
(continuous line) and smoothing estimated from
the data (dashed line). Dots represent the raw
hazard.
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Figure 4: Smoothed hazard of NHL in unex-
posed (continuous line) and exposed (dashed
line) sisters obtained from the model with ex-
posure as a covariate. Dotted lines represent
confidence intervals. For reference, the stratified

estimates obtained from separate models for ex-
posed and unexposed sisters are presented in

grey.
estimates for unexposed and exposed subjects from:

exp [xB+zz7+ 1og(p(t))}
P(t)

h(t;x) =

=h(LT) - exp [(x —Y)E] .

The function plot in the package bshazard calls an object of class ‘bahazard” and allows one to
easily plot separate curves for each set of covariate values. The estimates plotted in Figure 4 were
obtained using plot(fit_adj_exp, overall = FALSE) and assume proportionality of the hazard
in exposed and unexposed sisters. As a reference, we also performed stratified analyses obtaining
estimates separately for exposed and unexposed sisters and these are plotted in grey in Figure 4.
As expected, the hazard estimates are similar to the separate estimates, but are constrained by the
assumption of proportionality. This is especially evident in the exposed group: the hazard increase
seems to level off after age 55, but this is not detected by the hazard estimate obtained under the joint
adjusted model.

The adjustment to the hazard estimate is particularly advantageous for continuous variables. The
proposed method allows inclusion of more than one covariate, so in the NHL application the hazard
of exposed and unexposed subjects could be further adjusted for calendar time by:

fit_adj_exp_caly <- bshazard(Surv(entry_age, exit_age, cens) ~ case + yob, data = sis)

This yielded hazard estimates that were essentially unchanged and are not reported here.

Discussion

We have implemented a software package in R to obtain a nonparametric smoothed estimate of the
hazard function based on B-splines from the perspective of generalized linear mixed models. The
Poisson model leads to an elegant form for the log of the hazard (Lambert and Eilers, 2005). We adopted
the discrete approach to survival analysis allowing staggered entry, intermittent risk periods and large
data sets to be handled with ease. The code is easy to use and accommodates the typical characteristics
of survival data (left truncation, right censoring) by using the survival package. It also accounts for
possible covariates, but the user should be aware that covariates are assumed to have a constant effect
on the hazard (proportional hazards). It is of note that the model is also valid for estimating the rate
function over time where an individual can have repeated events (Cook and Lawless, 2002). For such
applications, the code can be used without change and data should be included in a counting process
format. The package bshazard is available from http://CRAN.R-project.org/package=bshazard.
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The main advantage of our function is that the user can obtain the estimated hazard by a simple
line of code and that the extent of smoothing is data-driven (i.e. the user does not need to specify any
smoothing parameter). The number of degrees of freedom gives an intuitive interpretation of the
amount of smoothing and is also useful for making comparisons between different smoothers.

To prepare the data for analysis the package uses the splitLexis function (Epi package). The
choice of time intervals does not affect the smoothed estimate as long as the bins are small enough
for the assumption of constant hazard within the bin to be reasonably satisfied. For large numbers of
observations the splitting can be time consuming, especially when accounting for many covariates.
Nevertheless, in our relatively large data-set of NHL sisters, the most complex hazard estimate,
adjusting for two covariates (fit_adj_exp_caly) was obtained in less than one minute. Interval
censored data are not included in the code at this time, but the package can still be used if the censored
intervals are relatively short. In this situation we could choose the bins in such a way that every
censored interval is completely included in one bin, avoiding the problem of the specification of the
exact event time, but some assumptions on person-time at risk will be needed. With small data sets
and in the presence of covariates, estimation of both smoothing and overdispersion parameters can
cause some convergence problem; in this case if there is not strong evidence of overdispersion we
suggest fixing ¢ at 1.

The possibility to estimate the hazard function with a simple command provides a useful tool
for a deeper understanding of the process being studied, both in terms of the magnitude of the risk
and the shape of the curve (Rebora et al., 2008). For example, in a previous paper, we found that
sisters of subjects diagnosed with NHL have a hazard ratio of 4.36 (95% confidence interval [2.74;
6.94]) for NHL compared to sisters of controls (Lee et al., 2013), but did not show at which age the
risk was higher. Reanalyzing the data using bshazard revealed how the magnitude of the risk varied
with age. This important information is often neglected in epidemiological studies, in large part
due to the lack of simple and accessible software tools. An important area of application is in the
presence of time-dependent variables, when an absolute measure of risk cannot be obtained by the
Kaplan-Meier estimator. For example, in a comparison between the effect on disease-free survival of
chemotherapy and transplantation, which occur at different time points, the Kaplan-Meier method
will tend to overestimate the survival of the transplanted group, since these patients have to survive
until transplant (immortal time bias). In such situations, a hazard estimate is particularly useful for
presenting the instantaneous risk of an event over time given that it conditions on the subjects at risk
at each time.

In summary, the bshazard package can enhance the analysis of survival data in a wide range
of applications. The advantage of automatic smoothing and the close relationship with the survfit
function make the package very simple to use.
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