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Fitting Conditional and Simultaneous
Autoregressive Spatial Models in hglm

by Moudud Alam, Lars Ronnegird, and Xia Shen

Abstract We present a new version (= 2.0) of the hglm package for fitting hierarchical generalized
linear models (HGLMSs) with spatially correlated random effects. CAR() and SAR() families for con-
ditional and simultaneous autoregressive random effects were implemented. Eigen decomposition
of the matrix describing the spatial structure (e.g., the neighborhood matrix) was used to transform
the CAR/SAR random effects into an independent, but heteroscedastic, Gaussian random effect. A
linear predictor is fitted for the random effect variance to estimate the parameters in the CAR and SAR
models. This gives a computationally efficient algorithm for moderately sized problems.

Introduction

We present an algorithm for fitting spatial generalized linear models with conditional and simultaneous
autoregressive (CAR & SAR; Besag, 1974; Cressie, 1993) random effects. The algorithm completely
avoids the need to differentiate the spatial correlation matrix by transforming the model using an eigen
decomposition of the precision matrix. This enables the use of already existing methods for hierarchical
generalized linear models (HGLMs; Lee and Nelder, 1996) and this algorithm is implemented in the
latest version (= 2.0) of the hglm package (Ronnegédrd et al., 2010).

The hglm package, up to version 1.2-8, provides the functionality for fitting HGLMSs with uncor-
related random effects using an extended quasi likelihood method (EQL; Lee et al., 2006). The new
version includes a first order correction of the fixed effects based on the current EQL fitting algorithm,
which is more precise than EQL for models having non-normal outcomes (Lee and Lee, 2012). Similar
to the h-likelihood correction of Noh and Lee (2007), it corrects the estimates of the fixed effects and
thereby also reduces potential bias in the estimates of the dispersion parameters for the random effects
(variance components). The improvement in terms of reduced bias is substantial for models with a
large number of levels in the random effect (Noh and Lee, 2007), which is often the case for spatial
generalized linear mixed models (GLMMs).

Earlier versions of the package allow modeling of the dispersion parameter of the conditional
mean model, with fixed effects, but not the dispersion parameter(s) of the random effects. The current
implementation, however, enables the user to specify a linear predictor for each dispersion parameter
of the random effects. Adding this option was a natural extension to the package because it allowed
implementation of our proposed algorithm that fits CAR and SAR random effects.

Though the CAR/SAR models are widely used for spatial data analysis there are not many software
packages which can be used for their model fitting. GLMMs with CAR/SAR random effects are often
fitted in a Bayesian way using BUGS software (e.g., WinBUGS; Lunn et al., 2000, or alike), which leads
to extremely slow computation due to its dependence on Markov chain Monte Carlo simulations.
The R package INLA (Martins et al., 2013) provides a relatively fast Bayesian computation of spatial
HGLMs via Laplace approximation of the posterior distribution where the model development has
focused on continuous domain spatial modeling (Lindgren and Rue, 2015) whereas less focus has been
on discrete models including CAR and SAR. Recently, package spaMM (Rousset and Ferdy, 2014) was
developed to fit spatial HGLMs but is rather slow even for moderately sized data. Here, we extend
package hglm to also provide fast computation of HGLMs with CAR and SAR random effects and
at the same time an attempt has been made to improve the accuracy of the estimates by including
corrections for the fixed effects.

The rest of the paper is organized as follows. First we give an introduction to CAR and SAR
structures and present the h-likelihood theory together with the eigen decomposition of the covariance
matrix of the CAR random effects and show how it simplifies the computation of the model. Then we
present the R code implementation, show the use of the implementation for two real data examples
and evaluate the package using simulations. The last section concludes the article.
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CAR and SAR structures in HGLMs

HGLMs with spatially correlated random effects are commonly used in spatial data analysis (Cressie,
1993; Wall, 2004). A spatial HGLM with Gaussian CAR random effects is given by

E (zs|us) = Hs s=1,2,...,n,
g(l’ls) = s = Xsﬁ+zsus, (1)
zs|us ~ Exponential Family, (2)

with zg|us L z¢|us, Vs # t and
u:(ul,uz,...,un)T~N<0,Z:T(I—pD)7l), 3)

where s represents a location identified by the coordinates (x (s),y (s)), B is a vector of fixed effects,
X; is the fixed-effect design matrix for location s, 1 being the location specific random effects and Z
is a design matrix associated with ;. While

4t N <°’Z —7t(-pD)" (1 —pDT>71) 4)

gives a Gaussian SAR random effects structure. The D matrix in Equations (3) and (4) is some known
function of the location coordinates (see, e.g., Clayton and Kaldor, 1987) and p is often referred to as the
spatial dependence parameter (Hodges, 2013). In application, D is often a neighborhood matrix whose
diagonal elements are all 0, and off-diagonal elements (s, t) are 1 if locations s and t are neighbors.

If & = 71, i.e,, there is no spatial correlation, then this model may be estimated by using usual
software packages for GLMMs. With X = 7D, i.e., defining the spatial correlation directly via the
D matrix, the model can be fitted using earlier versions of the hglm package. However, for the
general structure in Equations (3) and (4), estimation using explicit maximization of the marginal or
profile likelihood involves quite advanced derivations as a consequence of partial differentiation of
the likelihood including X with p and T as parameters (see, e.g., Lee and Lee, 2012). In this paper,
we show that by using eigen decomposition of X, we can modify an already existing R package, e.g.,
hglm, with minor programming effort, to fit a HGLM with CAR or SAR random effects.

h-likelihood estimation

In order to explain the specific model fitting algorithm implemented in hglm, we present a brief
overview of the EQL algorithm for HGLMs (Lee and Nelder, 1996). First, we start with the standard
HGLM containing only uncorrelated random effects. Then, we extend the discussion for CAR and SAR
random effects. Though it is possible to have more than one random-effect term, in a HGLM, coming
from different distributions among the conjugate distributions to GLM families, for presentational
simplicity we consider only one random-effect in this section. The (log-)h-likelihood for a HGLM with
independent random effects can be presented as

h=3Y) ( (1% _(Pb (¢1)) +e (yi,jrfP)) +3 (bi 751{ @) | e (r)) : 5)

where, i =1,2,...,n,j =1,2,...k, 0 is the canonical parameter of the mean model, ¢ is the disper-

sion parameter of th mean model, b (.) a function which satisfies E <y1-,j\ui> =p;=b (91',]') and

Var (y,-,j|ui> = ¢b” (9;‘4) = ¢V (]4,-,]), where V(.) is the GLM variance function. Furthermore, ¢ is
the dispersion parameter of the mean model, 6 (1#;) = v; with g (.) being a so-called weak canonical
link for u; (leading to conjugate HGLMs) or an identity link for Gaussian random effects leading to
GLMMs (Lee et al., 2006, pp. 3-4), ¢ = E (u;), T is the dispersion parameter, and bg and cg are some
known functions depending on the distribution of u;. Equation (5) also implies that / can be defined
uniquely by using the means and the mean-variance relations of y; ;|u; and the quasi-response 1,
allowing us representing it as a sum of two extended quasi-likelihoods (double EQL; Lee and Nelder,
2003) as

D=L (% +log (2mpV (y,,j|ui))) 5> (’% +log (23 (w))) . ®

1
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where dg; ; and dy ; are the deviance components of y; j|u; and  respectively and Var (y) = TV (u;).
It is worth noting that —2D is an approximation to / if y|u or u (or both) belongs/belong to Binomial,
Poisson, double-Poisson (or quasi-Poisson), Beta, or Gamma families. However, no such equivalent
relation (even approximately) is known for the quasi-Binomial family.

In order to estimate the model parameters, Lee and Nelder (1996) suggested a two-step procedure
in which the first, for fixed dispersion parameters ¢ and 7, / (or equivalently —2D) is maximized w.r.t.
B and v = {v;}. This maximization leads to an iteratively weighted least-square (IWLS) algorithm
which solves
W 'T,6 =Tmly,,

X Z . ;i

1l,a
{vi — (; — u;) %} are the vectors of GLM working responses for yi,j\ui and v; respectively, and

m=7W lwithZ being a diagonal matrix whose first n diagonal elements are all equal to ¢ and the re-

N2
maining k diagonal elements are all equal to T and W = diag (wp, w1 ) where wy = { (aﬂ o ) 1 }

ani,f V(]/l,',]‘)
2
_ ou; 1
and wy = { (agi> A, }

In the second step, the following profile likelihood is maximized to estimate the dispersion
0%h

parameters.
1
p,v<h>=(h—> ’ ?
p 219(Bv)3BY)"|) p_pues

where B and ¥ are obtained from the fist step. One needs to iterate between the two steps until
convergence. This procedure is often referred to as “HL(0,1)” (Lee and Lee, 2012) and is available
in the R packages spaMM and HGLMMM (Molas and Lesaffre, 2011). Because there is no unified
algorithm to maximize pg, computer packages often carry out the maximization by using general
purpose optimization routines, e.g., package spaMM uses the optim function.

A unified algorithm for estimating the variance components can be derived by using profile
likelihood adjustment in Equation (6) instead of (5). This leads to maximizing

1
pPgv (Q) = <_2D - E

aHD)D 8
A(BVIIBY ) popues v

for estimating 7 and ¢. The corresponding score equation of the dispersion parameters, after ignoring
the fact that B and ¥ are functions of ¢ and 7, can be shown (see, e.g., Lee and Nelder, 2001) to have

the form of Gamma family GLMs with dy; ;/ (1 — h,-,]-) and dy;/ (1 — h;) as the responses for ¢ and
T respectively, where h; j and }; are the hat values corresponding to y; ; and v; in the first step, and

(1 — hi,j> /2 and (1 — h;) /2 as the respective prior weights. This procedure is often referred to as

EQL (Lee et al., 2006) or DEQL (Lee and Nelder, 2003) and was the only available procedure in hglm
(£ 1.2-8). An advantage of this algorithm is that fixed effects can also be fitted in the dispersion
parameters (Lee et al., 2006) without requiring any major change in the algorithm.

HL(0,1) and EQL were found to be biased, especially for binary responses when the cluster size is
small (Lee and Nelder, 2001; Noh and Lee, 2007) and when 7 is large in both Binomial and Poisson
GLMMs. Several adjustments are suggested and explained in the literature (see, e.g., Lee and Nelder,
2001, 2003; Lee and Lee, 2012) to improve the performance of h-likelihood estimation. Among these
alternative suggestions HL(1,1) is the most easily implementable and found to be computationally
faster than the other alternatives (Lee and Lee, 2012). The HL(1,1) estimates the fixed effects, B, by
maximizing py (h) instead of h and can be implemented by adjusting the working response y, in
the IWLS step, according to Lee and Lee (2012). In hglm (> 2.0), this correction for the B estimates
has been implemented, through the method = "EQL1" option, but still pg (Q) is maximized for the
estimation of the dispersion parameters, in order to make use of the unified algorithm for dispersion
parameter estimates via Gamma GLMs. Table 1 shows available options for h-likelihood estimation
(subject to the corrections mentioned above) in different R packages.

The above EQL method cannot be directly applied to HGLMs with CAR/SAR random effects
because the resulting pg, (Q) does not allow us to use the Gamma GLM to estimate the dispersion
parameters, T and p. In the following subsection we present a simplification which allows us to use
the Gamma GLM for estimating T and p.
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hglm spaMM HGLMMM
EQL method = "EQL" HLmethod = "EQL-" -
HL@O,1) - HLmethod = "HL(@,1)" LapFix = FALSE
HL@1,1) @ HLmethod = "HL(1,1)" LapFix = TRUE

2 By specifying method = "EQL1" in the hglm package, the HL(1,1) correction of the working response is
applied in the EQL algorithm.

Table 1: Implemented h-likelihood methods in hglm compared to spaMM and HGLMMM packages.

Simplification of model computation

The main difference between an ordinary GLMM with independent random effects and CAR/SAR
random effects models is that the random effects in the later cases are not independent. In the
following we show that by using the eigen decomposition we can reformulate a GLMM with CAR or
SAR random effects to an equivalent GLMM with independent but heteroscedastic random effects.

Lemma1l Let w = {w;}! ; be the eigenvalues of D, and V is the matrix whose columns are the
corresponding orthonormal eigenvectors, then

1

—(1—pD) = VAVT, )

where A is diagonal matrix whose ith diagonal element is given by

A pe (10)
Proof of Lemma 1
VAVT = Vdiag { #} VT
= %(VVT — pVdiag{w;}VT)
1
I 11
-(1—pD) (11)

It is worth noting that the relation between the eigenvalues of D and X was already known as early as
in Ord (1975) and was used to simplify the likelihood function of the Gaussian CAR model. Similarly,
for simplification of the SAR model, we have

)2
%(1 — pD)(I1— pDT) = Vdiag { %} \ (12)

An anonymous referee has pointed out that a somewhat extended version of Lemma 1, which deals
with simultaneous diagonalization of two positive semi-definite matrices (Newcomb, 1969), has
already been used to simplify the computation of Gaussian response models with intrinsic CAR
random effects, especially in a Bayesian context (see, e.g., He et al., 2007, and the related discussions in
Hodges 2013, Chap. 5). Therefore, Lemma 1 is not an original contribution of this paper, however, to
the authors” knowledge, no software package has yet utilized this convenient relationship to fit any
HGLM by using interconnected GLMs, as discussed below.

Re-arranging Equation (1), we have
7 =XB+ Zu*, (13)

where, 7 = {15}, X = {Xs},Z = {Zs} Vand u* = VT u. With the virtue of Lemma 1 and the properties
of the multivariate normal distribution, we see that u* ~ N (0, Afl). This model can now easily be
fitted using the hglm package in R. Further note that, for the CAR model, from Lemma 1, we have

1 — pw;
T
0o + O w; (14)

A=

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

Option Explanation
rand.family = CAR(D = nbr) The random effect has conditional or simul-
rand.family = SAR(D = nbr) taneous autoregressive covariance structure.
Here nbr is a matrix provided by the user.
method = "EQL1" The first order correction of fixed effects
(Lee and Lee, 2012) applied on the EQL estimates.
rand.disp.X = X Linear predictor for the variance component
of a random effect. The matrix X is provided
by the user.
rand.family = This option provides the possibility of having
list(Gamma(),CAR()) different distributions for the random effects.

Table 2: New options in the hglm function.

where 6y = 1/t and 61 = —p/7t. While for the SAR model,

_ 2
T
= VA = 6yt 0w;, (15)

where 6 = 1/+/T and 6; = —p/+/7. Following Lee et al. (2006), we can use an inverse link for CAR
or an inverse square-root link for SAR in a Gamma GLM with response u;*2/ (1 — h;), where h; is the
corresponding hat value from the mean model (Equation (13)), (1 — ;) /2 as the weight and the linear
predictor given by Equations (14) and (15) to obtain an EQL estimate of 6y and 6;.

Implementation

The spatial models above are implemented in the hglm package (> 2.0) by defining new families,
CAR() and SAR(), for the random effects. The “CAR” and “SAR” families allow the user to define
spatial structures by specifying the D matrix. Using Lemma 1, these families are created using D with
default link function “identity” for the Gaussian random effects u, and “inverse” and “inverse.sqrt”
for the dispersion models (14) and (15). When the “CAR” or “SAR” family is specified for the random
effects, the parameter estimates ¢ and % are given in the output in addition to the other summary
statistics of the dispersion models. The new input options in hglm are described in Table 2.

Throughout the examples below, we use Gaussian CAR random effects to introduce spatial
correlation. However, one can also add additional independent non-Gaussian random effects along
with the Gaussian CAR random effect. For example, an overdispersed count response can be fitted
using a Poisson HGLM with an independent Gamma and Gaussian CAR random effects.

Examples and simulation study

In the hglm package vignette, we look at the improvement of EQL1 in comparison to EQL. Here, we
focus on the precision of the parameter estimates with spatial HGLMs.

Poisson CAR & SAR model

We study the properties of the estimates produced by hglm using a simulation study built around the
Scottish Lip Cancer example (see also the examples). We simulate data with the same X values, offset
and neighborhood matrix as in the Scotthis Lip Cancer example data. We use the true values of the
parameters, after Lee and Lee (2012), as (intercept, Brpp: T p) = (0.25,0.35,1.5,0.1). The parameter
estimates for 1000 Monte Carlo iterations are summarized in Table 3.

Both the EQL and the EQL1 correction are slightly biased for T and p (Table 3) though the absolute
amount of bias is small and may be negligible in practical applications. The EQL1 correction mainly
improves the estimates of the intercept term. There were convergence problems for a small number of
replicates, which was not surprising given the small number of observations (1 = 56) and that the
simulated value for the spatial autocorrelation parameter p connects the effects in the different Scottish
districts rather weakly. Such convergence problems can be addressed by pre-specifying better starting
values. For the converged estimates the bias was small and negligible.
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Bias in the estimation methods

Parameter True value CAR SAR

EQLT EQLI correction” EQLT EQLI correction’
intercept 0.2500 0.0351* 0.0105 0.0541* 0.0307
ﬁfpp 0.3500 —0.0018* —0.0004 —0.0034* —0.0022
1/t 0.6667 0.0660* 0.0658* n/a n/a
—p/T —0.0667 0.0118* 0.0119* n/a n/a
1/y/7 0.8165 n/a n/a 0.0393* 0.0370*
—p/\T —0.0817 n/a n/a 0.0037* 0.0049*
T 1.5000 —0.0770* —0.0760* —0.0880* —0.0860*
Y 0.1000 —0.0247* —0.0250* —0.0097* —0.0102*

* Significantly different from 0 at the 5% level.
t The estimates are the means from 1000 replicates.

Table 3: Average bias in parameter estimates in the simulation using the Scottish Lip Cancer example.

Parameter

Density
-

S

.
-

1 1 I | | 1
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Figure 1: Density plot of the spatial variance-covariance parameter estimates from CAR models via
"EQL1" over 1000 Monte Carlo simulations for the Scottish Lip Cancer example.

The simulation results also revealed that the distribution of ¢ from CAR models is skewed (see
Figure 1), which was also pointed out by Lee and Lee (2012). However, the distribution of —p/%
turned out to be less skewed than the distribution of g. Similar observation was also found for SAR
models. This suggests, we might draw any inference on spatial variance-covariance parameters in the
transformed scale, 6y and 6.

Computational efficiency

Fitting CAR and SAR models for large data sets could be computationally challenging, especially
for the spatial variance-covariance parameters. Using our new algorithm in hglm, moderately sized
problems can be fitted efficiently.

We re-sampled from the ohio data set (for more details on the data set see also the examples)
for different number of locations, each with 10 replicates, executed on a single Intel© Xeon© E5520
2.27GHz CPU. In each replicate, the data was fitted using both hglm and spaMM, for the same model
described above. The results regarding average computational time are summarized in Figure 2. hglm
is clearly more usable for fitting larger sized data sets. In the package vignette, we also show the
comparisons of the parameter estimates, where the "EQL" estimates from hglm are almost identical
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Figure 2: Comparison of the execution time for fitting CAR models using hglm and spaMM.

to the "EQL-" estimates from spaMM, with high correlation coefficients between the two methods:
1.0000, 0.9998, 0.9997 and 0.9999 for the residual variance, p, T and the intercept, respectively.

Examples
Scottish Lip Cancer data set

Here we analyze the cancer data set (source: Clayton and Kaldor, 1987) from the hglm package.
Calling data(cancer) loads a numeric vector E that represents the expected number of skin cancer
patients in different districts in Scotland, a numeric vector 0 giving the corresponding observed counts,
a numeric vector Paff giving proportion of people involved agriculture, farming, and fisheries, and
matrix D giving the neighborhood structure among Scottish districts. Here we demonstrate how the
data is fitted as a CAR model or a SAR model, using the hglm package with the EQL method.

> library(hglm)

> data(cancer)

> logE <- log(E)

> XX <- model.matrix(~ Paff)

> cancerCAR <- hglm(X = XX, y = 0, Z = diag(56),
+ family = poisson(),
+
+
+
>

rand.family = CAR(D = nbr),

offset = logE, conv = 1e-8,

maxit = 200, fix.disp = 1)
summary (cancerCAR)

Call:
hglm.default(X = XX, y = 0, Z = diag(56), family = poisson(),
rand.family = CAR(D = nbr), conv = 1e-08, fix.disp = 1, offset = logE)
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Summary of the fixed effects estimates:

Estimate Std. Error t-value Pr(>|t])
(Intercept) 0.26740 0.20732 1.290 0.20893
Paff 0.03771 0.01215 3.103 0.00471 **

Signif. codes: @ 'x*x' 0.001 '*x' .01 '*x' .05 '.' 0.1 ' ' 1
Note: P-values are based on 25 degrees of freedom

Summary of the random effects estimates:
Estimate Std. Error

[1,1 0o.6407 1.0467

[2,] 0.5533 0.3829

[3,] 0.4124 0.5202

NOTE: to show all the random effects, use print(summary(hglm.object),
print.ranef = TRUE).

NOTE: h-likelihood estimates through EQL can be biased.

Dispersion parameter for the mean model:

[111
Model estimates for the dispersion term:
Link = log

Effects:
[1]1 1

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

Dispersion parameter for the random effects:
[1] 656.3

Dispersion model for the random effects:

Link = log
Effects:
. |Random1

Estimate Std. Error
1/CAR. tau 6.487 1.727
-CAR.rho/CAR. tau -1.129 0.303

CAR.tau (estimated spatial variance component): 0.1542
CAR.rho (estimated spatial correlation): 0.174

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

EQL estimation converged in 10 iterations.

In the above output provided by the summary () method, fixed effects estimates are given under MEAN
MODEL, and the dispersion parameter estimates are given under DISPERSION MODEL. Here, we have
only one random effects term that has a CAR structure, and the corresponding parameter estimates,
90 = 6.487 and 91 = —1.129, are given under . |Random1. However, these are not the natural parameters
of the CAR model (see Section Simplification of model computation) therefore the estimates of the
natural dispersion parameters are given just after them which are, in this case, ¢ = 0.15 and p = 0.17.
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Because the D matrix was a neighborhood matrix (consisting of 0’s and 1’s), the results imply that the
partial correlation of the random effect for any two neighboring districts, given the same for all other
districts, is 0.17.

Furthermore, the value 656.3 for the dispersion of the random effects given in the output above is
an overall variance of u* in Equation (13). This output is usually not of interest to the user and the
main results are contained in * and p.

> cancerSAR <- hglm(X = XX, y = 0, Z = diag(56), family = poisson(),
+ rand.family = SAR(D = nbr), offset = logk,

+ conv = 1e-08, fix.disp = 1)
> summary(cancerSAR)

Call:
hglm.default(X = XX, y = 0, Z = diag(56), family = poisson(),
rand.family = SAR(D = nbr), conv = 1e-08, fix.disp = 1, offset = logE)

Summary of the fixed effects estimates:

Estimate Std. Error t-value Pr(>|t])
(Intercept) ©0.19579 0.20260 0.966 0.34241
Paff 0.03637 0.01165 3.122 0.00425 *x*

Signif. codes: @ 'x*x' 0.001 '*x' .01 'x' .05 '.' 0.1 ' ' 1
Note: P-values are based on 27 degrees of freedom

Summary of the random effects estimates:
Estimate Std. Error

[1,] 0.7367 1.0469

[2,] ©0.6336 0.3930

[3,] 0.4537 0.5784

NOTE: to show all the random effects, use print(summary(hglm.object),
print.ranef = TRUE).

NOTE: h-likelihood estimates through EQL can be biased.

Dispersion parameter for the mean model:
[111

Model estimates for the dispersion term:
Link = log

Effects:
[11 1

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

Dispersion parameter for the random effects:
[1] 16.3

Dispersion model for the random effects:

Link = log
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Effects:
. |Random1

Estimate Std. Error
1/sqrt(SAR. tau) 2.7911 0.4058
-SAR.rho/sqrt(SAR.tau) -0.4397 0.0822

SAR.tau (estimated spatial variance component): 0.1284
SAR.rho (estimated spatial correlation): 0.1575

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

EQL estimation converged in 12 iterations.

For the CAR model, the hglm estimates are exactly the same as those labelled as “PQL” estimates in
Lee and Lee (2012). To get the EQL1 correction the user has to add the option method = "EQL1" and the
hglm function gives similar results to those reported in Lee and Lee (2012), e.g., their HL(1,1) estimates

were (intercept, B fopr T p) = (0.238,0.0376,0.155,0.174) whereas our "EQL1" correction gives (0.234,

0.0377,0.156, 0.174) (see also Section “Fitting a spatial Markov Random Field model using the CAR
family” in the package vignette). A minor difference to the "EQL1" result appears because Lee and Lee
(2012) used the HL(1,1) modification to their HL(0,1) whereas we apply such a correction directly to
EQL which is slightly different from HL(0,1) (see Table 1).

Ohio elementary school grades data set

We analyze a data set consisting of the student grades of 1,967 Ohio Elementary Schools during the year
2001-2002. The data set is freely available on the internet (URL http://www.spatial-econometrics.
com/) as a web supplement to LeSage and Pace (2009) but was not analyzed therein. The shape
files were downloaded from http://www.census.gov/cgi-bin/geo/shapefiles2013/main and the
districts of 1,860 schools in these two files could be connected unambiguously. The data set contains
information on, for instance, school building ID, Zip code of the location of the school, proportion of
passing on five subjects, number of teachers, number of students, etc. We regress the median of 4th
grade proficiency scores, y, on an intercept, based on school districts. The statistical model is given as

Yij = p+0j+E€ij (16)

where i = 1,2,...,1860 (observations), j = 1,2,...,616 (districts), €;; ~ N (0, Uez), {vj} =V ~
N (0, T (I-pW) _1> and W = {wp4 226:1 is a spatial weight matrix (i.e., the neighborhood matrix).
We construct wy, 4 = 1 if the two districts p and g are adjacent, and w); = 0 otherwise.

The above choice of constructing the weight matrix is rather simple. Because the aim of this paper
is to demonstrate the use of hglm for fitting spatial models rather than drawing conclusions from real
data analysis, we skip any further discussion on the construction of the weight matrix. Interested,
readers are referred to LeSage and Pace (2009) for more discussion on the construction of the spatial
weight matrices. With the spatial weight matrix defined as above, we can estimate model (16) by using
our hglm package in the following way.

\Y2

## load the data object 'ohio'
data(ohio)

>

>

> ## fit a CAR model for the median scores of the districts
> X <- model.matrix(MedianScore ~ 1, data = ohioMedian)

> Z <- model.matrix(~ @ + district, data = ohioMedian)

> ohioCAR <- hglm(y = ohioMedian$MedianScore, X = X, Z = Z,

+ rand.family = CAR(D = ohioDistrictDistMat))
> summary (ohioCAR)

Call:

hglm.default(X = X, y = ohioMedian$MedianScore, Z = Z,
rand.family = CAR(D = ohioDistrictDistMat))
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Summary of the fixed effects estimates:

Estimate Std. Error t-value Pr(>|t])
(Intercept) 72.429 0.819 88.44 <2e-16 **x%

Signif. codes: @ 'x*x' 0.001 '*x' .01 '*x' .05 '.' 0.1 ' ' 1
Note: P-values are based on 1566 degrees of freedom

Summary of the random effects estimates:

Estimate Std. Error

[1,] -21.433 11.071
[2,]1 -17.890 10.511
[3,1 -4.537 7.844

NOTE: to show all the random effects, use print(summary(hglm.object),
print.ranef = TRUE).

NOTE: h-likelihood estimates through EQL can be biased.

Dispersion parameter for the mean model:
[1] 190.5

Model estimates for the dispersion term:
Link = log
Effects:

Estimate Std. Error

5.2498 0.0357

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

Dispersion parameter for the random effects:
[11 1.01

Dispersion model for the random effects:

Link = log
Effects:
. |Random1

Estimate Std. Error
1/CAR. tau 0.0097 8e-04
-CAR.rho/CAR.tau -0.0011 2e-04

CAR.tau (estimated spatial variance component): 103.6
CAR.rho (estimated spatial correlation): ©.1089

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

EQL estimation converged in 5 iterations.

The estimated spatial correlation parameter among school districts is 0.109. We can obtain fitted
values from the CAR model and predict the school districts without any observations. The following
codes perform such prediction and the results are visualized in Figure 3(B). We remove the estimate of
Lake Erie, as estimation for an uninhabited region is meaningless.

> ## extract districts from the map data
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(A)

District average of median scores

Figure 3: Observed (A) and predicted (B) median 4th grade proficiency scores of the school districts in
Ohio. Districts without any observations are displayed in gray.

districtShape <- as.numeric(substr(as.character(ohioShape@data$UNSDIDFP), 3, 7))

## calculate fitted values from the CAR model
CARfit <- matrix(ohioCAR$ranef + ohioCAR$fixef,

dimnames = list(rownames(ohioDistrictDistMat), NULL))
ohioShape@data$CAR <- CARfit[as.character(districtShape),]
is.na(ohioShape@data$CAR[353]) <- TRUE # remove estimate of Lake Erie

## visualize the results
spplot(ohioShape, zcol = "CAR"”, main = "Fitted values from CAR",
col.regions = heat.colors(1000)[1000:1], cuts = 1000)

+ VVVVYV + VYV VYV

A predict() method is not available because predicting spatially correlated random effects for
autoregressive models requires re-fitting the whole model. Thus standard kriging cannot be used
because the covariance structure changes if the neighborhood matrix is altered, while keeping T and p
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unchanged. Instead, the fitted model needs to include the entire neighborhood matrix with districts
having missing data as well. Consequently, the incidence matrix Z has more columns than rows. This
method of predicting random effects is frequently used in animal breeding applications (Henderson,
1984) but, to our knowledge, has not been applied to spatial autoregressive models previously.

In the example above, ohioMedian$district has 616 levels and 54 of the districts have no records
(Figure 3(A)). The incidence matrix Z, created using the model.matrix function, therefore has 616
columns and 54 of these are columns of zeros. Hence, there are 616 levels in the fitted spatial random
effect giving predictions for the districts without records.

Conclusion

The hglm package is one of few non-Bayesian packages on CRAN to fit spatial HGLMs, where the
fixed and random effects are estimated simultaneously. We have shown how the HGLM framework,
allowing linear predictors to model variance components, can be exploited to fit CAR and SAR models.
This gives a computationally efficient algorithm for moderately sized problems (number of locations
< approx. 5000).
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