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QuantifQuantile: An R Package for
Performing Quantile Regression Through
Optimal Quantization
by Isabelle Charlier, Davy Paindaveine and Jérôme Saracco

Abstract In quantile regression, various quantiles of a response variable Y are modelled as func-
tions of covariates (rather than its mean). An important application is the construction of reference
curves/surfaces and conditional prediction intervals for Y. Recently, a nonparametric quantile regres-
sion method based on the concept of optimal quantization was proposed. This method competes very
well with k-nearest neighbor, kernel, and spline methods. In this paper, we describe an R package,
called QuantifQuantile, that allows to perform quantization-based quantile regression. We describe
the various functions of the package and provide examples.

Introduction

In numerous applications, quantile regression is used to evaluate the impact of a d-dimensional
covariate X on a (scalar) response variable Y. Quantile regression is an interesting alternative to
standard regression whenever the conditional mean does not provide a satisfactory picture of the
conditional distribution. Denoting by F(·|x) the conditional distribution of Y given X = x, the
conditional quantile functions

x 7→ qα(x) = inf {y ∈ R : F(y|x) ≥ α} , α ∈ (0, 1), (1)

indeed always yield a complete description of the conditional distribution. For our purposes, it is
useful to recall that the conditional quantiles in (1) can be equivalently defined as

qα(x) = arg min
a∈R

E[ρα(Y− a)|X = x], (2)

where ρα(z) = αzI[z≥0] − (1− α)zI[z<0] is the so-called check function.

For fixed α, the quantile functions x 7→ qα(x) provide reference curves (when d = 1), one for each
value of α. For fixed x, they provide conditional prediction intervals of the form Iα = [qα(x), q1−α(x)]
(α < 1/2). Such reference curves and prediction intervals are widely used, e.g. in economics, ecology,
or lifetime analysis. In medicine, they are used to provide reference growth curves for children’s
height and weight given their age.

Many approaches have been developed to estimate conditional quantiles. After the seminal
paper of Koenker and Bassett (1978) that introduced linear quantile regression, much effort has been
made to consider nonparametric quantile regression. The most classical procedures in this vein are
the nearest neighbor estimators (Bhattacharya and Gangopadhyay, 1990), the (kernel) local linear
estimators (Yu and Jones, 1998) or the spline-based estimators (Koenker et al., 1994; Koenker and
Mizera, 2004). For related work, we also refer to, e.g. Fan et al. (1994), Gannoun et al. (2002), Muggeo
et al. (2013) and Yu et al. (2003). There also exists a wide variety of R functions/packages dedicated to
the estimation of conditional quantiles. Among them, let us cite the functions rqss (only for d ≤ 2) and
gcrq (only for d = 1) from the packages quantreg (Koenker, 2015) and quantregGrowth (Muggeo,
2015), respectively.

Recently, Charlier et al. (2015a) proposed a nonparametric quantile regression method based on the
concept of optimal quantization. Optimal quantization replaces the (typically continuous) covariate X
with a discretized version X̃N obtained by projecting X on a collection of N points (these N points,
that form the quantization grid, are chosen to minimize the Lp-norm of X− X̃N ; see below). As shown
in Charlier et al. (2015b), the resulting conditional quantile estimators compete very well with their
classical competitors.

The goal of this paper is to describe an R package, called QuantifQuantile (Charlier et al., 2015c),
that allows to perform quantization-based quantile regression. This includes the data-driven selection
of the grid size N (that plays the role of a tuning parameter), the construction of the corresponding
quantization grid, the computation of the resulting sample conditional quantiles, as well as (for d ≤ 2)
their graphical representation.

The paper is organized as follows. The first section briefly recalls the construction of quantization-
based quantile regression introduced in Charlier et al. (2015a,b) and explains the various steps needed
to obtain the resulting estimators. The second section lists the main functions of QuantifQuantile and

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=quantregGrowth
https://CRAN.R-project.org/package=QuantifQuantile


CONTRIBUTED RESEARCH ARTICLES 66

describes their inputs and outputs. Finally, the third section provides several examples that illustrate
the use of the various functions. We conclude the paper by comparing our method with R alternatives
on a real data set. An illustration of the function computing optimal quantization grids is given in
the Appendix, which can be of independent interest in numerical probability, finance or numerical
integration where quantization is extensively used (Pagès, 1998; Pagès et al., 2004).

Quantile regression through quantization

As mentioned above, the R package we describe in this paper implements the Charlier et al. (2015a,b)
quantization-based methodology to perform nonparametric quantile regression. This section describes
this methodology.

Approximating population conditional quantiles through quantization

Let γN ∈ (Rd)N be a grid of size N, that is, a collection of N points in Rd. For any x ∈ Rd, we will
denote by x̃γN

= ProjγN (x) the projection of x onto this grid, that is, the point of γN that is closest to x
(absolute continuity assumption makes ties unimportant in the sequel). This allows to approximate
the d-dimensional covariate X by its quantized version X̃γN

.

Obviously, the choice of the grid has a significant impact on the quality of this approximation.
Under the assumption that ‖X‖p := E[|X|p]1/p < ∞ (throughout, | · | denotes the Euclidean norm),
optimal quantization selects the grid γN that minimizes the Lp-quantization error ‖X− X̃γN‖p. Such
an optimal grid exists under the assumption that the distribution PX of X does not charge any
hyperplane, i.e. under the assumption that PX [H] = 0 for any hyperplane H (Pagès, 1998). In practice,
an optimal grid is constructed using a stochastic gradient algorithm (see the following section). For more
details on quantization, the reader may refer to Pagès (1998) and Graf and Luschgy (2000).

Based on optimal quantization of X, we can approximate the conditional quantile qα(x) in (2) by

q̃N
α (x) := arg min

a∈R
E
[
ρα(Y− a)|X̃N = x̃N], (3)

where X̃N (resp., x̃N) denotes the projection of X (resp., x) onto an optimal grid. It is shown in Charlier
et al. (2015a) that under mild assumptions,1 q̃N

α (x) converges to qα(x) as N → ∞, uniformly in x.

Obtaining an optimal N-grid

As we will see below, whenever independent copies (X′1, Y1)
′, . . . , (X′n, Yn)′ of (X′, Y)′ are available,

the first step to obtain a sample version of (3) is to compute an optimal N-grid (we assume here that
N is fixed). As already mentioned, this can be done through a stochastic gradient algorithm. This
algorithm, called Competitive Learning Vector Quantization (CLVQ) when p = 2, is an iterative procedure
that operates as follows :

• First, an initial grid – γ̂N,0, say – is chosen by sampling randomly without replacement among
the Xi’s.

• Second, n iterations are performed (one for each observation available). The grid γ̂N,t =

(γ̂N,t
1 , . . . , γ̂N,t

N ) at step t is obtained through

γ̂N,t
i =

{
γ̂N,t−1

i − δt|γ̂N,t−1
i − Xt|p−1 γ̂N,t−1

i −Xt

|γ̂N,t−1
i −Xt |

if Projγ̂N,t−1 (Xt) = γ̂N,t−1
i ,

γ̂N,t−1
i otherwise,

where (δt), t ∈N0, is a deterministic sequence in (0, 1) such that ∑t δt = ∞ and ∑t δ2
t < ∞. At

the tth iteration, only one point of the grid moves, namely the one that is closest to Xt.

The optimal grid provided by this algorithm is then γ̂N,n.

Estimating conditional quantiles

Assume now that a sample (X′1, Y1)
′, . . . , (X′n, Yn)′ as above is indeed available. The sample analog

of (3) is then defined as follows :
1Our method actually requires assumptions on the link function between Y and X and on the error term of the

model. These assumptions in particular guarantee that, for any x, the conditional distribution of Y given X = x is
absolutely continuous; we refer to Charlier et al. (2015a) for details.
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(S1) First, we compute the optimal grid γ̂N,n through the stochastic gradient algorithm just described,
and we write X̂N

i = Projγ̂N,n (Xi), i = 1, . . . , n.

(S2) Then, the conditional quantiles are estimated by

q̂N,n
α (x) = arg min

a∈R

n

∑
i=1

ρα(Yi − a)I[X̂N
i =x̂N ], (4)

where x̂N = Projγ̂N,n (x). In practice, q̂N,n
α (x) is simply evaluated as the sample α-quantile of the

Yi’s for which X̂N
i = x̂N .

It is shown in Charlier et al. (2015a) that under mild assumptions, q̂N,n
α (x), for any fixed N and x,

converges in probability to q̃N
α (x) as n→ ∞, provided that quantization is based on p = 2.

When the sample size n is small to moderate (n ≤ 300, say), the estimated reference curves x 7→
q̂N,n

α (x) typically are not smooth. To improve on this, Charlier et al. (2015a,b) introduced the following
bootstrapped version of the estimator in (4). For some positive integer B, generate B samples of size n
from the original sample {(X′i , Yi)

′}i=1,...,n with replacement. From each of these bootstrap samples,
the stochastic gradient algorithm provides an “optimal” grid, using these bootstrapped samples to
perform the iterations. The bootstrapped estimator of conditional quantile is then

q̄N,n
α,B (x) =

1
B

B

∑
b=1

q̂(b)α (x), (5)

where q̂(b)α (x) = q̂(b),N,n
α (x) denotes the estimator in (4) computed on the basis of the bth optimal grid.

We stress that, when computing q̂(b)α (x), the original sample is used in (S2); the bootstrapped samples
are only used to provide the B different grids. As shown in Charlier et al. (2015a,b), the bootstrapped
reference curves are much smoother than the original ones. Of course, B should be chosen large
enough to make the bootstrap useful, but also small enough to keep the computational burden under
control. For d = 1, we usually choose B = 50.

Selecting the grid size N

Both for the original estimators q̂N,n
α (x) and for their bootstrapped versions q̄N,n

α,B (x), an appropriate
value of N should be identified. If N is too small, then reference curves will have a large bias, while if
N is too large, then they will show much variability. This leads to the usual bias/variance trade-off
that is to be achieved when selecting the value of a smoothing parameter in nonparametric statistics.

Charlier et al. (2015b) proposed the following data-driven method to choose N. Let {x1, . . . , xJ}
be a set of x-values at which we want to estimate qα(x) (the xj’s are for instance chosen equispaced
on the support of X) and let N be a finite collection of N-values (this represents the values of N one
allows for and should typically be chosen according to the sample size n). Ideally, we would like to
select the optimal value of N as

N¯
α;opt = arg min

N∈N
ISE¯

α(N), with ISE¯
α(N) =

1
J

J

∑
j=1

(
q̄N,n

α,B (xj)− qα(xj)
)2. (6)

This, however, is infeasible, since the population quantiles qα(xj) are unknown. This is why we draw
B̃ extra bootstrap samples (still of size n) from the original sample and consider

N̂¯
α;opt = arg min

N∈N
ÎSE

¯
α(N), with ÎSE

¯
α(N) =

1
J

J

∑
j=1

(
1
B̃

B̃

∑
b̃=1

(
q̄N,n

α,B (xj)− q̂(b̃)α (xj)
)2
)

, (7)

where q̂(b̃)α (xj), for b̃ = 1 . . . , B̃, makes use of this b̃th new bootstrap sample; more precisely, the
bootstrap sample is still only used to perform the iterations of the algorithm, whereas the original
sample is used in both the initial grid and in (S2).

As shown in Charlier et al. (2015b) through simulations, both N 7→ ISE¯
α(N) and N 7→ ÎSE

¯
α(N) are

essentially convex in N and lead to roughly the same minimizers. This therefore provides a feasible
way to select a reasonable value of N for the estimator q̄N,n

α,B (x) in (5). Note that this also applies

to q̂N,n
α (x) by simply taking B = 1 in the procedure above.

If quantiles are to be estimated at various orders α, (7) will provide an optimal N-value for each α. It
may then happen, in principle, that the resulting reference curves cross, which is of course undesirable.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 68

One way to guarantee that no such crossings occur is to identify a common N-value for the various α’s.
In such a case, N will be chosen as

N̂¯
opt = arg min

N∈N
ÎSE

¯
(N), with ÎSE

¯
(N) = ∑α ÎSE

¯
α(N), (8)

where the sum is computed over the various α-values considered.

Charlier et al. (2015b) performed extensive comparisons between the quantization-based estimators
in (5) – based on the efficient data-driven selection method for N just described – and some of their
main competitors, namely estimators obtained from spline, k-nearest neighbor, and kernel methods.
This revealed that the quantization-based estimators compete well in all cases, and often dominates
their competitors (in terms of integrated square errors), particularly so for complex link functions; see
Charlier et al. (2015b) for details.

Unlike the local linear and local constant estimators from Yu and Jones (1998), that are usually
based on a global-in-x bandwidth, our quantization-based estimators are locally adaptive in the sense
that, when estimating qα(x), the “working bandwidth” – that is, the size of the quantization cell
containing x – depends on x. The k-nearest neighbor (kNN) estimator is closer in spirit to quantization-
based estimators but always selects k neighbors, irrespective of the x-value considered, whereas the
number of Xi’s in the quantization cell of x may depend on x. This subtle local-in-x behavior may
explain the good empirical performances of quantization-based estimators over kernel and nearest-
neighbor competitors. Finally, spline methods (implemented in R with the rqss and qss functions)
tend to perform poorly for complex link functions, since they always provide piecewise linear reference
curves (Koenker et al., 1994). Moreover, the current implementation of the rqss function only supports
dimensions 1 and 2, whereas our package allows to compute quantization-based estimators in any
dimension d.

The QuantifQuantile package

This section provides a description of the various functions offered in the R package QuantifQuantile.
We first detail the three functions that allow to estimate conditional quantiles through quantization.
Then we describe a function computing optimal quantization grids.

Conditional quantile estimation

QuantifQuantile is composed of three main functions that each provide estimated conditional quan-
tiles in (4)-(5). These functions work in a similar way but address different values of d (recall that d is
the dimension of the covariate vector X) :

• The function QuantifQuantile is suitable for d = 1.

• The function QuantifQuantile.d2 addresses the case d = 2.

• Finally, QuantifQuantile.d can deal with an arbitrary value of d.

Combined with the plot function, the first two functions provide reference curves and reference
surfaces, respectively. No graphical outputs can be obtained from the third function if d > 2.

The three functions share the same arguments, but not necessarily the same default values. For
each function, using args() displays the various arguments and corresponding default values :

QuantifQuantile(X, Y, alpha = c(0.05, 0.25, 0.5, 0.75, 0.95), x = seq(min(X), max(X),
length = 100), testN = c(35, 40, 45, 50, 55), p = 2, B = 50, tildeB = 20,
same_N = TRUE, ncores = 1)

QuantifQuantile.d2(X, Y, alpha = c(0.05, 0.25, 0.5, 0.75, 0.95),
x = matrix(c(rep(seq(min(X[1, ]), max(X[1, ]), length = 20), 20),
sort(rep(seq(min(X[2, ]), max(X[2, ]), length = 20), 20))), nrow = 2, byrow = TRUE),
testN = c(110, 120, 130, 140, 150), p = 2, B = 50, tildeB = 20, same_N = TRUE,
ncores = 1)

QuantifQuantile.d(X, Y, x, alpha = c(0.05, 0.25, 0.5, 0.75, 0.95),
testN = c(35, 40, 45, 50, 55), p = 2, B = 50, tildeB = 20, same_N = TRUE, ncores = 1)

We now give more details on these arguments.

• X: a d× n real array (required by all three functions, a vector of length n for QuantifQuantile).
The columns of this matrix are the Xi’s, i = 1, . . . , n.
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• Y: an n× 1 real array (required by all three functions). This vector collects the Yi’s, i = 1, . . . , n.

• alpha: an r× 1 array with components in (0, 1) (optional for all three functions). This vector
contains the orders for which qα(x) should be estimated.

• x: a d × J real array (optional for QuantifQuantile and QuantifQuantile.d2, required by
QuantifQuantile.d). The columns of this matrix are the xj’s at which the quantiles qα(xj)
are to be estimated. If x is not provided when calling QuantifQuantile, then it is set to a
vector of J = 100 equispaced values between the minimum and the maximum of the Xi’s. If
this argument is not provided when calling QuantifQuantile.d2, then the default for x is a
matrix whose J = 202 = 400 column vectors are obtained as follows: 20 equispaced values are
considered between the minimum and maximum values of the (Xi)1’s and similarly for the
second component. The 400 column vectors of the default x are obtained by considering all
combinations of those 20 values for the first component with the 20 values for the second one2.

• testN: an m× 1 vector of pairwise distinct positive integers (optional for all three functions).
The entries of this vector are the elements of the set N in (7)-(8), hence are the N-values for
which the ÎSE

¯
α quantity considered will be evaluated. The default is (35, 40, . . . , 55) but it is

strongly recommended to adapt it according to the sample size n at hand.

• p: a real number larger than or equal to one (optional for all three functions). This is the
parameter p to be used when performing optimal quantization in Lp-norm.

• B: a positive integer (optional for all three functions). This is the number of bootstrap replications
B to be used in (5).

• tildeB: a positive integer (optional for all three functions). This is the number of bootstrap
replications B̃ to be used when determining N̂¯

α;opt or N̂¯
opt.

• same_N: a boolean variable (optional for all three functions). If same_N=TRUE, then a common
value of N (that is, N̂¯

opt in (8)) will be selected for all α’s. If same_N=FALSE, then optimal values
of N will be chosen independently for the various of α (which will provide several N̂¯

α;opt, as
in (7)).

• ncores: number of cores to use. These functions can use parallel computation to save time by
increasing this parameter. Parallel computation relies on mclapply from parallel package, hence
is not available on Windows.

All three functions return the following list of objects, which is of class ‘QuantifQuantile’ :

• hatq_opt: an r× J real array (where r is the number of α-values considered). If same_N=TRUE,

then the entry (i, j) of this matrix is q̄
N̂¯

opt,n
αi ,B (xj). If same_N=FALSE, then it is rather q̄

N̂¯
αi ;opt,n

αi ,B (xj).
This object can also be returned using the usual fitted.values function.

• N_opt: a positive integer (if same_N=TRUE) or an r× 1 array of positive integers (if same_N=FALSE).
Depending on same_N, this provides the value of N̂¯

opt or the vector (N̂¯
α1;opt, . . . , N̂¯

αr ;opt).

• hatISE_N: an r×m real array. The entry (i, j) of this matrix is ÎSE
¯
αi
(Nj). Plotting this for fixed α

or plotting its average over the various α, in both cases over testN, allows to assess the global
convexity of these ISEs. Hence, it can be used to indicate whether or not the choice of testN
was adequate. This will be illustrated in the examples below.

• hatq_N: an r× J ×m real array. The entry (i, j, `) of this matrix is q̄N` ,n
αi ,B (xj), where N` is the `th

entry of the argument testN. From this output, it is easy by fixing the third entry to get the
matrix of the q̄N,n

αi ,B(xj) values for any N in testN.

• The arguments X, Y, x, alpha, and testN are also reported in this response list.

Moreover, when the optimal value N_opt selected is on the boundary of testN, which means that
testN most likely was not well chosen, a warning message is printed.

The ‘QuantifQuantile’ class response can be used as argument of the functions plot (only for
d ≤ 2), summary and print. The plot function draws the observations and plots the estimated
conditional quantile curves (d = 1) or surfaces (d = 2) – for d = 2, the rgl package is used (Adler et al.,
2015), which allows to change the perspective in a dynamic way. In order to illustrate the selection
of N, the function plot also has an optional argument ise. Setting this argument to TRUE (the default
is FALSE), this function, that can be used for any dimension d, provides the plot (against N) of the ÎSE

¯
α

and ÎSE
¯

quantities in (7) or in (8), depending on the choice same_N=FALSE or same_N=TRUE, respectively;
see the examples below for details. If d ≤ 2, it also returns the fitted quantile curves or surfaces.

2Since the number J of points in a default value of x obtained in this fashion would increase exponentially with
the dimension d, we did not adopt the same approach for d ≥ 3.
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Computing optimal grids

Besides the functions that allow to estimate conditional quantiles and to plot the corresponding
reference curves/surfaces, QuantifQuantile provides a function that computes optimal quantization
grids. This function, called choice.grid, admits the following arguments :

• X: a d× n real array (required). The columns of this matrix are the Xi’s, i = 1, . . . , n, for which
the optimal quantization grid should be determined. Each point of X is used as a stimulus in the
stochastic gradient algorithm to get an optimal grid.

• N: a positive integer (required). The size of the desired quantization grid.

• ng: a positive integer (optional). The number of desired quantization grids. The default is 1.

• p: a real number larger than or equal to one (optional). This is the parameter p used in the
quantization error. The default is 2.

In some cases, it may be necessary to have several quantization grids, such as in (5), where B +
tildeB grids are needed. The three functions computing quantization-based conditional quantiles
then call the function choice.grid with ng > 1. In such case, the various grids are obtained using as
stimuli a resampling version of X (the Xt’s in the previous section).

The output is a list containing the following elements :

• init_grid: a d×N×ng real array. The entry (i, j, `) of this matrix is the ith component of the jth

point of the `th initial grid.

• opti_grid: a d×N×ng real array. The entry (i, j, `) of this matrix is the ith component of the jth

point of the `th optimal grid provided by the algorithm.

Illustrations

In this section, we illustrate on several examples the use of the functions described above. Examples 1–
3 restrict to QuantifQuantile/QuantifQuantile.d2 and provide graphical representations in each
case. Example 4 deals with a three-dimensional covariate, without graphical representation. An
illustration of the function choice.grid is given in the Appendix.

Example 1: Simulated data with one-dimensional covariate

We generate a random sample (Xi, Yi)
′, i = 1, . . . , n = 300, where the Xi’s are uniformly distributed

over the interval (−2, 2) and where the Yi’s are obtained by adding to X2
i a standard normal error

term that is independent of Xi :

set.seed(258164)
n <- 300
X <- runif(n, -2, 2)
Y <- X^2 + rnorm(n)

We test the number N of quantizers between 10 and 30 by steps of 5 and we do not change
the default values of the other arguments. We then run the function QuantifQuantile with these
arguments and stock the response in res.

testN <- seq(10, 30, by = 5)
res <- QuantifQuantile(X, Y, testN = testN)

No warning message is printed, which means that this choice of testN was adequate. To assess this
in a graphical way, we use the function plot with ise argument set to TRUE that plots hatISEmean_N
(obtained by taking the mean of hatISE_N over alpha) against the various N-values in testN.

plot(res, ise = TRUE)

Figure 1a provides the resulting graph, which confirms that testN was well chosen since hatISEmean_N
is larger for smaller and larger values of N than N_opt. We then plot the corresponding estimated
conditional quantiles curves in Figure 1b. The default colors of the points and of the curves are
changed by using the col.plot argument. This argument is a vector of size 1+length(alpha), whose
first component fixes the color of the data points and whose remaining components determine the
colors of the various reference curves.

col.plot <- c("grey", "red", "orange", "green", "orange", "red")
plot(res, col.plot = col.plot, xlab = "X", ylab = "Y")
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Figure 1: For the sample considered in Example 1, this figure provides (a) the plot of N 7→ ÎSE
¯
(N)

with N ∈ {10, 15, 20, 25, 30}, and (b) the resulting reference curves. The panels (c)–(d) provide the
corresponding plots when taking N ∈ {10, 11, 12, . . . , 19, 20, 25, 30}.

It is natural to make the grid testN finer. Of course, the more N-values we test, the longer it takes.
This is why we adopted this two-stage approach, where the goal of the first stage was to get a rough
approximation of the optimal N-value. In the second stage, we can then refine the grid only in the
vicinity of the value N_opt obtained in the first stage.

testN <- c(seq(10, 20, by = 1), seq(25, 30, by = 5))
res_step1 <- QuantifQuantile(X, Y, testN = testN)
plot(res_step1, ise = TRUE, col.plot = col.plot, xlab = "X", ylab = "Y")

The resulting graphs are provided in Figures 1c–1d, respectively. We observe that the value
of N_opt is made more precise, since we now get N_opt=18 instead of 15. The resulting estimated
conditional quantiles curves in Figure 1b are very similar to the ones in Figure 1d.

So far, we used the default value same_N=TRUE, which leads to selecting an N-value that is common
to all α’s. For the sake of comparison, we now explore the results for same_N=FALSE.

testN <- c(seq(10, 30, by = 5))
res2 <- QuantifQuantile(X, Y, testN = testN, same_N = FALSE)
plot(res2, ise = TRUE, col.plot = col.plot, xlab = "X", ylab = "Y")
testN <- c(seq(10, 20, by = 1), seq(25, 30, by = 5))
res2_step1 <- QuantifQuantile(X, Y, testN = testN, same_N = FALSE)
plot(res2_step1, ise = TRUE, col.plot = col.plot, xlab = "X", ylab = "Y")

The results are provided in Figure 2. Comparing the left panels of Figures 1 and 2, we see that

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 72

10 15 20 25 30

0
.1
0

0
.1
2

0
.1
4

0
.1
6

N

IS
E^
α
(N
)

0.05

0.25

0.5

0.75

0.95

(a)

-2 -1 0 1 2

-2
0

2
4

6

X

Y

(b)

10 15 20 25 30

0
.0
8

0
.1
0

0
.1
2

0
.1
4

0
.1
6

0
.1
8

N

IS
E^
α
(N
)

0.05

0.25

0.5

0.75

0.95

(c)

-2 -1 0 1 2

-2
0

2
4

6

X

Y

(d)

Figure 2: The same results as in Figure 1, but when selecting optimal values of N separately for each α.

when choosing N by steps of five, we find N_opt = 15 with same_N = TRUE and N_opt = 15 or
20 (depending on alpha) for same_N = FALSE. When we refine the grid testN, we find analogously
N_opt = 18 for same_N = TRUE and N_opt = 14, 15, or 16 for same_N = FALSE. In the present setup,
thus, both methods provide relatively close optimal N-values, which explains why the corresponding
estimated reference curves are so similar (see the right panels of Figures 1 and 2). Therefore, the grid
of N-values tested in Figure 1, that may seem too coarse at first sight, actually provides fitted curves
that are as satisfactory as those associated with the finer grid in Figure 2.

Example 2: Simulated data with two-dimensional covariate

The sample considered here is made of n = 1, 000 independent realizations of a random vector (X′, Y)′,
where X = (X1, X2)

′ is uniformly distributed on the square (−2, 2)2 and where Y is obtained by
adding to X2

1 + X2
2 an independent standard normal error term.

set.seed(642516)
n <- 1000
X <- matrix(runif(n*2, -2, 2), ncol = n)
Y <- apply(X^2, 2, sum) + rnorm(n)

We test N between 40 and 90 by steps of 10. We change the values of B and tildeB to reduce the
computational burden, which is heavier for d = 2 than for d = 1. We keep the default values of all
other arguments when running the function QuantifQuantile.d2. Here, a warning message is printed
informing us that testN was not well-chosen. We confirm it with the function plot with ise argument
set to TRUE.
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Figure 3: For the sample considered in Example 2, this figure plots N 7→ ÎSE
¯
(N) (a) for N ∈

{40, 50, 60, 70, 80} and (b) for N ∈ {80, 90, . . . , 120, 130}.

testN <- seq(40, 90, by = 10)
B <- 20
tildeB <- 15
res <- QuantifQuantile.d2(X, Y, testN = testN, B = B, tildeB = tildeB)
plot(res, ise = TRUE)

Figure 3a provides the resulting graph. The parameter testN was not well chosen since hatISEmean_N
becomes smaller and smaller as N_opt increases. We then adapt the choice of testN accordingly and
rerun the procedure, which identifies an optimal N-value equal to 100; see Figure 3b.

testN <- seq(80, 130, by = 10)
res <- QuantifQuantile.d2(X, Y, testN = testN, B = B, tildeB = tildeB)
plot(res, ise = TRUE)

We then plot the corresponding estimated conditional quantile surfaces in Figure 4.

col.plot <- c("black", "red", "orange", "green", "orange", "red")
plot(res, col.plot = col.plot, xlab = "X_1", ylab = "X_2", zlab = "Y")

Example 3: Real data study and comparison with some competitors

This example aims at illustrating the proposed estimated reference curves on a real data set and at
comparing them with some competitors. In this example, the ncores parameter of QuantifQuantile
function was set to the number of cores detected by R minus 1. The data used here, that are included
in the QuantifQuantile package, involves several variables related to employment, housing and
environment associated with n = 542 towns/villages in Gironde, France. For the present illustration,
we restrict to the regressions R1 and R2 involving (X, Y) = (percentage of owners living in their
primary residence, percentage of buildings area) and (X, Y) = (percentage of middle-range
employees, population density), respectively. In both cases, n = 542 observations are available and
we are interested in the estimation of reference curves for α = 0.05, 0.25, 0.50, 0.75 and 0.95. For both R1
and R2, we tested the number N of quantizers to be used between 5 and 15 by step of 1, using the
methodology described in Example 1.

set.seed(644925)
data(gironde)
X <- gironde[[2]]$owners
Y <- gironde[[4]]$building
testN <- seq(5, 15, by = 1)
res <- QuantifQuantile(X, Y, testN = testN, same_N = F, ncores = detectCores() - 1)
col.plot <- c("grey", "red", "orange", "green", "orange", "red")
plot(res, col.plot = col.plot, xlab = "X", ylab = "Y")
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(a) (b)

Figure 4: For the sample considered in Example 2, this figure plots (with two different views) the
estimated conditional quantile surfaces obtained with the plot function for α = 0.05, 0.25, 0.50, 0.75
and 0.95.

The same exercise is repeated with (X, Y) = (percentage of middle-range employees, population
density). For each α-value considered, we obtained N̂¯

α;opt = 13 for R1 and N̂¯
α;opt = 7 for R2. The

corresponding quantization-based reference curves are plotted in Figures 5a and 5c, respectively. For
the sake of comparison, spline-based curves are provided in Figures 5b and 5d. These were obtained
from the function rqss in the package quantreg. Since the parameter λ involved, that governs the
trade-off between fidelity and smoothness, is not automatically selected by rqss, we selected it through
AIC (via the AIC function), separately for each order α.

rank <- rank(X, ties.method = "random")
X[rank] <- X
Y[rank] <- Y
alpha <- c(0.05, 0.25, 0.5, 0.75, 0.95)
x <- seq(min(X), max(X), length = 100)
n <- length(X)
lambda <- array(0, dim = c(length(alpha), 1))
interval = c(0.2, 10)
for(i in 1:length(alpha)){
AIC_crit <- function(lambda){
AIC(rqss(Y ~ qss(X, lambda = lambda), tau = alpha[i]))[1]

}
select_lambda <- optimize(AIC_crit, interval = interval)
lambda[i] <- select_lambda$min

}
hatq <- array(0, dim = c(length(x), length(alpha)))
fitted_matrix <- array(0, dim = c(n,length(alpha)))
for(l in 1:length(alpha)){
res_rqss <- rqss(Y ~ qss(X, lambda = lambda[l]),tau = alpha[l])
fitted_matrix[,l] <- fitted(res_rqss)

}
plot(X, Y, col = col.plot[1], cex = 0.7);
for(i in 1:length(alpha)){
lines(fitted_matrix[, i] ~ X, type = "l", col = col.plot[i+1])

}

The same exercise is repeated for R2, but with λ tested between 0.5 and 15. Since they are piecewise
linear, the resulting spline-based reference curves are less smooth than the one based on quantization.
Arguably, the latter better adapt to the samples even though they are sometimes quite wiggly.

Of course, the computational burden is also an important issue. Therefore, Table 1 gathers, for
each method and each regression problem, the average and standard deviation of the computing times
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Figure 5: Estimated conditional quantile curves obtained with QuantifQuantile (left) and rqss (right),
for regression R1 (top) and regression R2 (bottom). In each case, the quantile orders considered
are α = 0.05, 0.25, 0.50, 0.75 and 0.95.

QuantifQuantile rqss

R1 2.83 (0.117) 4.39 (0.119)
R2 2.47 (0.085) 4.08 (0.115)

Table 1: Averages of the computing times (in seconds) to obtain 50 times the conditional quantile
curves in Example 3 for QuantifQuantile and rqss, respectively; standard deviations are reported in
parentheses.

in a collection of 50 runs (these 50 runs were considered to make results more reliable). In each case,
our method is faster than its spline-based competitor.

Example 4: Real data with three-dimensional covariate

To treat an example with d > 2, we reconsider the data set in Example 3, this time with the response Y =
population density and the three covariates X1 = percentage of farmers, X2 = percentage of
unemployed workers, and X3 = percentage of managers. In this setup, no graphical output is
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available. We therefore restrict to a finite collection of x-values where conditional quantiles are
to be estimated. Denoting by Mj and X j, j = 1, 2, 3, the maximal value and the average of Xij,
i = 1, . . . , n = 542, respectively, we consider the following eight values of x :

x1 =

X1

X2

X3

 , x2 =


1
2 (X1 + M1)

X2

X3

 , x3 =

 X1
1
2 (X2 + M2)

X3

 , x4 =

 X1

X2
1
2 (X3 + M3)

 ,

x5 =


1
2 (X1 + M1)
1
2 (X2 + M2)

X3

 , x6 =


1
2 (X1 + M1)

X2
1
2 (X3 + M3)

 , x7 =

 X1
1
2 (X2 + M2)
1
2 (X3 + M3)

 , x8 =


1
2 (X1 + M1)
1
2 (X2 + M2)
1
2 (X3 + M3)

 .

The function QuantifQuantile.d is then evaluated for the response and covariates indicated
above, and with the arguments alpha = (0.25, 0.5, 0.75)′, testN = (5, 6, 7, 8, 9, 10)′, x being the 3× 8
matrix whose columns are the vectors x1, x2, . . . , x8 just defined and ncores being the number of cores
detected by R minus 1.

data(gironde)
set.seed(729848)
X1 <- gironde[[1]]$farmers
X2 <- gironde[[1]]$unemployed
X3 <- gironde[[1]]$managers
Y <- gironde[[2]]$density
X <- matrix(c(X1, X2, X3), nr = 3, byrow = TRUE)
n <- length(X)/3
d <- 3
alpha <- c(0.25, 0.5, 0.75)
x1 <- round(c(mean(X1), mean(X2), mean(X3)))
x2 <- round(c((mean(X1) + max(X1))/2, mean(X2), mean(X3)))
x3 <- round(c(mean(X1), (mean(X2) + max(X2))/2, mean(X3)))
x4 <- round(c(mean(X1), mean(X2), (mean(X3) + max(X3))/2))
x5 <- round(c((mean(X1) + max(X1))/2, (mean(X2) + max(X2))/2, mean(X3)))
x6 <- round(c((mean(X1) + max(X1))/2, mean(X2), (mean(X3) + max(X3))/2))
x7 <- round(c(mean(X1), (mean(X2) + max(X2))/2, (mean(X3) + max(X3))/2))
x8 <- round(c((mean(X1) + max(X1))/2, (mean(X2) + max(X2))/2, (mean(X3) + max(X3))/2))
x <- matrix(c(x1, x2, x3, x4, x5, x6, x7, x8), nr = d)
res <- QuantifQuantile.d(X, Y, x , alpha = alpha, testN = seq(5, 10, by = 1),
same_N = F, ncores = detectCores() - 1)

round(fitted.values(res), 2)

This provided N̂¯
α;opt = 8, 7 and 7, for α = 0.25, 0.50 and 0.75, respectively. The total computation time

is 6.86 seconds. The fitted.values function then allowed to return the following matrix hatq_opt of
estimated conditional quantiles :

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 44.30 22.59 39.50 71.59 25.05 22.40 76.37 24.19
[2,] 80.07 32.31 81.24 161.85 35.01 31.92 145.29 38.18
[3,] 139.16 46.50 223.13 344.92 53.73 47.01 402.98 73.19

This collection of (estimated) conditional quartiles allows to appreciate the impact of a marginal
perturbation of the covariates on Y’s conditional median (location) or interquartile range (scale). For
instance, the results suggest that Y’s conditional median decreases with X1, is stable with X2, and
increases with X3, whereas its conditional interquartile range decreases with X1 but increases much
with X2 and with X3. The eight x-values considered further allow to look at the joint impact of two or
three covariates on Y’s conditional location and scale. Of course, other shifts in the covariates (and
other orders α) should further be considered to fully appreciate the dependence of Y on X.

Conclusion

In this paper, we described the package QuantifQuantile that allows to implement the quantization-
based quantile regression method introduced in Charlier et al. (2015a,b). The package is simple to use,
as the function QuantifQuantile and its multivariate versions essentially only require providing the
covariate and response as arguments. Since the choice of the tuning parameter N is crucial, a warning
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message is printed if it is not well-chosen and the function plot can also be used as guide to change
adequately the value of the parameter testN in the various functions. Moreover, a graphical illustration
is directly provided by the same function plot when the dimension of the covariate is smaller than
or equal to 2. Finally, this package also contains a function that provides optimal quantization grids,
which might be useful in other contexts, too.

Finally, we stress that quantization-based estimators, like most nonparametric smoothing proce-
dures, are likely to perform poorly in high-dimensional situations due to the curse of dimensionality.
For large d, it is therefore unclear how to assess whether a given covariate has a significant impact on
the response variable. For small d, however, it is always possible, in the absence of a formal testing
procedure, to resort to visual inspection. In the simplest case of a single covariate (d = 1), this would
lead to looking whether or not fitted curves approximately are horizontal lines. This can be extended
to the case d = 2.
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Appendix

Illustration of choice.grid

We here put to work the function choice.grid in the univariate and bivariate cases. This function
provides the “optimal” grid generated by the stochastic gradient algorithm described earlier. As above
mentioned, quantization was extensively used in many other fields as numerical integration, cluster
analysis, numerical probability or finance (Pagès, 1998; Pagès et al., 2004). Therefore, this function can
be of interest outside the regression setup considered here.

We start with the univariate case and generate a random sample of size n = 500 from the uniform
distribution over (−2, 2). With N = 15 and ng = 1, this function provides a single initial grid (obtained
by sampling without replacement among the uniform sample) and the corresponding optimal grid
returned by the algorithm. Figure 6 represents the observations (in grey), the initial grid (in red), and
the optimal grid (in green). The same exercise is repeated with sample size n = 5, 000, and the results
are also given in Figure 6.

set.seed(643625)
n <- 500
X <- runif(n, -2, 2)
N <- 15
ng <- 1
res <- choice.grid(X, N, ng)
# Plots of the initial and optimal grids
plot(X, rep(1, n), col = "grey", cex = 0.5, ylim = c(-0.1, 1.1), yaxt = "n",
ylab = "")

points(res$init_grid, rep(0.5, N), col = "red", pch = 16, cex = 1.2)
points(res$opti_grid, rep(0, N), col = "forestgreen", pch = 16, cex = 1.2)

Since the parent distribution is uniform over (−2, 2), the population optimal grid is the equispaced
grid on that interval (Pagès, 1998). For both sample sizes considered, the optimal grid provided by
the choice.grid function is much closer to the population optimal grid than the initial one. Recalling
that the stochastic gradient algorithm in choice.grid performs as many iterations as observations in
the original sample, it is not surprising that the optimal grid associated with the sample of size 5, 000
better approximates the population optimal grid than the optimal grid associated with the sample of
size 500.

Finally, we turn to the bivariate case and generate two random samples of size n = 2, 000 and
size n = 20, 000 from the uniform distribution over the square (−2, 2)2. The function choice.grid was
applied to these samples with N = 30 and ng = 1. The resulting couple of initial and optimal grids are
plotted in Figure 7. As in the univariate case, we observe an improvement when going from the initial
grids to the corresponding optimal grids provided by the function choice.grid (here as well, the
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Figure 6: For n = 500 (left) and n = 5, 000 (right), a random sample of size n from the uniform
distribution over (−2, 2) (in grey), an initial grid of size 15 obtained by sampling without replacement
among these n observations (in red), and the “optimal” grid returned by choice.grid (in green).
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Figure 7: For n = 2, 000 (left) and n = 20, 000 (right), an initial grid of size 15 obtained by sampling
without replacement among a random sample of size n from the uniform distribution over (−2, 2)
(top), and the corresponding optimal grid returned by choice.grid (bottom).

population optimal grid should be uniformly spread over the support of the underlying distribution).
Also, it is still the case that the resulting optimal grid is better when based on a larger sample size n.
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set.seed(345689)
n <- 2000
X <- matrix(runif(n*2, -2, 2), nc = n)
N <- 30
ng <- 1
res <- choice.grid(X, N, ng)
col <- c("red", "forestgreen")
plot(res$init_grid[1,,1], res$init_grid[2,,1], col = col[1], xlab = "", ylab = "")
plot(res$opti_grid[1,,1], res$opti_grid[2,,1], col = col[2], xlab = "", ylab = "")
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