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ALTopt: An R Package for Optimal
Experimental Design of Accelerated Life
Testing
by Kangwon Seo and Rong Pan

Abstract The R package ALTopt has been developed with the aim of creating and evaluating optimal
experimental designs of censored accelerated life tests (ALTs). This package takes the generalized
linear model approach to ALT planning, because this approach can easily handle censoring plans and
derive information matrices for evaluating designs. Three types of optimality criteria are considered:
D-optimality for model parameter estimation, U-optimality for reliability prediction at a single use
condition, and I-optimality for reliability prediction over a region of use conditions. The Weibull
distribution is assumed for failure time data and more than one stress factor can be specified in the
package. Several graphical evaluation tools are also provided for the comparison of different ALT test
plans.

Introduction

Accelerated life testing (ALT) is commonly used for obtaining a product’s failure time data by sub-
jecting it to elevated stress conditions, such as temperature, humidity, and voltage. As a result, the
product fails in a shorter time period than would be expected under normal stress conditions. The
failure data obtained from ALTs can then be extrapolated to the normal use stress level to estimate the
product’s lifetime distribution. Nelson (2005a,b) provides a comprehensive review of ALT papers up
to 2005.

To avoid poor experimental results and to obtain more accurate inference on the acceleration
model and on reliability prediction, it is necessary to have an effective ALT test plan. A well-designed
ALT test plan often aims to achieve some statistical optimality. However, conventional experimental
designs (e.g., factorial designs) are not effective as ALT test plans because of the following features of
ALTs:

• Extrapolation – Test stress levels are typically higher than the normal use stress levels. As failure
time data will be collected at these higher stress levels, extrapolating them to the normal use
stress level is needed for reliability prediction. Nonlinear relationships between failure time and
stress levels are expected.

• Non-normal distributions of failure times – The failure time distribution is typically positively
skewed, e.g., the Weibull distribution.

• Censoring of failure time data – Censoring occurs when the exact failure times of test units are
not observed. There are several reasons for censoring. In some cases, test units do not fail by the
end of the test period, in which case the data becomes right-censored. In other cases, test units
are periodically inspected, so the only information available is the time interval of failure, while
the exact failure time is unknown. The latter case is called interval-censoring.

In this article, we introduce an R package, ALTopt (Seo and Pan, 2015), that constructs optimal test
plans for ALTs with right- and interval-censored data. This package is based on the work done by
Monroe et al. (2011) and Yang and Pan (2013), where generalized linear models (GLMs) were used to
model censored ALT data.

Optimal designs of ALT

Optimality criteria

The ALTopt package accommodates three optimality criteria: D-optimality, U-optimality and I-
optimality. A D-optimal design minimizes the generalized variance of parameter estimates, while a
U-optimal or I-optimal design minimizes, respectively, the (average) variance of response prediction
at a single use condition or over a region of use conditions.

In the GLM context, the D-optimal design is defined by

ξ∗ := arg max
ξ

∣∣X(ξ)′WX(ξ)
∣∣ .
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Let n be the number of test units and p be the number of of model parameters. Matrix X(ξ) is the
n× p model matrix constructed by expanding a design matrix to include all regression terms in the
chosen model form, and matrix W is the n× n diagonal matrix of weights that depends on the GLM
formulation used.

Using the same notation, the U-optimal and I-optimal designs can be defined, respectively, as

ξ∗ := arg min
ξ

x′use · (X(ξ)′WX(ξ))−1 · xuse,

and

ξ∗ := arg min
ξ

∫
Ω x′use · (X(ξ)′WX(ξ))−1 · xusedxuse

SΩ
,

where xuse is the single use condition, Ω is the region of use conditions, and SΩ is the area of use region.
For GLMs, the weights W are functions of the regression coefficients in the linear predictor. Therefore,
the information matrix contains unknown model parameter values, implying that the choice of these
unknown values also affects the optimal design (see Johnson and Montgomery (2009) for more details).
In this article, we assume that these parameter values are pre-specified. They are referred to as the
planning values by Meeker and Escobar (1998).

GLMs for ALT

A function that links failure time and stress variables is needed in order to extrapolate the results
obtained in the test region to the use region. The GLM formulation for ALT is built upon the Cox’s
proportional hazard (PH) assumption. This section provides the derivation of these formulations for
right-censored and interval-censored ALT data.

The Cox’s proportional hazard model

The PH model assumes that, given the vector of explanatory variables x, the hazard function of failure
time is given by

h(t, x; β) = h0(t)ex′β, (1)

where h0(t) is called the baseline hazard function and β is a vector of regression coefficients.

Note that the baseline hazard function is a function of time only. From Eq. (1) we can derive that

H(t, x) = H0(t)ex′β, (2)

where H(t, x) is the cumulative hazard function and H0(t) is the baseline cumulative hazard function.
It is also easy to show that a reliability function is given by

R(t, x) = (R0(t))ex′β
, (3)

where R(t, x) is the reliability function and R0(t) = exp(−H0(t)) is the baseline reliability function.

The baseline hazard function of a Weibull distribution is given by h0(t) = λ0αtα−1, where λ0 is
called the intrinsic failure rate and α is the shape parameter of Weibull distribution. By Eq. (1), the
hazard function of Weibull distribution can be expressed as h(t, x; β) = λ0αtα−1ex′β and, by Eq. (2), its
cumulative hazard function is as H(t, x) = λ0tαex′β.

GLM for right-censored failure time data

With the proportional hazard assumption, the failure density function is given by

f (t) = h(t)R(t) = h0(t)ex′β(R0(t))ex′β
.

For a failure time data set that includes right-censored survival times, each observation can be
expressed as a pair (ti, ci), i = 1, 2, . . . , n, where ti is either a failure time or censoring time and ci is
an indicator variable, which is 1 if the ith unit failed and 0 if it has not failed. Thus, the likelihood
function is given by

L =
n

∏
i=1

( f (ti))
ci (R(ti))

1−ci =
n

∏
i=1

(h(ti))
ci R(ti).
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From Eqs. (1) and (3) the log-likelihood function can be written as

ln L =
n

∑
i=1

[ci ln h(ti) + ln R(ti)] =
n

∑
i=1

[
ci(ln h0(ti) + xi

′β) + exi
′β ln R0(ti)

]
.

Let µi = exp(xi
′β)(− ln R0(ti)), we have

ln L =
n

∑
i=1

[ci ln h0(ti)− ci ln(− ln R0(ti)) + ci ln µi − µi] . (4)

Note that the last two terms of sum on the right-hand side of Eq. (4) are the same as the kernel of
the log-likelihood function of n independent Poisson distributed random variables with mean µi. The
first two terms do not depend on the parameter β. Therefore, the maximum likelihood estimator β̂ of
(4) is similar to the estimator that maximizes the log-likelihood function of Poisson distributions. If the
indicator variable ci is treated as from a Poisson distribution with mean µi, then the GLM formulation
becomes

• The response variables, ci’s, are independently sampled from Poisson(µi);

• The linear predictor is ηi = xi
′β;

• The link function is given by ln µi = ηi + an offset term.

This offset term in the link function is ln H0(ti), the log transformation of the baseline cumulative
hazard function. This GLM formulation is applicable for any failure time distribution with right-
censored data, as long as the PH assumption holds.

Since the log link function is the canonical link function for the Poisson distribution, the asymptotic
variance-covariance matrix of β̂ is given by

Var(β̂) = (X(ξ)′WX(ξ))−1,

where W = diag
{

σ2
i
}

and σ2
i is the variance of Poisson distribution; i.e., σ2

i = µi = exi
′β H0(ti). We

replace ti with its expectation, which is given by

E[ti] = P(t < tc) · E[ti|t < tc] + P(t ≥ tc) · E[ti|t ≥ tc].

Monroe et al. (2011) has shown that

µi =
[
1− e−H(tc ,xi)

]
= Φ(tc, xi),

where Φ is the failure time distribution and tc is the censoring time.

For a Weibull distribution with the known shape parameter α, it follows that

µi =
[
1− exp(−λ0tα

c exi
′β)
]
=
[
1− exp(−eβ0+xi

′βtα
c )
]

,

where β0 = ln λ0 which plays a role of the intercept term in the linear predictor.

GLM for interval-censored failure time data

For interval-censored data, the whole testing period is divided into multiple time intervals such as
[0, t1), [t1, t2), · · · , [tk−1, tk), [tk, ∞), and failures are expected to occur within one of these intervals.
Define the failure probability of the ith test unit within the jth interval to be

pij = P(tj−1 ≤ Ti < tj),

and the conditional probability of surviving at the beginning of the jth interval but failing within the
jth interval as

πij = P(tj−1 ≤ Ti < tj|Ti ≥ tj−1), j = 1, 2, . . . , k + 1.

It can be shown that pi1 = πi1 and pij = (1− πi1)(1− πi2) · · · (1− πi,j−1)πij for j = 2, 3, . . . , k + 1.

Define an indicator variable, r, such that rij = 0 if the ith test unit does not fail within the jth

interval and rij = 1 if the ith test unit does fail. Suppose that there are n items, then the number of
observations is n× (k + 1). For example,

(0, t1, ri1), (t1, t2, ri2), · · · , (tk, ∞, ri,k+1), i = 1, 2, ..., n
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The likelihood function can be expressed as

L =
n

∏
i=1

k+1

∏
j=1

p
rij

ij ,

which is equivalent to

L =
n

∏
i=1

k+1

∏
j=1

π
rij

ij (1− πij)
sij , (5)

where sij = ri,j+1 + ri,j+2 + · · ·+ ri,k+1. Therefore, sij = 1 if the failure of the ith test unit occurs at a
time after the jth interval and sij = 0 if the failure of the ith test unit occurs within or before the jth

interval.

The likelihood function of Eq. (5) has the same form as the likelihood function of independent
binomial random variables. We treat rij as a binomial random variable with probability πij and sample
size mij = rij + sij. The data set can be presented as a series of quadruplets:

(0, t1, ri1, mi1), (t1, t2, ri2, mi1), · · · , (tk, ∞, ri,k+1, mi,k+1), i = 1, 2, ..., n.

Now, we examine the probability πij. Notice that

1− πij = P(Ti ≥ tj|Ti ≥ tj−1) =
R(tj)

R(tj−1)
. (6)

By Eq. (3) it becomes

1− πij =

[
R0(tj)

R0(tj−1)

]exi
′β

.

Applying the natural logarithm function twice yields

ln
[
− ln(1− πij)

]
= xi

′β + ln
[
ln R0(tj−1)/R0(tj)

]
. (7)

The second term of the right hand side of Eq. (7) does not depend on the regression coefficient
β, thus Eq. (7) is a complementary log-log link function with an offset term. We can treat rij’s as
independent random variables that follow a binomial distribution with the probability parameter πij
and sample size mij, and the GLM formulation is written as

• The response variables, rij’s, are distributed as independent Binomial(mij, πij);

• The linear predictor is ηi = xi
′β;

• The link function is given by ln
[
− ln(1− πij)

]
= ηi + an offset term.

Since the log-log link is not a canonical link for the binomial distribution, we need to introduce
∆ = diag {dθi/dηi} in the weight matrix where θi is the natural location parameter of the binomial
distribution; i.e.,

∆ = diag
{

dθi
dηi

}

= diag


d

(
ln

πij

1− πij

)
d
(

ln(− ln(1− πij))
)


= diag

{
−

ln(1− πij)

πij

}
.

Then, the asymptotic variance-covariance matrix of β̂ is given by

Var(β̂) = (X∗(ξ)′WX∗(ξ))−1

= (X∗(ξ)′∆V∆X∗(ξ))−1,

where X∗(ξ) = X(ξ)⊗ 1k+1 and V = diag{σ2
ij}. Note that, instead of using X(ξ), the original model

matrix, X∗(ξ), which is a matrix of size n(k + 1)× p, is used. Each row of X(ξ) is repeated (k + 1)
times in X∗(ξ) because each test unit has (k + 1) intervals.
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In a binomial distribution, σ2
ij = mijπij(1−πij), which includes the random variable mij. Replacing

mij with its expectation, the weight matrix becomes

W = ∆V∆

= diag

{(
−

ln(1− πij)

πij

)
E(mij)πij(1− πij)

(
−

ln(1− πij)

πij

)}

= diag

{
{ln(1− πij)}2(1− πij)

πij
E(mij)

}
. (8)

Assuming a Weibull distribution for a product’s lifetime, we have R(t, x) = exp(−H(t, x)) =

exp(−λ0tαex′β) = e−tαeβ0+x′β
. Substituting it into (6) yields

1− πij =
e−tα

j eβ0+x′β

e−tα
j−1eβ0+x′β .

Assume all time intervals have the same length, ∆t. Then,

1− πij =
e−(j∆t)αeβ0+x′β

e−((j−1)∆t)αeβ0+x′β = e((j−1)α−jα)∆tαeβ0+x′β
. (9)

We also have

E(mij) = 0× P(Ti < tj−1) + 1× P(Ti ≥ tj−1)

= P(Ti ≥ tj−1)

= R(tj−1, xi)

= e−((j−1)∆t)αeβ0+xi
′β

. (10)

Substituting Eq. (9) and Eq. (10) into Eq. (8) yields the weight matrix for the interval-censored Weibull
failure time data:

W = diag

{
{((j− 1)α − jα)∆tαeβ0+xi

′β}2e((j−1)α−jα)∆tαeβ0+x′β

1− e((j−1)α−jα)∆tαeβ0+x′β e−((j−1)∆t)αeβ0+xi
′β
}

= diag

{
((j− 1)α − jα)2∆t2αe2(β0+xi

′β)−jα∆tαeβ0+xi
′β

1− e((j−1)α−jα)∆tαeβ0+xi
′β

}
.

Introduction to the package ALTopt

The main purpose of the ALTopt package is to construct D-, U-, and I-optimal ALT test plans. Two
main functions, altopt.rc and altopt.ic, are developed respectively for the right-censoring and
interval-censoring cases. The following assumptions are required for using this package:

• Failure time data follows the Weibull distribution where the shape parameter is specified by the
user.

• Log-linear functions are used to model the relationship between a failure time distribution
parameter and the stress factors.

• For interval-censored data, all the intervals have the same length.

Lastly, the package can accommodate many stress factors, but 5 or fewer is recommended for compu-
tational efficiency.

This package also provides two functions for evaluating existing test plans – alteval.rc and
alteval.ic. These functions can be used for comparing test plans generated by this ALTopt package
or any other methods. Graphical displays of prediction variance are made available. These plotting
features enhance the usefulness of this package for comparing and selecting test plans.

Creating optimal ALT test plans

The syntax of altopt.rc and altopt.ic functions are as follows:
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altopt.rc(optType, N, tc, nf, alpha, formula, coef,
useCond, useLower, useUpper, nOpt = 1, nKM = 30, nCls = NULL)

altopt.ic(optType, N, t, k, nf, alpha, formula, coef,
useCond, useLower, useUpper, nOpt = 1, nKM = 30, nCls = NULL)

The arguments within these functions are:

• optType – Choice of "D", "U", and "I" optimality.

• N – The number of test units.

• tc (altopt.rc only) – The planned right censoring time.

• t (altopt.ic only) – The planned total testing time (i.e., the end point of the last interval).

• k (altopt.ic only) – The number of time intervals.

• nf – The number of stress factors.

• alpha – The value of the shape parameter of the Weibull distribution.

• formula – The object of class “formula” expressing the linear predictor model.

• coef – The numeric vector containing the coefficients of each term in formula.

• useCond – The numeric vector of use condition. It should be provided when optType is "U". The
length of the vector should be same as the number of stress factors.

• useLower – The numeric vector of lower bound of use region in coded units. It should be
provided when optType is "I". The length of the vector should be the same as the number of
stress factors.

• useUpper – The numeric vector of upper bound of use region in coded units. It should be
provided when optType is "I". The length of the vector should be the same as the number of
stress factors.

• nOpt – The number of repetitions of optimization processes. The default value is 1. If nOpt
is larger than 1, each optimization process starts from randomly chosen design points in the
design region and each solution may slightly differ. The output shows the best solution overall.

• nKM – The number of repetitions of k-means clustering, which is used to generate the optimal
design clustered by kmeans. The default value is 30.

• nCls – The number of clusters used for k-means clustering. If not specified, it is set as the
number of parameters in the linear predictor model.

We use the function stats::optim with the "L-BFGS-B" method to perform optimization. This
function allows box constraints on design variables. In our case, we have a cuboidal design region
where the levels of each stress factor are coded to be between 0 and 1. More details about the
"L-BFGS-B" method are available in Byrd et al. (1995).

The output of these functions are given as a list with the following components:

• call – The matched call.

• opt.design.rounded – The optimal design clustered by rounding.

• opt.value.rounded – The objective function value of opt.design.rounded.

• opt.design.kmeans – The optimal design clustered by k-means algorithm.

• opt.value.kmeans – the objective function value of opt.design.kmeans.

The procedure begins by generating an initial test plan with N design points, which are randomly
selected from possible points in the design region. For example, if we have 100 test units and 2 stress
factors the optimization process begins from 100 randomly chosen initial points, which spread out over
the design region. Throughout the optimization procedure, each of these 100 points converges to its
own optimal location. to create a practical test plan, it is sometimes necessary to enforce some clustering
procedure to reduce the number of distinct design points. Two clustering methods are implemented
in the package. When the design points are very close, the simple method of rounding (to the 3rd

decimal place) the stress values is effective and straightforward. When there are still too many design
points, the alternative is to use k-means clustering, which requires the specification of the number
of clusters, nCls. By carefully selecting the number of clusters, it is possible to reduce the number
of distinct design points without significantly affecting the value of the objective function. The final
recommended test plans are provided by the elements, opt.design.rounded, or opt.design.kmeans,
presented by a table containing each design point location and the number of test units allocated at
each design point. The corresponding values of the objective function of these plans are also stored in
opt.value.rounded and opt.value.kmeans.
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The design.plot function displays the recommended test plan as a bubble plot on a two-dimensional
design region of user-specified stress factors. The size of each bubble represents the relative size of the
test unit allocations. The arguments of design.plot are as follows:

design.plot(design, xAxis, yAxis)

• design – A data frame containing the coordinates and the test unit allocation at each design
point. The components, opt.design.rounded or opt.design.kmeans, of an output created by
altopt.rc or altopt.ic can be given for this argument directly and any other design with the
same form of those can also be given.

• xAxis – The name of the factor to be displayed on the x axis.

• yAxis – The name of the factor to be displayed on the y axis.

Evaluating ALT test plans

This package provides several methods to evaluate an ALT test plan. The first method is the numerical
evaluation of a given test plan using alteval.rc or alteval.ic. These functions return the value of
the objective function of the test plan. The arguments are as follows:

alteval.rc(designTable, optType, tc, nf, alpha, formula, coef,
useCond, useLower, useUpper)

alteval.ic(designTable, optType, t, k, nf, alpha, formula, coef,
useCond, useLower, useUpper)

The existing test plan is specified in the argument designTable. The other arguments of alteval.rc
and alteval.ic are similar to the arguments in altopt.rc and altopt.ic.

ALTopt also provides three different graphs for evaluating a test plan – the prediction variance
(PV) contour plot, the fraction of use space (FUS) plot, and the variance dispersion of use space
(VDUS) plot. These graphical tools are useful when visualizing the prediction variance throughout
the entire use-space region (Myers et al., 2009, chap. 8). The PV contour plot displays the contours of
the estimated prediction variance from the design region to the use region of a two-dimensional user-
specified stress factor space. Functions pv.contour.rc and pv.contour.ic generate the PV contour
plot of an ALT test plan with right and interval censoring, respectively. The FUS plot is an extension of
the fraction of design space (FDS) proposed by Zahran et al. (2003). The vertical axis of a FUS plot is
the fraction of the use space region that has prediction variance less than or equal to the given values
in the horizontal axis. Functions pv.fus.rc and pv.fus.ic create the FUS plot of right and interval
censoring ALT plans, respectively. In addition, the FUS curves of multiple designs can be overlaid on
one graph by using compare.fus, so these designs can be compared graphically. The VDUS plot is
an extension of the variance dispersion graphs (VDGs) of Giovannitti-Jensen and Myers (1989) to the
cuboidal use space region. It shows plots of minimum, average and maximum prediction variance
from the center to the boundary of the use region. The comparison of multiple VDUS is also available
through compare.vdus. The arguments of these functions are omitted here, because they are similar to
previously described functions.

An example with two stress factors and right censoring

In this section, we demonstrate the use of ALTopt using the right-censored ALT data set from Yang
and Pan (2013). In this experiment, an ALT of 100 test units is conducted with two stress factors –
temperature and humidity. The lowest and highest stress levels in the test region are (60 °C, 60 %) and
(110 °C, 90 %), respectively. The normal use condition is (30 °C, 25 %), while the typical use region
has the range from (20 °C, 20 %) to (40 °C, 30 %). The natural stress variables of these two factors are
defined by S1 = 11605/T, where T is the temperature in degrees Kelvin (i.e., temp °C+ 273.15), and
S2 = ln(h), where h is the relative humidity. These values are assigned to the following variables:

R> NuseCond <- c(11605 / (30 + 273.15), log(25))
R> NuseLow <- c(11605 / (20 + 273.15), log(20))
R> NuseHigh <- c(11605 / (40 + 273.15), log(30))
R> NdesLow <- c(11605 / (60 + 273.15), log(60))
R> NdesHigh <- c(11605 / (110 + 273.15), log(90))
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Next, we apply a coding scheme on these natural variables so that the highest stress level becomes (0,
0) and the lowest stress level becomes (1, 1).

x1 =
S1 − SH

1
SL

1 − SH
1

, x2 =
S2 − SH

2
SL

2 − SH
2

. (11)

Here, x1 and x2 are the coded stress variables of S1 and S2, respectively. The ALTopt package provides
a utility function, convert.stress.level, to convert the natural stress level to the coded stress level,
and vice versa. The use condition and the use stress region are accordingly coded as follows:

R> library(ALTopt)
R> (useCond <- as.numeric(convert.stress.level(NdesLow, NdesHigh,
+ actual = NuseCond))) # Coded use condition

[1] 1.758337 3.159172

R> (useLower <- as.numeric(convert.stress.level(NdesLow, NdesHigh,
+ actual = NuseHigh))) # Coded use region's lower bound

[1] 1.489414 2.709511

R> (useUpper <- as.numeric(convert.stress.level(NdesLow, NdesHigh,
+ actual = NuseLow))) # Coded use region's upper bound

[1] 2.045608 3.709511

We assume that the failure times follow an exponential distribution, i.e., alpha = 1, and the pre-
specified linear predictor is given by

ηi = −4.086x1 − 1.476x2 + 0.01x1x2. (12)

Suppose the total testing time is 30 time units. The D-optimal test plan is generated by the following
lines of code:

R> set.seed(10)
R> DR <- altopt.rc("D", N = 100, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01))
R> DR

$call
altopt.rc(optType = "D", N = 100, tc = 30, nf = 2, alpha = 1,

formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01))

$opt.design.rounded
x1 x2 allocation

1 0.000 0 21
2 0.835 0 28
3 0.000 1 26
4 0.639 1 25

$opt.value.rounded
[1] 27153.91

$opt.design.kmeans
x1 x2 allocation

1 0.8353075 0 28
2 0.0000000 0 21
3 0.6390136 1 25
4 0.0000000 1 26

$opt.value.kmeans
[1] 27153.92

While the formula does not include the intercept term explicitly, the value of the intercept parameter
still needs to be specified (in this case, it is 0). From the final design output, we noticed that the designs
generated by rounding and clustering are almost the same.

We can also generate the U-optimal and I-optimal designs using the following lines of code:

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 185

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DR$opt.design.rounded

x1

x2

21 28

26 25

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UR$opt.design.rounded

x1

x2

17 26

16 41

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IR$opt.design.rounded

x1

x2

17 22

16 45

(c)

Figure 1: Design plots of (a) D-optimal, (b) U-optimal and (c) I-optimal designs with right censoring
drawn by design.plot function.

R> set.seed(50)
R> UR <- altopt.rc("U", N = 100, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useCond = useCond)

R> set.seed(100)
R> IR <- altopt.rc("I", N = 100, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useLower = useLower, useUpper = useUpper)

Using design.plot function, we can draw the bubble plots of these test plans.

R> design.plot(DR$opt.design.rounded, xAxis = x1, yAxis = x2)
R> design.plot(UR$opt.design.rounded, xAxis = x1, yAxis = x2)
R> design.plot(IR$opt.design.rounded, xAxis = x1, yAxis = x2)

From Figure 1, one can see that the U- and I-optimal test plans resemble each other, while the D-
optimal test plan is very different from the other two. This is expected because the objective functions
of U- and I-optimal designs involve the variance of reliability prediction, while the D-optimal design
involves the variance of parameter estimation. From the U- and I-optimal test plans, it is noticeable
that a large number of test units is allocated at the lowest stress level. This type of test unit allocation
scheme is common in ALTs (e.g., Meeker and Nelson, 1975).

To compare the D-optimal test plan and the U-optimal test plan, the pv.contour.rc function
generates the contour plot of prediction variance using the following lines of code:

R> pv.contour.rc(DR$opt.design.rounded, xAxis = x1, yAxis = x2,
+ tc = 30, nf = 2, alpha = 1, formula = ~ x1 + x2 + x1:x2,
+ coef = c(0, -4.086, -1.476, 0.01), useCond = useCond)
R> pv.contour.rc(UR$opt.design.rounded, xAxis = x1, yAxis = x2,
+ tc = 30, nf = 2, alpha = 1, formula = ~ x1 + x2 + x1:x2,
+ coef = c(0, -4.086, -1.476, 0.01), useCond = useCond)

Figure 2 shows that the U-optimal test plan has lower prediction variance than the D-optimal test
plan at the normal use condition. The FUS and VDUS plots can also be used for further comparison of
these test plans. These plots are shown in Figure 3.

R> fusDR <- pv.fus.rc(DR$opt.design.rounded, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useLower = useLower, useUpper = useUpper)
R> fusUR <- pv.fus.rc(UR$opt.design.rounded, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useLower = useLower, useUpper = useUpper)
R> compare.fus(fusDR, fusUR)

R> vdusDR <- pv.vdus.rc(DR$opt.design.rounded, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useLower = useLower, useUpper = useUpper)
R> vdusUR <- pv.vdus.rc(UR$opt.design.rounded, tc = 30, nf = 2, alpha = 1,
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Figure 2: Prediction variance contour plots of (a) D-optimal and (b) U-optimal designs with right
censoring drawn by pv.contour.rc function.
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Figure 3: Comparison of D-optimal and U-optimal designs with right censoring using (a) FUS plot and
(b) VDUS plot.
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+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useLower = useLower, useUpper = useUpper)
R> compare.vdus(vdusDR, vdusUR)

Figure 3 shows that the U-optimal test plan performs better in majority of the use-space region
with respect to the prediction variance.

Finally, the convert.stress.level function is useful for converting the U-optimal test plan to the
natural stress level conditions.

R> convert.stress.level(NdesLow, NdesHigh, stand = UR$opt.design.rounded)

x1 x2 allocation
1 30.28840 4.499810 17
2 34.53414 4.499810 26
3 30.28840 4.094345 16
4 33.81136 4.094345 41

Summary

This paper describes the ALTopt package in R for constructing optimal ALT test plans for right- and
interval-censored data. The package accommodates three statistical optimality criteria – D-optimal,
U-optimal and I-optimal. It applies the GLM approach to the modeling of failure/censoring times
and the derivation of the asymptotic variance-covariance matrix of regression coefficients. Failure
times are assumed to follow a Weibull distribution. To use the package effectively, users are required
to specify the linear predictor of the GLM and the shape parameter of the Weibull distribution. An
example demonstrated the construction of optimal test plans for an ALT with two stress factors and
right-censored data. This package also provides graphical functions for evaluating and comparing
various test plans.
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