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Code Profiling in R: A Review of Existing
Methods and an Introduction to Package
GUIProfiler
by Angel Rubio and Fernando de Villar

Abstract Code analysis tools are crucial to understand program behavior. Profile tools use the results
of time measurements in the execution of a program to gain this understanding and thus help in the
optimization of the code. In this paper, we review the different available packages to profile R code
and show the advantages and disadvantages of each of them. In additon, we present GUIProfiler, a
package that fulfills some unmet needs.

Package GUIProfiler generates an HTML report with the timing for each code line and the
relationships between different functions. This package mimics the behavior of the MATLAB profiler.
The HTML report includes information on the time spent on each of the lines of the profiled code
(the slowest code is highlighted). If the package is used within the RStudio environment, the user
can navigate across the bottlenecks in the code and open the editor to modify the lines of code where
more time is spent. It is also possible to edit the code using Notepad++ (a free editor for Windows) by
simply clicking on the corresponding line. The graphical user interface makes it easy to identify the
specific lines which slow down the code.

The integration in RStudio and the generation of an HTML report makes GUIProfiler a very
convenient tool to perform code optimization.

Introduction

Software profiling is the analysis of a computer program performed by measuring the time spent
on each line of code, code coverage or memory usage during its execution. Profiling is the first step
towards efficient programming. The development of efficient software depends on identification of
key bottlenecks. Focusing the optimization only on the bottlenecks is known to maximize efficiency in
both development time and program runtime (Wilson et al., 2014). In interpreted languages (including
R) a few lines can form major bottlenecks. See for example Visser et al. (2015).

With the advent of data mining, data analytics and big data analysis, code profiling is gaining
prominence. In these fields, one potential limitation to scientific advance is inefficient code. Since the
factors that affect the execution time are difficult to foresee beforehand, and the bottlenecks (if the
code is large) are especially difficult to identify, the need of a profiling tool is apparent. In addition to
that, inefficient code is also prone to have bugs. Our experience is that profiling is also an indirect way
to fix errors in software.

The base distribution of R includes a profiling tool that consists of the functions Rprof to start and
stop the profiling and summaryRprof as a parser of the output. The description of Rprof given in the
help file is: “Profiling works by writing out the call stack every interval seconds (...)”. This means that
R uses the operating system interrupts to sample and write the call-stack (by default every 20 msecs).
Therefore, lines that take more than 20 msecs appear at least once in the file written by the internal R
profiler. On the other hand, a “fast” line of code where the execution time is strictly less than 20 msecs
may or may not appear in the output file (with the probability of being included proportional to its
execution time). Therefore, the output of profiling the same code is not identical for different runs.
Overall it can be noted that statistical profiling (i.e., the one implemented in R) intrudes very little on
the executed code (i.e., it almost does not affect its execution time) and is considered to be an efficient
way to achieve proper profiling.

In previous versions of R (prior to 3.0), Rprof only worked at the function level (i.e., the profiler
only provided information on the functions in the stack). Since version 3.0, it is possible to perform
line profiling. If the line.profiling option is selected, the file generated by Rprof also includes
information on the specific line of code in the stack (not only the function). This extension made it
possible to identify the specific lines that slow down the code.

The output of Rprof is quite simple: a file that shows the name and some other characteristics of a
function every time it is found to be in the stack. Despite this simplicity, it is necessary to parse this file
to understand the content and R provides the “summaryRprof function (...) that can be used to process
the output file to produce a summary of the usage” (from its help file).

The functionality of summaryRprof falls short in some aspects. If a function is called several times,
summaryRprof fails to identify the specific function call that is slowing down the computation. As
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functions can be nested in other functions, finding the true bottleneck is not obvious. In summaryRprof,
it is not possible to track the hierarchy among the functions. summaryRprof was developed prior to the
line.profiling option and does not take full advantage of this information. This fact will be shown
in detail in the analysis of the different profile tools below.

These limitations have fostered the development of other command line functions and packages
such as proftable, aprof, proftools, profr, and lineprof. proftable (Klevtsov, 2014) is a convenient
command line function that parses the output of Rprof and shows the output in a reasonable and
intuitive way. aprof (Visser et al., 2015) displays graphically the time spent on each line of code and
provides an estimate on how optimizing a single line of code will affect the overall performance. It also
shows the output of memory profiling. proftools (Tierney and Jarjour, 2013) includes useful command
line tools to perform the profiling. Among other functionalities, it shows a graph of the different
hierarchical relationships between the called functions. lineprof (Wickham, 2014a) can be considered
an evolution of profr (Wickham, 2014b) and is developed by the same author. It is a profiling package
that provides output integrated in the RStudio environment. It shows a nice graphical output and
also includes memory profiling capabilities. In addition to these tools, the pbdPAPI package (Schmidt
et al., 2015) offers access to low-level hardware counter information and is mainly used for advanced
profiling. On the other hand, the most convenient package to test the performance of a single line of
code is microbenchmark (Mersmann, 2014). It cannot be applied, though, to profile complex code. To
our knowledge, these are all the available tools to aid in R profiling.

All these packages are, as most R packages, command line tools. Although they represent an
important advance if compared with the summaryRprof function, none of them are especially user-
friendly. In comparison, MATLABTM (The MathWorks Inc., 2015) provides a profiler that includes
a convenient user interface by means of an HTML report. Profiling MATLAB code is easy and
straightforward with the aid of its profile tool. An R profiler with this convenient front-end that
includes GUI capabilities would be highly desirable.

Fortunately, the development of this tool is not such a challenging task. Several packages such as
Nozzle.R1 (Gehlenborg, 2013) or knitr (Xie, 2014) are available on CRAN that automatically generate
HTML reports based on an easy syntax. GUIProfiler (de Villar and Rubio, 2015) is an R package that
automatically generates an HTML report that summarizes the profiling results. These reports are
generated with the aid of Nozzle.R1. Its integration in the RStudio environment makes it especially
user friendly.

The following sections show how to use package GUIProfiler as well as provide a review on the
profiling capabilities of the aforementioned tools using the same sample code for all of them.

Case study using GUIProfiler

The first lines of code are required for the installation of the package. As GUIProfiler is hosted on
CRAN, the installation is straightforward:

install.packages("GUIProfiler")
library("GUIProfiler")

If the package is properly installed, no errors should appear after calling the library command.
GUIProfiler has a practical limitation that must be taken into account: The profiled code must be
stored on an accessible file. It is therefore better to run a source command instead of writing the lines
directly in the command line. The reason of this limitation is that the report is based on the output
from Rprof and that it only includes information on the functions stored at files, not from the script
that calls them. In addition to that, it only accepts one function per file. R does allow to include several
functions in a single file. We are currently working to circumvent this limitation.

Here we present some sample code (included also in the GUIProfiler documentation) that will be
used with all the profiling tools. The HTML report generated by package GUIProfiler is shown in
Figure 1 and the code is,

temp <- tempdir()
# Definition of two functions
normal.solve <- function(A, b) {

Output <- solve(crossprod(A), t(A) %*% b)
}
chol.solve <- function(A, b) {

L <- chol(crossprod(A))
Output1 <- backsolve(L, t(A) %*% b, transpose = TRUE)
Output2 <- backsolve(L, Output1)

}
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compareMethods <- function() {
library(MASS)
# Call the functions
source(paste(temp, "/normal.solve.R", sep = ""))
source(paste(temp, "/chol.solve.R", sep = ""))
# Solving a big system of equations
nrows <- 1000
ncols <- 500
A <- matrix(rnorm(nrows * ncols), nrows, ncols)
b <- rnorm(nrows)
# Testing different possibilities
Sol1 <- qr.solve(A, b)
# Using QR factorization
Sol2 <- coefficients(lm.fit(A, b))
# lm.fit, based on QR but with some overhead
Sol3 <- ginv(A) %*% b
# Using the pseudoinverse based on SVD
Sol4 <- normal.solve(A, b)
# Using a function based on the normal equations.
Sol5 <- chol.solve(A, b)
# Using Choleski factorization.

}
# Dump these functions to three different files
dump("normal.solve", file = paste(temp, "/normal.solve.R", sep = ""))
dump("chol.solve", file = paste(temp, "/chol.solve.R", sep = ""))
dump("compareMethods", file = paste(temp, "/compareMethods.R", sep = ""))
source(paste(temp, "/compareMethods.R", sep = ""))

This code implements the minimum squares solution of a linear system of equations using different
methods: QR factorization, the lm.fit function (that internally also uses the QR factorization), compu-
tation of a generalized pseudoinverse (that internally uses the SVD factorization), using the normal
equations and, finally, using the Choleski factorization.The solutions using either of them are identical,
i.e., the vectors Sol1, Sol2, Sol3, Sol4 and Sol5 are identical up to computer precision.

The lines to profile the code are only the last ones in the example code of the RRprofReport function.
Specifically,

# Profile the code
RRprofStart()
compareMethods()
RRprofStop()
RRprofReport()

Each of these lines are self-explanatory. In the first line we activate and start the GUIProfiler. The
following line executes the function that is being profiled. Once this line finishes, the profiling is
stopped and the last line generates the report based on the output of the R profiler. In the RStudio
environment, this report is shown in the viewer pane. In addition, the markers pane indicates the
lines of code where more time was spent. It is possible to navigate through the source code by simply
clicking on the corresponding markers.

If the program is not executed in the RStudio environment, RRprofReport() opens a new browser
window. Figure 1 shows a snapshot of the generated report. The report consists of two groups of
tables: a summary of the called functions with the time spent on each of them and a group of tables
with the time spent on each line of code for each function. A convenient feature, if the browser is the
Internet Explorer and Notepad++ is installed, is that the line numbers of the functions are clickable:
Once a line number is clicked, the corresponding file is opened with the cursor on the selected line (as
shown in Figure 2). On the right panel of Figure 2, the layout of GUIProfiler is shown in the RStudio
environment. Note that RStudio version≥ 0.99 is required. We tested GUIProfiler on RStudio 0.99.467.
The navigation across the different functions can be done using the markers tab.

Comparison between different profiling tools

Using the same example, we compare the functionalities of the different profiling tools in their ability
to provide insight on the profiled code. All the profiling tools (including GUIProfiler) manipulate the
file generated by Rprof to provide a more readable and useful output. Therefore, most of the code
to profile a function is shared by the different packages: First of all there is a call to Rprof to start
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Figure 1: HTML report generated by GUIProfiler.

HTML Graphical Function Line Memory Connection
report output nesting profiling profiling with editors

GUIProfiler 3 3 3 3 7 3(*)
summaryRprof 7 7 7 3 minimal 7

proftable 7 7 3 3 7 7
aprof 7 3 3 3 3 7

proftools 7 3 3 7 7 7
profr 7 3 3 7 7 7

lineprof 3 3 3 3 3 7

MATLAB 3 3 3 3 3(**) 3

Table 1: Comparison of different profile tools for R. (*) GUIProfiler connects the results with RStudio
and with the Notepad++ editor. (**) Non-documented characteristic.

profiling, the code itself to be profiled and a second call to Rprof to stop profiling. The differences
between them are the way the output of Rprof is summarized and displayed.

Table 1 shows a comparison between the functionalities of Rprof parsers used to profile R code.
The first column indicates if the package generates an HTML report. The second column indicates
if the package generates some visual graphical output to show the results. The “Function nesting”
column shows whether the package is able to display the hierarchy across the function calls. The “Line
profiling” column states whether the package provides information related with each of the lines in
the code, not only the functions (i.e., whether it takes advantage of the line.profiling option). The
“Memory profiling” column states whether the package shows results of profiling memory usage and
finally, the “Connection with editors” column states whether the package has a direct link with an
editor to fix the potential bottlenecks.

We also included the features of the MATLAB profiler. As can be seen, it offers all these functional-
ities. One anecdotal note of the MATLAB profiler is that, even though it implements memory profiling
(in a very effective and user friendly manner), this feature is non-documented. summaryRprof, line-
prof and aprof implement memory profiling in R. lineprof and GUIProfiler provide an HTML report.
GUIProfiler is the only one that provides a connection with editors.

We include Table 2 to show the dependencies for each of the packages. As a general rule, pack-
ages with few dependencies are easier to install and to run in different conditions (i.e. on a server
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Figure 2: Layout of GUIProfiler. Left: Internet Explorer and Notepad++. Right: RStudio environment.
The report is shown in the viewer tab on the right, and the markers tab on the left can be used to
navigate across the code.

.

Tool Dependencies

GUIProfiler Nozzle.R1, Rgraphviz (Hansen et al., 2015),
graph (Gentleman et al., 2015), proftools

summaryRprof None
proftable None
aprof grDevices
proftools Rgraphviz, graph
profr stringr (Wickham, 2015), plyr (Wickham, 2011)
lineprof devtools (installation; Wickham and Chang, 2015),

environment (C compiler),
shiny (Chang et al., 2015, and its dependencies)

Table 2: Dependencies of the packages analyzed. Only packages not included in the standard
distribution are mentioned.

enviroment). The following sections describe how to profile the example using the tools shown in
Table 1.

summaryRprof

The code to perform the profiling of the example using summaryRprof is:

Rprof(tmp <- tempfile(), line.profiling = TRUE)
compareMethods()
Rprof(append = FALSE)
summaryRprof(tmp)
unlink(tmp)

and the output,

$by.self
self.time self.pct total.time total.pct
"La.svd" 0.80 40.82 0.80 40.82
".Call" 0.40 20.41 0.40 20.41
".Fortran" 0.38 19.39 0.38 19.39
"crossprod" 0.12 6.12 0.12 6.12
".External" 0.10 5.10 0.10 5.10
"%*%" 0.08 4.08 0.08 4.08
...More lines not included...

$by.total
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total.time total.pct self.time self.pct
"compareMethods" 1.96 100.00 0.00 0.00
"ginv" 0.90 45.92 0.00 0.00
"svd" 0.82 41.84 0.02 1.02
"La.svd" 0.80 40.82 0.80 40.82
".Call" 0.40 20.41 0.40 20.41
"coefficients" 0.40 20.41 0.00 0.00
"lm.fit" 0.40 20.41 0.00 0.00
".Fortran" 0.38 19.39 0.38 19.39
"qr" 0.38 19.39 0.00 0.00
...More lines not included...

$sample.interval
[1] 0.02

$sampling.time
[1] 1.96

If we focus on the "by.self" part, the information is not too useful: the .Call or .Fortran functions
can be used anywhere and depending on their argument, their behavior is completely different. On
the other hand, the crossprod function is used many times in the code and the table only shows
the overall time spent on it. Although the line.profiling option was set, line information does
not appear anywhere in the output. The latest version of R (by setting summaryRprof(tmp,lines =
"show")) provides basic information on line profiling.

The "by.total" part states that the most costly functions are ginv, svd and La.svd. However,
these functions are in fact all the same: ginv calls svd that, in turn, calls La.svd. The output does not
show this hierarchy in the calls to the function. In addition, the summaryRprof output does not show
locations of the calls to the corresponding functions within the code. The output presents therefore
serious limitations for its practical use that can be solved with other tools described below.

proftable

proftable is a convenient function that solves some of the aforementioned problems of summaryR-
prof: Each line of code is clearly identified and can be easily tracked. The function can be accessed
from GitHub. The code to run the example is:

Rprof(tmp <- tempfile(), line.profiling = TRUE)
compareMethods()
Rprof(append = FALSE)
source("https://raw.githubusercontent.com/noamross/noamtools/master/R/proftable.R")
proftable(tmp)

And the output,

PctTime Call
36.364 compareMethods > 1#15 > ginv > svd > La.svd
20.000 compareMethods > 1#14 > coefficients > lm.fit > .Call
19.091 compareMethods > 1#13 > qr.solve > qr > qr.default > .Fortran
4.545 compareMethods > 1#15 > ginv > %*%
3.636 compareMethods > 1#10 > matrix > rnorm > .External
2.727 compareMethods > 1#15 > ginv > svd > La.svd > matrix
2.727 compareMethods > 1#16 > normal.solve > 2#3 > solve > crossprod
2.727 compareMethods > 1#16 > normal.solve > 2#3 > solve > solve.default
1.818 compareMethods > 1#17 > chol.solve > 3#3 > chol > crossprod
0.909 C:\\Some directories...\\chol.solve.R > 3: > #File

#File 1: C:\Users\arubio\AppData\Local\Temp\RtmpEH6kiO/compareMethods.R
#File 2: C:\Users\arubio\AppData\Local\Temp\RtmpEH6kiO/normal.solve.R
#File 3: C:\Users\arubio\AppData\Local\Temp\RtmpEH6kiO/chol.solve.R

Parent Call: None

Total Time: 2.2 seconds
Percent of run time represented: 94.5 %
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Figure 3: Output generated by profileplot of an ‘aprof’ object. Left panel: accumulated time and
time spent on each line of code. Right: content for each line of code and the spent on each of them.

.

In this case the hierarchical relationships between ginv, svd and La.svd (as well as other ones) are
clearly stated. Each line of code may appear several times. This “excess” of information can be useful
to identify within each line of code which is the most costly part. However, it is also confusing. For
example, line 15 of the first archive appears several times in the list since svd and matrix multiplication
(both inside the ginv function) are costly operations.

proftable includes the location of each line in each file, making their analysis within a context
easier. proftable is a simple, yet very useful tool.

aprof

aprof also works with the output of Rprof and provides visual aids based on line profiling. It helps to
identify the most promising sections of code to optimize. One interesting unique functionality is that
aprof also projects the potential gains. The last version has also memory profiling included. The code
to run aprof is:

library(aprof)
Rprof(tmp <- tempfile(), line.profiling = TRUE)
compareMethods()
Rprof(append = FALSE)
fooaprof <- aprof(paste(temp, "/compareMethods.R", sep = ""), tmp)
plot(fooaprof)
profileplot(fooaprof)
summary(fooaprof)

Running the provided code in aprof generates nice plots that describe the time spent on each line
of code (and the code itself). Figure 3 shows the aprof output. The summary function estimates the
speed-up by optimizing a single line of code (or all the lines of code). The output to the console is:

Largest attainable speed-up factor for the entire program

when 1 line is sped-up with factor (S):

Speed up factor (S) of a line
1 2 4 8 16 S -> Inf**

Line*: 15 : 1.00 1.40 1.75 2.00 2.15 2.33
Line*: 13 : 1.00 1.06 1.10 1.12 1.13 1.14
Line*: 14 : 1.00 1.06 1.10 1.12 1.13 1.14
Line*: 16 : 1.00 1.03 1.05 1.06 1.06 1.07
Line*: 17 : 1.00 1.03 1.05 1.06 1.06 1.07
Line*: 10 : 1.00 1.01 1.02 1.02 1.02 1.02

Lowest attainable execution time for the entire program when

lines are sped-up with factor (S):
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Speed up factor (S) of a line
1 2 4 8 16

All lines 2.840 1.420 0.710 0.355 0.178
Line*: 15 : 2.840 2.030 1.625 1.423 1.321
Line*: 13 : 2.840 2.670 2.585 2.543 2.521
Line*: 14 : 2.840 2.670 2.585 2.543 2.521
Line*: 16 : 2.840 2.750 2.705 2.683 2.671
Line*: 17 : 2.840 2.750 2.705 2.683 2.671
Line*: 10 : 2.840 2.810 2.795 2.788 2.784

Total sampling time: 2.84 seconds
* Expected improvement at current scaling
** Asymtotic max. improvement at current scaling

The line of code ‘fooaprof <-aprof("myfile.R..."’ can be run for each of the files to get the profiling
of all the executed functions. In this case it can be done by,

compareaprof <- aprof(paste(temp, "/compareMethods.R", sep = ""), tmp)
plot(compareaprof)
profileplot(compareaprof)
compareaprof <- aprof(paste(temp, "/normal.solve.R", sep = ""), tmp)
plot(compareaprof)
profileplot(compareaprof)
compareaprof <- aprof(paste(temp, "/chol.solve.R", sep = ""), tmp)
plot(compareaprof)
profileplot(compareaprof)

Alternatively, if the user wants to go into more detail for each of the functions, targetedSummary can
be used to disentangle nested functions.

The information provided by aprof and GUIProfiler is very similar: aprof provides the output as
an image and GUIProfiler as an HTML report.

proftools

proftools provides tools for examining Rprof profile output. It shows graphically the dependencies
among the different functions and the time spent on each of them. The code to profile the example is:

library(proftools)
Rprof(tmp <- tempfile(), line.profiling = TRUE)
compareMethods()
Rprof(append = FALSE)
pd <- readProfileData(tmp)
plotProfileCallGraph(pd, style = google.style, score = "total", nodeSizeScore = "none")

The user can get this information in the console by using the function printProfileCallGraph.
The corresponding output is for this example:

Call graph
index % time % self % children name
[1] 100.00 0.00 100.00 compareMethods [1]
1.06 0.00 %*% [15]
0.00 2.13 chol.solve [19]
0.00 21.28 coefficients [8]
0.00 43.62 ginv [2]
0.00 6.38 matrix [13]
0.00 3.19 normal.solve [16]
0.00 22.34 qr.solve [6]
-----------------------------------------------
0.00 43.62 compareMethods [1]
[2] 43.62 0.00 43.62 ginv [2]
4.26 0.00 %*% [15]
0.00 39.36 svd [4]
-----------------------------------------------
39.36 0.00 svd [4]
[3] 39.36 39.36 0.00 La.svd [3]
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Figure 4: Output of proftools.

-----------------------------------------------
0.00 39.36 ginv [2]
[4] 39.36 0.00 39.36 svd [4]
39.36 0.00 La.svd [3]
-----------------------------------------------
21.28 0.00 qr.default [11]
1.06 0.00 qr.coef [23]
[5] 22.34 22.34 0.00 .Fortran [5]
-----------------------------------------------
0.00 22.34 compareMethods [1]
[6] 22.34 0.00 22.34 qr.solve [6]
0.00 21.28 qr [10]
0.00 1.06 qr.coef [23]
-----------------------------------------------
21.28 0.00 lm.fit [9]
[7] 21.28 21.28 0.00 .Call [7]
-----------------------------------------------
... Additional lines not shown here...

Figure 4 shows the dependencies between the different functions. Probably, this tool provides the
most intuitive representation of the different relationships among the functions in the code. We have
taken advantage of this in GUIProfiler and this graph is also included in the generated report.

proftools is, however, “function based” and the line.profiling option is not used at all. In fact,
if Rprof is used without the line.profiling option, the result is identical.

profr

profr is one of the oldest packages to parse the Rprof output. The first version appeared in May, 2008.
Its usage, as for the other tools described here, is straightforward:

library(profr)
profcompareMethods <- profr(compareMethods())
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Figure 5: Output of profr.

head(profcompareMethods)
plot(profcompareMethods)

The output provided by profr is the following:

level g_id t_id f start end n leaf time source
8 1 1 1 compareMethods 0.00 0.76 1 FALSE 0.76 .GlobalEnv
9 2 1 1 matrix 0.00 0.08 1 FALSE 0.08 base
10 2 2 1 qr.solve 0.08 0.20 1 FALSE 0.12 base
11 2 3 1 coefficients 0.20 0.26 1 FALSE 0.06 stats
12 2 4 1 ginv 0.26 0.66 1 FALSE 0.40 MASS
13 2 5 1 normal.solve 0.66 0.74 1 FALSE 0.08 .GlobalEnv

There is a useful plot command that shows the time spent on each function. In turn, the functions are
grouped by levels. The output is shown in Figure 5.

profr was (with summaryRprof) the first attempt to display the result of profiling R code. It
was developed before line.profiling was available and does not make use of it. The graphical
representation is much more informative than the text output. However, although the hierarchical tree
of proftools and the graph shown in profr show basically the same information, in our opinion, the
tree is more visually apparent and attracts attention directly to the bottlenecks of the code.

lineprof

lineprof can be considered as an evolution of profr (both have the same developer and maintainer).
Although it is not yet on CRAN, the installation from GitHub is straightforward.

install.packages("devtools")
library(devtools)
devtools::install_github("hadley/lineprof")

lineprof presents some characteristics that make it unique: It is integrated in the RStudio environment
using the shiny package, it provides memory profiling out of the box and finally, using the shiny
environment it is possible to navigate across the different functions to find out the bottlenecks in the
code. The application to the example is also straightforward:

library(lineprof)
x <- lineprof(compareMethods())
shine(x)

The resulting figure shows the output in the viewer pane in RStudio. The code for each function is
shown there. The blue lines of code are hyperlinks to the corresponding functions. The last column
represents the memory spent on each line of code. It can be seen that the creation of the 1000 × 500
matrix is the most expensive line of code in terms of memory use.

We experienced some minor issues when using lineprof that are worth mentioning. The represen-
tation in RStudio is a little bit buggy: The columns for each of the results (time spent, memory used,
etc) are not properly shown. The navigation across the functions, although very intuitive, does not link
directly to the RStudio editor to work on the code. Finally, when working on the shiny environment,
the console appears to be busy and the user has to break it using Ctrl-C or Esc. We expect that most of
these minor problems will be fixed in the stable release.
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Figure 6: Output of lineprof.

Discussion and conclusion

This paper describes GUIProfiler, a graphical user interface to the line profiler provided by R and
reviews, in relation to GUIProfiler, all other available profiling packages. Based on an example, we
presented how to profile this code using the different packages and compared their advantages and
disadvantages.

This review shows that, in spite of being far from the intuitiveness and user friendliness of the
MATLAB profiler, the different developed tools are getting closer to it. For example, the graphical
display of the relationship between functions in proftools is useful and intuitive and MATLAB does
not provide anything like it. lineprof allows the navigation across the different functions very much
like MATLAB’s profiler does.

Regarding the described tools, proftable, profr and proftools are comparable. proftable pro-
vides an abstract on the time spent on each line of the code that is clearer and more useful than the
one from summaryRprof. profr and proftools show graphically the relationships between the different
profiled functions and the time spent on each of them. Unfortunately, neither of them provide profiling
at the line level.

The other group is formed by aprof, lineprof and GUIProfiler. All of them provide similar
information: time spent on each line of code stating the actual code of the line. There are also
some differences among them. aprof shows these results using plots and provides estimates of the
expected improvements when speeding up the most costly lines of code. lineprof displays these
results using the shiny environment. Both lineprof and aprof provide memory profiling. GUIProfiler,
on the other hand, builds an HTML report which is interactively linked with the program code. The
preference between both tools may be a question of taste, but in our opinion, the HTML report is more
advantageous.

We would like to note that there might be other characteristics which could be taken into account
when evaluating a profiling tool such as those considered in this paper. For example, we assumed that
graphical output is something desirable. However, this is not the case if the profiled code is run on
a server with no graphical capabilities. In the case of lineprof, for example, a runtime environment
is required to compile it as well as package shiny and several other dependencies. Although these
dependencies are not of concern when R is run on a personal computer, they can be problematic if the
software is running on a server.

GUIProfiler has a convenient characteristic that is missing in the other packages: It connects the
profiling tool with an editor to fix the bottlenecks. In the RStudio environment the navigation across
the markers pane directly opens the editor on the clicked line of code. If R is used outside of the
RStudio environment, GUIProfiler opens Notepad++ when clicking on the number of the line. This
functionality is browser dependent and, at present, it is only implemented for the Internet Explorer
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(and thus the Windows OS) by using ActiveX controls. However, we assume that most of the users will
use the RStudio environment where the connection with an external editor is not necessary. Finally we
would like to emphasize that GUIProfiler is a useful tool that interactively and graphically helps the
users in the difficult task of profiling.
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