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Gender Prediction Methods Based on

First Names with genderizeR
by Kamil Wais

Abstract In recent years, there has been increased interest in methods for gender prediction based on
first names that employ various open data sources. These methods have applications from bibliometric
studies to customizing commercial offers for web users. Analysis of gender disparities in science based
on such methods are published in the most prestigious journals, although they could be improved
by choosing the most suited prediction method with optimal parameters and performing validation
studies using the best data source for a given purpose. There is also a need to monitor and report how
well a given prediction method works in comparison to others. In this paper, the author recommends
a set of tools (including one dedicated to gender prediction, the R package called genderizeR), data
sources (including the genderize.io API), and metrics that could be fully reproduced and tested in
order to choose the optimal approach suitable for different gender analyses.

Introduction

The purpose of the genderizeR package and this paper is to provide tools and methods for accurate
classification of various types of character strings into gender categories. An increased number of
studies require gender identification, as for example, biographical research, when we want to know
what is the gender of article authors and we do not have explicit gender data (Lariviere et al., 2013b;
West et al., 2013; Blevins and Mullen, 2015). Predicting gender of customers for marketing purposes
can serve as an example from outside the academia. The genderizeR package makes it possible to
predict gender related to a character string without knowing which term in the string is in fact a given
name. Moreover, the package provides convenient built-in tools for assessing different kinds of error
rates specific to gender prediction.

One of the purposes of this paper is to argue that while using informal, crowd-sourced and not
widely recognized data sources, one can achieve high gender prediction efficiency comparable to other
recognized gender data sources. Moreover, this effect can be obtained with less efforts and higher
automatization. The paper explains how we can train models for gender prediction and how we can
evaluate those models. There is also a comparison and evaluation of different approaches to gender
predictions from other studies.

There have been several approaches proposed for gender prediction based on first names. Some
of these methods were used in bibliometrics studies that were published in prestigious scientific
journals: Lariviere et al. (2013b) or West et al. (2013). One of the goals of this study is to compare the
efficiency and accuracy of gender prediction methods used in the mentioned studies and consider
a new approach proposed in this paper, which is easier in implementation and usage and yields
outcomes comparable or, in some situations, even better than other methods.

For the purpose of method comparison, two methods were chosen from the studies: The Role of
Gender in Scholarly Authorship (West et al., 2013) and the Supplementary Information to Global Gender
Disparities in Science (Lariviere et al., 2013a), which is the methodological appendix to Bibliometrics:
Global Gender Disparities in Science (Lariviere et al., 2013b). In these studies, authors were predicting
and analysing the gender of authorships. The instance of an authorship had been defined as a person
and a paper for which the person is designated as a co-author (West et al., 2013, p. 3) or even simpler as
unique paper-author combination (Lariviere et al., 2013a, p. 6). The sample of authorships also served
as a common dataset for comparison of the gender prediction methods (see Section The comparison of
methods).

Another goal of this study is to find and implement as an R package the most effective gender
prediction method that is based on first names and has the following qualities:

¢ is based on data sources that are available for anyone in a machine-readable format,

¢ is fully reproducible at any given time,

* is resource effective,

* can be used to update and improve gender predictions over time with new first name data,
* is applicable for multinational studies in various research contexts,

¢ outperforms other similar methods in terms of accuracy of gender prediction.

Gender prediction accuracy can be defined in different ways, which implies that different metrics
can be used to measure it. Later, the author will present a set of metrics that can be used in validation
and comparative studies.
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In both previously mentioned studies, the authors used open data with information on first names
with probable corresponding gender. In order to compare the effectiveness of methods and data
sources, we need to be able to reproduce those methods and reuse the same datasets. This is possible,
at least to some extent, although there are several issues with the reproducibility of the studies that
will be addressed in the following sections.

Review of methods and open data sources

US Census and other data sources

In the first analysed study (Lariviere et al., 2013a) authors used both universal and country-specific first
name lists. The sources of these data were the US Census, Quebec Census, WikiName portal, multiple
Wikipedia pages, top-100-baby-names-search.com portal, and a few other webpages (Lariviere et al.,
2013a). In case of some languages, a rule-based approach was used to assign gender based on the
suffix of a first name. In addition, human coders were used in the study. In the case of 12,828 Chinese
names of authors (15.17% of total) with at least 20 papers, the gender was assigned manually by two
native speakers from China. They coded the gender of each Chinese name based on their individual
knowledge of the Chinese language (Lariviere et al., 2013a, p. 4).

The US Census was the primary source of data for gender prediction in the study. In cases where
the first name was used for both genders, it was only attributed to a specific gender when it was
used at least ten times more frequently for one gender than for the other (Lariviere et al., 2013a, p. 2).
This rule can be converted to a probability threshold that equals 0.91 or more for the purpose of
comparative analysis in this study.

With the methods applied, the paper’s authors were able to predict gender for 86% out of 21
million authorships with full first names from the Web of Science database (Lariviere et al., 2013a);
nevertheless, several major drawbacks of this approach can be identified:

* The presented analysis is difficult to reproduce. The full set of first names with corresponding
gender data used in this study is not available in machine-readable format, and some data
sources even ceased to exist. For example, the wiki.name.com portal is not accessible any more
(assessed on January 16, 2015).

¢ The manual coding of gender by humans is neither fast nor cost-effective. Moreover, it could
be not reliable enough, as in the paper there was no information about manual coding accuracy
and inter-coder reliability.

¢ The sources of the data are not in easily readable machine formats with the significant excep-
tion of the data from the US Census, which can be obtained as text files (United States Census
Bureau, 2015a) or as a data directly from the R package qdap (Rinker, 2013). In order to use other
gender data, they need to be web-scraped and parsed. Moreover, not all Wikipedia webpages
with country-specific first names have a standardised HTML structure that can be easily utilised
in parsing HTML code.

¢ In this mixed data source approach the confidence threshold cannot be easily changed, and
researchers are only able to use predefined name categories, such as male, female and unisex.
The category unisex is not very informative, as it means that we predict that the gender can be
either female or male with an unknown probability. Moreover, such a category can be easily
recreated when the probability of being a male or a female is known, given the first name (e.g.,
we can set the predicted category as unisex for all first names that have a 0.5 probability of being
male names). In a case when predicted gender is unisex without additional information, it is
impossible to precisely assess the effectiveness of such a gender prediction method.

On the other hand, the main advantages of the described approach are as follows:

* Usage of different techniques and country-specific sources in gender prediction could increase
the percentage of different types of items with correctly predicted gender and, above all,
decrease the percentage of items with unpredicted gender.

* There is a strong possibility that at least some of the open data sources used in the analysis will
be updated over time, for example Wikipedia webpages, and will include new first names or
infrequently used names in the future. This is not certain, however, as even the US Census
Bureau has not provided a newer first name dataset since the 2000 Census (United States Census
Bureau, 2015b).

The article by Lariviere et al. (2013a) does not explicitly mention any recognised prediction
accuracy metrics that can be comparable with other gender prediction methods, although its confusion
matrix can be rebuilt from the tables with the data from the validation study (see Section T/ comparison
of methods).
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US Social Security Administration records

In the second analysed approach (West et al., 2013) authors used US Social Security Administration
(SSA) records with the top 1000 first names annually collected for each of the 153 million boys and 143
million girls born in the USA from 1880-2010. The authors also have decided a priori to use only those
records that have at least a 95% probability to correctly predict gender based on a first name (West
et al., 2013).

Based on this method, the authors were able to predict gender for 73% out of 3 million authorships
with full first names from the JSTOR network dataset (Efron, 1983, pp. 2-3).

The main drawbacks of this approach are:

¢ Non-US first names and names that do not appear in the top 1000 first names cannot be used
for gender prediction, so the first name dataset is US-specific and is not comprehensive by its
definition.

® The authors of the analysis utilised limited information of the top 1000 baby first names,
although SSA provided an extended version of this database with baby names that occur at
least five times in the years between 1880-2013. That extended dataset has information on about
92 600 unique baby names compared to 6 983 unique baby names in the top 1000 dataset.

The main advantages of this approach are:

e The US SSA baby first names database is updated every year and is available for anyone as
open data in machine, easy-readable format (Social Security Administration, 2015).

* The method is fully and easily reproducible, especially with the use of R packages like gender
(Mullen, 2014) or babynames (Wickham, 2014) where the full baby name data provided by the
SSA is included as built-in datasets.

The paper does not report any gender prediction accuracy metrics (West et al., 2013).

Social network profiles as gender data source (via the genderize.io API)

The third tested approach is our proposition of gender prediction based on first name and gender
data from the genderize.io database, which was created by Casper Stremgren (Stromgren, 2015a) in
August 2013 and has been regularly updated since. Regular incremental updates are possible due to
continuous scanning of public profiles and their gender data in major social networks. The database is
continuously growing by processing approximately from 15 000 to 20 000 social network profiles per
day.

On 24-th of May 2014, the genderize.io database contained information on 120 517 terms that at least
once had been used as a first name in about half a million social network profiles. In April 2015 there
were 212 252 unique terms gathered from about 2 million social network profiles from 79 countries in
89 languages (Stromgren, 2015a).

A quick connection to the genderize.io database is possible through its application programming
interface (API). Since February 2014, database queries via the genderize.io API have been restricted to 10
terms per request and 1000 terms per day to prevent server overload. Higher limits are easily available
through commercial access plans to the API and enable checking up to 10 000 000 names monthly
(Stromgren, 2015b).

As a query term to the database, any character string can be used if it is suspected to be a first
name (a simple example of a query: GET http://api.genderize.io?name=peter). In response to the
query, the API returns a null value when the string is not found in the genderize.io database. If the term
is found in the database, the API returns several values in JavaScript Object Notation (JSON) format: a
predicted gender for the first name (male or female) and two numeric values that can be further use to
customise the gender prediction. These values are count and probability, where count shows how many
social network profiles in the database have been recorded with this particular term as a first name
and probability shows the proportion of profiles with the first name and the predicted gender (a simple
example of API response: "name”: "peter”, "gender"”: "male"”, "probability”:"1.00","count":4300)
(Stremgren, 2015a). Therefore, we not only know the gender prediction for a given term but also how
confident we can be with this particular prediction.

Using the genderizer.io database through its API for predicting gender has strong advantages:

* The genderizer.io database is continuously and incrementally growing, thus we are not only
able to reproduce classification results using previously saved API output, but we also could
improve our predictions next time using newer API output from a larger, updated, and more
comprehensive version of the first name database.
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Characteristics of approach

Lariviere et al. 2013b

West et al. 2013

genderize.io

main data source US Census US SSA public social profiles
other data sources yes no no
open data some datasets yes limited
free access
machine-readable format some datasets yes yes
API connection no no yes
easily reproducible no yes yes
resource effective no yes yes
regular data updates no yearly in real time
known probabilities available only available available

in the main
data source
country-specific

of gender prediction

global reach country-specific  yes

Table 1: Comparison of the characteristics of different approaches to gender prediction based on first
names.

® The communication with the API is fast, effective, and straightforward; additionally compre-
hensive documentation is available (Stremgren, 2015a). Communication through the API can be
further simplified with the use of dedicated functions in the genderizeR package (Wais, 2016).

The issue that can be clearly seen as disadvantage is the daily limit of free queries through the API
(1000 terms per day). Much larger limits are still available through commercial plans with reasonable
prices. This kind of commercial model behind the genderize.io API has also some advantages in
comparison with completely free access to the APL It guarantees stability of the service and constant
development of the database, covers costs of the servers, and prevents server overloads due to
unrestricted access.

The main criticism of this data source is the reliability of the data. The database behind the
genderize.io API draws on data from numerous public social media profiles, although neither the exact
number of sources nor the total number of profiles have been revealed. Even if a social media portal
has a real-name policy implemented, there is no guarantee that at a given time each profile has valid
and reliable data in its first name and gender fields. So reliability of the data from a perspective of
a single profile is very low. However, it is safe to assume that most people give true information
regarding their gender and given name, thus such crowd-sourced data aggregated from many profiles
can give reliable information due to the scale of the constantly growing database. The major drawback
of this data source is the noise in the data related to their declarative character. While creating a
profile, one can submit any character string in a given names field. Even if the user profile is corrected
later, that bogus data could already be recorded in the genderize.io database. This is the obvious
disadvantage compared to other official gender data sources, although the noise can be reduced by
setting a higher threshold for profile counts. In this way, we are able to use only those terms for given
names and gender data that were also entered in some other social media profiles and therefore seem
to be “confirmed’ by other users.

Comparison of approach characteristics

Table 1 shows that the Lariviere et al. (2013a) approach is based on a resource-consuming method
and lacks some important characteristics like reproducibility. The approach in West et al. (2013) is
fully reproducible and enhanced with other important characteristics, but the data source used is
US-specific and infrequently updated. Utilising the genderize.io database via its fast API, we gain access
to a global database of first names that is being continuously updated even at this moment.

The genderizeR package

In order to provide an effective tool for performing and evaluating gender prediction methods, the
genderizeR package for R has been built. The package enables convenient communication with the
genderize.io API and has built-in functions for evaluating the effectiveness of gender prediction with
metrics specific to this topic.

The package could be used for different tasks:
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e for pre-processing text vectors for future gender prediction;

¢ for connecting with the genderize.io database through its API;

e for genderizing character strings, which means that the gender is predicted even if we do not
indicate which term from the string is the first name. The algorithm assumes that all input terms
could be potentially gender indicators and searches for the most credible one;

o for training gender prediction algorithms (looking for the optimal combination of gender and
probability parameters from a given set in order to minimise the gender prediction accuracy
metric);

¢ for estimation of different gender prediction accuracy metrics.

There are four main components of the package:

¢ functions working with the genderize.io API (textPrepare, genderizeAPI, findGivenNames);

* functions for training and predicting gender (genderize, genderizeTrain, genderizePredict);

¢ functions assessing different kinds of gender prediction errors (classificationErrors,
genderizeBootstrapError);

e training datasets (authorships, givenNameDB_authorships, titles, givenNamesDB_titles).

The genderizeBootstrapError function is based on code from the sortinghat package (Ramey,
2013). The function has built-in functionality for parallel processing working directly with functions
from the genderizeR package (genderizeTrain and genderizePredict). The parallel processing
uses the parallel package and its implementation was inspired by Nathan VanHoudnos’ scripts
(http://edustatistics.org/nathanvan/setup/mclapply.hack.R).

The textPrepare function for text pre-processing helps to prepare terms for API queries. It utilizes
functions from the R packages stringr (Wickham, 2012) and tm (Feinerer and Hornik, 2014; Feinerer
et al., 2008) to perform a series of pre-processing steps (removing special characters, numbers and
punctuation; building a vector of unique terms which can be used for creating API queries).

A trivial example of basic package functions

If we use the package for the first time, we need to install it from the Comprehensive R Archive Network
(CRAN) or from the GitHub repository. The last stable version of the package is on CRAN, and the latest
development version of the package is available from the GitHub repository “kalimu/genderizeR”
(Wais, 2016).

With the findGivenNames function we can easily look for first names in the genderize.io database.
In return, we obtain a data table with the following records: the terms that appear in the database as
first names, their predicted gender, probability of such a prediction, and the count of profiles on which
the prediction is based . The outcome is alphabetically sorted by the name column, and all terms that
appear to be first names are lower-cased. Because the outcome is generated from the current state of
the genderize.io database, to reuse exactly the same outcome later, we should save it locally. This is an
important step in reproducible analysis because if we run the same function next time, our output
could be based on a larger count of social network profiles and could give us a slightly different data.
The progress = FALSE argument turns off the progress bar.

R> library('genderizeR")
R> findGivenNames(c('Marie', 'Albert', 'Iza', 'Olesia', 'Marcin', 'Andrzej', 'Kamil'),
+ progress = FALSE)

name gender probability count

1: albert male 0.99 710
2: andrzej male 0.98 49
3: iza female 1.00 28
4: kamil male 0.99 124
5: marcin male 1.00 128
6: marie female 0.99 2248
7: olesia female 1.00 4

In some cases, we might need to predict the gender of a person based on the full name. It is trivial
when we know which term is a first name (or first names) because we can manually extract it and
check its gender with the findGivenNames function. When we do not know exactly which term in a
character vector is a first name, the same function attempts to predict gender by analysing unique
terms in the vector.

This way we could predict the gender of an author of an article without explicitly extracting the
first name from the full name. For example, one biographical article from the Web of Science (WOS)
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database records is titled “Marie Sklodowska-Curie (1867-1934)”. We know that the author’s full
name of the article is recorded as “Pascual-Leone Pascual, Ana Ma” (WOS, 2014).

R> x <- 'Pascual-Leone Pascual, Ana Ma'

We can use the findGivenNames function directly on our vector. The function first calls another
function from the package, textPrepare, which builds a vector of unique terms that are used in queries
to genderize.io APL This is more effective than checking the same term many times through the API. In
the outcome of the textPrepare function, we have terms which are at least two characters long, as we
can assume that a one-character term could not be a full first name. The text pre-processed tasks that
textPrepare function can perform are:

¢ removing single-character terms (like initials),

* removing punctuation,

* removing special characters (like exclamation marks, question marks, hyphens, etc.),
* removing numbers,

¢ converting all characters to lowercase,

e striping white-spaces.

R> textPrepare(x)
[1] "ana" "leone”

n n

ma "pascual”

In the next step, we can check our terms in the genderize.io database and store the output for later
use.

R> (genderDB <- findGivenNames(x, progress = FALSE))

name gender probability count

1 ana female 0.99 3535
2 leone female 0.81 27
3: ma female 0.62 243
4: pascual male 1.00 25

All four unique terms occur in the genderize.io database and could be used as gender indicators,
but the count value suggests which terms are indeed true first names in our example. The term ‘Ana’
has the largest count value, so it will be used to predict gender for the given author with the genderize
function.

R> genderize(x, genderDB = genderDB, progress = FALSE)

text givenName gender genderIndicators
1: Pascual-Leone Pascual, Ana Ma ana female 4

In the final step, we used the previous output as gender information for our terms. We use an
output from the findGivenNames function, but it could also be a dataset from the US Census or US
SSA, although it should be converted to the same format with the same column names.

The genderize function output contains our original author’s full name in the text column, the
term that was assumed to be the gender indicative first name (givenName column), and the predicted
gender (gender column). There are also genderIndicators values that show how many terms in a
text were found in our gender dataset. The givenName term is the one that won the competition
between terms to be a final gender indicator. To find the winning term, we compare the counts for all
terms found and choose the one with the maximum value. It is a reasonable way to prevent prediction
based on accidental terms.

It should be noted that in cases when a person has a double first name like ‘Hans-Peter” the terms
‘Hans’ and ‘Peter” are looked up in the database separately and the gender prediction is still done
based on the term with more counts. This is a counter-intuitive solution as the genderize.io API can
accept queries with double first names. However it simplifies the algorithm and still gives proper
predictions even if the double name is not present in the database.

R> x <- 'Hans-Peter'
R> (genderDB <- findGivenNames(x, progress = FALSE))

name gender probability count

1: hans male 0.99 425
2: peter male 1.00 4300
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R> genderize(x, genderDB = genderDB, progress = FALSE)

text givenName gender genderIndicators
1: Hans-Peter peter male 2

In the same way, we can predict gender not only from authors’” full names but also from larger
character strings, for example, titles of the biographical articles. In the next example, we have six such
titles in which some person names are mentioned. Half of the articles in this example are about Marie
Sklodowska-Curie and half are about Albert Einstein. Let us assume that we do not know which title
concerns a female and which a male, and we want to check it automatically.

R> x <- c('Marie Sklodowska-Curie (1867-1934) - A person and scientist',
'Albert Einstein as a philosopher of science',

'The legacy of Albert Einstein (1879-1955)',

'Life and work of Marie Sklodowska-Curie and her family',
'Marie Sklodowska-Curie (1867-1934)',

'"Albert Einstein, radical - A political profile')

R> (givenNamesDB <- findGivenNames(x, progress = FALSE))

+ + + 4+ o+

name gender probability count

1: albert male 0.99 710
2: as male 0.89 64
3: einstein male 1.00 4
4: family male 1.00 1
5: her female 0.50 8
6: legacy male 1.00 2
7: marie female 0.99 2248
8: political male 1.00 1
9: the female 0.50 2

We should note that cases are possible where the number of females is the same as the number of
males (the probability equals 0.50, and the count is an even number). In our example, such a situation
occurs with the her term. In such situations, the API returns female as gender prediction, but in the
future it will likely be changed to the more valid unisex category.

There are some noise in the gender data obtained from the genderize.io API so we should approach
the results from the findGivenNames function critically. In the above example the terms “as”, “the”
and “her” seem to be used in some profiles even if they do not stand for a given name. We can deal
with such terms by setting the count threshold high enough (ex. count >= 100) or by using a list of
non-acceptable words (blacklist / stopwords). The second solution can be implemented to the result of
the textPrepare and before using findGivenNames function. This way we will also reduce the usage
of API requests. Using a counts threshold we need to remember that its height should be relative to
the growing number of profile data processed by genderize.io. However, in our example the noise does
not impact the accuracy of the gender predicion.

R> genderize(x, genderDB = givenNamesDB, progress = FALSE)

text
1: Marie Sklodowska-Curie (1867-1934) - A person and scientist
2: Albert Einstein as a philosopher of science
3: The legacy of Albert Einstein (1879-1955)
4: Life and work of Marie Sklodowska-Curie and her family
5: Marie Sklodowska-Curie (1867-1934)
6: Albert Einstein, radical - A political profile
givenName gender genderIndicators
1: marie female 1
2: albert male 3
3: albert male 4
4: marie female 3
5: marie female 1
6: albert male 3

We can also set the thresholds for probability or count values to exclude accidental terms or unisex
first names from being considered in a gender prediction. This method can be used to train the
prediction algorithm in order to minimise the classification error. However, we need to be careful
while setting the thresholds because, if we set them too high, we could unintentionally exclude some
true first names and the algorithm will not be able to predict gender, returning only NA values.
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R> genderize(x, givenNamesDB[count > 2000, ], progress = FALSE)

text
1: Marie Sklodowska-Curie (1867-1934) - A person and scientist
2: Albert Einstein as a philosopher of science
3: The legacy of Albert Einstein (1879-1955)
4: Life and work of Marie Sklodowska-Curie and her family
5: Marie Sklodowska-Curie (1867-1934)
6: Albert Einstein, radical - A political profile

givenName gender genderIndicators

marie female
NA NA
NA NA

marie female
marie female
NA NA

o O W N =
S = N O =

The communication with the genderize.io API is based on UTF-8 encoding. We can also make use
of a specific locale.

R> Sys.setlocale("LC_ALL", "Polish")
R> (x <- "Ro6za")
[1] "Réza"

R> (xp <- textPrepare(x))
[1] "réza"

R> findGivenNames(xp, progress = FALSE)
# name gender probability count
# 1: roza female 0.89 28

If the findGivenNames function stops due to the API free or commercial plan limits the results from
already performed queries are returned and can be saved as an object.

R> xPrepared <- textPrepare(authorships[['value']][1:1200])
R> givenNames_part1l <- findGivenNames(xPrepared)

0%
1%

Terms checked: 10/86. First names found: 4.
Terms checked: 20/86. First names found: 7.

|

I
Terms checked: 30/86. First names found: 12. | 22%
Terms checked: 40/86. First names found: 17. | 33%
Terms checked: 50/86. First names found: 22. | 44%
Terms checked: 60/86. First names found: 25. | 56%
[ | 67%

Client error: (429) Too Many Requests (RFC 6585)
Request limit reached

The API queries stopped at 57 term.

Warning messages:

1: In genderizeAPI(termsQuery, apikey = apikey, ssl.verifypeer = ssl.verifypeer) :
You have used all available requests in this subscription plan.

2: In findGivenNames(xPrepared) : The API queries stopped.

Moreover the function reports an index of the last term which has been successfully queried before
reaching the API limit. This enables us to start the API queries from that term when the API plan
resets the next day.

R> givenNames_part2 <- findGivenNames(xPrepared[57:NROW(xPrepared)])
Finally, we can bind all parts together.

R> givenNames <- rbind(givenNames_part1, givenNames_part2)
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Sample datasets

In the genderizeR package we have two sample datasets: authorships and titles. Both datasets
contain data from a simple random sample of biographical articles from the WOS database records
of articles of biographical-items or items-about-individual type from all fields of study, published from
1945 to 2014. The sample was drawn in December 2014. The first dataset authorships contains 2 641
authorships of 2 000 randomly sampled records of biographical articles.

Part of the authors in this dataset were successfully identified and manually coded as females or
males (genderCoded column). Human coders based their coding decisions on results from Internet
queries regarding full names of the authors and their affiliations, biographies, mentions in the press
and photos. If a full name of an author was unavailable the gender was coded as noname; if a full name
was available but the coder was not able to code the author’s gender with a high degree of certainty —
the record was coded as unknown.

R> tail(authorships[, c(4, 5)1)

value genderCoded

2636 Morison, Ian male
2637 Hughes, David male
2638 Higson, Roger male
2639 CONDON, HA noname
2640 GILCHRIST, E noname
2641 Haury, LR noname

The second dataset titles contains 1 190 titles of biographical articles, which also were manually
coded as female or male.

R> tail(titles)[-3, ]

title genderCoded

1: Yuri A. Chizmadzhev (to the 80th anniversary) male
2: Yurko Duda, a physicist like few ones male
3: Zhores Ivanovich Alferov (on his 80th birthday) male
4: Zongluo Luo, a Chinese Haigui in 1930s male
5: lynn seymour female

These datasets can be used to assess the efficiency and accuracy of gender prediction for different
prediction methods and related data sources.

For reproducibility purposes, in the package there are two additional datasets corresponding
to the previous two: givenNamesDB_authorships and givenNamesDB_titles. Both are outputs of the
findGivenNames function, which was used on authorship and title vectors on December 26, 2014.
These datasets can be used for gender prediction without the necessity of connecting to the genderize.io
database, and to provide reproducible outcomes. Using API queries is also possible, although it will
probably give slightly different outputs due to the first name data updates in the database.

Selecting prediction parameters

Knowing that each first name record from the genderize.io database has been assigned a probability of
predicted gender, we can utilise these pieces of information to strengthen the confidence of gender
prediction. Moreover, for each record, the number of instances of social network profiles that were used
to calculate such a probability is known. Thus, we can set our own thresholds of counts and probabilities
when we need it, and choose settings that can optimise chosen prediction efficiency metrics.

Metrics of gender prediction efficiency

To assess the efficiency of gender prediction, we need to agree on the set of efficiency indicators that
are adequate to this particular classification problem. We can calculate some of the indicators with
the help of classificationErrors function that are based on a prediction confusion matrix — as an
example below of randomly generated samples of labels and predictions.

R> set.seed(238)
R> labels <- sample(c('male', 'female', 'unknown'), size = 100, replace = TRUE)
R> predictions <- sample(c('male', 'female', NA), size = 100, replace = TRUE)
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R> indicators <- classificationErrors(labels, predictions)
R> indicators[['confMatrix']] # confusion matrix for the generated sample

predictions
labels female male <NA>
female 12 10 4
male 7 10 12
unknown 16 13 16
<NA> Q Q 0

For the confusion matrix, we could calculate a standard classification error rate (one minus sum of
the diagonal divided by sum of total), but this is not directly applicable in this specific classification
problem; some titles were manually coded as unknown gender if they do not contain a first name or
when we could not verify the gender of the person mentioned in a title. In this case, we should not
blame the algorithm for wrongly predicting gender, considering the human coder could not do it
either. Instead, we can calculate the coded error rate on the confusion matrix with manual female and
male codes only.

R> # errorCoded <- (7 + 10 + 4 +12) / (12 + 10 + 4 + 7 + 10 + 12)
R> unlist(indicators['errorCoded'])

errorCoded
0.6

The advantage of such an error rate calculation is that it incorporates within itself all items with
unpredicted gender (<NA>). Therefore, if the algorithm is unable to predict gender, we treat it as a
prediction error and thus penalise our prediction efficiency metric.

Another possibility is to calculate the coded error rate but only for a matrix with automatically
predicted gender (without any NA values).

R> # errorCodedWithoutNA <- (7 + 10) / (12 + 10 + 7 + 10)
R> unlist(indicators['errorCodedWithoutNA'])

errorCodedWithoutNA
0.4358974

Such a coded error rate without NA values indicates how well the algorithm predicts gender,
provided that prediction is possible. With a high threshold of gender probability, we increase the
prediction accuracy, but we also risk that for many first names the algorithm will not be able to predict
their gender. Therefore, the cost of high prediction accuracy can be measured as the increase of the
proportion of items with unpredicted gender.

R> # naCoded <- (4 +12) / (12 + 10+ 4 + 7 + 10 + 12)
R> unlist(indicators['naCoded'])

naCoded
0.2909091

There is another problem-specific error that we can calculate from the confusion matrix. It can be
called the gender bias error rate, and can be calculated as a difference between the number of items
manually labelled as female but automatically classified as male and the number of items manually
classified as male but automatically classified as female, and all that are divided by the number of all
items labelled or classified as female or male.

R> # errorGenderBias <- (7 - 10) / (12 + 10 + 7 + 10)
R> unlist(indicators['errorGenderBias'])

errorGenderBias
-0.07692308

We can interpret the sign of such an indicator as a direction of the bias in gender prediction.
Negative values suggest that more females are incorrectly classified as males than males as females,
hence the predicted proportion of females could be slightly overestimated. If the value is positive,
the proportion of females are underestimated. When the bias is close to 0, we have the case where
nearly the same numbers of both female and male items are classified wrongly as males and females,
respectively. Therefore, in the trivial example, if we have a sample of 10 males and 10 females and we
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Prediction indicator What items are taken into account?
errorCoded: Items with manually coded female and male labels;
Coded Error Rate items with predicted female and male labels,

or with unpredicted gender.

naCoded: Items with manually coded female and male labels;
Proportion of Items items with predicted female and male labels,
with Unpredicted Gender or with unpredicted gender.

errorCodedWithoutNA: Items with manually coded female and male labels,
Coded Error Rate and with predicted female and male labels only.
without NA Values

errorGenderBias: Items with manually coded female and male labels,
Gender Bias Error Rate and with predicted female and male labels only.

Table 2: Comparison of selected gender prediction indicators.

incorrectly classify five males as females and five females as males, we will still have a proportion of
50% of female items in the sample, and the bias error is 0.

A brief comparison of the described indicators is shown in Table 2. The table indicates that we
always focus on metrics based on manually coded gender labels with the exception of two indicators,
where we consider items with unpredicted gender as well.

Depending on the research goals, we can utilise one or more of these metrics, for example:

* in a scenario where the goal is to predict gender for as many items as possible, we can try to
minimise the coded error rate,

e in a scenario where the prediction accuracy is more important than the percentage of items with
unpredicted gender, we can try to minimise the coded error rate without NA values,

* in a scenario where we primarily want to accurately estimate the proportion of males or females,
we can try to minimise the gender bias error rate.

Different decisions can be made corresponding to different research needs. We can try to minimise
all these indicators at the same time and look for their optimal values based on our research questions.

Case study 1: Authorships

In order to establish optimal values of gender prediction indicators for the authorship sample dataset,
we can manipulate the thresholds of probability and count values. In order to do so, we can use the
genderizeTrain function with values that we prefer to be considered in the training of the algorithm as
the function arguments probs and counts. In this case, we can utilise some typical probability values
used for gender prediction together with different values of counts that will give noticeable patterns
of error rates for parameter combinations.

R> probs <- c(@.5, 0.7, 0.8, 0.9, ©.95, 0.97, ©.98, 0.99, 1)
R> counts <- c(1, 10, 100)

R> authorshipsGrid <-

+ genderizeTrain(# parallel = TRUE,

+ x = authorships$value,

+ y = authorships$genderCoded,

+ givenNamesDB = givenNamesDB_authorships,

+ probs = probs,

+ counts = counts)

The genderizeTrain function first creates the grid of parameters for all unique combinations of
probs and counts values. Then, prediction is done based on givenNamesDB data trimmed by probs
or counts parameters. As the output, we attain gender prediction defectiveness indicators for all
combinations of parameters (27 in our example below).

R> authorshipsGrid
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prob count errorCoded errorCodedWithoutNA naCoded errorGenderBias

1: 0.50 1 0.07093822 0.03791469 0.03432494 0.014218009
2: 0.70 1 0.08466819 0.03147700 0.05491991 0.007263923
3: 0.80 1 0.10983982 0.03233831 0.08009153 0.012437811
4: 0.90 1 0.11899314 0.03022670 ©.09153318 0.015113350
5: 0.95 1.0.13272311 0.02820513 0.10755149 0.012820513
6: 0.97 1 0.14645309 0.02610966 ©0.12356979 0.010443864
7: 0.98 1 0.15560641 0.02638522 ©0.13272311 0.010554090
8: 0.99 1 0.18306636 0.02724796 0.16018307 0.005449591
9: 1.00 1 0.27459954 0.03353659 0.24942792 -0.003048780
10: 0.50 10 0.12128146 0.03759398 0.08695652 0.017543860
11: 0.70 10 0.13958810 0.02842377 0.11441648 0.007751938
12: 0.80 10 0.16247140 0.02917772 ©.13729977 0.013262599
13: 0.90 10 ©.16933638 0.02680965 0.14645309 0.016085791
14: 0.95 10 0.18535469 0.02465753 0.16475973 0.013698630
15: 0.97 10 ©.19908467 0.02234637 0.18077803 0.011173184
16: 0.98 10 ©0.20823799 0.02259887 ©.18993135 0.011299435
17: 9.99 10 0.23569794 0.02339181 0.21739130 0.005847953
18: 1.00 10 ©0.33180778 0.02666667 0.31350114 0.000000000
19: 0.50 100 0.27459954 0.03058104 0.25171625 0.012232416
20: 0.70 100 0.29061785 0.02821317 0.27002288 0.009404389
21: 0.80 100 0.30892449 0.02893891 0.28832952 0.016077170
22: 0.90 100 0.31350114 0.02912621 ©0.29290618 0.016181230
23: 0.95 100 0.32036613 0.02941176 0.29977117 0.016339869
24: 0.97 100 0.32951945 0.02657807 ©.31121281 0.013289037
25: 0.98 100 0.33638444 0.02684564 0.31807780 0.013422819
26: ©0.99 100 0.36613272 0.02807018 0.34782609 0.007017544
27: 1.00 100 0.45995423 0.02880658 ©0.44393593 0.004115226

We could also visualise the prediction effectiveness of the parameter grid on a scatterplot and look
for optimal values of indicators (Figure 1). In this case, we will use only a subset of probability values
(0.5,0.8,0.95,0.98, 1) in order to keep the scatterplot clear.

If the goal is to minimise the coded error rate, we should set the threshold values as low as possible
(prob = @.5and count = 1).

R> authorshipsGrid[authorshipsGrid$errorCoded == min(authorshipsGrid$errorCoded), 1]

prob count errorCoded errorCodedWithoutNA naCoded errorGenderBias
1: 0.5 1 0.07093822 0.03791469 0.03432494 0.01421801

However, if the goal is to have the lowest gender bias error rate, we should set the threshold
values as prob = 0.97 and count = 10. However, in this way we increase our proportion of items
with unpredicted gender from less then 4% to more than 18%.

R> authorshipsGrid[authorshipsGrid$errorGenderBias ==
+ min(abs(authorshipsGrid$errorGenderBias)), 1

prob count errorCoded errorCodedWithoutNA naCoded errorGenderBias
1: 0.97 10 0.1990847 0.02234637 0.180778 0.01117318

Case study 2: Titles of biographical articles

As in the first case study, we can train the algorithm on the second dataset with titles of biographical
articles, using a wider set of values for both probs and counts parameters. In the case of a huge
parameter grid, we can also try to run the genderizeTrain function in parallel version (see parallel
argument).

R> probs <- seq(from = 0.5, to = 0.9, by = 0.05)

R> probs <- c(probs, seq(from = 0.91, to =1, by = 0.01))
R> counts <- seq(from = 1, to = 16, by = 1)

R> titlesGrid <-

+ genderizeTrain(# parallel = TRUE,

+ x = titles$title,

+ y = titles$genderCoded,

+ givenNamesDB = givenNamesDB_titles,
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Figure 1: Effectiveness of gender prediction for given parameters from the authorship sample. The
optimal effectiveness, when all indicators have the lowest values possible, seems to be achievable with
probability = 0.50 and count = 1 and is marked on the plot as a dashed red line. The proportion of
items with unpredicted gender (naCoded) increases with the increase of parameter values. The lowest
gender bias error rate (errorGenderBias) can be achieved by setting the probability parameter to 1,
although it will greatly increase the proportion of unpredicted items.

+ probs = probs,
+ counts = counts)

Because the scatterplot for all parameter combinations would be very unclear, we have visualised
only a subset of count values: 1, 4, 7 (Figure 2). The trends and patterns that emerged from such a
simplified visualisation are similar to other combinations of parameters.

Parameter values prob = 0.70 and count = 1 minimised coded error rate for this dataset produced
a reasonable low gender bias error rate. We can also achieve lower gender bias error rate; however, it
comes with an increased proportion of unpredicted items.

R> titlesGrid[titlesGrid$errorCoded == min(titlesGrid$errorCoded), ]

prob count errorCoded errorCodedWithoutNA naCoded errorGenderBias

1: 0.7 1 0.1004367 0.06533575 0.03755459 0.02540835
R> titlesGrid[titlesGrid$errorGenderBias ==
+ min(abs(titlesGrid$errorGenderBias)), 1

prob count errorCoded errorCodedWithoutNA  naCoded errorGenderBias
1: 1 15 0.2917031 0.04023669 0.2620087 0.002366864
2: 1 16 0.2917031 0.04023669 0.2620087 0.002366864

The final decision on which set of parameter values to use can be subjective and is dependent on
the importance of each indicator in a given analysis.
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Further estimation of prediction accuracy

For further estimation of gender prediction accuracy we can use cross-validation or bootstrap methods
like Leave-One-Out Bootstrap (LOO) (Efron, 1983) and .632+ Rule (Efron and Tibshirani, 1997) as well as
Receiver Operating Characteristic (ROC) and Area Under Curve (AUC) (Fawcett, 2003) or finally Brier
Score (Brier, 1950) as one of the most popular performance metrics for probabilistic classifiers.

Bootstrapping

Up to this moment, we have only relied on the so called apparent error rate, which is the observed
inaccuracy of the fitted model to the original data points. However, the apparent error rate usually
underestimates the true error rate and gives a falsely optimistic picture of the model’s true accuracy
(Efron, 1986). To address this issue, we can calculate the Leave-One-Out (LOO) bootstrap error rate
proposed by Efron (1983).

In the LOO bootstrap procedure, we generate some number of bootstrap samples of the size of the
original sample. On each bootstrap sample, we can train our prediction algorithm by minimising the
classification error. Later, we can use optimal parameters to predict gender for items that have not
been sampled in this particular bootstrap sample. This way, we avoid testing a prediction model on
the items used for choosing the prediction parameters.

0.2-
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Figure 2: Effectiveness of gender prediction for given parameters from the title sample. The lowest
errorCoded is achieved with probability = 0.70 and count = 1 (marked on the plot as a dashed red line),
which also yields resonable low values of other error rates. The proportion of items with unpredicted
gender (naCoded) increases periodically with the increase of the parameter values. The gender bias
error rate (errorGenderBias) could be minimised at the cost of increasing the proportion of items with
unpredicted gender. The final decision on which set of parameter values to use can be subjective and
is dependent on the importance of each indicator in a given analysis.
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As Jiang and Simon (2007) summarised, the LOO bootstrap is a smoothed version of the LOO

cross-validation. Bootstrap samples differentiate among each other more than the original LOO sets.

Moreover, for each item, the LOO bootstrap method averages the errors from the multiple predictions
made on the bootstrap samples. As a result, the LOO bootstrap estimate has a much smaller variability
than the LOO cross-validation estimate.

On the other hand, in contrast to low bias cross-validation, the LOO bootstrap in some cases
presents noticeable bias and tends to overestimate the true prediction error. The .632+ estimator was
proposed as a remedy to deal with this problem (Efron and Tibshirani, 1997).

In gender prediction, we can use these bootstrap methods, as they are implemented in genderizeR
package in the genderizeBootstrapError function.

We can still train our prediction algorithm on a large grid of parameters, or we can focus on
combinations that we suspect could yield different outcomes on different bootstrap samples. In our
titles dataset, we found that parameters prob >= 0.70 and count >= 1 give us the lowest apparent
error rate on coded items, but it is reasonable to suspect that the combination of prob >= 0.50 and
count >= 1 also could give us the lowest error rate on some random samples.

R> counts <- 1

R> probs <- c(0.5, 0.7)

R> set.seed(42)

R> bootstrapErrors <- genderizeBootstrapError(

+ # parallel = TRUE,

+ x = titles[titles$genderCoded %in% c('female', 'male')]$title,
+ y = titles[titles$genderCoded %in% c('female', 'male')]$genderCoded,
+ givenNamesDB = givenNamesDB_titles,

+ probs = probs,

+ counts = counts,

+ num_bootstraps = 50)

R> t(as.data.frame(bootstrapErrors))

[,11
apparent 0.1004367
loo_boot 0.1037184

errorRate632plus 0.1025251

All bootstrap errors are calculated only on items with gender labels and predictions. The apparent
value presents the underestimated apparent error rate; the loo_boot value provides the overestimated
LOO bootstrap error rate and the errorRate632plus value gives .632+ estimator that provides the best
estimation of prediction error rate.

ROC and AUC

In order to plot the ROC curve or calculate AUC (Fawcett, 2003) for our predictions on the title

sample, we can use the R package ROCR (Sing et al., 2005), but the datasets need to be prepared first.

We need to have a data frame that shows which title has manually coded female (or male) gender
types with a column of corresponding probabilities predicting these genders. To do that, we need to
combine the original dataset with the prediction and corresponding gender data.

R> genderizedTitles_output <- genderize(x = titles[['title']],

+ genderDB = givenNamesDB_titles,

+ progress = FALSE)

R> genderizedTitles <- cbhind(as.data.frame(titles),

+ as.data.frame(genderizedTitles_output))

R> genderizedTitles <-

+ left_join(x = genderizedTitles[, names(genderizedTitles) != 'gender'],
+ y = givenNamesDB_titles, by = c("givenName” = "name"))

R> example <- rownames(genderizedTitles[c(3, 9, 25, 27, 29, 37), 1)
R> genderizedTitles %>%

+ dplyr::select(title, genderCoded, givenName,

+ probability, count, gender) %>%

+ filter(rownames(.) %in% example)

title
1 (Jacqueline) Nancy Mary Adams, CBE, QSO 1926-2007
2 2005 R W P King Award - Robert J. Adams
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A master potter (Josiah Wedgwood)

A musician without retirement - Claus Bantzer ceases and makes it again

A pioneer in the world of advertising, Armando Testa

1

.00
.00
.98
.94
.99

3
4
5
6
genderCoded givenName probability
1 female mary
2 male robert
3 male josiah
4 male claus
5 male  armando
6 male jean

[SENSEEISESEES

.52

A tribute to Jean-Michel Quinodoz
count gender
54051 female
100216 male

43  male

81 male
329 male
26799 male

In the next step, we can compute our vector of probabilities that we use to predict a given gender

for each item.

R> d <- genderizedTitles
R> d[is.na(d[['gender']]), 1[['gender']] <- 'unknown'
R> d <- d[d[['genderCoded']] %in% c('female', 'male', 'unknown' ), ]

R> d <- d[d[['gender']] %in% c('female', 'male', 'unknown' ), ]
R> d$labels <- ifelse(d[['genderCoded']] == 'female', 1, @)

R> d$pred <- ifelse(d[['gender']] == 'female',

+ as.numeric(d[['probability'1]),

+ 1-as.numeric(d[['probability']]))

R> d %>% dplyr::select(title, genderCoded, labels, pred) %>%

+ filter(rownames(.) %in% example)
title
1 (Jacqueline) Nancy Mary Adams, CBE, QSO 1926-2007
2 2005 R W P King Award - Robert J. Adams
3 A master potter (Josiah Wedgwood)
4 A musician without retirement - Claus Bantzer ceases and makes it again
5 A pioneer in the world of advertising, Armando Testa
6 A tribute to Jean-Michel Quinodoz
genderCoded labels pred
1 female 11.00
2 male 0 0.00
3 male 0 0.02
4 male 0 0.06
5 male 0 0.01
6 male 0 0.48

Now we can plot the ROC curve and calculate the AUC.

R> library('ROCR")

R> pred <- prediction(labels = d[['labels']], predictions = d[['pred']])
R> perf <- performance(pred, measure = 'tpr', x.measure = 'fpr')

R> # area under the curve (AUC)
R> unlist(performance(pred, measure

[1] 0.9186008

= 'auc')@y.values)

The AUC value is high (0.92), so we can conclude that the gender prediction algorithm performs
well on this sample dataset. We can also treat the AUC measure as a general measure of predictiveness
(Fawecett, 2003) and use it for comparison of different prediction methods.

Brier Score

Classification errors can be misleading metrics of gender prediction effectiveness, especially in the
case when we have a great disproportion of female and male labels in the dataset. For example, in
our titles dataset we have 87% male titles. If we predict male for each item in the dataset, our
classification error will be only 13% due to small true proportion of female items.

R> titlesCoded <- titles[titles[['genderCoded']] %in% c('female', 'male'), 1]
R> cbind('N' = table(titlesCoded[['genderCoded']1]),
+ '%' = round(prop.table(table(titlesCoded[['genderCoded']1])) * 100, @))
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Figure 3: ROC curve for predicting female gender for the titles dataset. Large AUC suggests good
prediction accuracy.

N %
female 151 13
male 994 87
R> indicators <-
+ classificationErrors(labels = titlesCoded[['genderCoded']],
+ predictions = rep('male’,
+ NROW(titlesCoded[['genderCoded']1)))
R> unlist(indicators['errorCoded'])

errorCoded
0.1318777

Predicting the most frequent class on every occasion in order to minimise the classification error
rate is not an appropriate scoring rule and the prediction efficiency metrics should be penalised
for such practices. That is why we use the Brier Score, which originated from a verification system
of weather forecasts (Brier, 1950) and is known as a more proper classification accuracy score for
predictions based on probabilities.

The Brier Score was defined as the sum of squared differences between labels values (ex. 1 if an
item is a female and 0 if it is not) and pred values (probability if an item is a female) divided by the
number of all items. The R package verification (NCAR — Research Applications Laboratory, 2014)
offers an implementation of the Brier Score in the brier function.

R> library('verification')
R> brier(obs = d[['labels']], pred = d[['pred']1)[['bs']]

[1] 0.06577986

If an item’s gender is correctly predicted with probability equal to 1, then the Brier Score is 0, and
this is the best possible score. The worst score is 1.

We can also calculate presented and other metrics using a simulated bogus prediction algorithm.

Such algorithm predicts the majority class (male labels) for all items. Both AUC and Brier Score are
penalised since the bogus algorithm has just been guessing the gender using the most frequent class in
this sample dataset.
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Characteristics of prediction methods  Westetal.  Lariviere et al. genderizeR
and prediction efficiency indicators (2013) (2013) package
Source of first names data US SSA US Census genderize.io
Extracted full first names Yes Yes No
Gender probability threshold 0.95 091 0.50
Names count threshold 5 7200 1

Classification error rates (%):

coded error rate 32.49 36.84 7.09

coded error rate without NA values 1.67 213 3.79

net gender bias error 1.67 2.13 1.42
Accuracy scores:

AUC 0.926 0.920 0.927

Brier Score 0.099 0.109 0.097
Unpredicted gender (%):

of all authorships 84.40 85.23 47.71

of authorships with full first names 31.56 35.22 4.65

of manually coded gender only 31.35 35.47 3.43

Table 3: Comparison of the effectiveness of gender prediction methods.

R> pred <- prediction(labels = d[['labels']],
+ predictions = rep(@, NROW(d[['labels'11)))
R> unlist(performance(pred, measure = 'auc')Qy.values)

[1] 0.5

R> brier(obs = d[['labels']],

+ pred = rep(@, NROW(dL['labels']11)))[['bs']]
[1] 0.12119

The comparison of methods

To compare different approaches of gender prediction, we need to reproduce those methods on the
same sample that is drawn from the population of items with similar characteristics. We use an
authorships dataset as such a sample, since predicting the gender of authors of the articles was the
goal of two previously described studies.

Because the US SSA and the US Census data is available in the R packages, we can easily reproduce
methods based on such data with parameters that were chosen by the authors of the studies. However,
in the case of the method described by Lariviere et al. (2013a), we can only reproduce gender prediction
utilising the US Census data. Scraping and parsing other webpages or manually coding gender are
highly resource intensive and our goal is to find a resource effective method. Nevertheless, we can
later reproduce a confusion matrix from the study and try to estimate the real error for this mixed
method.

The efficiency indicators of gender prediction for all three methods are presented in Table 3. For
the third proposed method, we had not extracted first names from the authors’ full names, and we let
the findGivenNames function try to do this automatically.

As shown in Table 3, our proposed method based on genderize.io API outperforms methods
based on the US SSA and US Census data with the parameters set by the authors of these studies.
The percentage of items with unpredicted gender and Brier Score are clearly the lowest among all
analysed methods.

It should be noted that using data sources other than the US Census with manual coding as done
by Lariviere et al. (2013a) would probably improve the proportion of items with predicted gender in
our sample. However, it is difficult to assess the effectiveness of such a resource-consuming mixed
method without comparable prediction metrics. The authors did not explicitly present the confusion
matrix from their validation study, but we can recreate the matrix using materials from the analysed
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female male unisex  unknown initials

female 146 4 2 24 48
male 22 267 9 51 156
unknown 35 178 10 9 39

Table 4: Recreated confusion matrix from Lariviere et al.’s (2013b) study with manually coded values
(in rows) and automatically assigned values (in columns). The columns unknown, initials, and unisex
from the recreated confusion matrix could be merged to one unknown column since the gender is
unpredicted for these items.

studies, such as Table S3 Number and percentage of distinct papers and of author-papers assigned a gender
and Table S6 Percent male and female in each category from the original paper (Lariviere et al., 2013a,
p. 6). From those original tables, we know the proportions of authorships classified as female, male,
unisex, unknown and initials. The authors randomly sampled five samples of 1000 authorships from
each category and manually coded whether those items were female, male, or unknown (Lariviere et al.,
2013a). From those known proportions, we can recreate the confusion matrix that sums to 1000 for a
better perception (see Table 4).

Based on the recalculated data, the prediction indicators from the recreated confusion matrix are
even worse than those in our comparative study where only the US Census data were used. The coded
error rate is high and equals 43.3%, since the proportion of manually coded items with unpredicted
gender is also quite high 39.8%. Moreover, the gender bias error rate in the original study is worse than
in our comparative study based only on the US Census data, which suggests that using additional
data sources, manual coding, or unisex category will not necessarily increase the proportion of
items with predicted gender and can also contribute to the bias of gender proportion estimates.

Discussion

We cannot be sure how our method would perform on the same large datasets as in the described
studies. Those studies were based on many non-English names and the genderize.io database has
started gathering data mainly from public social profiles from the US and English-speaking countries,
although it is still growing every minute and incorporating new data from other countries and
languages.

The drawback of this data source is that people can put many different terms in their social
network profiles that are not their first names. This could generate noise in the genderize.io database
that could disturb gender prediction and introduce some bias if there are many instances of the same
non-first-name terms used. Surprisingly, such crowd-sourced data work even better in our comparison
study than very reliable and official data sources. In addition, we always can use a subset of the
database with most reliable records.

We could also search for first names of papers” authors by taking into account the language in
which they published their papers. Such an approach could be misleading, as many scientists publish
papers in English, although it is not their native language. Another approach is to consider the
proportion of males or females for a particular first name, while considering a year of birth of the
person in question (Mullen, 2014). This historical method could improve gender predictions, but such
birth data are often not available, especially in the discussed bibliometrics studies. However, if a year
of birth is available, we could combine the two sources and use US Census data for years of birth from
1789 to 1930 and SSA data for newer ones as proposed by Mullen (2014). The particular problem with
historic data is that the gender associated with a given name can change over time and the association
can also differ geographically (Blevins and Mullen, 2015). The functions in the genderizeR package
assume that we are looking for gender prediction based on global and contemporary gender-name
associations.

The code in the genderizeR package works fast enough for many research purposes on datasets
with more than 200 000 records of articles and their authors. Checking 108 023 unique terms through
the genderize.io API took 45 minutes (2395.2 terms per minute). I have not tested and optimised the

code for really large datasets yet, and by large datasets I mean millions of papers or authorships.

However, some functions in the package are already implemented in parallel versions and can be
used on larger datasets. I have already been experimenting with more efficient solutions from several
other packages like data.table (Dowle et al., 2014), dplyr (Wickham and Francois, 2014), stringr
(Wickham, 2012), tm (Feinerer and Hornik, 2014), and others. I am aware that many improvements
could be made to the package and I am open for suggestions or contributions to the GitHub repository
(https://github.com/kalimu/genderizeR).
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The interesting prospect that can be explored in the future is the genderizing of some larger
text corpuses. As we automatically try to ascribe gender to a title of a biographical article, we can
additionally try to find first names in a larger text corpus and count how many references there are to
females and males. It could be helpful, for example, in literature or media analysis.

Conclusion

Gender prediction is not as simple as it sometimes seems to be. In our data the gender category is not
explicitly available for the researcher as it often is from, for example, a traditional survey question.
When the name of a person in question is known, we can try to predict her or his gender based on the
first name, even if we do not know which part of the record is a first name. This has many potential
applications from big data analysis of authors of scientific papers to commercial applications where
we can customise a commercial offer based on someone’s gender without directly asking him or her
about that.

The interest in gender identification seems to be increasing as we can see it in the studies done in
recent years and in new IT tools that have emerged recently, such as genderize.io, R packages or code
extensions for Ruby or Python that utilise gender data sources like genderize.io (Stromgren, 2015a).

New tools and a variety of open data sources (from the US Census, US SSA, and others) expand the
possibilities of gender analysis, especially when they are in easy-readable machine formats. However,
there is a shortage of proper validation studies that could show how effective the methods are that
have been used for gender predictions. There is also a need to more explicitly present report prediction
efficiency metrics that can be comparable with other methods across different studies.

From comparison of the three methods in this study, we can now assume that using genderize.io
API as a gender data source is probably the best currently available approach. However, the outcomes
could vary in different contexts, so it is always recommended to perform a validation study of different
methods and compare a set of predictions metrics in order to select the most effective approach.
Moreover, one should be cautious when using combined data sources or human coders as that can
also have an adverse effect on some indicators of gender prediction efficiency.
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