
CONTRIBUTED RESEARCH ARTICLES 48

rTableICC: An R Package for Random
Generation of 2×2×K and R×C
Contingency Tables
by Haydar Demirhan

Abstract In this paper, we describe the R package rTableICC that provides an interface for random
generation of 2×2×K and R×C contingency tables constructed over either intraclass-correlated or
uncorrelated individuals. Intraclass correlations arise in studies where sampling units include more
than one individual and these individuals are correlated. The package implements random generation
of contingency tables over individuals with or without intraclass correlations under various sampling
plans. The package include two functions for the generation of K 2×2 tables over product-multinomial
sampling schemes and that of 2×2×K tables under Poisson or multinomial sampling plans. It also
contains two functions that generate R×C tables under product-multinomial, multinomial or Poisson
sampling plans with or without intraclass correlations. The package also includes a function for
random number generation from a given probability distribution. In addition to the contingency table
format, the package also provides raw data required for further estimation purposes.

Introduction

Random generation of contingency tables is essential for simulation studies conducted over categorical
data. The main characteristic of a contingency table is determined by the assumed sampling plan
and the correlation structure between categorical variables constituting the table. There are three
main sampling plans: Poisson, multinomial, and product multinomial. In the Poisson plan, each
cell is independently Poisson distributed and there is no restriction on the total sample size. In the
multinomial plan, total sample size is fixed while row and column totals are not fixed. When one of the
margins of the table is fixed and the rest are set free, we have a product multinomial plan (Agresti, 2002;
Bishop et al., 1975). If both margins are naturally fixed, the sampling plan becomes hypergeometric,
which is seldom used in practice (Agresti, 2002). There are numerous ways in R to generate contingency
tables of various dimensions. The function r2dtable() in the base package stats generates random
two-way tables with given marginals using Patefield’s algorithm under product-multinomial sampling
(Patefield, 1981). Alternatively, one can generate a random contingency table over log-linear models
with a predetermined association structure. However, there is no package in R for random generation
of 2×2×K tables or generation of contingency tables with intraclass-correlations.

It is highly possible to have intraclass correlations (ICCs) in surveys conducted over sampling
units with more than one observation unit if these units are correlated. Familial data also include
ICCs. In a public health survey, if data are collected over families, intraclass correlations arise due to
the within family dependence. Presence of intraclass correlations can invalidate results of classical
categorical models or chi-square tests (Demirhan, 2013). Therefore, use and further developments
of methods specific to the cases with ICCs are essential. In the literature, Cohen (1976) and Altham
(1976) introduced categorical analyzes under the presence of ICCs. Borkowf (2000) proposed an
ICC statistic for contingency tables with the empirical multivariate quantile-partitioned distributions.
Nandram and Choi (2006) proposed Bayesian analysis of R×C tables with intraclass correlated cells.
Demirhan (2013) proposed Bayesian estimation of log odds ratios over R×C contingency tables under
the presence of intraclass correlated cells. The context of ICCs is also used in applied research such as
Bi and Kuesten (2012).

Monte Carlo simulation studies are essential in the development of new statistical methods to
handle ICCs. However, there is neither a Monte Carlo approach nor an R package to implement
random generation of contingency tables under intraclass-correlated individuals. In this article, we
propose a simple approach for the generation of 2×2×K and R×C contingency tables in the presence
of ICCs between individuals under three sampling plans, and describe the R package rTableICC
(Demirhan, 2015) for the implementation of the proposed approach. In general, 2×2×K tables are
observed in multicenter studies such as clinical trials (Demirhan and Hamurkaroglu, 2008). Also,
in a genetic association study, association between existence of a disease and K single-nucleotide
polymorphisms (SNPs) can be questioned over a 2× 2×K contingency table. In the genetics context, K
would be the number of genetic loci under investigation. The assumption is that the total sample size
under each loci is mostly known. It is highly possible to have some correlation patterns between SNPs
that cause existence of ICCs. Thus, we have a 2× 2×K table over individuals with ICCs under product-
multinomial sampling plan. R×C tables provide a general framework for two-way contingency tables.
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Considering the areas of application, rTableICC provides a rich platform for the random generation
of contingency tables.

The package rTableICC includes four functions for random generation of 2×2×K and R×C
contingency tables with and without intraclass-correlated individuals under multinomial, product
- multinomial and Poisson sampling plans. It also has a function for random generation of data
from a given probability function. Generated tables are made available in both table and raw data
format. Additional characteristics of generated data for further estimation issues are also produced
and optionally printed out. Thus, it is possible to easily embed functions of rTableICC in other Monte
Carlo simulation codes. The latest development of rTableICC under version 1.0.3 is published on the
Comprehensive R Archive Network (CRAN).

In the following sections, the approach for the generation of random tables in the presence of ICCs
is described, details of data generation processes under considered sampling plans are mentioned,
input and output structures of rTableICC are demonstrated, and use of the package is illustrated by
several examples. We also provide a performance analysis regarding the mean running times of the
functions in the package rTableICC. Then, we conclude with a brief summary.

Data generation under ICC

Altham (1976) introduced two probabilities to deal with ICCs over an R×C contingency table. Let
nijk be the number of individuals falling in the cell (j, k) of an R×C table from the ith cluster, where
i = 1, . . . , I, j = 1, . . . , R, k = 1, . . . , C, and πjk be the related cell probability. The total number of
individuals in the ith cluster is shown by ni and the intraclass correlation coefficient for clusters
including t = ni individuals is denoted by θt for t = 2, . . . , T, where T is the greatest family size and
θ1 = 0. For the events A = {All individuals in the ith cluster fall in the same cell of an R×C table
} and B = {Individuals are in different but specified cells}, the following probabilities are given by
Altham (1976):

P(A) = θtπjk + (1− θt)(πjk)
t (1)

and

P(B) = (1− θt)
R

∏
j=1

C

∏
k=1

(πjk)
nijk , (2)

where 0 ≤ θt ≤ 1. For 2× 2×K tables, equations (1) and (2) remain the same but i, j = 1, 2.

We utilize equations (1) and (2) to incorporate ICCs into the data generation process. We work
over clusters to generate data. For all sampling plans, the total sample size either entered or obtained
over randomly generated data is distributed across the clusters. Then, for the clusters with only one
individual, because there is no ICC affecting the individual, we randomly assign it to one of the cells
of the table taking the input vector of cell probabilities into account, π. For clusters with more than
one individual, we employ the following pseudocode algorithm to generate data under the given ICCs:

Algorithm 1.

1. Input θ, π, and number of individuals in each cluster by an M× 1 vector m;

2. Set i = 1 and goto step 3;

3. Generate all possible compositions of order R× C of cluster size mi into at most mi parts;

4. Write generated compositions to an r × ` matrix N, where r is the total number of possible
compositions;

5. For each composition nj, if ∑k njk = 0, compute the probability pj by equation (1), else if
∑k njk > 0, compute the probability pj by equation (2), for j = 1, . . . , r;

6. Normalize the series of probabilities, p, obtained at step 5 to construct a probability function;

7. Randomly select one of the compositions based on the probability function obtained at step 6.

8. Write selected composition to an `× 1 vector si and set i = i + 1;

9. If i ≤ M goto step 3, else return ∑i si.

In Algorithm 1, ` = R · C for R×C tables and ` = 4 for 2 × 2×K tables. We use the function
compositions from the package partitions (Hankin, 2006) to generate all possible compositions at the
step 3 of Algorithm 1. Each composition represents one of the possible allocations of individuals in a
cluster into target cells. For example, let us have 4 cells to distribute 5 individuals in a cluster. We run
the following code to get the 56× 4 matrix N:

> N <- t(compositions(5, 4, include.zero = TRUE))
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The resulting output looks like

[1,] 5 0 0 0 [2,] 4 1 0 0 [3,] 3 2 0 0 [4,] 2 3 0 0 ...

The vector (5, 0, 0, 0) implies that all individuals in the cluster of interest fall in the first (same) cell
and corresponds to the event A, whereas the vector (2, 3, 0, 0) implies that 2 of 5 individuals fall in
the first and the rest fall in the second cell and represents the event B. At the step 6 of Algorithm
1, we normalize the set of probabilities that consists of the probability of each possible allocation
of individuals in the cluster of interest into the cells of table. By this way, we form a probability
distribution to generate one of the possible allocation randomly. Consequently, individuals in a cluster
of size more than one are distributed into the cells of the table by Algorithm 1. After application of
Algorithm 1 for all clusters, the grand total of generated cell counts produces a randomly generated
contingency table.

Structure of the rTableICC package

The package rTableICC consists of four main functions: rTableICC.RxC, rTableICC.2x2xK, rTable.RxC
and rTable.2x2xK; and an auxiliary function rDiscrete, which is also suitable for use individually. In
the general functioning of the package, first, main inputs are checked by an initial layer according
to the presence of ICCs and used sampling plan; and then the related function is called. In addition
to general checks, specific checks are done by the related function itself. Below, we describe the
processing of each function after the general check.

Generation of R×C tables with ICC

The function rTableICC.RxC is called to generate an R×C table with ICC. Algorithm 2 describes the
functioning of rTableICC.RxC.

Algorithm 2.

1. Input sampling plan, θ, π, total number of individuals N or mean number of individuals λ, and
total number of clusters M;

2. If sampling plan is multinomial goto step 3, product-multinomial goto step 7, and Poisson goto
step 15;

3. If any of inputs π and total number of individuals is not suitable then stop;

4. Distribute N individuals across M clusters with equal probabilities by rmultinom(1,N,rep(1/M,
M));

5. If the maximum number of individuals in one of the clusters is greater than the maximum
allowed cluster size then stop;

6. Employ Algorithm 1 with joint probabilities for all clusters and goto step 21;

7. If any of inputs π and row (column) margins is not suitable then stop;

8. Determine the fixed margin according to input parameters col.margin or row.margin and set
i = 1;

9. Calculate conditional probabilities regarding the fixed margin;

10. If conditional probabilities calculated over entered row margins and π are not equal to each
other then stop;

11. Distribute individuals in the ith row (column) across M clusters with equal probabilities by
using the multinomial distribution;

12. If the maximum number of individuals in one of the clusters is greater than the maximum
allowed cluster size then stop;

13. Employ Algorithm 1 with calculated conditional probabilities for all clusters and set i = i + 1;

14. If i ≤ R(C) goto step 10, else goto step 21;

15. If input λ is not suitable then stop;

16. Generate number of individuals in each cell by rpois(R * C,t(lambda));

17. Calculate cell probabilities and total number of individuals N;

18. Distribute N individuals across M clusters with equal probabilities by rmultinom(1,N,rep(1/M,
M));
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19. If the maximum number of individuals in one of the clusters is greater than the maximum
allowed cluster size then stop, else goto step 20;

20. Employ Algorithm 1 with probabilities calculated at step 17 for all clusters;

21. Calculate desired output forms of generated table.

Suitability checks at steps 3, 7, and 15 are made on minimum and maximum values and dimen-
sions of input vectors. Because the total sample size, which is entered by the user for multinomial
sampling, randomly generated for Poisson sampling, and entered as a fixed row (column) margin for
product-multinomial sampling, is randomly distributed into the clusters, it is coincidentally possible to
have clusters with more individuals than the allowed maximum cluster size. In this case, the following
error message is generated:

Maximum number of individuals in one of the clusters is 14,which is greater than maximum
allowed cluster size. (1) Re-run the function,(2) increase maximum allowed cluster size
by increasing the number of elements of theta,(3) increase total number of clusters,or
(4) decrease total number of individuals!

and execution is stopped at steps 5, 12, and 19 of Algorithm 2.

For the product-multinomial sampling, suppose that row totals are fixed and ni+ denotes fixed row
margins. With the counts satisfying ∑j nij = ni+, we have the following multinomial form (Agresti,
2002):

ni+!
∏j nij!

∏
j

π
nij

j|i , (3)

where i = 1, . . . , R, j = 1, . . . , C, nij is the count of cell (i, j), and given that an individual is in the ith
row, πj|i is the conditional probability of being in the jth column of the table calculated at step 9 of
Algorithm 2. When column totals are fixed the same steps as in the case of fixed row totals are applied.

Let Λ be the set of clusters in which all individuals fall in a single cell of the contingency table and
Λ′ be the complement of Λ, and T be the maximum cluster size. Outputs of rTableICC.RxC include
two arrays in addition to the generated table. The first one, gt, is an R× C × (T − 1) dimensional
array including the number of clusters of size t in Λ′ with all individuals in cell (i, j); and the second,
g̃, is a (T − 1)× 1 dimensional vector including the number of clusters of size t in Λ′, where i, j = 1, 2
and t = 2, . . . , T. These arrays are required for further modeling purposes.

Generation of 2× 2×K tables with ICC

The function rTableICC.2x2xK is called to generate a 2× 2×K table with ICC. Algorithm 3 describes
the processing of rTableICC.2x2xK. We assume that we have K centers and a 2× 2 table under each
center. To generate a 2× 2×K table, rTableICC.2x2xK generates a 2× 2 table under each center.

Algorithm 3.

1. Input sampling plan, θ, π, total number of individuals N or mean number of individuals λ, and
total number of clusters Mk for k = 1, . . . , K under each center;

2. If sampling plan is multinomial goto step 3, product-multinomial goto step 9, and Poisson goto
step 16;

3. If any of inputs π and total number of individuals is not suitable then stop;

4. Distribute N individuals across ∑k Mk clusters with equal probabilities by rmultinom(1,N,
rep(1/sum(num.cluster),sum(num.cluster))) and store the results in a K× 1 vector c;

5. If the maximum number of individuals in one of the clusters is greater than the maximum
allowed cluster size then stop, else set k = 1;

6. Scale joint probabilities of the 2× 2 table under the kth center to make them sum-up to one;

7. Employ Algorithm 1 with scaled joint probabilities for all clusters of center k and set k = k + 1;

8. If k ≤ K goto step 6, else goto step 22;

9. If any of inputs π and center margins is not suitable then stop;

10. Calculate conditional probabilities regarding the fixed centers and set k = 1;

11. Scale conditional probabilities of step 10 under the kth center to make them sum-up to one;

12. Distribute individuals in the kth center across Mk clusters with equal probabilities by rmultinom(1,
N[k],rep(1/num.cluster[k],num.cluster[k]));
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13. If the maximum number of individuals in one of the clusters is greater than the maximum
allowed cluster size then stop;

14. Employ Algorithm 1 with scaled conditional probabilities for all clusters of center k and set
k = k + 1;

15. If k ≤ K goto step 11, else goto step 22;
16. If input λ is not suitable then stop;
17. Generate number of individuals in each cluster by rpois(num.cluster[k],lambda[k]);
18. Calculate total number of individuals N over generated clusters at step 17;
19. Scale joint probabilities of the 2× 2 table under the kth center to make them sum-up to one;
20. If the maximum number of individuals in one of the clusters is greater than the maximum

allowed cluster size then stop;
21. Employ Algorithm 1 with probabilities calculated at step 19 for all clusters;
22. Calculate desired output forms of generated table.

Suitability checks at steps 3, 9, and 16 are made on minimum and maximum values and dimensions
of input vectors. For the incompatibility between generated and allowed maximum cluster sizes, the
same situation as the R×C case also applies to the 2× 2×K case. In this case, the same error message
is displayed and execution is stopped. For all sampling plans, rTableICC.2x2xK proceeds over each
center.

For product-multinomial sampling plan, suppose that center totals are denoted by nij+, where
i, j = 1, 2. Then with the counts satisfying ∑ij nijk = nij+, the following multinomial form is used
(Agresti, 2002):

nij+!

∏ij nijk! ∏
ij

p
nijk

ij|k , (4)

where k = 1, . . . , K, nijk is the count of cell (i, j, k), and given that an individual is in the kth center, pij|k
is the conditional probability of being in the cell (i, j) of the 2× 2 table. This multinomial form is used
to generate data under each center.

Arrays gt and g̃ are also included in the outputs of rTableICC.2x2xK. Here, gt and g̃ are respectively
2K× 2× (T − 1) and (T − 1)× 1 dimensional arrays. Their definitions are the same as R×C case.

Generation of R×C tables without ICC

The function rTable.RxC is used to generate an R×C table with independent individuals in sampling
units. In this function, the classical way of generating contingency tables over the probability distribu-
tion corresponding to the sampling plan is followed. The functioning of rTable.RxC is described in
Algorithm 4.

Algorithm 4.

1. Input sampling plan, π, and total number of individuals N or mean number of individuals λ;
2. If sampling plan is multinomial goto step 3, product-multinomial goto step 5, and Poisson goto

step 11;
3. If any of inputs π and total (mean) number of individuals is not suitable then stop;
4. Distribute N individuals across R×C cells by rmultinom(1,N,pi) and goto step 12;
5. If any of inputs π and row (column) margins is not suitable then stop;
6. Determine the fixed margin according to input parameters col.margin or row.margin and set

i = 1;
7. Calculate conditional probabilities regarding the fixed margin;
8. If conditional probabilities calculated over entered row margins and π are not equal to each

other then stop;
9. Distribute individuals in the ith row (column) across R (C) cells with conditional probabilities

using the multinomial distribution;
10. If i ≤ R(C) goto step 9, else goto step 13;
11. If input λ is not suitable then stop;
12. Generate number of individuals in each cell by rpois(R * C,t(lambda));
13. Calculate desired output forms of generated table.

Suitability checks at steps 3, 5, and 11 are made on minimum and maximum values and dimensions
of input vectors. For the product-multinomial sampling plan, the multinomial form in equation (3) is
used. Raw data corresponding to each individual are also generated among outputs of rTable.RxC.
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Generation of 2× 2×K tables without ICC

The function rTable.2x2xK is employed to generate a 2× 2×K table with independent individuals in
sampling units. The processing of rTable.2x2xK is described in Algorithm 5. Assume that we have
K centers and a 2× 2 table under each center. Similar to rTableICC.2x2xK, rTable.2x2xK generates a
2× 2 table under each center to obtain a 2× 2×K table.

Algorithm 5.

1. Input sampling plan, π, total number of individuals N or mean number of individuals λ;

2. If sampling plan is multinomial goto step 3, product-multinomial goto step 5, and Poisson goto
step 10;

3. If any of inputs π and total number of individuals is not suitable then stop;

4. Distribute N individuals across 2× 2× K cells with input probabilities by rmultinom(1,N,pi)
and goto step 12;

5. If any of inputs π and center margins is not suitable then stop, else set k = 1;

6. Calculate conditional probabilities for center k;

7. Scale conditional probabilities of step 6 under the kth center to make them sum-up to one;

8. Distribute individuals in the kth center across 2× 2 cells with scaled probabilities at step 7 by
using multinomial distribution and set k = k + 1;

9. If k ≤ K goto step 6, else goto step 12;

10. If input λ is not suitable then stop;

11. Generate number of individuals in each cell of 2× 2×K table by rpois(2 * 2 * K,lambda);

12. Calculate desired output forms of generated table.

Suitability checks at steps 3, 9, and 16 are made on minimum and maximum values and dimensions
of input vectors.The multinomial form in equation (4) is used for product-multinomial sampling plan.
It is possible to enter a mean number of individuals for each cell under Poisson sampling plan at step
11 of Algorithm 5 by entering an array for lambda. Raw data corresponding to each individual are also
generated among outputs of rTable.2X2XK.

Generation of random values from a discrete probability distribution

The function rDiscrete is used to generate a random value from an empirical probability distribution.
This function is called by both rTableICC.RxC and rTableICC.2x2xK. Implementation of rDiscrete is
explained by Algorithm 6.

Algorithm 6.

1. Input empirical probability function (pf) with N levels and number of observations to be
generated;

2. Check whether input probabilities sum to one and number of observations n is a finite positive
scalar;

3. Calculate cumulative distribution function (cdf), F, over the input pf;

4. Set Aj = (F(j− 1), F(j)), where j = 1, . . . , N, F(0) = 0, and i = 1;

5. Generate a random value u from Uniform(0, 1) distribution;

6. If u ∈ Aj than save j as the generated value and set i = i + 1;

7. If i ≤ n goto step 5;

8. Return the generated values.

rDiscrete returns an array of generated values and calculated cdf at step 3 of Algorithm 6.

Illustrative examples

To generate random R×C and 2× 2×K contingency tables with or without ICCs or generate random
numbers from empirical probability functions, first one has to load the package rTableICC by

> library(rTableICC)
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Then, the relevant function is called with proper inputs.

In the first example, we illustrate two important cases that generate errors and stop execution of
functions rTableICC.RxC and rTableICC.2x2xK. In the second and third examples, we demonstrate
outputs of rTableICC.2x2xK and rTableICC.RxC. In the fourth example, we exemplify rTable.RxC,
rTable.2x2xK, and rDiscrete functions.

Example 1

In this example, we illustrate two incompatibilities between generated and allowed maximum clus-
ter sizes and total number of individuals and number of clusters for functions rTableICC.RxC and
rTableICC.2x2xK.

When a user enters the value of intraclass correlation for each cluster size, the maximum allowed
cluster size is correspondingly defined. However, because rTableICC.RxC and rTableICC.2x2xK
distribute total sample size, which is entered or generated, among the given number of clusters, we
would have clusters with number of individuals greater than the maximum allowed cluster size. This
case should be regarded while entering the values of intraclass correlations, total or mean number of
individuals, and total number of clusters.

The following code attempts to generate a 2× 2×K contingency table with 3 centers under multi-
nomial sampling plan. Number of clusters under each sample is 25 and total number of individuals is
500. The maximum cluster size (max.cluster.size) is defined to specify the size of array including
ICCs. In this setting, it is highly possible to allocate more than 4 individuals in one of the clusters.

> num.centers <- 3
> sampl <- "Multinomial"
> max.cluster.size <- 4
> num.cluster <- 25
> num.obs <- 500
> ICCs <- array(0.1, dim = max.cluster.size)
> ICCs[1] <- 0
> cell.prob <- array(1/12, dim = c(num.centers, 4))
> x <- rTableICC.2x2xK(p = cell.prob, theta = ICCs, M = num.cluster, sampling = sampl,
+ N = num.obs)

When 500 individuals are distributed across 25 clusters, the maximum cluster size is realized as 14 >
max.cluster.size, as expected. Then, execution is stopped with the following error message:

Error in rtableICC.2x2xK.main(p, theta, M, sampling, N, lambda, print.regular, :
Maximum number of individuals in one of the clusters is 14, which is greater
than maximum allowed cluster size.

(1) Re-run the function,
(2) increase maximum allowed cluster size by increasing the number of

elements of theta,
(3) increase total number of clusters, or
(4) decrease total number of individuals!

Now, we change the settings to eliminate the error. rTableICC.2x2xK generates the desired table
when the total number of observations is decreased to 50, the total number of clusters is increased to
250, or the maximum cluster size is increased to 15 with the same inputs for the rest of the arguments.

User should ensure compatibility between the number of individuals and the total number
of clusters. When we run the code given above with num.obs <-50 and zero.clusters <-FALSE,
rTableICC.2x2xK tries to distribute 50 individuals to 75 clusters; and hence, the following error
message is generated:

Error in rtableICC.2x2xK.main(p, theta, M, sampling, N, lambda, zero.clusters, :
Because number of individuals is less than the total number of clusters, it is
impossible to allocate an individual to each cluster! Set zero.clusters = TRUE
and re-run the function.

The problem is eliminated when zero.clusters is set to TRUE.

Example 2

In this example, the output structure of rTableICC.2x2xK is illustrated. We run the code in Example 1
with num.centers <-2, num.obs <-50, and zero.clusters <-TRUE and call print(x). The following
part presents the summary information on the data generation process.
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Call:
rTableICC.2x2xK.default(p = cell.prob, theta = ICCs, M = num.cluster,

sampling = sampl, N = num.obs, zero.clusters = TRUE, print.regular = TRUE,
print.raw = FALSE)

Process summary:
----------------
100 observations in 2 centers were successfully generated under Multinomial
sampling plan! Number of clusters for each center is as the following:
25 for Center 1
25 for Center 2

17 clusters include no individual.
21 clusters include one individual.
12 clusters include more than one individual.

Because the multinomial distribution is used to distribute the total sample size across the clusters,
there are some clusters with no individuals, as reported in the process summary. Because probabilities
used to represent intraclass correlations in equations (1) and (2) change according to cluster size, we
report the number of clusters containing one and more than one individuals in the process summary.

The following part of the output includes gt, g̃, and the generated table in two and three dimen-
sions.

The number of t sized clusters in the set of clusters in which all individuals fall
in cell (j,k) for j,k=1,2:

g.t =
, , Cluster of size 2

C- 1 C- 2
Center- 1 R- 1 0 2
Center- 1 R- 2 1 2
Center- 2 R- 1 1 0
Center- 2 R- 2 0 1
, , Cluster of size 3

C- 1 C- 2
Center- 1 R- 1 1 1
Center- 1 R- 2 0 0
Center- 2 R- 1 0 1
Center- 2 R- 2 0 0
, , Cluster of size 4

C- 1 C- 2
Center- 1 R- 1 0 0
Center- 1 R- 2 0 0
Center- 2 R- 1 0 0
Center- 2 R- 2 0 1

The number of clusters of size t outside the set of clusters in which all individuals
fall in a single cell: g.tilde = ( 0 1 0 )

Generated random table in two dimensions :
R1C1 R1C2 R2C1 R2C2

Center- 1 4 10 7 7
Center- 2 3 5 5 9

Generated random table in three dimensions :
, , Center- 1

C- 1 C- 2
R- 1 4 10
R- 2 7 7
, , Center- 2

C- 1 C- 2
R- 1 3 5
R- 2 5 9

To illustrate the output raw data format, we run the following code:

> num.centers <- 3
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> num.cluster <- 5
> num.obs <- 10
> ICCs <- array(0.1, dim = 4)
> ICCs[1] <- 0
> cell.prob <- array(1/12, dim = c(num.centers, 4))
> x <- rTableICC.2x2xK(p = cell.prob, theta = ICCs, M = num.cluster,
+ sampling = "Multinomial", N = num.obs)

The resulting raw data output given below is printed as a three dimensional array. The first dimension
includes observations, the second dimension has 2K elements simultaneously representing rows of
each 2× 2 table and each center, and the third dimension corresponds to the columns of each 2× 2
table. Elements of the second dimension correspond to cells in (row-1, center-i), (row-2, center-i), for
i = 1, . . . , K, respectively; hence, it has 2K elements. Those of the third dimension correspond to the
first and second columns of each 2× 2 table, respectively.

Generated random table in raw data format =
, , 1

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 0 0 0 0
[2,] 0 0 0 0 0 0
[3,] 1 0 0 0 0 0
...
[10,] 0 0 0 0 0 0
, , 2

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 0 0 0
[2,] 1 0 0 0 0 0
[3,] 0 0 0 0 0 0
...
[10,] 0 0 0 0 1 0

Example 3

The output structure of rTableICC.RxC is similar to that of rTableICC.2x2xK. We run the following
code to generate a 2× 3 contingency table under a product multinomial sampling plan with fixed row
margins, zero clusters being not allowed, and cell probabilities being in accordance with the entered
counts of fixed margin.

> num.cluster <- 12
> ICCs <- array(0.1, dim = 9)
> ICCs[1] <- 0
> num.obs <- 24
> zeros <- FALSE
> sampl <- "Product"
> row <- c(12, 12)
> cell.prob <- array(0, dim = c(2, 3))
> cell.prob[1, 1:2] <- 0.2
> cell.prob[1, 3] <- 0.1
> cell.prob[2, 1:2] <- 0.1
> cell.prob[2, 3] <- 0.3
> y <- rTableICC.RxC(p = cell.prob, theta = ICCs, row.margins = row, M = num.cluster,
+ sampling = sampl, zero.clusters = zeros, print.regular = TRUE,
+ print.raw = FALSE)
> print(y)

In the output of rTableICC.RxC, first the following summary table is generated. Coincidentally, there
is no cluster with more than one individual. Clusters are enforced to contain at least one individual.

Call:
rTableICC.RxC.default(p = cell.prob, theta = ICCs, M = num.cluster,

row.margins = row, sampling = sampl, zero.clusters = zeros,
print.regular = TRUE, print.raw = FALSE)

Process summary:
----------------
24 observations in 12 12 clusters were successfully generated under Product
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multinomial sampling plan!
Each cluster includes at least one individual.
12 clusters include one individual.
0 clusters include more than one individual.

In the output, the vector gt is printed in R× C format for each cluster size. The vector g̃ is printed
as a vector and the generated table is printed in both R× C and row formats. Because there is no
cluster with more than one individual, gt and g̃ are both composed of zeros.

The number of t sized clusters in the set of clusters in which all individuals fall in
cell (j,k) for j=1,...,R and k=1,...,C: g.t =

, , Cluster of size 2
C- 1 C- 2 C- 3

R- 1 0 0 0
R- 2 0 0 0
...
, , Cluster of size 9

C- 1 C- 2 C- 3
R- 1 0 0 0
R- 2 0 0 0

The number of clusters of size t outside the set of clusters in which all individuals
fall in a single cell: g.tilde = ( 0 0 0 0 0 0 0 0 )

Generated random table in row format = ( 5 4 3 3 3 6 )

Generated random table in RxC format =
C- 1 C- 2 C- 3

R- 1 5 4 3
R- 2 3 3 6

Example 4

In this example, we run a couple of codes to illustrate random contingency table generation without
ICCs. Besides, we show outputs of the function rDiscrete.

The following code generates and prints a random 5× 7 contingency table under multinomial
sampling plan with 124 observations and equal cell probabilities.

> num.row <- 5
> num.col <- 7
> sampl <- "Multinomial"
> cell.prob <- array(1/35, dim = c(num.row, num.col))
> num.obs <- 124
> x <- rTable.RxC(p = cell.prob, sampling = sampl, N = num.obs)
> print(x)

The corresponding output of rTable.RxC is as follows. After a brief summary, the generated table is
printed.

Call:
rTable.RxC.default(p = cell.prob, sampling = sampl, N = num.obs)

Process summary:
----------------
124 observations across 5 rows and 7 columns were successfully generated under
Multinomial sampling plan!

Generated random table in RxC format =
C- 1 C- 2 C- 3 C- 4 C- 5 C- 6 C- 7

R- 1 4 2 3 4 5 4 4
R- 2 4 5 5 5 5 5 4
R- 3 4 1 5 3 3 2 3
R- 4 2 1 1 6 4 3 3
R- 5 2 1 4 5 7 2 3
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The following code is run to randomly generate a 2 × 2×3 contingency table under Poisson
sampling plan with determined mean number of individuals for each cell.

> num.centers <- 3
> sampl <- "Poisson"
> cell.mean <- array(3, dim = c(2, 2, num.centers))
> z <- rTable.2x2xK(sampling = sampl, lambda = cell.mean)
> print(z)

Consequently, 31 observations were generated under 3 centers.

Call:
rTable.2x2xK.default(sampling = sampl, lambda = cell.mean)

Process summary:
----------------
31 observations in 3 centers were successfully generated under Poisson sampling plan!

Generated random table in 2x2xK format =

, , Center- 1
C- 1 C- 2

R- 1 1 0
R- 2 2 4
, , Center- 2

C- 1 C- 2
R- 1 6 3
R- 2 2 4
, , Center- 3

C- 1 C- 2
R- 1 2 3
R- 2 2 2

To generate random values from an empirical probability function, we call rDiscrete. We run the
following code to generate two random values from a given probability function:

> p <- c(0.23, 0.11, 0.05, 0.03, 0.31, 0.03, 0.22, 0.02)
> rDiscrete(n = 2, pf = p)

Consequently, the generated random values and corresponding cdf are printed.

$rDiscrete
[1] 1 7

$cdf
[1] 0.00 0.23 0.34 0.39 0.42 0.73 0.76 0.98 1.00

Performance

The package rtableICC is intended to be used in combinaion with other code that implements Monte
Carlo simulation. Therefore, the computational performance of rtableICC is of importance. We
investigate running times of functions in rtableICC under various combinations of table structure,
sample size, and sampling plan. Tables 1 and 2 show test conditions of each function of rtableICC
related with 2× 2×K and R×C contingency tables, respectively. The value of ICC is taken as 0.1 for
all cluster sizes and related functions. Each test combination was repeated 5 times and mean and
variance of the running times were recorded. Because of the obtained small variances, 5 replications
were found sufficient. The maximum number of allowed clusters was taken high enough to have the
code successfully run through. In the rTableICC.2x2xK and rTableICC.RxC functions, the argument
zero.clusters was set to TRUE to allow clusters with no individuals. Note that when zero.clusters
is set to FALSE, we get shorter mean running times. All the combinations were run on a MAC-Pro
computer equipped with 6 Intel(R) Xenon(R) CPU E5-1650 v2 at 3.5GHz, 16 GB of RAM, and Windows
8.1 operating system.

For multinomial, Poisson, and product multinomial sampling plans, scatter plots representing
the mean running times of rTableICC.2x2xK according to some of the considered factors are given in
Figure 1. Due to the small variances within repetitions, plots are drawn only for the mean running
times.
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Plan N. of Observations N. of Centers N. of Clusters Cell Mean Center Margins

rTableICC.2x2xK Mult. 10, 25, 50, . . . , 2 · 103 2, 4, . . . , 100 5, 6, . . . , 100 — —
rTable.2x2xK Mult. 10, 25, 50, . . . , 2 · 104 2, 4, . . . , 20 — — —

rTableICC.2x2xK Poi. — 2, 4, . . . , 20 5, 10, . . . , 100 1, 2, . . . , 10 —
rTable.2x2xK Poi. — 2, 4, . . . , 50 — 0.5, 1, . . . , 50 —

rTableICC.2x2xK Pro. — 2, 4, . . . , 20 5, 10, . . . , 100 — 5, 10, . . . , 200
rTable.2x2xK Pro. — 2, 4, . . . , 50 — — 5, 10, . . . , 500

N: Number; Mult: Multinomial; Poi: Poisson; Pro: Product Multinomial; Plan: Sampling plan.

Table 1: Test conditions for the rTableICC.2x2xK and rTable.2x2xK functions.

Plan N. of Obs. N. of Rows N. of Columns N. of Clusters Cell Mean Row Margins

rTableICC.RxC Mult. 10, 20, . . . , 200 2, 3, . . . , 5 R, R + 1, . . . , 5 5, 10, . . . , 100 — —
rTable.RxC Mult. 25, 50, . . . , 104 2, 3, . . . , 20 R, R + 1, . . . , 20 — — —

rTableICC.RxC Poi. — 2, 3, . . . , 5 R, R + 1, . . . , 20 15, 20, . . . , 100 1, 2, . . . , 7 —
rTable.RxC Poi. — 2, 3, . . . , 20 R, R + 1, . . . , 20 — 0.5, 1, . . . , 10 —

rTableICC.RxC Pro. — 2, 3, . . . , 5 R, R + 1, . . . , 5 20, 25, . . . , 40 — 20, 25, . . . , 200
rTable.RxC Pro. — 2, 3, . . . , 10 R, R + 1, . . . , 10 — — 5, 10, . . . , 2000
N: Number; Mult: Multinomial; Poi: Poisson; Pro: Product Multinomial; Obs: Observations; Plan: Sampling plan.

Table 2: Test conditions for the rTableICC.RxC and rTable.RxC functions. The number of columns
starts from number of rows denoted by R under number of columns.

For the multinomial sampling plan, the scatter plot of mean implementation time versus number
of observations colored according to number of clusters is very similar to the one given in panel (a) of
Figure 1. For the Poisson sampling plan, the scatter plot of mean running time versus mean number of
observations in each cell colored according to number of centers is very similar to the one given in
panel (b) of Figure 1. For the product multinomial sampling plan, the scatter plot of mean running
time versus fixed row totals colored according to number of centers is very similar to the one given in
panel (c) of Figure 1. Therefore, these plots are omitted here.

Under the multinomial sampling plan, the mean running time for rTableICC.2x2xK is equally
affected by number of clusters and number of centers. The number of observations has the primary
effect on mean running time. We have long mean running times even for small number of clusters
or number of centers if the number of observations is large. Smaller mean running times with high
number of centers were recorded for small number of clusters and vice versa. Due to high running
times in a small portion of test combinations, the overall distribution of times is right-skewed. The
overall median of mean running times is 0.589 seconds with overall median variance of 0.002 and 75%
of the mean running times are less than 0.945 seconds over the test combinations. Under the Poisson
sampling plan, the mean running time of rTableICC.2x2xK increases along with the mean number of
observations in each cell. We have high running times for greater number of clusters. The same case is
also seen for greater number of centers. The mean number of observations in each cell is the dominant
factor on implementation time. The overall distribution of mean running times is right-skewed. The
overall median of mean running times is 1.109 seconds with overall median variance of 0.016 and 75%
of the mean running times are less than 2.793 seconds over the test combinations. Under the product
multinomial sampling plan with fixed row margins, the mean running time for rTableICC.2x2xK
increases with increasing number of observations in each fixed margin. Also, we have longer running
times for both greater number of centers and number of clusters. Rarely, it is also possible to have
long running times for a moderate number of clusters or a moderate number of centers. The number
of observations in the fixed margins has the primary effect on the mean running time. The overall
distribution of mean running times is highly right-skewed due to the outlier value seen in panel (c) of
Figure 1. The overall median of mean running times is 0.528 seconds with overall median variance of
0.002 and 75% of the mean running times are less than 1.065 seconds over the test combinations.

When the function rTable.2x2xK was run under the multinomial sampling plan with correspond-
ing test combinations given in Table 1, all of the mean running times were less than 10−6 with overall
median variance less than 10−8. Therefore, there is no identifiable effect of the test factors on the
running time of rTable.2x2xK; and hence, no plots are provided for the mean running times of
rTable.2x2xK. It is possible to record higher running times with a greater number of observations or
number of centers. However, setting these parameters to such large values is unreasonable. For the
Poisson sampling plan, the maximum mean implementation time over all of the corresponding test
combinations in Table 1 is 0.013 seconds. The effect of the number of centers on running time is unob-
servable. The overall median of mean running times is less than 10−6 seconds and the overall average
of mean running times is 0.001 seconds with overall median variance less than 10−8. This is due to
the nature of the Poisson distribution where in some runs we have a great number of observations in
some cells. A similar situation is also seen for the product multinomial sampling plan. Overall the
maximum mean running time is 0.013 seconds, the overall average of mean running times is 0.002
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(a)

(b)

(c)

Figure 1: Performance of the rTableICC.2x2xK function under multinomial, Poisson, and product
multinomial sampling plans. Panels (a) and (c) represent mean running time versus number of obser-
vations colored according to number of centers for the multinomial and product multinomial sampling
plans, respectively. Panel (c) represents mean running time versus mean number of observations in
each cell colored according to number of clusters for the Poisson sampling plan.
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seconds with overall median variance less than 10−8. The effect of the number of centers is negligible.

For the function rTableICC.RxC, plots of mean implementation time versus number of observa-
tions and number of clusters colored by number of rows under multinomial, Poisson, and product
multinomial samplings are given in Figure 2. Corresponding plots colored by number of columns are
very similar to those seen in Figure 2; hence, they are omitted here. For the multinomial sampling plan,
mean running times are severely affected by both increasing number of observations and increasing
number of rows. However, this is not seen for an increasing number of clusters. We have long mean
running times for moderate and small number of clusters. Number of rows (columns) and number
of observations are mainly impactful on the running time of rTableICC.RxC under the multinomial
sampling plan. For the multinomial sampling plan, the overall average of mean running times is
21.312 seconds with median variance of 0.015. The overall median of mean running times is 0.515
seconds, their distribution is highly right-skewed, and 75% of the mean running times are less than
2.999 seconds. For the Poisson sampling plan, the mean running time is mainly affected by the mean
number of observations in each cell. Because of the nature of the Poisson distribution, it is possible
to obtain long running times even for small number of rows (columns) or clusters. Therefore, we
limited the mean number of observations in each cell by 7 in test combinations. The overall average
of mean running times is 8.419 seconds with median variance less than 10−8. The overall median of
mean running times is 0.047 seconds, their distribution is highly right-skewed, and 75% of the mean
running times are less than 0.307 seconds. For the product multinomial sampling plan, the running
time is mainly affected by both fixed row counts and number of rows (columns). It is possible to have
long running times even for smaller number of clusters if row counts are high. The overall average of
mean running times is 0.198 seconds with median variance of 1.33 · 10−4. The overall median of mean
running times is 0.147 seconds, their distribution is right-skewed, and 75% of the mean running times
are less than 0.263 seconds.

For the function rTable.RxC, we have similar results than for rTable.2x2xK. Under multinomial,
Poisson, and Product multinomial sampling plans, the overall averages of mean running times are
0.00007, 0.001, and 0.001 with overall median variances less than 108, 1.92 · 10−5, and 1.86 · 10−5,
respectively. The overall medians of mean running times are all less than 10−6. Because we have
several outliers in the Poisson and product multinomial sampling plans, the overall average mean
running times are greater than 10−4. Due to these numerical results, we cannot identify a significant
effect of neither number of rows or columns nor number of observations in cells on the performance
of rTable.RxC.

In conclusion, the performance of the functions generating tables without ICC is better than those
generating tables with ICCs. Running times of both rTable.2x2xK and rTable.RxC are not notably
affected by the values of their arguments and short enough to be used in combination with other
Monte Carlo simulation algorithms. Running times of both rTableICC.2x2xK and rTableICC.RxC are
severely affected by the process carried out by the function compositions of the package partitions.
Therefore, their running times are sensitive to inputs and, in general, affected by the total number of
individuals to be generated. If generation of a table with a very large total number of individuals is
intended, a smaller number of individuals can be generated by a proper scaling on the number of
individuals in each cell.

Summary

In this article, we introduced the R package rTableICC to generate 2×2×K and R×C contingency
tables with and without intraclass-correlated individuals. We described a new approach implemented
in functions rTableICC.2x2xK and rTableICC.RxC for the generation of tables under the presence of
intraclass correlations between individuals. Also, we described the function rDiscrete for random
number generation from empirical probability functions. We provided detailed algorithms working
behind the functions and illustrated use and input-output structures of functions in rTableICC by
numerical examples. Then, we conducted a detailed performance analysis over mean running times
of functions rTableICC.2x2xK, rTable.2x2xK, rTable.RxC, and rTableICC.RxC. In the performance
analysis, we obtained very short running times for the functions rTable.2x2xK and rTable.RxC, and
reasonable running times for the functions rTableICC.2x2xK and rTableICC.RxC.

As a limitation, when there is ICCs between individuals and the number of rows or columns is
greater than 5, functions rTableICC.2x2xK and rTableICC.RxC may require long running times based
on the total number of individuals to be generated. The cause of this situation is the execution time
required by the compositions function of the package partitions. To overcome this limitation, we are
planning to decrease complexity of some inner loops of both rTableICC.2x2xK and rTableICC.RxC
functions in forthcoming versions of rTableICC.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Performance of the rTableICC.RxC function under considered sampling plans. Panel (a)
shows mean running time versus number of observations colored by number of rows for the multi-
nomial sampling plan. Panel (c) shows mean running time versus mean number of observations in
each cell colored by number of rows for the Poisson sampling plan. Panel (e) shows mean running
time versus fixed row counts colored by number of rows for the product multinomial sampling plan.
Panels (b), (d), and (f) represent mean running time versus number of clusters colored by number of
rows for the multinomial, Poisson, and product multinomial sampling plans, respectively.
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