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Variable Clustering in High-Dimensional
Linear Regression: The R Package clere
by Loïc Yengo, Julien Jacques, Christophe Biernacki and Mickael Canouil

Abstract Dimension reduction is one of the biggest challenges in high-dimensional regression models.
We recently introduced a new methodology based on variable clustering as a means to reduce dimen-
sionality. We present here the R package clere that implements some refinements of this methodology.
An overview of the package functionalities as well as examples to run an analysis are described.
Numerical experiments on real data were performed to illustrate the good predictive performance of
our parsimonious method compared to standard dimension reduction approaches.

Introduction

High dimensionality is increasingly ubiquitous in numerous scientific fields including genetics, eco-
nomics and physics. Reducing the dimensionality is a challenge that most statistical methodologies
must meet not only to remain interpretable but also to achieve reliable predictions. In linear regression
models, dimension reduction techniques often correspond to variable selection methods. Approaches
for variable selection are already implemented in publicly available, open-source software, e.g., the
well-known R packages glmnet (Friedman et al., 2010) and spikeslab (Ishwaran et al., 2013). The R
package glmnet implements the Elastic net methodology (Zou and Hastie, 2005), which is a general-
ization of both the LASSO (Tibshirani, 1996) and the ridge regression (RR; Hoerl and Kennard, 1970).
The R package spikeslab in turn, implements the Spike and Slab methodology (Ishwaran and Rao,
2005), which is a Bayesian approach for variable selection.

Dimension reduction cannot, however, be restricted to variable selection. Indeed, the field can
be extended to include approaches which aim at creating surrogate covariates that summarize the
information contained in initial covariates. Since the emblematic principal component regression
(PCR; Jolliffe, 1982), many other methods spread in the recent literature. As specific examples, we
may refer to the OSCAR methodology (Bondell and Reich, 2008), or the PACS methodology (Sharma
et al., 2013) which is a generalization of the latter approach. Those methods mainly proposed variable
clustering within a regression model as a way to reduce the dimensionality. Despite their theoretical
and practical appeal, implementations of those methods were often proposed only through MATLAB
(The MathWorks Inc., 2014) or R scripts, limiting thus the flexibility and the computational efficiency of
their use. The CLusterwise Effect REgression (CLERE) methodology (Yengo et al., 2014), was recently
introduced as a novel methodology for simultaneous variable clustering and regression. The CLERE
methodology is based on the assumption that each regression coefficient is an unobserved random
variable sampled from a mixture of Gaussian distributions with an arbitrary number g of components.
In addition, all components in the mixture are assumed to have different means (b1, . . . , bg) and equal
variances γ2.

In this paper, we propose two new features for the CLERE model. First, the stochastic EM (SEM)
algorithm is proposed as a more computationally efficient alternative to the Monte Carlo EM (MCEM)
algorithm previously introduced in Yengo et al. (2014). Secondly, the CLERE model is enhanced
with the possibility of constraining the first component to have its mean equal to 0, i.e. b1 = 0. This
enhancement is mainly aimed at facilitating the interpretation of the model. Indeed when b1 is set to
0, variables assigned to the cluster associated with b1 might be considered less relevant than other
variables provided γ2 is small enough. Those two new features were implemented in the R package
clere (Yengo and Canouil, 2015). The core of the package is a C++ program interfaced with R using the
R packages Rcpp (Eddelbuettel and François, 2011) and RcppEigen (Bates and Eddelbuettel, 2013).
The R package clere can be downloaded from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=clere.

The outline of the present paper is the following. In the next section the definition of the model
is recalled and the strategy to estimate the model parameters is explained. Afterwards, the main
functionalities of the R package clere are presented. Real data analyses are then provided, aiming at
illustrating the good predictive performances of CLERE, with noticeable parsimony ability, compared
to standard dimension reduction methods. Finally, perspectives and further potential improvements
of the package are discussed in the last section.
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Model definition and notation

Our model is defined by the following hierarchical relationships:
lyi ∼ N

(
β0 + ∑

p
j=1 β jxij, σ2

)
,

β j|zj ∼ N
(

∑
g
k=1 bkzjk, γ2

)
,

zj =
(

zj1, . . . , zjg

)
∼M

(
1, π1, . . . , πg

)
,

(1)

where N (µ, σ2) is the normal distribution with mean µ and variance σ2,M
(
1, π1, . . . , πg

)
the one-

order multinomial distribution with parameters π =
(
π1, . . . , πg

)
, where, ∀ k = 1, . . . , g πk > 0 and

∑
g
k=1 πk = 1, and β0 is a constant term. For an individual i = 1, . . . , n, yi is the response and xij

is an observed value for the j-th covariate. β j is the regression coefficient associated with the j-th
covariate (j = 1, . . . , p), which is assumed to follow a mixture of g Gaussians. The variable zj indicates
from which mixture component β j is drawn (zjk = 1 if β j comes from component k of the mixture,
zjk = 0 otherwise). Let’s note that model (1) can be considered as a variable selection-like model by
constraining the model parameter b1 to be equal to 0. Indeed, assuming that one of the components is
centered in zero means that a cluster of regression coefficients have null expectation, and thus that the
corresponding variables are not significant for explaining the response variable. This functionality is
available in the package.

Let β =
(

β1, . . . , βp
)
, y = (y1, . . . , yn)′, X = (xij), Z = (zjk), b = (b1, . . . , bg)′ and π =

(π1, . . . , πg)′. Moreover, log p(y|X; θ) denotes the log-likelihood of model (1) assessed for the parame-
ter vector θ =

(
β0, b, π, σ2, γ2). Model (1) can be interpreted as a Bayesian approach. However, to be

fully Bayesian a prior distribution for parameter θ would have been necessary. Instead, we proposed to
estimate θ by maximizing the (marginal) log-likelihood, log p(y|X; θ). This partially Bayesian approach
is referred to as Empirical Bayes (EB; Casella, 1985). Let Z be the set of p× g-matrices partitioning p
covariates into g groups. Those matrices are defined as

Z =
(

zjk

)
1≤j≤p,1≤k≤g

∈ Z ⇔ ∀j = 1, . . . , p

{
∃! k such as zjk = 1
For all k′ 6= k zjk′ = 0.

The log-likelihood log p(y|X; θ) is defined as

log p(y|X; θ) = log

[
∑

Z∈Z

∫
Rp

p(y, β, Z|X; θ)dβ

]
.

Since it requires integrating over Z with cardinality gp, evaluating the likelihood becomes rapidly
computationally unaffordable.

Nonetheless, maximum likelihood estimation is still achievable using the expectation maximization
(EM) algorithm (Dempster et al., 1977). The latter algorithm is an iterative method which starts with
an initial estimate of the parameter and updates this estimate until convergence. Each iteration of the
algorithm consists of two steps, denoted as the E and the M steps. At each iteration d of the algorithm,
the E step consists in calculating the expectation of the log-likelihood of the complete data (observed
+ unobserved) with respect to p(β, Z|y, X; θ(d)), the conditional distribution of the unobserved data
given the observed data, and the value of the parameter at the current iteration, θ(d). This expectation,
often denoted as Q(θ|θ(d)) is then maximized with respect to θ at the M step.

In model (1), the E step is analytically intractable. A broad literature devoted to intractable E steps
recommends the use of a stochastic approximation of Q(θ|θ(d)) through Monte Carlo (MC) simulations
(Wei and Tanner, 1990; Levine and Casella, 2001). This approach is referred to as the MCEM algorithm.
Besides, mean-field-type approximations are also proposed (Govaert and Nadif, 2008; Mariadassou
et al., 2010). Despite their computational appeal, the latter approximations do not generally ensure
convergence to the maximum likelihood (Gunawardana and Byrne, 2005). Alternatively, the SEM
algorithm (Celeux et al., 1996) was introduced as a stochastic version of the EM algorithm. In this
algorithm, the E step is replaced with a simulation step (S step) that consists in generating a complete
sample by simulating the unobserved data using p(β, Z|y, X; θ(d)) providing thus a sample (β(d), Z(d)).
Note that the Monte Carlo algorithm we use to perform this simulation is the Gibbs sampler. After
the S step follows the M step which consists in maximizing p(β(d), Z(d)|y, X; θ) with respect to θ.

Alternating those two steps generates a sequence
(

θ(d)
)

, which is a Markov chain whose stationary
distribution (when it exists) concentrates around the local maxima of the likelihood.
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Estimation and model selection

In this section, two algorithms for model inference are presented: the Monte-Carlo Expectation
Maximization (MCEM) algorithm and the Stochastic Expectation Maximization (SEM) algorithm.
The section starts with the initialization strategy common to both algorithms and continues with the
detailed description of each algorithm. Then, model selection (for choosing g) and variable selection
are discussed.

Initialization

The two algorithms presented in this section are initialized using a primary estimate β j
(0) of each

β j. The latter can be chosen either at random, or obtained from univariate regression coefficients or
penalized approaches like LASSO and ridge regression. For large SEM or MCEM chains, initialization
is not a critical issue. The choice of the initialization strategy is therefore made to speed up the
convergence of the chains. A Gaussian mixture model with g component(s) is then fitted using

β(0) =
(

β
(0)
1 , . . . , β

(0)
p

)
as observed data to produce starting values b(0), π(0) and γ2(0) respectively

for parameters b, π and γ2. Using maximum a posteriori (MAP) clustering, an initial partition

Z(0) =
(

z(0)jk

)
∈ Z is obtained as

∀j ∈ {1, . . . , p}, z(0)jk =

1 if k = arg mink′∈{1,...,g}

(
β j

(0) − b(0)k′

)2
,

0 otherwise.

β0 and σ2 are initialized using β(0) as follows:

β
(0)
0 =

1
n

n

∑
i=1

yi −
p

∑
j=1

β
(0)
j xij

 and σ2(0) =
1
n

n

∑
i=1

yi − β
(0)
0 −

p

∑
j=1

β
(0)
j xij

2

.

MCEM algorithm

The stochastic approximation of the E step

Suppose at iteration d of the algorithm that we have
{(

β(1,d), Z(1,d)
)

, . . . ,
(

β(M,d), Z(M,d)
)}

, M sam-

ples from p
(

β, Z|y, X; θ(d)
)

. Then the MC approximation of the E step can be written as

Q
(

θ|θ(d)
)
= E

[
log p(y, β, Z|X; θ(d))|y, X; θ(d)

]
≈ 1

M

M

∑
m=1

log p(y, β(m,d), Z(m,d)|X; θ(d)).

Sampling from p
(

β, Z|y, X; θ(d)
)

is not straightforward. However, we can use a Gibbs sampling

scheme to simulate unobserved data, taking advantage of p
(

β|Z, y, X; θ(d)
)

and p
(

Z|β, y, X; θ(d)
)

from which it is easy to simulate. These distributions, i.e., Gaussian and multinomial, respectively, are
described below in Equations (2) and (3).

β|Z, y, X; θ(d) ∼ N
(

µ(d), Σ(d)
)

,

µ(d) =

[
X′X + σ2(d)

γ2(d)
Ip

]−1
X ′
(

y− β
(d)
0 1p

)
+ σ2(d)

γ2(d)

[
X′X + σ2(d)

γ2(d)
Ip

]−1
Zb(d),

Σ(d) = σ2(d)
[

X′X + σ2(d)

γ2(d)
Ip

]−1
,

(2)

and, noting that p
(

Z|β, y, X; θ(d)
)

does not depend on X nor y,

p
(

zjk = 1|β; θ(d)
)

∝ π
(d)
k exp

−
(

β j − b(d)k

)2

2γ2(d)

 . (3)
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In Equation (2), Ip and 1p stand for the identity matrix with dimension p and the vector of Rp where

all elements are equal to 1. To efficiently sample from p
(

β|Z, y, X; θ(d)
)

a preliminary singular vector
decomposition of matrix X is necessary. Once this decomposition is performed the overall complexity
of the approximate E step is O

[
M(p2 + pg)

]
.

The M step

Using the M draws obtained by Gibbs sampling at iteration d, the M step is straightforward as detailed
in Equations (4) to (8). The overall computational complexity of that step is O (Mpg).

π
(d+1)
k =

1
Mp

M

∑
m=1

p

∑
j=1

z(m,d)
jk , (4)

b(d+1)
k =

1

Mpπ
(d+1)
k

M

∑
m=1

p

∑
j=1

z(m,d)
jk β

(m,d)
j , (5)

γ2(d+1)
=

1
Mp

M

∑
m=1

p

∑
j=1

g

∑
k=1

z(m,d)
jk

(
β
(m,d)
j − b(d+1)

k

)2
, (6)

β
(d+1)
0 =

1
n

n

∑
i=1

yi −
p

∑
j=1

(
1
M

M

∑
m=1

β
(m,d)
j

)
xij

, (7)

σ2(d+1)
=

1
nM

M

∑
m=1

n

∑
i=1

yi − β
(d+1)
0 −

p

∑
j=1

β
(m,d)
j xij

2

. (8)

SEM algorithm

In most situations, the SEM algorithm can be considered as a special case of the MCEM algorithm
(Celeux et al., 1996), obtained by setting M = 1. In model (1), such a direct derivation leads to an
algorithm where the computational complexity remains quadratic with respect to p. To reduce that
complexity, we propose a SEM algorithm based on the integrated complete data likelihood p(y, Z|X; θ)
rather than p(y, β, Z|X; θ). A closed form of p(y, Z|X; θ) is available and given in the following.

Closed form of the integrated complete data likelihood

Let the SVD decomposition of matrix X be USV ′, where U and V are respectively n× n and p× p
orthogonal matrices, and S is a n× p rectangular diagonal matrix where the diagonal terms are the
eigenvalues

(
λ2

1, . . . , λ2
n
)

of matrix XX ′. We now define Xu = U ′X and yu = U ′y. Let M be the
n× (g + 1) matrix where the first column is made of 1’s and where the additional columns are those
of matrix XuZ. Let also t = (β0, b) ∈ R(g+1) and R be a n× n diagonal matrix where the i-th diagonal
term equals σ2 + γ2λ2

i . With these notations we can express the complete data likelihood integrated
over β as

log p (y, Z|X; θ) = −n
2

log (2π)− 1
2

n

∑
i=1

log
(

σ2 + γ2λ2
i

)
− 1

2
(yu −Mt)′ R−1 (yu −Mt)

+
p

∑
j=1

g

∑
k=1

zjk log πk. (9)

Simulation step

To sample from p (Z|y, X; θ) we use a Gibbs sampling strategy based on the conditional distributions

p
(

zj|y, Z−j, X; θ
)

, Z−j denoting the set of cluster membership indicators for all covariates but the j-th.

Let w−j =
(

w−j
1 , . . . , w−j

n

)′
, where w−j

i = yu
i − β0 −∑l 6=j ∑

g
k=1 zlkxu

ilbk. The conditional distribution
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p(zjk = 1|Z−j, y, X; θ) can be written as

p(zjk = 1|Z−j, y, X; θ) ∝ πk exp

[
−

b2
k

2

(
xu

j

)′
R−1xu

j + bk

(
w−j

)′
R−1xu

j

]
, (10)

where xu
j is the j-th column of Xu. In the classical SEM algorithm, convergence to p (Z|y, X; θ) should

be reached before updating θ. However, a valid inference can still be ensured in settings when θ
is updated only after one or few Gibbs iterations. These approaches are referred to as SEM-Gibbs
algorithm (Biernacki and Jacques, 2013). The overall computational complexity of the simulation step
is O (npg), i.e., it is linear in p and not quadratic any more, in contrast to the previous MCEM.

To improve the mixing of the generated Markov chain, we start the simulation step at each
iteration by creating a random permutation of {1, . . . , p}. Then, according to the order defined by that
permutation, we update each zjk using p(zjk = 1|Z−j, y, X; θ).

Maximization step

log p (y, Z|X; θ) corresponds to the marginal log-likelihood of a linear mixed model (Searle et al.,
1992), which can be written as

yu = Mt + λv + ε (11)

where v is an unobserved random vector such as v ∼ N
(
0, γ2In

)
, ε ∼ N

(
0, σ2In

)
and λ =

diag (λ1, . . . , λn). The estimation of the parameters of model (11) can be performed using the EM
algorithm, as in Searle et al. (1992). We adapt below the EM equations defined in Searle et al. (1992),

using our notations. At iteration s of the internal EM algorithm, we define R(s) = σ2(s) In + γ2(s)λ′λ.
The detailed internal E and M steps are given below.

Internal E step

v(s)σ = E

[(
yu −Mt(s) − λv

)′ (
yu −Mt(s) − λv

)
|yu
]

= σ4(s)
(

yu −Mt(s)
)′

R(s)R(s)
(

yu −Mt(s)
)
+ n× σ2(s) − σ4(s)

n

∑
i=1

1

σ2(s) + γ2(s)λ2
i

.

v(s)γ = E
[
v′v|yu]

= γ4(s)
(

yu −Mt(s)
)′

R(s)λ′λR(s)
(

yu −Mt(s)
)
+ n× γ2(s) − γ4(s)

n

∑
i=1

λ2
i

σ2(s) + γ2(s)λ2
i

.

h(s) = E [yu − λv|yu] = Mt(s) + σ2(s){R(s)}−1
(

yu −Mt(s)
)

.

Internal M step

σ2(s+1)
= v(s)σ /n,

γ2(s+1)
= v(s)γ /n,

t(s+1) =
[
M ′M

]−1 M ′h(s).

Given a non-negative user-specified threshold δ and a maximum number Nmax of iterations, Internal E
and M steps are alternated until

| log p
(

y, Z|X; θ(s)
)
− log p

(
y, Z|X; θ(s+1)

)
| < δ or s = Nmax.

The computational complexity of the M step is O
(

g3 + ngNmax
)
, thus not involving p.

Attracting and absorbing states

• Absorbing states. The SEM algorithm described above defines a Markov chain where the sta-
tionary distribution is concentrated around values of θ corresponding to local maxima of the
likelihood function. This chain has absorbing states in values of θ such as σ2 = 0 or γ2 = 0. In
fact, the internal M step reveals that updated values for σ2 and γ2 are proportional to previous
values of those parameters.
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• Attracting states. We empirically observed that attraction around σ2 = 0 was quite frequent
when using the MCEM algorithm, especially when p > n and when the number M of draws
was small. We therefore advocate to use at least 5 draws (M ≥ 5 using option nsamp in the
function fitClere).

Model selection

Once the MLE θ̂ is calculated (using one of the algorithms), the maximum log-likelihood and the

posterior clustering matrix E
[

Z|y, X; θ̂
]

are approximated using MC simulations based on Equations

(9) and (10). The approximate maximum log-likelihood l̂, is then utilized to calculate AIC (Akaike,
1974) and BIC (Schwarz, 1978) for model selection. In model (1), those criteria can be written as

BIC = −2l̂ + 2(g + 1) log(n),

AIC = −2l̂ + 4(g + 1).

An additional criterion for model selection, namely the ICL criterion (Biernacki et al., 2000) is also
implemented in the R package clere. The latter criterion can be written as

ICL = BIC−
p

∑
j=1

g

∑
k=1

πjk log(πjk), (12)

where πjk = E
[
zjk|y, X; θ̂

]
.

Interpretation of the special group of variables associated with b1 = 0

The constraint b1 = 0 is mainly driven by an interpretation purpose. The meaning of this group
depends on both the total number g of groups and the estimated value of parameter γ2. In fact, when
g > 1 and γ2 is small, covariates assigned to that group are likely less relevant to explain the response.
Determining whether γ2 is small enough is not straightforward. However, when this property holds,
we may expect the groups of covariates to be separated. This would for example translate in the
posterior probabilities πj1 being larger than 0.7. In addition to the benefit in interpretation, the
constraint b1 = 0, reduces the number of parameters to be estimated and consequently the variance of
the predictions performed using the model.

Package functionalities

The R package clere mainly implements a function for parameter estimation and model selection: the
function fitClere(). Four additional methods are also implemented in the package: for graphical
representation, plot(); summarizing the results, summary(); for getting the predicted clusters of
variables, clusters(); and for making predictions from new design matrices, predict(). Examples of
calls to the functions presented in this section are given in the next section.

The main function fitClere()

The main function fitClere() has only three mandatory arguments: the vector of response y (size n),
the matrix of explanatory variables x (size n× p) and the number g of groups of regression coefficients
which is expected. The optional parameter analysis, when it takes the value "aic", "bic" or "icl",
allows to test all the possible number of groups between 1 and g. The choice between the two
proposed algorithms is possible thanks to the parameter algorithm, but we encourage the users to use
the default value, the SEM algorithm, which generally over-performs the MCEM algorithm (see the
first experiment of the next section).

Several other parameters allow to tune the different numbers of iterations of the estimation
algorithm. In general, the higher are these parameter values, the better is the quality of the estimation
but the heavier is also the computing time. What we advice is to use the default values, and to
graphically check the quality of the estimation with plots as in Figure 1: If the values of the model
parameters are quite stable for a sufficient large part of the iterations, this indicates that the results are
ok. If the stability is not reached sufficiently early before the end of the iterations, a higher number of
iterations should be chosen.

Finally, among the remaining parameters (note that the complete list can be obtained with
help("fitClere")), two are especially important: parallel allows to run parallel computations
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Figure 1: Values of the model parameters in view of SEM algorithm iterations. The vertical gray
line in each of the four plots represents the number nBurn of iterations discarded before calculating
maximum likelihood estimates.

(if compatible with the user’s computer) and sparse allows to impose that one of the regression
parameters is equal to 0 and thus to introduce a cluster of not significant explanatory variables.

Methods summary(), plot(), clusters() and predict()

The summary() method for an object returned by fitClere() prints an overview of the estimated
parameters and returns the estimated likelihood and information based model selection criteria (AIC,
BIC and ICL). The corresponding plot() method produces graphs such as ones presented in Figure 1.

The clusters() method takes one argument of class “Clere” as returned by fitClere() and a
threshold argument. This function assigns each variable to the group where associated conditional
probability of membership is larger than the given threshold. If conditional probabilities of mem-
bership are larger than the specified threshold for more than one group, then the group having the
largest probability is returned and a warning is printed. If, moreover, there are several ex aequo on
that largest probability, then the group with the smallest index is returned. When threshold = NULL,
the maximum a posteriori (MAP) strategy is used to infer the clusters.

The predict() method has two arguments: a “Clere” object and a design matrix Xnew. Using that
new design matrix, the predict() method returns an approximation of E

[
Xnewβ|y, X; θ̂

]
.

Numerical experiments

This section presents two sets of numerical experiments. The first set of experiments aims at comparing
the MCEM and SEM algorithms in terms of computational time and estimation or prediction accuracy.
The second set of experiments is aimed at comparing CLERE to standard dimension reduction
techniques. The latter comparison is performed on both simulated and real data.
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SEM algorithm versus MCEM algorithm

Description of the simulation study

In this section, a comparison between the SEM algorithm and the MCEM algorithm is performed. This
comparison is performed using the four following performance indicators:

1. Computational time (CT) to run a pre-defined number of SEM/MCEM iterations. This number
was set to 2,000 in this simulation study.

2. Mean squared estimation error (MSEE) defined as

MSEEa = E
[
(θ− θ̂a)

′(θ− θ̂a)
]

,

where a ∈ {"SEM","MCEM"} and θ̂a is an estimated value for parameter θ obtained with algorithm
a. Since θ is only known up to a permutation of the group labels, we chose the permutation
leading to the smallest MSEE value.

3. Mean squared prediction error (MSPE) defined as

MSPEa = E
[
(yv− Xvθ̂a)

′(yv− Xvθ̂a)
]

,

where yv and Xv are respectively a vector of responses and a design matrix from a validation
data set.

4. Maximum log-likelihood (ML) reached. This quantity was approximated using 1,000 samples
from p(Z|y; θ̂).

Three versions of the MCEM algorithm were proposed for comparison with the SEM algorithm,
depending on the number M (or nsamp) of Gibbs iterations used to approximate the E step. That
number was varied between 5, 25 and 125. We chose these iterations numbers so as to cover different
situations, from a situation in which the number of iterations is too small to a situation in which that
number seems sufficient to expect having reached convergence of the simulated Markov chain. Those
versions were respectively denoted MCEM5, MCEM25 and MCEM125. The comparison was performed
using 200 simulated data sets. In order to consider high-dimensional situations with sizes allowing
to reproduce multiple simulations in a reasonable time, each training data set consisted of n = 25
individuals and p = 50 variables. Validation data sets used to calculate MSPE consisted of 1,000
individuals each. All covariates were simulated independently according to the standard Gaussian
distribution:

∀(i, j) xij ∼ N (0, 1).

Both training and validation data sets were simulated according to model (1) using β0 = 0, b =
(0, 3, 15)′, π = (0.64, 0.20, 0.16)′, σ2 = 1 and γ2 = 0. This is equivalent to simulate data according to
the standard linear regression model defined by:

yi ∼ N

 32

∑
j=1

0× xij +
42

∑
j=33

3× xij +
50

∑
j=43

15× xij, 1

 .

All algorithms were run using 10 different random starting points. Estimates yielding the largest
likelihood were then used for the comparison.

Results of the comparison

Table 1 summarizes the results of the comparison between the algorithms. The MCEM5 algorithm
was 1.3 times faster than the SEM algorithm however the latter algorithm poorly performed regarding
all other performance criteria (estimation quality, prediction error, likelihood maximization). This
observation illustrates the importance of setting a large number M of draws to improve the estimation.
Indeed, when increasing this number to 25 or 125, we observed an improvement in the estimation
accuracy but no noticeable improvement in the likelihood. In turn, the SEM algorithm was quite
efficient compared to the MCEM25 and MCEM125 algorithms. This algorithm not only ran faster
(between 3 and 13-fold faster than MCEM25 and MCEM125 – see Table 1), but also reached predictive
performances close to the oracle (i.e., using the true parameter). These good performances are mainly
explained by the fact that the SEM algorithm most of the time (66.5% of the time) reached a better
likelihood than the other algorithms.

The results of this simulation study were made available as an internal data set named algoComp
in the R package clere. More details can be obtained using the command help("algoComp").
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% of times Median
Performance indicators Algorithms the algorithm was best (Std. Err.)

CT (seconds) SEM 0 2.5 ( 0.053 )
MCEM5 100 1.9 ( 0.016 )
MCEM25 0 7.1 ( 0.027 )
MCEM125 0 32.8 ( 0.121 )

MSEE SEM 58 0.31 ( 10.4 )
MCEM5 12 20.14 ( 2843.3 )
MCEM25 16.5 8.86 ( 3107.5 )
MCEM125 13.5 4.02 ( 5664.2 )

MSPE SEM 51.5 1.3 ( 46.1 )
MCEM5 12 75.7 ( 64.3 )
MCEM25 15.5 58.7 ( 55.2 )
MCEM125 21 51.6 ( 51.1 )
True parameter — 1.1 ( 0.013 )

ML SEM 66.5 −79.3 ( 1.2 )
MCEM5 11.5 −110.7 ( 2.0 )
MCEM25 14.5 −111.6 ( 1.9 )
MCEM125 7.5 −116.2 ( 1.7 )
True parameter — −77.6 ( 0.34 )

Table 1: Performance indicators used to compare SEM and MCEM algorithms. Computational Time
(CT) was measured on a Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz processor. The best algorithm is
defined as the one that either reached the largest log-likelihood (ML) or the lowest CT, Mean Squared
Prediction Error (MSPE) and Mean Squared Estimation Error (MSEE).

Comparison with other methods

Description of the methods

In this section, we compare our model to standard dimension reduction approaches in terms of MSPE.
Although a more detailed comparison was suggested in Yengo et al. (2014), we propose here a quick
illustration of the relative predictive performance of our model. The comparison is achieved using
data simulated according to the scenario described above in Section SEM algorithm versus MCEM
algorithm. The methods selected for comparison are the Ridge regression (Hoerl and Kennard, 1970),
the Elastic net (Zou and Hastie, 2005), the LASSO (Tibshirani, 1996), PACS (Sharma et al., 2013),
the method of Park and colleagues (Park et al., 2007, subsequently denoted AVG) and the Spike
and Slab model (Ishwaran and Rao, 2005, subsequently denoted SS). The first three methods are
implemented in the freely available R package glmnet. With the latter package, the tuning parameter
lambda was selected using the function cv.glm (with 5 folds) aiming at minimizing the mean squared
error (option type = "mse"). In particular for the Elastic net, the second tuning parameter alpha
(measuring the amount of mixture between the L1 and L2 penalty) was jointly selected with lambda
to minimize the mean squared error. The R package glmnet proposes a procedure for automatically
selecting values for lambda. We therefore used this default procedure while we selected alpha among
{0, 0.1, 0.2, . . . , 0.9, 1}. The PACS methodology proposes to estimate the regression coefficients by
solving a penalized least squares problem. It imposes a constraint on β that is a weighted combination
of the L1 norm and the pairwise L∞ norm. Upper-bounding the pairwise L∞ norm enforces the
covariates to have close coefficients. When the constraint is strong enough, closeness translates into
equality achieving thus a grouping property. For PACS, no software was available. Only an R script
was released on Bondell’s web page1. Since this R script was running very slowly, we decided to
reimplement it in C++ and observed a 30-fold speed-up of computational time. Similarly to Bondell’s
R script, our implementation uses two parameters lambda and betawt. Our reimplementation of
Bondell’s script was included in the R package clere in the function fitPacs(). In Sharma et al. (2013),
the authors suggest assigning betawt with the coefficients obtained from a ridge regression model

1http://www4.stat.ncsu.edu/~bondell/Software/PACS/PACS.R.r
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after the tuning parameter was selected using AIC. In this simulation study we used the same strategy;
however the ridge parameter was selected via 5-fold cross validation. 5-fold CV was preferred to AIC
since selecting the ridge parameter using AIC always led to estimated coefficients equal to zero. Once
betawt was selected, lambda was chosen via 5-fold cross validation among the following values: 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200 and 500. All other default parameters of their script
were unchanged. The AVG method is a two-step approach. The first step uses hierarchical clustering
of covariates to create surrogate covariates by averaging the variables within each group. Those new
predictors are afterwards included in a linear regression model, replacing the primary variables. A
variable selection algorithm is then applied to select the most predictive groups of covariates. To
implement this method, we followed the algorithm described in Park et al. (2007) and programmed
it in R. The Spike and Slab model is a Bayesian approach for variable selection. It is based on the
assumption that the regression coefficients are distributed according to a mixture of two centered
Gaussian distributions with different variances. One component of the mixture (the spike) is chosen
to have a small variance, while the other component (the slab) is allowed to have a large variance.
Variables assigned to the spike are dropped from the model. We used the R package spikeslab to run
the Spike and Slab models. Especially, we used the function spikeslab from that package to detect
influential variables. The number of iterations used to run the function spikeslab was 2,000 (1,000
discarded).

When running fitClere(), the number nItEM of SEM iterations was set to 2,000. The number g of
groups for CLERE was chosen between 1 and 5 using AIC (option analysis = "aic"). Two versions
of CLERE were considered: the one with all parameters estimated and the one with b1 set to 0. The
latter approach is subsequently denoted CLERE0 (option sparse = TRUE).

Results of the comparison

Figure 2 summarizes the comparison between the methods. In this simulated scenario, CLERE
outperformed the other methods in terms of prediction error. These good performances were improved
when parameter b1 was set to 0. CLERE was also the most parsimonious approach with an averaged
number of estimated parameters equal to 7.7 (6.9 when b1 = 0). The second best approach was PACS
which also led to parsimonious models. The superiority of such methods could be expected since in the
simulation model the regression coefficients are gathered in three groups. Overall variable selection
approaches yielded the largest prediction error in this simulation. CLERE, PACS and Spike and Slab
had the largest computational times (CT). For CLERE and PACS this loss in CT was compensated by a
a strong improvement in prediction error as explained above, while Spike and Slab yielded the worst
prediction error in addition to being the slowest approach in this example.

The results of this simulation study were made available as an internal data set in the R package
clere. The object is called numExpSimData and more details can be obtained using the command
help("numExpSimData").

Real data sets analysis

Description of the data sets

We used in this section the real data sets Prostate and eyedata from the R packages lasso2 (Lokhorst
et al., 2014) and flare (Li et al., 2014) respectively. The Prostate data set comes from a study that
examined the correlation between the level of prostate specific antigen and a number of clinical
measures in n = 97 men who were about to receive a radical prostatectomy. This data set is a
benchmark data set used in multiple publications about high-dimensional regression model, including
Tibshirani (1996); Hastie et al. (2001), and was chosen here in order to illustrate the performance of
CLERE in comparison to the competing methods. We used the prostate specific antigen (variable lpsa)
as response variable and the p = 8 other measurements as covariates.

The eyedata data set is extracted from the published study of Scheetz et al. (2006). This data
set consists of gene expression levels measured at p = 200 probes in n = 120 rats. The response
variable utilized was the expression of the TRIM32 gene which is a biomarker of the Bardet-Bidel
Syndrome (BBS). We chose this data set to illustrate the performances of CLERE on a (manageable)
high-dimensional problem which is the actual context for which this method was developped (Yengo
et al., 2014).

Those two data sets were utilized to compare CLERE to the same methods used in the previous
section where the simulation study was presented. All methods were compared in terms of out-of-
sample prediction error estimated using 5-fold cross validation (CV). Those CV statistics were then
averaged and compared across the methods in Table 2.
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Mean Squared Prediction Error

1 5 10 50 100 500

CLERE0
df: 6.9 (0.4)

CLERE
df: 7.7 (0.7)

PACS
df: 22.3 (8.2)

LASSO
df: 15.4 (7.1)

AVG
df: 16.9 (5.8)

Ridge
df: 50 (0)

Elastic net
df: 50 (0)

Spike and Slab
df: 2.1 (1.8)

Computational time

2.8s (0.7)
3.2s (0.9)
5.1s (1.3)
0.1s (0.02)
0.8s (0.14)
0.1s (0.01)
0.1s (0.01)
4.3s (0.22)

Figure 2: Comparison between CLERE and some standard dimension reduction approaches. The
number of estimated parameters (df: +/− standard error) is given in the right along with the name of
the method utilized. The average computational time with its corresponding standard error (given in
parenthesis) is also provided for each situation.

Running the analysis

Before presenting the results of the comparison between CLERE and its competitors, we illustrate the
commands to run the analysis of the Prostate data set. The data set is loaded by typing:

R> data("Prostate", package = "lasso2")
R> y <- Prostate[, "lpsa"]
R> x <- as.matrix(Prostate[, -which(colnames(Prostate) == "lpsa")])

Possible training (xt and yt) and validation (xv and yv) sets are generated as follows:

R> itraining <- 1:(0.8*nrow(x))
R> xt <- x[ itraining,]; yt <- y[ itraining]
R> xv <- x[-itraining,]; yv <- y[-itraining]

The fitClere() function is run using the AIC to select the number of groups between 1 and 5. To
lessen the impact of local minima in the model selection, 5 random starting points are used. This can
be implemented by:

R> Seed <- 1234
R> mod <- fitClere(y = yt, x = xt, g = 5, analysis = "aic", parallel = TRUE,
+ nstart = 5, sparse = TRUE, nItEM = 2000, nBurn = 1000,
+ nItMC = 10, dp = 5, nsamp = 1000, seed = Seed)
R> summary(mod)

-------------------------------
| CLERE | Yengo et al. (2013) |
-------------------------------

Model object 2 groups of variables ( Selected using AIC criterion )
---
Estimated parameters using SEM algorithm are
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intercept = -0.1339
b = 0.0000 0.4722
pi = 0.7153 0.2848
sigma2 = 0.395
gamma2 = 4.065e-08

---
Log-likelihood = -78.31
Entropy = 0.5464
AIC = 168.63
BIC = 182.69
ICL = 183.23

R> plot(mod)

Running the command plot(mod) generates the plot given in Figure 1. We can also access the
cluster memberships by running the command clusters(). For example, running the command
clusters(mod,threshold = 0.7) yields

R> clusters(mod, thresold = 0.7)
lcavol lweight age lbph svi lcp gleason pgg45

2 2 1 1 1 1 1 1

In the example above 2 variables, being the cancer volume (lcavol) and the prostate weight (lweight),
were assigned to group 2 (b2 = 0.4737). The other 6 variables were assigned to group 1 (b1 = 0).
Posterior probabilities of membership are available through the slot P in the object of class “Clere”.

R> mod@P
Group 1 Group 2

lcavol 0.000 1.000
lweight 0.000 1.000
age 1.000 0.000
lbph 1.000 0.000
svi 0.764 0.236
lcp 1.000 0.000
gleason 1.000 0.000
pgg45 1.000 0.000

The covariates were respectively assigned to their group with a probability larger than 0.7. Moreover,
given that parameter γ2 had a very small value (γ̂2 = 4.065× 10−8), we can argue that cancer volume
and prostate weight are the only relevant explanatory covariates. To assess the prediction error
associated with the model we can run the command predict() as follows:

R> error <- mean((yv - predict(mod, xv))^2)
R> error
[1] 1.543122

Results of the analysis

Table 2 summarizes the prediction errors and the number of parameters obtained for all the methods.
CLERE0 had the lowest prediction error in the analysis of the Prostate data set and the second best
performance for the eyedata data set. The AVG method was also very competitive compared to the
variable selection approaches stressing thus the relevance of creating groups of variables to reduce the
dimensionality (especially in the eyedata data set). It is worth noting that in both data sets, imposing
the constraint b1 = 0 improved the predictive performance of CLERE.

In the Prostate data set, CLERE robustly identified two groups of variables representing influential
(b2 > 0) and not relevant variables (b1 = 0). In the eyedata data set in turn, AIC led to selecting only
one group of variables. However, this did not lessen the predictive performance of the model since
CLERE0 was second best after AVG, while needing significantly less parameters. PACS performed
badly in both data sets. The Elastic net showed good predictive performances compared to the variable
selection methods like LASSO or the Spike and Slab model. Ridge regression and Elastic net had
comparable results in both data sets. In line with the results of the simulation study, we observed that
despite a larger computational time (CT), CLERE and CLERE0 had a reduced mean squared error
compared to the fastest methods. However, this improvement was less substantial than observed in
the simulation study given the differences in CT. This increased CT may be explained by the fact that
no simple stopping rule is proposed when fitting CLERE. We may therefore contemplate that a smaller
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100×Averaged CV statistic Number of parameters CT (seconds)
(Std. Error) (Std. Error) (Std. Error)

Prostate data set

LASSO 90.2 ( 29 ) 5.6 ( 0.7 ) 0.064 ( 0.007 )
RIDGE 86.8 ( 24 ) 8.0 ( 0 ) 0.065 ( 0.002 )
Elastic net 90.3 ( 24 ) 8.0 ( 0 ) 0.065 ( 0.002 )
STEP 442.4 ( 137 ) 8.0 ( 0 ) 0.004 ( 0.001 )
CLERE 82.4 ( 25 ) 6.0 ( 0 ) 1.1 ( 0.1 )
CLERE0 74.5 ( 26 ) 5.0 ( 0 ) 2.7 ( 0.8 )
Spike and Slab 85.6 ( 26 ) 5.6 ( 0.7 ) 4.2 ( 0.03 )
AVG 90.2 ( 27 ) 6.2 ( 0.4 ) 0.44 ( 0.06 )
PACS 90.6 ( 34 ) 5.6 ( 0.4 ) 0.053 ( 0.002 )

eyedata

LASSO 0.73 ( 0.1 ) 21.2 ( 2 ) 0.18 ( 0.01 )
RIDGE 0.74 ( 0.1 ) 200.0 ( 0 ) 0.24 ( 0.004 )
Elastic net 0.74 ( 0.1 ) 200.0 ( 0 ) 0.23 ( 0.003 )
STEP 1142.6 ( 736 ) 95.0 ( 0 ) 0.083 ( 0.002 )
CLERE 0.73 ( 0.1 ) 4.0 ( 0 ) 21.5 ( 0.2 )
CLERE0 0.72 ( 0.1 ) 3.0 ( 0 ) 21.1 ( 0.1 )
Spike and Slab 0.81 ( 0.2 ) 12.4 ( 0.9 ) 10.3 ( 0.1 )
AVG 0.70 ( 0.04 ) 15.6 ( 2 ) 10.6 ( 0.4 )
PACS 2.0 ( 0.9 ) 3.0 ( 0.3 ) 108.9 ( 28 )

Table 2: Real data analysis. Out-of-sample prediction error (averaged CV statistic) was estimated
using 100-folds cross validation. The number of parameters reported for CLERE/CLERE0 was selected
using AIC. CT stands for the average Computational Time.

number of SEM iterations could have been used to yield a similar prediction error. Indeed, when
looking at Figure 1, we see that convergence was achieved almost from the first 10 iterations. Still,
the observed CT for CLERE being around 22s for the eyedata data set and around 3s for the Prostate
data set remains affordable in these examples.

The results of this analysis on real data were made available as an internal data set named
numExpRealData in the R package clere. Using the command help("numExpRealData") more details
can be obtained.

Conclusions

We presented in this paper the R package clere. This package implements two efficient algorithms
for fitting the CLusterwise Effect REgression model: the MCEM and the SEM algorithms. The
MCEM algorithm is to be preferred when p < n; the SEM algorithm is more efficient for high-
dimensional data sets (n < p). The good performance of SEM over MCEM could have been expected
regarding the computational complexities of the two algorithms that are O

(
npg + g3 + Nmaxng

)
and

O
(

M(p2 + pg)
)

respectively. In fact, as long as p > n, the SEM algorithm has a lower complexity.
However, the computational time to run our SEM algorithm is more variable compared to MCEM as
its M step does not have a closed form. We finally advocate the use of the MCEM algorithm only when
p � n. Another important feature for model interpretation is proposed by constraining the model
parameter b1 to equal 0, which leads to variable selection. Such a constraint may also lead to a reduced
prediction error. We illustrated on a real data set, how to run an analysis, based on a detailed R
script. Although our numerical experiments showed that the CLERE method tended to be slower than
variable selection methods, it still provided better or competitive predictive performance. In addition,
the CLERE model was often more parsimonious than other models and was easily interpretable since
groups of regression coefficients/variables could be summarized using a single parameter.

Our model can easily be extended to the analysis of binary responses. This extension will be made
available in a forthcoming version of the package. Another direction for future research will be to
develop an efficient stopping rule for the proposed SEM algorithm, specific to our context. Such a
criterion is expected to improve the computational performance of our estimation algorithm.
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