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multipleNCC: Inverse Probability
Weighting of Nested Case-Control Data
by Nathalie C. Støer and Sven Ove Samuelsen

Abstract Reuse of controls from nested case-control designs can increase efficiency in many situations,
for instance with competing risks or in other multiple endpoints situations. The matching between
cases and controls must be broken when controls are to be used for other endpoints. A weighted
analysis can then be performed to take care of the biased sampling from the cohort. We present the
R package multipleNCC for reuse of controls in nested case-control studies by inverse probability
weighting of the partial likelihood. The package handles right-censored, left-truncated and additionally
matched data, and varying numbers of sampled controls and the whole analysis is carried out using
one simple command. Four weight estimators are presented and variance estimation is explained.
The package is illustrated by analyzing health survey data from three counties in Norway for two
causes of death: cardiovascular disease and death from alcohol abuse, liver disease, and accidents and
violence. The data set is included in the package.

Introduction

The nested case-control (NCC) design (Thomas, 1977) (incidence density sampling/risk set sampling)
is popular within epidemiology due to its cost-effectiveness and efficiency. At each event time, m
controls are sampled from the subjects at risk. The controls must be event-free at the time their case
experienced the event. They might also be matched to the cases on additional factors. Covariates are
then obtained for cases and sampled controls.

The analysis of nested case-control data has traditionally been carried out using stratified Cox-
regression, where the stratification is with respect to matched case-control sets. That method, however,
does not allow for breaking the matching, i.e., analyze the data without directly considering the
matched sets. Hence, the sampled controls cannot be used for other cases than they originally were
sampled for. In many situations one may want to reuse the controls, for instance when analyzing a
subset of the original cases or when there exist more than one endpoint of interest. A few examples
of such studies are Hultman et al. (1999); Parsonnet et al. (1991); Floderus et al. (1993); Øyen et al.
(1997); Tynes and Haldorsen (1997); Hankinson et al. (1998); Grimsrud et al. (2002); Levine et al. (2004);
Clendenen et al. (2011); Meyer et al. (2013).

We assume a competing risks situation in this paper for ease of presentation. Thus there are
different types of endpoints, and the subjects can experience at most one of them. A special instance
of this is a setting with only one type of endpoint, the single event situation is therefore covered by
the competing risks situation. The R package multipleNCC (Støer and Samuelsen, 2016) is built with
competing risks in mind, however it is not limited to such situations. Even though more complex
event history settings would often call for more advanced multi-state modelling, reuse of controls may
be handled by using multipleNCC together with coxph() from package survival (Therneau, 2016;
Therneau and Grambsch, 2000), see Section The R package multipleNCC.

A method for breaking the matching in NCC designs was introduced by Samuelsen (1997) and
further studied by Chen (2001); Samuelsen et al. (2007); Saarela et al. (2008); Salim et al. (2009); Cai and
Zheng (2012); Salim et al. (2012); Støer and Samuelsen (2012, 2013); Støer et al. (2014). This method
bases the estimation on a weighted partial likelihood, thus weighted Cox-regressions are carried out.
The weights are inverse sampling probabilities, which must be estimated from the data, and different
estimators have been suggested.

Even though it is fairly easy to estimate the weights, it is an extra step in the analysis. Having
a more automatic estimation procedure, i.e., a one-line call in R with similar syntax as coxph() will
make this way of analyzing NCC data more generally available.

We present the R package multipleNCC in this paper. The function wpl() estimates weights
and carries out weighted Cox-regressions. The users can choose between four options for weight
estimation. The function handles both right-censored and left-truncated data and has some possibilities
for variance estimation, apart from robust variances. Additional matching is incorporated for three
of the four weight estimators, and varying number of controls for all four. This is the first statistical
software that performs inverse probability weighting (IPW) aimed at NCC data.

The outline of the paper is as follows; we introduce the general framework of inverse probability
weighting for nested case-control data in Section Inverse probability weighting in NCC. Then Sec-
tions Weight estimation and Variance estimation follow. The package is described in Section The R
package multipleNCC and illustrated in Section Analysis of example data set. A comparison between
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the traditional estimator and the IPW estimators is given in Section Comparison between stratified
coxph and wpl, followed by Section Discussion.

Inverse probability weighting in NCC

We have a cohort consisting of n subjects, where the i-th individual is followed from the left-truncation
time li, which may be zero, to time of event t̃i or time of censoring ci. Thus the cohort members are
followed from li to ti = min (t̃i, ci). There are K competing endpoints, and each subject can at most
experience one of them.

At each event time, m controls are sampled for the case experiencing the event and m = m (t) may
depend on time. Finally, let us introduce what we call sampling-status indicator Si, which is required
input to wpl(). This indicator takes values in {0, 1, . . . , K, K + 1}, zero indicates a non-sampled subject
in the cohort, 1 indicates sampled controls (and not cases) for any of the endpoints in question, while
“2, . . . , K + 1” indicate cases of one of K types.

The NCC design is tightly connected to the Cox proportional hazards model and our model for
endpoint k can be written as

hki (t|xi, zi) = hk0 (t) exp
(

β′kxi + γ′kzi
)

. (1)

Here hk0 (t) is the baseline hazard for endpoint k, xi are covariates and confounders while zi are
additional matching variables (additional to matching on time), if additional matching has been
carried out, otherwise zi will be zero. The βk and γk are the log-hazard ratios connected to x and z for
the k-th endpoint.

Since the matching is broken with IPW, it will generally be important to adjust for the matching
variables (Støer and Samuelsen, 2013). They are included as linear functions in Equation 1 for simplicity,
however more general models with other types of functions are possible.

The controls in a NCC design are matched to the cases on at risk status and possibly additional
factors. Due to this matching, it is not straightforward to reuse the controls for other endpoints/cases
since the matching must be broken. Samuelsen (1997) suggested a weighted partial likelihood which
resembles the standard Cox-likelihood

Lk (β, γ) = ∏
j

exp
(

β′kxj + γ′kzj

)
∑i∈Rj

exp
(

β′kxi + γ′kzi
)

wi
. (2)

This likelihood enables the controls to be used for other endpoints and Saarela et al. (2008) and Salim
et al. (2009) were the first to discuss this likelihood in connection to competing risks. The product
is over all cases of type k, while the sum is over a set Rj, defined as all cases (of all types) and
all controls at risk at tj. The weight, wi = 1/pi, is the inverse probability that individual i is ever
being sampled. This probability will be 1 for cases since all of them are sampled by design, and it
must be estimated from the data for the controls. We assume time invariant covariates, although
time-dependent covariates are in theory possible as long as they are known at all event times at which
the subject is at risk. This has, however, not yet been implemented in package multipleNCC.

The fundamental idea behind inverse probability weighting is to adjust for the biased sample
from the cohort. The sample is biased, first and foremost, with respect to the proportion of cases and
controls, but with additional matching it can also be biased with respect to matching variables. The
idea is then to let each control represent a number of subjects in the cohort by giving them weights
larger than 1. The less probable it was for a given subject to be sampled, the more subjects in the cohort
it should represent since that “type” of controls likely are under-represented in the NCC sample. By
using inverse sampling probabilities as weights, this is accomplished. The analysis is then carried
out “as if the data were from a cohort study”, thus by a weighted Cox-regression. This idea was
first proposed by Hansen and Hurwitz (1943) with a survey sampling perspective for sampling with
replacement, and later generalised to sampling without replacement by Horvitz and Thompson (1952).
Inverse probability weighting is also commonly used in the context of missing data (Robins et al.,
1994).

Additional matching

To increase efficiency and adjust for confounding, the controls in a nested case-control design are often
matched on additional factors than at risk status. This can for instance be year of birth, sex or years
since first employment. We divide such matching into two groups: category matching and caliper
matching (Cochran and Rubin, 1973).
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With category matching, the controls are required to have the same value on the matching variable
as the case, and the matching variable is often a categorical covariate. As an example, the controls
can be matched to the cases on sex and a male case is then required to have a male control. With
caliper matching, the matching variable is typically continuous and the control’s value of the matching
variable must lie within a specified interval around the case’s value. For instance the controls could be
matched on year of birth plus/minus 2 years, i.e., the birth year of a control must be within two years
of the case’s birth year.

Weight estimation

The weights in Equation 2 must be estimated from the data at hand, and three types of estimators
have been considered: Kaplan-Meier (KM) type of weights (Samuelsen, 1997; Salim et al., 2009; Cai
and Zheng, 2012), more model based logistic regression type (Mark and Katki, 2006; Samuelsen et al.,
2007; Saarela et al., 2008; Støer and Samuelsen, 2013) and local averaging (Chen, 2001), referred to as
Chen-weights.

KM type of weights

The Kaplan-Meier type of estimator without additional matching can be formulated as

pi = 1− ∏
li<tj<ti

1− m

n
(

tj

)
− 1

 . (3)

Here n
(

tj

)
is the number at risk in the cohort at time tj and m the number of sampled controls per

case. The estimator in Equation 3 resembles the Kaplan-Meier estimator. The KM weights can be
generalized to situations with additional matching by taking the product only over subjects that
meet the matching criteria, and letting the denominator only consist of subjects at risk that meet the

matching criteria. Let nj

(
tj

)
count the subjects at risk at time tj who meet the matching criteria of

case j. Then the formula with additional matching can be expressed as

pi = 1−∏
j

1− m

nj

(
tj

)
− 1

I (Control i could be sampled for case j)

 . (4)

By replacing m with m
(

tj

)
, where m

(
tj

)
is the number of sampled controls for the case at tj, the

situation with varying number of controls is covered.

Logistic regression weights

A more model based approach is to use logistic regression models, either traditional logistic regression
or the more flexible generalized additive model (GAM; Hastie and Tibshirani, 2009, Chap. 9) with
logit-link. The sampling indicator, Oi, is used as outcome and the left-truncation time and censoring
time as covariates with ξ being an intercept term:

pi = IE[Oi|ti, li] =
exp (ξ + f (ti, li))

1 + exp (ξ + f (ti, li))
. (5)

It is important to note that this regression is carried out on the cohort excluding cases of all types. The
reason for this is that all cases are sampled with a known probability of 1, thus including them in the
regression would interfere with the estimation of the sampling probabilities for the controls.

With f (ti, li) = f1 (ti) + f2 (li) where f . (.) are linear functions, the estimator in Equation 5 is the
traditional logistic regression model, and the inverse of those probabilities are referred to as GLM-
weights. When f . (.) are smooth functions, the result is a GAM-model. In situations with additional
matching, the matching variables should also be included in the regression model. Category matched
variables are included as categorical factors while caliper matched variables are included as continuous
covariates with GLM-weights and as smoothed functions with GAM-weights.

The number of controls for each case is not an explicit part of the estimation procedure for
logistic regression weights and therefore no extra care must be taken in situations with time- and
endpoint-dependent number of controls.
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Local averaging weights

Before we can introduce the Chen-weights method (Chen, 2001), which is also known as local aver-
aging, we need some additional notation. Let 0 = l0 < l1 < . . . < lA be a partition of the range of
left-truncation times and 0 = t0 < t1 < . . . < tB a partition of the range of follow-up times where tA

and tB are the upper limit of the left-truncation times and censoring times respectively. We also define

Ja =
(
la−1, la] and Ib =

(
tb−1, tb

]
. The intervals in each direction are taken to be of the same length

in wpl(), however the interval length can in principle vary. The local averaging weights can then be
expressed as

wab =
∑n

i=1 I (li ∈ Ja, ti ∈ Ib, i is not a case)
∑n

i=1 I (li ∈ Ja, ti ∈ Ib, i is a sampled control and not a case)
.

All controls included in the study in Ja with a censoring time in Ib are given weight wab. Hence, all
subjects sampled within the same combination of intervals will be given the same weight. Samuelsen
et al. (2007) noted that this amounts to post-stratifying on grouped left-truncation and censoring times.

Generalizing these weights to handle additional matching would require partitioning of the
matching variables in addition to the range of left-truncation and right-censoring times, and this will
introduce a large number of combination of intervals. Due to this, the weights will likely be unstable
since a small number of subjects would belong to each group. The Chen-weights are therefore only
implemented for situations without additional matching.

As with logistic regression weights, the number of controls per case is not an explicit part of the
estimation procedure for local averaging. Situations with time- and endpoint-dependent number of
controls are therefore handled with no modification of the estimator.

Variance estimation

Since the subjects enter the weighted partial likelihood (Equation 2) whenever they are at risk, the
likelihood contributions are not independent and the variance estimation cannot be based on the
inverse of the information matrix only. A simple, yet sometimes conservative solution (Cai and Zheng,
2012), is to use robust variances (Lin and Wei, 1989; Barlow, 1994). This is the default option in wpl().
A variance estimator for the KM-weights can be found in Samuelsen (1997) when there is no additional
matching. A variance estimator for Chen-weights is given in Chen (2001), but since Samuelsen et al.
(2007) argues that this estimator can be considered as a post-stratified case-cohort estimator, one may
apply the variance estimator of Borgan et al. (2000). We have implemented the variance estimator
of Samuelsen (1997), which exactly accounts for the procedure used to estimate the weights, and
extended it to allow for additional matching, see details below and web-appendix to Cai and Zheng
(2012). For the Chen-weights, we have implemented the variance estimator based on post-stratification,
but only without additional matching since, as discussed in Section Local averaging weights, the
approach will be difficult to extend to additional matching.

Samuelsen (1997) showed that the covariance matrix with KM-weights (without additional match-
ing) can be estimated by

Γ̂ = Î−1 + Î−1∆̂ Î−1. (6)

Here Î−1 is the inverse of the information matrix returned from the weighted Cox-regression and

∆̂ = ∑
i

UiU>i
1− pi

p2
i

+ ∑
i 6=j

UiU>j
ĉovij

pij pi pj
. (7)

Ui is the score contribution for individual i and U>i its transpose, pij the estimated probability that
both individual i and j were sampled and ĉovij the estimated covariance between sampling indicators
for these two individuals. Note that the score contributions Ui and the Wi’s considered by Samuelsen
(1997) are asymptotically equivalent. The indices i and j in the sums run over all non-cases in the
study. Let also U be a matrix consisting of all Ui for non-cases. It was argued by Samuelsen (1997)
that the term pij can be replaced by pi pj. A formula for ĉovij is given in Samuelsen (1997). We have
implemented this variance formula both with and without additional matching, although in the latter
case the ĉovij needs modification. If two individuals i and j cannot both be sampled for any same case,
then these two individuals are sampled independently and the covariance of their sampling indicators
equals zero. If they can both be sampled for one or more of the same cases then ĉovij is obtained
using Equation (3.1) in Samuelsen (1997), replacing the number at risk at time tj by the number at risk

nj

(
tj

)
at tj satisfying the matching criteria, and taking the product only over the cases where both i

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 9

and j can be sampled as controls.

The covariance matrix estimator in Equation 6 has been considered numerically hard to calculate.
However, it can be simplified by noting that Equation 7 can be expressed as a matrix product. Let R

be a matrix with the terms (1− pi) /p2
i for all non-cases along the diagonal and terms ĉovij/

(
pi pj

)2

otherwise. Let furthermore U(l) be a vector of the l-th component of U. Then the component ∆̂kl of ∆̂
can be expressed as U>

(l)RU(k) and taken together this means that with U being the matrix consisting

of all Ui for the non-cases we get ∆̂ = U>RU. Thus the calculation of the second sum in Equation 7 as
a double for-loop is avoided. However, with additional matching and many sampled non-cases ĉovij
and the matrix R may still be computationally demanding.

The R package multipleNCC

The multipleNCC package provides one main function: wpl() which carries out the weighted Cox-
regressions. It calls one of four internal functions, pKM(), pGAM(), pGLM() and pChen(), for weight
estimation and may call two additional functions, ModelbasedVar() and PoststratVar(), for variance
estimation. The functions that estimate the sampling probabilities can be accessed through the wrapper
functions KMprob(), GAMprob(), GLMprob() and Chenprob(). The function wpl() is used for estimation
of hazard ratios. It has a number of mandatory arguments and some which are set to default values
if not specified by the user, see Table 1. An important part of the wpl() function is the weighted
Cox-regression which is carried out by coxph() from the survival package.

It is important to note that most arguments should have cohort dimension (Table 1). By that we
mean that the arguments should have the same length as the number of subjects n in the cohort. Thus,
partially known covariate information must be imputed. These imputed values are not included in the
estimation, hence any values can be chosen, however NA should be avoided.

The GLM-weights are estimated with the glm() function in R with ‘family = binomial’. For
GAM-weights, the gam() function in the mgcv package (Wood, 2006, 2015) is used, also with ‘family
= binomial’. The KM- and Chen-weights are estimated as explained in Sections KM type of weights
and Local averaging weights.

For GLM-weights, the matching variables are included in the logistic regression as continuous
covariates with caliper matching and as categorical covariates for category matching. For GAM-
weights the matching variables are included as smooth functions with caliper matching and as
categorical covariates for category matching. If a matching variable has many levels, a large number
of parameters must be estimated and some sort of grouping of the levels of the category matching
variable(s) could be sensible. Such grouping must be applied to the matching variable before it enters
wpl().

If the method of variance estimation is not specified, the robust option is chosen by default. The
"Modelbased" option can be chosen for KM-weights. Using the "Modelbased" option for other weights
will result in an error message. Similarly if the option "Poststrat" is chosen together with other
weights than "Chen", an error message will be displayed.

The code for fitting a wpl model is

R> wpl(formula, data, samplestat)

The formula is a formula object and has the same syntax as the formula in the coxph() function. The
minimal code for fitting a wpl model is therefore

R> wpl(Surv(survival_time, status) ~ X, data, samplestat)

This is a model with one control per case, no additional matching or left-truncation and KM-weights.
With left-truncation and GLM-weights it would be

R> wpl(Surv(left_time, survival_time, status) ~ X, data, samplestat,
+ weight.method = "glm")

and with additional matching

R> wpl(Surv(left_time, survival_time, status) ~ X + M, data, samplestat,
+ weight.method = "glm", match.var = M, match.int = c(-2, 2))

In this model the controls are matched to the cases on only one additional factor M, which for
instance could be year of birth, plus/minus two years, represented by ‘match.int = c(-2,2)’.
Generally, it would be important to adjust for the additional matching variables, since the matching
has been broken, thus M is also included as an ordinary covariate. If there are more than one matching
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Argument Description Default value

Surv object A survival object. Mandatory

formula A formula object, with the response on the left of a ˜ operator, and
the terms on the right. The response must be a survival object. The
status variable going into Surv should have one for cases and zero
for controls and non-sampled subjects. Cohort dimension.

Mandatory

data A data.frame used for interpreting the variables named in the
formula. Cohort dimension.

Mandatory

samplestat A vector containing sampling and status information: 0 represents
non-sampled subjects in the cohort; 1 represents sampled controls;
2,3,. . . indicate different events. Cohort dimension.

Mandatory

m Number of sampled controls. A scalar if equal number of controls
for all cases. If unequal number of controls per case: a vector of
length equal to the number of cases. The vector must be in the same
order as the cases in the samplestat vector.

1

weight.method One of four weights: "KM", "gam", "glm", "Chen". "KM"

no.intervals Number of intervals for censoring times for Chen-weights with
only right-censoring.

10

variance "robust", or "Modelbased" for KM-weights and "Poststrat" for
Chen-weights.

"robust"

left.time Entry time if the survival times are left-truncated. Cohort dimen-
sion.

Zero

no.intervals.left Number of intervals for Chen-weights with left-truncation. A vector
of the form [number of intervals for left-truncated time, number of
intervals for survival time].

[3, 4]

match.var If the controls are matched to the cases (on other variables than
time), match.var is the vector or matrix of matching variables. Co-
hort dimension.

Zero

match.int A vector of length 2× number of matching variables. For caliper
matching (matched on value plus/minus epsilon) match.int
should consist of c(-epsilon, epsilon). For exact matching
match.int should consist of c(0,0).

Zero

Table 1: Arguments to wpl().

variable, for instance M1 and M2, both of them should be included as covariates and the match.var
should be a matrix consisting of the M1 and M2. The match.int argument is still a vector with the
intervals in the same order as in match.var. Thus the syntax for a model with one caliper matching
criterion and one category criterion could be

R> wpl(Surv(left_time, survival_time, status) ~ X + M1 + M2, data, samplestat,
+ weight.method = "gam", match.var = cbind(M1, M2), match.int = c(-2, 2, 0, 0))

Note that the interval should be ‘c(0,0)’ for category matching. As an example, if the controls
were matched on year of birth plus/minus 2 years, county of residence and years since first employ-
ment plus/minus 6 months, with year of birth and year since first employment measured in years,
‘match.int = c(-2,2,0,0,-0.5,0.5)’.

In a traditional analysis of NCC data, subjects appear in the data set as many times as they are
sampled. For instance if a subject is first sampled as a control and later itself becomes a case, it appears
in the data set first as a control and then a second time as a case. With IPW, the subjects should only
appear in the data set once, and it is important to let all subjects who at some point became a case, be a
case in the data set.

The event indicator included in the Surv() function could have a one for cases and a zero for
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non-cases. However, this event indicator is not actually used by the program. With only right-censored
data an event indicator is not required by ‘Surv’ and it can thus be omitted. When the data is left-
truncated the event indicator must be included and we therefore suggest to always include it even
though it is not used by the program. All information regarding events, possibly of different types,
controls and non-sampled subjects in the cohort is included through the sampling-status indicator
‘samplestat’. Non-sampled subjects should be given value zero, sampled controls (who are not cases
of any type) should have 1, while cases of the first type should be given 2, cases of the second type 3,
etc. By default all subjects with non-zero values (except for the cases in question) are used as controls.
If this is not desirable, the sampling-status indicator can be modified, see Section Sub-endpoints and
complex multiple endpoint situations.

The estimated weights can be extracted directly from the wpl object by $weights, it is, however
important to note that the data is sorted by inclusion time inside wpl and the ordering of the weights
is therefore not the same as the ordering of the original data. The sampling probabilities can also be
estimated directly with KMprob, GAMprob, GLMprob and Chenprob which also return them in the same
order as the input data. These four functions have similar syntax, although with some differences in
required arguments.

R> KMprob(survtime, samplestat, m, left.time = 0, match.var = 0, match.int = 0)
R> GLMprob(survtime, samplestat, left.time = 0, match.var = 0, match.int = 0)
R> GAMprob(survtime, samplestat, left.time = 0, match.var = 0, match.int = 0)
R> Chenprob(survtime, samplestat, no.intervals = 10, left.time = 0,
+ no.intervals.left = c(3, 4))

Some arguments to these functions are mandatory, while some arguments should only be supplied in
given situations. Those arguments are ‘left.time’ and ‘no.intervals.left’ which should only be
included with left-truncated data, and ‘match.var’ and ‘match.int’ only with additionally matched
data. All arguments to the functions above can be found in Table 1, except for ‘survtime’ which is
the follow-up time. It is important to note that ‘survtime’, ‘samplestat’, ‘left.time’ and ‘match.var’
should have length or number of rows equal to the cohort size n.

When the controls are matched on additional factors it may happen that there are none, or too few,
eligible controls for some cases. Normal practice is then to widen the matching criteria somewhat
for those particular cases. But by doing this there will be fewer subjects at risk that meet the original
matching criterium than there are sampled controls. wpl() will therefore print out a warning telling
the user for which case this happens and that the controls for that particular case are given weight = 1.
This is reasonable since those controls are sampled with probability close or equal to 1.

multipleNCC does not carry out a traditional analysis using a stratified Cox-regression. The main
reason for this is that each subject should only appear once in the data set provided to multipleNCC.
Without explicit information about the original case-control sets it is impossible to reconstruct the
original nested case-control data where each subject appears as many times as they are sampled.
Additionally, it is so simple to carry out a traditional nested case-control analysis with a stratified
Cox-regression that there is no reason to include it in multipleNCC.

Sub-endpoints and complex multiple endpoint situations

A main endpoint can often be divided into sub-endpoints. For instance a cancer endpoint can be
divided into metastatic and non-metastatic cancer. Analysis of sub-endpoints using all sampled
controls can be carried out with wpl() by making a new sampling-status indicator with unique values
for each sub-type. So instead of having a samplestat indicator from 0–2 (0 = non-sampled subjects,
1 = sampled controls, 2 = cancer cases), it will have values 0–3, where 2 corresponds to metastatic
cancer and 3 to non-metastatic cancer.

Many multiple endpoint applications do not fit into a competing risks framework. However, reuse
of controls can still be of interest. The solution can then be to estimate the sampling probabilities with
KMprob, GAMprob, GLMprob or Chenprob and use the inverse of those estimated probabilities as weights
in the ordinary coxph() function with robust variances. An example of a multiple endpoint situation
which does not fit into the competing risks framework is the case of subsequent events (Støer et al.,
2014). This is a situation with two types of events and the second type may only occur after the first,
e.g. incidence of prostate cancer and death from prostate cancer. Using all sampled controls when
analyzing the subsequent endpoint may increase the efficiency substantially.

Other models and estimators

Inverse probability weighting is a standard approach for handling missing data and case-control data
can be considered as data missing by design. Thus the functions for estimating inclusion probabilities
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described above can be used more generally for addressing other models than proportional hazards.
For instance Samuelsen (1997) discussed the possibility of fitting parametric survival models, Suissa
et al. (1998) considered estimation of standardized mortality ratios and Cai and Zheng (2012) discussed
estimation from estimating equations in general with IPW from NCC studies.

Often software allows for weighting and then it is straightforward to obtain the weighted esti-
mators. Examples are the Nelson-Aalen and Breslow estimators for cumulative hazards or additive
hazards models. With respect to variance estimation of weighted estimators we believe that robust
variances often will give results that closely match the model based, although theoretically they
are conservative (Samuelsen, 1997; Cai and Zheng, 2012). In general, however, theory has not been
carefully developed for such estimators and implementation of robust procedures has not generally
been validated, thus care should be taken when interpreting the variance estimates.

Furthermore, we believe that the IPW weights for NCC are in particular useful when considering
time to event data with the original cohort follow-up scheme. We are less convinced that the IPW
approach is the best choice when for instance estimating the population means of the exposures
obtained in the NCC or considering regression models for how such exposures depend on other cohort
information.

Other packages

There exists a number of packages for weighted analysis for different purposes. Some are aimed at
causal inferences such as ipw (van der Wal and Geskus, 2011) and MatchIt (Ho et al., 2011). Others
have a missing data or survey sampling perspective. Two such packages are NestedCohort (Mark
and Katki, 2006; Katki and Mark, 2008) and survey (Lumley, 2004, 2014). The survey package was
developed for analyses of survey data, but include functions for two-phase designs. A nested case-
control design can be seen as a two-phase design where the cohort is collected at Phase 1 and the
Phase 2 data is the cases and sampled controls with additional covariate information. The Phase 2
sampling scheme is of course somewhat more complex than what is usually seen in survey sampling.
However, when Chen-weights are used for the nested case-control design, a stratified Phase 2 sampling
is implicitly assumed, which is a well-known survey sampling design. Hence, a weighted analysis
using Chen-weights can be carried out by specifying a stratified two-phase design with the function
twophase and carry out the Cox-regression using this design with svycoxph.

The NestedCohort package is a general package for cohort analyses with a missing data/two-
phase design perspective. The theory behind it is based to some extent on Robins et al. (1994) and
the variance estimators also build on this paper. Weighted Cox-regressions are carried out with
nested.coxph where a working model is assumed for the sampling probabilities in Phase 2. This
working model is a logistic regression model for the sampling indicator with all variables contributing
to the missingness as covariates. This is identical to specifying weight.method = "glm" in wpl.
However, the variance estimator in nested.coxph may be somewhat better in special situations where
the robust variances are conservative. The NestedCohort package can however only be used for
glm-weights so that the more commonly used KM-weights are not applicable with this package. The
authors of the package also state that fine matching is problematic with NestedCohort. In the data
example below nested.coxph gave identical estimates and standard errors as using glm-weights with
wpl.

Analysis of example data set

The data set CVD_Accidents

We use a collection of cardiovascular health screenings as our cohort, also used in Aalen et al. (2008).
All men and women aged 35–49 from three Norwegian counties: Oppland, Sogn og Fjordane and
Finnmark were invited to participate in health screenings from 1974–1978. The screening consisted of a
health examination including measurement of height and weight. The participants were also asked to
respond to a questionnaire which among other things contained questions regarding smoking status.

More than 90% of the invited subjects chose to participate which resulted in a cohort of about
50 000 subjects. The cohort was linked to the Causes of Death Registry kept by Statistics Norway and
followed up for deaths until the end of year 2000. Since there were few subjects at risk younger than
40 years, the survival times were left-truncated at age 40 or age at health screening. The left-truncation
time is named agestart in the data. The survival time is named agestop and is either the age at death
or censoring.

The data set included in multipleNCC and used as illustration here, is a random sample of
3933 subjects from the cohort. It is a cohort study, but we have carried out a synthetic nested case-
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control study within this smaller cohort. Having full cohort information enables comparison between
wpl() and corresponding analyses carried out on the full cohort. The synthetic data generation
was performed in two steps. In the first step a nested case-control sampling was carried out by
sampling one control per case matched sex and BMI ± 2. This was done in a for-loop over event times
sampling one subject at random from those still alive at that time in addition to fitting the matching
criterium. When the controls are not additionally matched or matched only on a categorical variable
the ccwc-function from the Epi package (Carstensen et al., 2016) offers a simple way to create a nested
case-control design from a cohort. However, if some of the matching variables are continuous it still
has to be done as described above. The second step is necessary only for the weighted Cox-regression
and it involves removing duplicate subjects, due to that some controls are sampled multiple times and
some controls later become cases, from the sampled data. For those controls who later become cases it
is important to keep the “case-entry”, while for those controls sampled multiple times, the entries will
be identical and one of them is kept at random.

Four types of deaths are recorded in the data: (1) cancer, (2) cardiovascular disease, (3) alcohol
abuse, liver disease, accidents and violence, and (4) other medical causes. For simplicity we only use
cardiovascular disease (n = 236) and alcohol abuse, liver disease, accidents and violence, henceforth
referred to as ALAV (n = 60). The data set is included in multipleNCC and can be loaded by
data("CVD_Accidents").

When we analyze this data set with IPW, we will use all sampled controls for both endpoints,
hence supplement the controls for ALAV deaths with the cardiovascular disease controls and cases.
And vice versa, supplement controls for cardiovascular disease cases with cases and controls for ALAV
cases. For ALAV deaths, the number of controls increases substantially when including the controls
for cardiovascular deaths.

The matching variables are BMI (M1 = bmi) and sex (M2 = sex). The matching variables are
adjusted for in the model to remove confounding due to breaking the matching. We included BMI as
continuous variable and sex is a categorical variable. Smoking (X = smoking3gr) is our explanatory
variable and is categorized into never smoked, former smoker and current smoker.

Fitting models

We consider the two models

h1i (ti|X, M1, M2) = h10 (ti) exp
(

β′1Xi + γ11 M1i + γ12 M2i
)

h2i (ti|X, M1, M2) = h20 (ti) exp
(

β′2Xi + γ21 M1i + γ22 M2i
)

.

Here h1 (.) and h2 (.) are the hazard for death from CVD and ALAV, respectively. To fit the weighted
partial likelihoods corresponding to those models, the command below can be used

R> fit <- wpl(Surv(agestart, agestop, dead24) ~ factor(X) + bmi + sex,
+ data = CVD_Accidents, m = 1, samplestat, weight.method = "glm",
+ match.var = cbind(CVD_Accidents$BMI, CVD_Accidents$sex),
+ match.int = c(-2, 2, 0, 0))

The ‘status’ argument to the ‘Surv’ function (in this example ‘dead24’) can in practice contain anything
since the information regarding who are cases and controls, and also which type of endpoint the cases
experienced are provided through samplestat. The ‘match.int’ argument will in this situation be a
vector of two elements, ‘match.int = c(-2,2,0,0)’, since the controls are matched to the cases on
BMI ±2, and sex.

The ‘summary’ and ‘print’ commands can be used to display the results of the analysis. The output
resembles output from traditional Cox-regression (see next page), and the results for the different
endpoints are printed below each other. Both the naive and robust/estimated standard errors are
printed, although only the robust/estimated should be reported.

The $-operator is usually used when specific parts of an object (i.e., ‘fit$coefficients’) are to be
extracted. When there is more than one endpoint this will only give you the corresponding element
for the first endpoint, i.e., ‘fit$coefficients’ will give you (0.47107, 1.34245, 0.08051, −1.22307), thus
only the estimates for the cardiovascular disease endpoint. To extract any element from the object,
[[]] can be used, i.e., ‘fit[[23]]’ will give you the estimates from the second analysis of death from
ALAV. For a full list of elements in the wpl object, the names() function can be used. Each element will
occur the same number of times as there are different endpoints, and the first occurrence corresponds
to the first endpoint, the second occurrence to the second endpoint, etc.

R> summary(fit)

Endpoint 1 :
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Call:
wpl.formula(formula = Surv(agestart, agestop, dead24) ~ factor(smoking3gr) +

bmi + factor(sex), data = CVD_Accidents,
samplestat = CVD_Accidents$samplestat,
match.var = cbind(CVD_Accidents$bmi, CVD_Accidents$sex),
match.int = c(-2, 2, 0, 0), weight.method = "glm")

n= 566, number of events= 236

coef exp(coef) se(coef) robust se z Pr(>|z|)
factor(smoking3gr)2 0.47107 1.60171 0.22099 0.26057 1.808 0.07062 .
factor(smoking3gr)3 1.34245 3.82842 0.19400 0.23424 5.731 9.98e-09 ***
bmi 0.08051 1.08384 0.01799 0.02562 3.143 0.00167 **
factor(sex)2 -1.22307 0.29433 0.15980 0.22475 -5.442 5.27e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
factor(smoking3gr)2 1.6017 0.6243 0.9611 2.6692
factor(smoking3gr)3 3.8284 0.2612 2.4190 6.0591
bmi 1.0838 0.9226 1.0308 1.1396
factor(sex)2 0.2943 3.3976 0.1895 0.4572

Endpoint 2 :
Call:
coxph(formula = Surv(left.time.ncc, survtime.ncc, status.ncc ==

i) ~ x + cluster(ind.no.ncc), weights = 1/p)

n= 566, number of events= 60

coef exp(coef) se(coef) robust se z Pr(>|z|)
factor(smoking3gr)2 -0.61629 0.53994 0.45484 0.48347 -1.275 0.202413
factor(smoking3gr)3 0.92343 2.51792 0.32202 0.34402 2.684 0.007270 **
bmi 0.08383 1.08744 0.03813 0.04587 1.828 0.067619 .
factor(sex)2 -1.42549 0.24039 0.32702 0.36888 -3.864 0.000111 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
factor(smoking3gr)2 0.5399 1.8520 0.2093 1.3928
factor(smoking3gr)3 2.5179 0.3972 1.2829 4.9417
bmi 1.0874 0.9196 0.9939 1.1897
factor(sex)2 0.2404 4.1599 0.1167 0.4954

The sampling probabilities can be directly estimated using one of the functions: KMprob, GAMprob,
GLMprob and Chenprob, for instance

R> glmp <- GLMprob(CVD_Accidents$agestop, CVD_Accidents$samplestat,
+ left.time = CVD_Accidents$agestart, match.var = cbind(CVD_Accidents$sex,
+ CVD_Accidents$bmi), match.int = c(0, 0, -2, 2))
R> kmp <- KMprob(CVD_Accidents$agestop, CVD_Accidents$samplestat, 1,
+ left.time = CVD_Accidents$agestart, match.var = cbind(CVD_Accidents$sex,
+ CVD_Accidents$bmi), match.int = c(0, 0, -2, 2))

It is of interest to examine the weights for the sampled controls only, as the cases have weight 1 and
the non-sampled subjects will not affect estimates. We can for instance inspect summary statistics

R> summary(1/glmp[CVD_Accidents$samplestat == 1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.575 6.545 9.201 13.240 15.080 73.180

R> summary(1/kmp[CVD_Accidents$samplestat == 1])

Min. 1st Qu. Median Mean 3rd Qu. Max.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 15

CVD
Former smoker Current smoker

HR (95 % CI) SE(β) Eff. HR (95 % CI) SE(β) Eff.

Cohort 1.72 (1.11–2.66) 0.22 1.00 3.25 (2.21–4.79) 0.20 1.00
Trad. 1.66 (0.94–2.93) 0.29 0.59 3.52 (2.09–5.94) 0.27 0.55
IPW-GLM 1.60 (0.96–2.67) 0.26 0.73 3.83 (2.42–6.06) 0.23 0.72
IPW-KM 1.65 (0.98–2.78) 0.26 0.66 3.97 (2.48–6.35) 0.24 0.69

ALAV
Former smoker Current smoker

HR (95 % CI) SE(β) Eff. HR (95 % CI) SE(β) Eff.

Cohort 0.56 (0.23–1.38) 0.46 1.00 2.05 (1.07–3.90) 0.33 1.00
Trad. 0.48 (0.13–1.69) 0.65 0.50 2.90 (1.11–7.61) 0.49 0.45
IPW-GLM 0.54 (0.21–1.39) 0.48 0.90 2.52 (1.28–4.94) 0.34 0.92
IPW-KM 0.55 (0.21–1.40) 0.49 0.90 2.56 (1.28–5.02) 0.35 0.89

Table 2: Results from analyses on the entire cohort, traditional nested case-control analyses and IPW
analyses with GLM-weights and robust variances, and KM-weights and estimated variances. Never
smoked is used as reference. Eff. – variance for cohort estimator divided by variance for corresponding
estimator. SE(β) – standard error (robust SE for IPW estimators with estimated SE in parentheses for
KM-weights).

2.481 6.839 8.772 13.150 15.020 95.810

The two types of weights correspond well, although KM-weights have a somewhat heavier tail. It
is worth noting that the subjects with the largest weights are those with the shortest follow-up time
and therefore those subjects do not have a too large impact on the analysis even though their weight
is large, since they are included in few risk sets. GAM-weights were similar to GLM-weights, but
with a somewhat heavier tail (not shown) and Chen-weights are not applicable here since they are not
implemented for additional matching.

Comparison between stratified coxph and wpl

Table 2 displays a comparison between the full cohort analysis, the traditional estimator for nested
case-control data and the IPW-estimator using wpl() with GLM- and KM-weights. Being a smoker
significantly increases the risk of death from cardiovascular disease. Being a former smoker also
increases the risk of death from cardiovascular disease, although only significantly in the cohort
analysis. Being a former smoker has a non-significant protective effect on death from ALAV, while
being a smoker significantly increases the risk of dying from ALAV.

The hazard ratios estimated with the traditional estimator and with wpl() are fairly similar to the
cohort estimates taking into account the size of the standard errors. The most pronounced difference
is between the cohort hazard rate and the hazard rate for the traditional estimator for being a smoker
on death from ALAV, 2.05 vs. 2.90. However, considering the size of the standard errors this is not a
large difference.

For the cardiovascular disease endpoint, the standard errors of the IPW analyses are somewhat
smaller than the standard errors of the traditional estimator, resulting in a little bit higher efficiency
for the IPW-estimators. For the ALAV endpoint, the standard errors are substantial lower and a large
efficiency gain is obtained with the IPW-estimators. The reason for this is that the IPW-estimators make
use of a number of extra controls as all cases and controls from the cardiovascular disease endpoint are
used as additional controls. On average the number of controls per case increase from 1 to more than 8.
We have chosen to include cardiovascular disease cases as additional controls for the cases who died
from ALAV, and also the cases who died from ALAV as additional controls for the cases who died
from cardiovascular disease. However, the cases who are used as additional controls will contribute
little to the analysis since they are non-cases (for the particular endpoint) with weight equal to 1. We
have reported robust standard errors for KM-weights in Table 2, however the estimated standard
errors are very similar, for CVD endpoint 0.27 and 0.24 and for ALAV 0.48 and 0.35 for former and
current smoker respectively.
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Discussion

We have demonstrated the multipleNCC package in R which allows for breaking the matching
and reusing controls in NCC designs. The main function wpl() estimates sampling probabilities
and perform weighted Cox-regressions. It handles right-censored, left-truncated and additionally
matched data, and varying number of sampled controls. We have also explained how the variance can
be estimated without additional matching (KM- and Chen-weights) and with additional matching
(KM-weights).

The package is particularly useful in situations with multiple outcomes. It has a competing
risks perspective, in the sense that with more than one type of endpoint, each endpoint is estimated
separately and all controls and cases of other types are used as additional controls. In many situations
the competing risks framework may not be suitable, although reusing controls can still be of interest.
The solution can then be to estimate the sampling probabilities for all cohort members, using one of
the four functions KMprob, GAMprob, GLMprob or Chenprob, and carry out weighted analysis that fit the
situation at hand.

The gam() function from the mgcv package is used for estimation of the GAM-weights. We could
alternatively have used the gam() function from the gam package (Hastie, 2015) or even a different
form of smoothing. It has however become evident that the exact value of the weights are not too
important as long as they are fairly reasonable, thus the choice of smoothing does probably not affect
final hazard ratios and standard errors. For the same reason there are usually only minor differences
with regards to final hazard ratios and standard errors between the four weight estimators discussed
in Section Weight estimation (Støer and Samuelsen, 2012, 2013).

Sometimes the cases and controls are matched closer together than is strictly necessary. Very close
matching can lead to small KM-weights since the probability of being sampled will be large for the
controls that were sampled (and very small for most of the non-sampled subjects) and this could
lead to biased estimates (Støer and Samuelsen, 2013). A solution could be to increase the length of
‘match.int’. For example in the data example above, we could replace ‘match.int = c(-2,2)’ with
‘match.int = c(-4,4)’. Widening the matching interval could introduce bias, thus it is important to
carry this out with caution. The equivalence of this for category matching is to reduce the number of
levels of the matching variable by some sort of grouping.
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