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Normal Tolerance Interval Procedures in
the tolerance Package
by Derek S. Young

Abstract Statistical tolerance intervals are used for a broad range of applications, such as quality
control, engineering design tests, environmental monitoring, and bioequivalence testing. tolerance
is the only R package devoted to procedures for tolerance intervals and regions. Perhaps the most
commonly-employed functions of the package involve normal tolerance intervals. A number of new
procedures for this setting have been included in recent versions of tolerance. In this paper, we discuss
and illustrate the functions that implement these normal tolerance interval procedures, one of which
is a new, novel type of operating characteristic curve.

Introduction and overview of the tolerance package

Statistical tolerance intervals of the form (1− α, P) provide bounds to capture at least a specified
proportion P of the sampled population with a given confidence level 1− α. The quantity P is called
the content of the tolerance interval and the confidence level 1− α reflects the sampling variability.
There is an extensive literature on tolerance intervals with some of the earliest works being Wilks
(1941, 1942) and Wald (1943). The texts by Guttman (1970) and Krishnamoorthy and Mathew (2009)
are devoted to the theoretical development and application of tolerance intervals, while the text by
Hahn and Meeker (1991) discusses their application in the broader context of statistical intervals.

tolerance (Young, 2010) is a popular R package for constructing exact and approximate tolerance
intervals and regions. Since its initial release in 2009, the package has grown to include tolerance
interval procedures for a large number of parametric distributions, nonparametric settings, and
regression models. There are also tolerance region procedures for the multivariate normal and
multivariate regression settings. Procedures for more specific settings are also included, such as
one-sided tolerance limits for the difference between two independent normal random variables
(Hall, 1984) and fiducial tolerance intervals for the function of parameters from discrete distributions
(Mathew and Young, 2013). The package also includes some graphical capabilities for visualizing the
tolerance intervals (regions) by plotting the limits (regions) on histograms, scatterplots, or control
charts of the data.

tolerance has been used for a broad range of applications, including cancer research (Heck et al.,
2014), wildlife biology (Pasquaretta et al., 2012), assessing the performance of genetic algorithms
(Van der Borght et al., 2014), ratio editing in surveys (Young and Mathew, 2015), air quality assessment
(Hafner et al., 2013), and instrumentation testing (Burr and Gavron, 2010). General interest in tolerance
can be gauged by the cranlogs package (Csardi, 2015), which pulls download logs of the RStudio
(RStudio Team, 2015) CRAN mirror. Figure 1 shows the daily number of downloads of tolerance from
the beginning of 2013 to the beginning of 2016. There is clearly a general increasing trend over the
years as the average number of daily downloads per year is approximately 5, 10, and 15 in 2013, 2014,
and 2015, respectively.

Capabilities of tolerance have been discussed in Young (2010, 2014). Even with those varied
capabilities, perhaps the most commonly used methods involve the normal distribution. Normal
tolerance intervals are often required during design verification or process validation. The utility of
normal tolerance intervals is further highlighted in documents published by the EPA (Environmental
Protection Agency, 2006), the IAEA (International Atomic Energy Agency, 2008), and standard 16269-6
of the ISO (International Organization for Standardization, 2014). In this paper, we discuss new
capabilities in tolerance specifically involving normal tolerance intervals. This includes the calculation
of exact and equal-tailed normal tolerance intervals, Bayesian normal tolerance intervals, tolerance
intervals for fixed-effects ANOVA, and sample size determination strategies. We also introduce novel
pseudo-operating characteristic (OC) curves that illustrate how the k-factor, sample size, confidence
level, and content level each change relative to one another. Such curves can be useful for planning
design tests.

As noted earlier, tolerance also includes a function for constructing multivariate normal tol-
erance regions. The mvtol.region() function was included with the initial release of tolerance.
mvtol.region() includes several Monte Carlo procedures developed in Krishnamoorthy and Mathew
(1999) and Krishnamoorthy and Mondal (2006) for finding the k-factor of the multivariate normal
tolerance region. The plottol() function can also be used to plot tolerance ellipses over bivariate
normal data and tolerance ellipsoids over trivariate normal data. The latter is accomplished using
plot3d() from the rgl package (Adler and Murdoch, 2014). We will not discuss the mvtol.region()

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=tolerance
https://CRAN.R-project.org/package=cranlogs
https://CRAN.R-project.org/package=rgl


CONTRIBUTED RESEARCH ARTICLES 201

2013 2014 2015 2016

0
10

20
30

40
50

60

Date

N
um

be
r 

of
 D

ai
ly

 D
ow

nl
oa

ds

Figure 1: Number of daily downloads for tolerance from the RStudio CRAN mirror over a three-year
time span (2013–2016).

function further since it is already well-documented (Young, 2010, 2014) and our present focus is on
newer capabilities in tolerance for normal tolerance intervals.

For our discussion, we assume that the reader has already installed and loaded tolerance using
the usual commands:

> install.packages("tolerance")
> library(tolerance)

Normal tolerance intervals - classical and Bayesian

Let X = (X1, X2, . . . , Xn) be a random sample of continuous random variables that have cumulative
distribution function FX , which is parameterized by θ ∈ Θ ⊂ Rd. Let X ∼ FX , independently of X. In
the classical set-up, a (1− α, P) one-sided upper tolerance limit (U1(X)) and one-sided lower tolerance
limit (L1(X)) satisfy the expressions

PX (PX [X ≤ U1(X)|X] ≥ P) = 1− α (1)

and

PX (PX [L1(X) ≤ X|X] ≥ P) = 1− α, (2)

respectively. Similarly, a (1− α, P) two-sided tolerance interval , (L2(X), U2(X)), satisfies

PX (PX [L2(X) ≤ X ≤ U2(X)|X] ≥ P) = 1− α. (3)

Sometimes, controlling the proportion in the tails is required, in which case we have a (1− α, P)
equal-tailed tolerance interval , (Le(X), Ue(X)), that satisfies

PX ({PX [Le(X) ≤ X|X] ≤ (1− P)/2} ∩ {PX [Ue(X) ≥ X|X] ≤ (1− P)/2}) = 1− α. (4)

Equal-tailed tolerance intervals ensure that we simultaneously have no more than (1− P)/2 of the
sampled population below the lower tolerance limit and no more than (1− P)/2 of the sampled
population above the upper tolerance limit.

Let X1, . . . , Xn be iid N
(
µ, σ2); i.e. a normal distribution with unknown mean µ and unknown

variance σ2. Let X̄ and S2 denote the sample mean and sample variance, respectively. The formulas
for (1− α, P) lower and upper normal tolerance limits are

Lh(X) = X̄− kh(n, α, P)S and Uh(X) = X̄ + kh(n, α, P)S, (5)

respectively, where h ∈ {1, 2, e}. In other words, h is an index specifying whether we want one-sided
tolerance limits, two-sided tolerance intervals, or equal-tailed tolerance intervals. k1(n, α, P) and
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k2(n, α, P) are the k-factors for these two settings. The k-factor ensures that we capture at least a
proportion P of the sampled population with confidence level (1− α). k1(n, α, P) is calculated by

k1(n, α, P) =
1√
n

tn−1;1−α(
√

nzP), (6)

where t f ;q(δ) is the qth quantile of a noncentral t-distribution with f degrees of freedom and noncen-
trality parameter δ and zq is the qth quantile of the standard normal distribution. k2(n, α, P) is the
solution to the integral equation√

2n
π

∫ ∞

0
P

(
χ2

n−1 >
(n− 1)χ2

1;P(z
2)

k2(n, α, P)2

)
e−

1
2 nz2

dz = 1− α, (7)

where χ2
f is the chi-square random variable with f degrees of freedom and χ2

f ;q(δ) is the qth quantile
of the noncentral chi-squared distribution with f degrees of freedom and noncentrality parameter δ.

Owen (1964) was the first to propose equal-tailed tolerance intervals for the normal distribution.
Equal-tailed normal tolerance intervals still take the form of (5), but where the tolerance factor
ke(n, α, P) is found as the solution to the integral equation(

2
n−1

2 Γ
(

n− 1
2

))−1 ∫ ∞

(n−1)ϑ2
n

nke (n,α,P)2

(
2Φ
(
−ϑn +

ke(n, α, P)
√

nz√
n− 1

)
− 1
)

e−z/2z
n−1

2 −1dz = 1− α, (8)

where ϑn =
√

nz 1+P
2

and Φ(·) denotes the standard normal cumulative distribution function. A
general discussion comparing the utility of two-sided tolerance intervals versus equal-tailed tolerance
intervals is found in Jensen (2009).

The normtol.int() function in tolerance is able to calculate all of the one-sided tolerance limits,
two-sided tolerance intervals, and equal-tailed tolerance intervals discussed above. In the past, chal-
lenges with computing noncentral distributions necessitated the use of approximations for k1(n, α, P),
k2(n, α, P), and ke(n, α, P). For the two-sided tolerance intervals, early versions of tolerance simply
used various approximations that appeared in the literature over the years for computing the k-factors.
These are controlled through the method argument and their specific formulas are outlined in Young
(2010), which utilized tolerance version 0.2.2. Since then, the exact k-factor in (7) and the exact equal-
tailed k-factor in (8) have been included. These are implemented by setting method = "EXACT" and
method = "OCT", respectively. Both of these methods use adaptive quadrature via the integrate()
function as well as box-constrained optimization via the optim() function. The original approximation
methods are still available primarily to retain all functionality of previous versions of tolerance.

The dataset that we will use to illustrate most of the procedures in our discussion is a quality
control dataset from Krishnamoorthy and Mathew (2009). The data are from a machine that fills
plastic containers with a liter of milk. At the end of a particular shift, a sample of n = 20 containers
was selected and the actual amount of milk in each container was measured using a highly-accurate
method. These measurements are as follows:

> milk <- c(0.968, 0.982, 1.030, 1.003, 1.046,
+ 1.020, 0.997, 1.010, 1.027, 1.010,
+ 0.973, 1.000, 1.044, 0.995, 1.020,
+ 0.993, 0.984, 0.981, 0.997, 0.992)

A quick check of normality with the Shapiro-Wilk test confirms that this is an appropriate assumption:

> shapiro.test(milk)

Shapiro-Wilk normality test

data: milk
W = 0.96364, p-value = 0.6188

For the milk data, the (0.95, 0.90) one-sided tolerance limits, two-sided tolerance interval, and
equal-tailed tolerance interval are found as follows:

> normtol.int(x = milk, alpha = 0.05, P = 0.90, side = 1)
alpha P x.bar 1-sided.lower 1-sided.upper

1 0.05 0.9 1.0036 0.9610333 1.046167

> normtol.int(x = milk, alpha = 0.05, P = 0.90, side = 2, method = "EXACT", m = 50)
alpha P x.bar 2-sided.lower 2-sided.upper
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1 0.05 0.9 1.0036 0.9523519 1.054848

> normtol.int(x = milk, alpha = 0.05, P = 0.90, side = 2, method = "OCT", m = 50)
alpha P x.bar 2-sided.lower 2-sided.upper

1 0.05 0.9 1.0036 0.9471414 1.060059

Note that the equal-tailed tolerance interval is wider than the corresponding two-sided tolerance
interval due to the more stringent requirement of controlling the proportions in the tails. For the
two-sided tolerance intervals, the additional argument m is used to control the number of subintervals
to use for performing the numerical integration via integrate(). While not illustrated above, there
is an additional argument that can be used if one wishes to construct log-normal tolerance intervals.
The argument log.norm is a logical argument set to FALSE by default. If set to TRUE, log-normal
tolerance intervals are calculated using the fact that if X is log-normally distributed, then Y = log(X)
is normally distributed. Thus, the normtol.int() function simply takes the logarithm of the data in
the x argument, constructs the desired normal tolerance limits, and then takes the anti-log of those
limits.

Users of normal tolerance intervals are often interested in summarizing a variety of possible
k-factors for given sample sizes n, confidence levels 1− α, and content level P. The K.table function
allows the user to specify a vector of possible values for each of these three quantities. A list is
then returned whose elements are summarized according to the by argument. For example, suppose
we are interested in the k1(n, α, P) values for all combinations of n ∈ {10, 20}, α ∈ {0.01, 0.05}, and
P ∈ {0.95, 0.99}. Moreover, we would like to summarize the list by the levels of P. This is accomplished
as follows:

> K.table(n = c(10, 20), alpha = c(0.01, 0.05), P = c(0.95, 0.99),
+ side = 1, by.arg = "P")
$`0.95`

10 20
0.99 3.738315 2.807866
0.95 2.910963 2.396002

$`0.99`
10 20

0.99 5.073725 3.831558
0.95 3.981118 3.295157

For example, the first entry of the first matrix is the k-factor for a one-sided (0.99, 0.95) tolerance limit
when n = 10. One can also set side = 2, which requires the user to specify the method argument; e.g.
"EXACT" for values of k2(n, α, P) or "OCT" for values of ke(n, α, P). The by.arg argument can also be set
to "alpha" or "n" depending on which quantity you want to represent the elements of the outputted
list.

Bayesian tolerance intervals were first presented in Aitchison (1964). For the Bayesian set-up, let x
be a vector of realizations of X, L(θ|x) be the likelihood function, π(θ) be a prior distribution for θ,
and p(θ|x) be the posterior distribution of θ given by

p(θ|x) = L(θ|x)π(θ)∫
Θ L(θ|x)π(θ)dθ

. (9)

Then, (1− α, P) Bayesian one-sided upper and lower tolerance limits satisfy

PΘ (PX [X ≤ U1(θ)|θ] ≥ P|X) = 1− α (10)

and

PΘ (PX [L1(θ) ≤ X|θ] ≥ P|X) = 1− α, (11)

respectively, a (1− α, P) Bayesian two-sided tolerance interval satisfies

PΘ (PX [L2(θ) ≤ X ≤ U2(θ)|θ] ≥ P|X) = 1− α, (12)

and a (1− α, P) Bayesian equal-tailed tolerance interval satisfies

PΘ ({PX [Le(θ) ≤ X|θ] ≤ (1− P)/2} ∩ {PX [Ue(θ) ≥ X|θ] ≤ (1− P)/2}|X) = 1− α. (13)

Notice that the Bayesian set-up is calculated with respect to the probability measure PΘ while the
classical set-up is calculated with respect to the distribution of the random sample X. We refer the
reader to the texts by Guttman (1970) and Krishnamoorthy and Mathew (2009) for more details on
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both classical and Bayesian tolerance intervals.

The parameters µ and σ2 are still assumed unknown. We use the conjugate priors π(µ|σ2) and
π(σ2), which are

µ|σ2 ∼ N
(

µ0, σ2/n0

)
and σ2 ∼ Scale-inv-χ2

(
m0, σ2

0

)
, (14)

respectively, where Scale-inv-χ2 (ν, τ2) is the scaled inverse chi-squared distribution with ν de-
grees of freedom and scaling parameter τ2. Thus, the joint prior density of

(
µ, σ2) is π

(
µ, σ2) =

π
(
µ|σ2)π

(
σ2). The four hyperparameters for this prior structure are µ0 ∈ R, σ2

0 > 0, m0 > 0, n0 > 0.
m0 and n0 are not prior sample size quantities, but are tunable quantities to reflect the prior precision
relative to the sample size. The joint posterior distribution is then

p
(

µ, σ2|x
)
= p

(
µ|σ2

)
p
(

σ2
)

, (15)

where p
(
µ|σ2) and p

(
σ2) are the distributions

µ|σ2 ∼ N
(

¯̄x,
σ2

n0 + n

)
and σ2 ∼ Scale-inv-χ2

(
m0 + n− 1, q2

)
, (16)

respectively, such that

¯̄x =
n0µ0 + nx̄

n0 + n
and q2 = (m0 + n− 1)−1

[
m0σ2

0 + (n− 1)s2 +
n0n

n0 + n
(x̄− µ0)

2
]

. (17)

Note that the formulas in the Bayesian set-up are written such that they are conditioned on realizations
of the observed data; i.e. X = x. Furthermore, they are written in terms of the sample estimates of the
mean (x̄) and variance (s2). Additional details on the above can be found, for example, in Chapter 3 of
Gelman et al. (2013).

Similar to the classical setting, (1− α, P) Bayesian lower and upper normal tolerance limits are,
respectively,

Lh

(
x̄, s2

)
= ¯̄x− kh (n, n0, m0, α, P) q and Uh

(
x̄, s2

)
= ¯̄x + kh (n, n0, m0, α, P) q, (18)

where, again, h is used as an index for one-sided limits, a two-sided interval, or an equal-tailed interval.
Note that these limits are expressed in terms the maximum likelihood estimates of µ and σ2, which
occur through how ¯̄x and q are defined. Thus, the one-sided k-factor is calculated by

k1 (n, n0, m0, α, P) =
1√

n0 + n
tm0+n−1;1−α

(√
n0 + nzP

)
, (19)

the two-sided k-factor k2 (n, n0, m0, α, P) is calculated by finding the solution to√
2(n0 + n)

π

∫ ∞

0
P

(
χ2

m0+n−1 >
(m0 + n− 1) χ2

1;P
(
z2)

k2 (n, n0, m0, α, P)2

)
e−

1
2 (n0+n)z2

dz = 1− α, (20)

and the equal-tailed k-factor ke (n, n0, m0, α, P) is calculated by finding the solution to

2−
(

m0+n−1
2

)
Γ
(

m0+n−1
2

) ∫ ∞
(m0+n−1)ϑ2

n0+n
(n0+n)ke (n,n0,m0,α,P)2

(
2Φ
(
−ϑn0+n +

ke(n, n0, m0, α, P)
√

n0 + nz√
m0 + n− 1

)
− 1
)

× e−z/2z
m0+n−1

2 −1dz = 1− α.

(21)

Finally, if one considers the non-informative prior distribution

π(µ, σ2) ∝ σ−2, (22)

the solutions for the one-sided Bayesian normal tolerance limits and two-sided Bayesian normal
tolerance intervals are the same as for the classical setting given in Equations (5)–(8); see Chapter 11 of
Krishnamoorthy and Mathew (2009) for the details.

The bayesnormtol.int() function for computing Bayesian normal tolerance intervals is new as
of tolerance version 1.1.1. It was composed to closely mirror the normtol.int() function. For the
milk data, suppose we use the conjugate prior structure in (14). Assuming we have some historical
knowledge about the milk filling process, the following hyperparameter values are used: µ0 = 1.000,
σ2 = 0.001, and m0 = n0 = 20. Then, the Bayesian (0.95, 0.90) one-sided tolerance limits, two-sided
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tolerance interval, and equal-tailed tolerance interval are found as follows:

> bayesnormtol.int(x = milk, alpha = 0.05, P = 0.90, side = 1,
+ hyper.par = list(mu.0 = 1.000, sig2.0 = 0.001,
+ m.0 = 20, n.0 = 20))
alpha P 1-sided.lower 1-sided.upper

1 0.05 0.9 0.9551936 1.048406

> bayesnormtol.int(x = milk, alpha = 0.05, P = 0.90, side = 2, method = "EXACT",
+ m = 50, hyper.par = list(mu.0 = 1.000, sig2.0 = 0.001,
+ m.0 = 20, n.0 = 20))
alpha P 2-sided.lower 2-sided.upper

1 0.05 0.9 0.9453603 1.05824

> bayesnormtol.int(x = milk, alpha = 0.05, P = 0.90, side = 2, method = "OCT",
+ m = 50, hyper.par = list(mu.0 = 1.000, sig2.0 = 0.001,
+ m.0 = 20, n.0 = 20))
alpha P 2-sided.lower 2-sided.upper

1 0.05 0.9 0.9407625 1.062838

The bayesnormtol.int() function has the arguments x, alpha, P, side, method, and m just as in the
normtol.int(). However, here we also have hyper.par, which is a list with elements for the four
hyperparameters. The output is structured identically to the output obtained using normtol.int(),
which allows for easy comparison between the classical and Bayesian results.

Fixed-effects ANOVA tolerance intervals

The approach for classical normal tolerance intervals can be easily extended for the balanced fixed-
effects ANOVA model

Yij...kl = θ + αi + β j + . . . + γk + εij...kl , (23)

where θ is the grand mean, αi, β j, . . . , γk are the factor effects each subject to the constraint that the
summation of the effects over the respective index is equal to 0, εij,...kl are iid N

(
0, σ2) error terms,

and the indices are i = 1, . . . , a, j = 1, . . . , b, . . ., k = 1, . . . , c, and l = 1, . . . , n. The approach discussed
below is for the classical setting. Currently, the tolerance package does not have a function for
calculating Bayesian ANOVA tolerance intervals.

Let Y ∈ Rab···cn be a vector of all of the measured responses in (23), which are iid N
(
0, σ2). The

formulas for the tolerance limits in the fixed-effects ANOVA setting are:

Li;h(Y) = Ȳi·...·· − kh (ni, f , α, P)
√

MSE and Ui;h(Y) = Ȳi·...·· + kh (ni, f , α, P)
√

MSE

Lj;h(Y) = Ȳ·j...·· − kh

(
nj, f , α, P

)√
MSE and Uj;h(Y) = Ȳ·j...·· + kh

(
nj, f , α, P

)√
MSE

...
...

Lk;h(Y) = Ȳ··...k· − kh (nk, f , α, P)
√

MSE and Uk;h(Y) = Ȳ··...k· + kh (nk, f , α, P)
√

MSE
(24)

Conceptually, the formulas in (24) are similar to those in (5). We take a point estimate of the mean
at each factor level (i.e. the quantities Ȳi·...··, Ȳ·j...··, . . . , Ȳ··...k·) and then add or subtract the k-factor
times the standard deviation. The standard deviation is now estimated by the root mean square error,√

MSE.

The k-factor in (24), again, has the subscript h to indicate an index for one-sided limits, a two-sided
interval, or an equal-tailed interval. However, the formulas are modified for the ANOVA setting. In
formulas (6)–(8), the quantity (n− 1) reflects the degrees of freedom when estimating the sample
variance S2. In the ANOVA setting, this is replaced by the degrees of freedom due to the error; i.e. the
degrees of freedom associated with the MSE. Thus, we replace each occurrence of (n− 1) in (6)–(8)
with f , the error degrees of freedom. Moreover, all occurrences of the sample size n are replaced with
the number of observations at each factor level; i.e. ni, nj, . . . , nk. Note that the tolerance intervals
presented are only accurate for balanced (or nearly-balanced) ANOVA settings.

We analyze the well-known dataset that resulted from an experimental design regarding the effects
of wool type and the amount of tension applied to a loom of yarn on the number of warp breaks that
occur on that loom of yarn (Tippett, 1950). The first factor is wool type, which has two levels: A or B.
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The second factor is tension level, which has three levels: low (L), medium (M), or high (H). The six
treatments (i.e. factor level combinations) are randomly assigned to one of 54 looms of yarn. Thus, we
have n = 9 replicates per treatment. Suppose we want to construct (0.85, 0.90) equal-tailed tolerance
intervals for each factor level’s mean. Below is how we would do this in the tolerance package:

> lm.out <- lm(breaks ~ wool + tension, data = warpbreaks)
> out <- anovatol.int(lm.out, data = warpbreaks, alpha = 0.10,
+ P = 0.85, side = 2, method = "OCT")
These are 90%/85% 2-sided tolerance intervals.
> out
$wool

mean n k 2-sided.lower 2-sided.upper
A 31.03704 27 1.886857 9.117165 52.95691
B 25.25926 27 1.886857 3.339387 47.17913

$tension
mean n k 2-sided.lower 2-sided.upper

L 36.38889 18 1.948567 13.7521219 59.02566
M 26.38889 18 1.948567 3.7521219 49.02566
H 21.66667 18 1.948567 -0.9701003 44.30343

In the anovatol.int() function, we have similar arguments as in the normtol.int() function, except
now we input an object of class "lm" and we also tell the function the name of the original dataset
using the data argument. The output is a list summarizing the tolerance interval results for each factor
level. For example, the (0.90, 0.85) equal-tailed tolerance interval for the medium tension applied to
the yarn is about (3.75, 49.03).
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Figure 2: Plot of the (0.85, 0.90) equal-tailed tolerance intervals for the yarn strength data.

We can also produce a figure of the above output by using the plottol() function as follows:

> plottol(out, x = warpbreaks)

The above produces the plot in Figure 2. This figure has a separate panel for each factor. The y-axis is
the response and the x-axis is the levels of the respective factor. The solid black point is the factor level
mean and the red lines extend to the lower and upper tolerance limits calculated earlier. Such a figure
provides a relative comparison of the tolerance intervals for each factor level.

Sample size determination strategies

As noted in Faulkenberry and Weeks (1968), an important question for statistical practitioners is "What
sample size should be used to determine the tolerance limits?" Those same authors addressed this
problem by developing an approach to ensure that the calculated tolerance intervals are "close" to
the quantiles that result in a content level at least as large as P. Their solution was developed for
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sample size determination of one-sided tolerance limits and two-sided tolerance intervals, but it is not
applicable to equal-tailed tolerance intervals. In order to briefly present their approach, let Cµ,σ(X)
denote any of the three inner probabilities in Equations (1)–(3) or any of the three analogous inner
probabilities for the Bayesian set-up in Equations (10)–(12). To ensure the "goodness" of the tolerance
limits (interval), one must choose an arbitrary P′ > P and small δ > 0 to determine a sample size n∗

such that

PX
{

Cµ,σ(X) ≥ P′
}
≥ δ (25)

or

Pθ

{
Cµ,σ(X) ≥ P′

}
≥ δ (26)

for the classical or Bayesian setting, respectively.

The norm.ss function for sample size determination of normal tolerance limits (intervals) is new
as of tolerance version 1.1.1. The function finds the minimum sample size n∗ for the approach
due to Faulkenberry and Weeks (1968) discussed above. For our example, suppose the quality
engineer overseeing the milk-filling process wants to submit a future sample of liters of milk to
the highly-accurate measurement method. Per the company’s guidelines, the engineer needs to
know the minimum sample size to construct a (0.95, 0.90) two-sided tolerance interval such that
PX
{

Cµ,σ(X) ≥ 0.97
}
≥ 0.10. This is calculated as follows:

> norm.ss(alpha = 0.05, P = 0.90, delta = 0.10, P.prime = 0.97,
+ side = 2, m = 50, method = "FW")
alpha P delta P.prime n

1 0.05 0.9 0.1 0.97 60

Thus, the engineer would need a minimum sample size of n∗ = 60 to ensure that there is only a small
probability δ = 0.10 that the (0.95, 0.90) tolerance interval will have a content exceeding P = 0.90 by
(P′ − P) = 0.07.

In the norm.ss() function, the argument method is set to "FW". There are two additional sample
size determination strategies that can be calculated, which are controlled through the method argument.
Both of these strategies assume there is some historical data and specification limits for the process
at-hand. We briefly illustrate these strategies below and refer the reader to Young et al. (2016) for
further details.

The first alternative strategy is a simple “back-of-the-envelope” calculation. We consider the
problem of designing a study to demonstrate that a process or product falls within the specification
limits (SL, SU). We are interested in the minimum sample size necessary such that a (1− α, P) one-
sided lower tolerance limit exceeds SL, a (1− α, P) one-sided upper tolerance limit falls below SU , or
a (1− α, P) two-sided tolerance interval is contained within (SL, SU). In other words, this requires
finding the minimum sample size n∗ such that

SL < µ− k1(n, α, P)σ; (27)

SU > µ + k1(n, α, P)σ; or (28)

µ± ke(n, α, P)σ ⊂ (SL, SU), (29)

for one-sided upper tolerance limits, one-sided lower tolerance limits, or equal-tailed tolerance
intervals, respectively. As emphasized in Young et al. (2016), this approach is intended simply for
planning purposes and it does not guarantee any specific bounds relative to the nominal coverage
probability. Note that (29) is for an equal-tailed tolerance interval since we posit values for µ and σ
and, thus, the resulting tolerance interval would be built around a (hypothetically) true center of the
normal population.

For our example, suppose that the quality engineer is overseeing the launch of a new process for
filling the one-liter containers of milk, which is intended to be more accurate than the previous process.
The company set specification limits at (0.990, 1.010). For determining the minimum sample size
necessary to construct a (0.95, 0.90) two-sided tolerance interval that is within the specification limits,
the engineer assumes the mean and variance from the data of the original process. This calculation
can then be done as follows:

> norm.ss(alpha = 0.05, P = 0.90, side = 2, spec = c(0.990, 1.010),
+ method = "DIR", hyper.par = list(mu.0 = 1.004, sig2.0 = 0.001))
alpha P delta P.prime n

1 0.05 0.9 5

Thus, the minimum sample size is n∗ = 5. This calculation was done by setting method = "DIR",
entering the specification limits in the spec argument, and entering the assumed µ and σ2 in the
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argument hyper.par.

The second alternative strategy presented in Young et al. (2016) is a method for providing data-
dependent values of the precision quantities P′ and δ in the approach due to Faulkenberry and Weeks
(1968). The approach assumes there is information on historical data, a set of current data, and
specification limits that can be used for calculating values of P′ and δ. The approach is intended to be
used when there is no practical guidance for setting these values other than using “rule-of-thumb”
quantities suggested in Faulkenberry and Weeks (1968).

For the milk filling process, suppose the engineer has historical measurements, which have a
combined mean 0.994 liters and variance 0.002. Suppose the specification limits on the original process
are (0.900, 1.100) and that the engineer needs a minimum sample size to construct a (0.95, 0.90) two-
sided tolerance interval to show that the process meets the specification limits. However, the engineer
is unsure about levels to choose for δ and P′. We can use the norm.ss() function as follows:

> norm.ss(x = milk, alpha = 0.05, P = 0.90, side = 2, spec = c(0.900, 1.100),
+ method = "YGZO", hyper.par = list(mu.0 = 0.994, sig2.0 = 0.002))
alpha P delta P.prime n

1 0.05 0.9 0.1807489 0.9733307 42

Thus, the engineer would need a minimum sample size of n∗ = 42 to ensure that there is only a
probability of about δ = 0.181 that the (0.95, 0.90) tolerance interval will have a content exceeding
P = 0.90 by about (P′ − P) = 0.073.

OC curves involving k-factors

Sometimes, engineers and industrial statisticians are interested in understanding how the confidence
level or content level changes as a function of n for a given level of the k-factor. If one has normally
distributed data that they intend to demonstrate meets certain specification limits, then it is important
to understand the type of values for 1− α and P that one can reasonably expect to use. In this section,
we present OC curves for such planning purposes.

The first type of OC curve is used when one specifies a range of values of the sample size n and a
target value of the k-factor. Then, one can either specify a set of 1− α values and solve for P or one can
specify a set of P values and solve for 1− α. The values of n are plotted on the x-axis and the value
being solved for – either P or 1− α – is plotted on the y-axis. The different OC curves pertain to the
set of specified values – either 1− α or P. Since too many curves can become cumbersome, we have
placed an upper limit of 10 curves that can be overlaid on a given plot. Also, the colors used for the
curves were chosen using a colorblind-friendly palette that was established by Okabe and Ito (2002).

Suppose a company is designing a product and the engineer needs to collect enough data so that
the resulting two-sided tolerance interval will have a k-factor of 4. Content levels under consideration
are P ∈ {0.90, 0.95, 0.99} while the possible number of samples that can be used for the test are
n = 10, 11, . . . , 20. In order to determine the resulting confidence levels that can be obtained under
these conditions, the engineer can construct an OC curve for 1− α using the following code:

norm.OC(k = 4, alpha = NULL, P = c(0.90, 0.95, 0.99), n = 10:20,
side = 2, method = "EXACT", m = 25)

The resulting plot is given in Figure 3. For example, if the engineer chooses n = 15, then they can
construct a two-sided tolerance interval with k = 4 and content level of P = 0.99 with confidence level
near 0.96. However, if the engineer wishes to decrease the content of the tolerance interval to P = 0.95
or P = 0.90, then a confidence level very near 1 can be achieved.

In the norm.OC() function, the arguments of side, method, and m are, again, passed down to the
underlying K.factor() function. In order to generate Figure 3, we need to specify a single value for k
(i.e. the k-factor) and at least one value for P. Since we are constructing curves where the sample size is
on the x-axis, we need at least two values for n. Note that alpha must be left at its default NULL value.

Suppose now that the same engineer considers confidence levels of 1− α ∈ {0.90, 0.95, 0.99} with
the same values of k and n from before. In order to determine the resulting content levels that can be
obtained under these conditions, the engineer can construct an OC curve for P using the following
code:

norm.OC(k = 4, alpha = c(0.01, 0.05, 0.10), P = NULL, n = 10:20,
side = 2, method = "EXACT", m = 25)

The resulting plot is given in Figure 4. For example, if the engineer chooses n = 12, then they can
construct a two-sided tolerance interval with k = 4 and confidence level of 1− α = 0.99 that captures
about 95% of the sampled population. However, if the engineer wishes to decrease the confidence level
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Figure 3: OC curves for 1 − α given the set of content levels P ∈ {0.90, 0.95, 0.99}, sample sizes
n = 10, 11, . . . , 20, and a two-sided k-factor of 4.
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Figure 4: OC curves for P given the set of confidence levels 1− α ∈ {0.90, 0.95, 0.99}, sample sizes
n = 10, 11, . . . , 20, and a two-sided k-factor of 4.

of the tolerance interval to 1− α = 0.95 or 1− α = 0.90, then a tolerance interval that captures about
99% of the sampled population can be achieved. Note that the code using the norm.OC() function is
similar to the previous example, except that now we specify at least one value for alpha and leave P
must at its default NULL value.

Finally, the norm.OC() function can also be used to construct an OC-curve where the k-factor is
calculated for specified values of n, 1− α, and P. The different curves will be for each combination of
the specified 1− α and P levels. For our example, suppose the engineer is interested in the k-factors
for two-sided tolerance intervals for the set of confidence levels 1− α ∈ {0.90, 0.95, 0.99}, the set of
content levels P ∈ {0.90, 0.95, 0.99}, and sample sizes n = 10, 11, . . . , 20. Then, we can specify the
respective arguments in the norm.OC() function while leaving the k argument at its default NULL value:

norm.OC(k = NULL, P = c(0.90, 0.95, 0.99), alpha=c(0.01, 0.05, 0.10),
n = 10:20, side = 2, method = "EXACT", m = 25)

The resulting plot is given in Figure 5. This OC-curve allows the user to assess the width of the
tolerance interval as n changes for the given (1− α, P) tolerance levels.

Summary

tolerance is the only R package devoted to the calculation of tolerance intervals and regions. Since its
earlier versions (Young, 2010), there have been many updates to the package that include additional
parametric tolerance interval procedures, improved nonparametric tolerance interval procedures, and
some multivariate tolerance region procedures.
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Figure 5: OC curves for the k-factor when given the set of confidence levels 1− α ∈ {0.90, 0.95, 0.99},
the set of content levels P ∈ {0.90, 0.95, 0.99}, and sample sizes n = 10, 11, . . . , 20.

In this paper, we focused on the varied capabilities of tolerance pertaining to tolerance intervals
for the normal distribution. Many of these procedures have been added to the package since the
discussion presented in Young (2010). We discussed the calculation of one-sided normal tolerance
limits, exact and equal-tailed normal tolerance intervals, Bayesian normal tolerance intervals, tolerance
intervals for fixed-effects ANOVA, and sample size determination strategies. We also introduced novel
operating characteristic (OC) curves that illustrate how the k-factor, sample size, confidence level, and
content level each change relative to one another. As pointed out throughout our discussion, all of
these procedures have a large degree of utility in a variety of practical contexts.

The tolerance package continues to expand the functions available for constructing tolerance
intervals and regions. We note that some of the updates over the years have been a direct result of
requests by end users of the package. Thus, one can expect additional capabilities in future versions of
tolerance, both for the normal setting and other data settings.

Bibliography

D. Adler and D. Murdoch. rgl: 3D visualization device system (OpenGL), 2014. URL http://CRAN.R-
project.org/package=rgl. R package version 0.95.1201. [p200]

J. Aitchison. Bayesian tolerance regions. Journal of the Royal Statistical Society, Series B, 26(2):161–175,
1964. [p203]

T. Burr and A. Gavron. Pass/fail criterion for a simple radiation portal monitor test. Modern Instru-
mentation, 1(3):27–33, 2010. [p200]

G. Csardi. cranlogs: Download Logs from the ’RStudio’ ’CRAN’ Mirror, 2015. URL http://CRAN.R-
project.org/package=cranlogs. R package version 2.1.0. [p200]

Environmental Protection Agency. Data Quality Assessment: Statistical Methods for Practitioners. U.S.
Environmental Protection Agency, Washington, DC, USA, 2006. URL http://www.epa.gov/sites/
production/files/2015-08/documents/g9s-final.pdf. [p200]

G. D. Faulkenberry and D. L. Weeks. Sample size determination for tolerance limits. Technometrics, 10
(2):343–348, 1968. [p206, 207, 208]

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data Analysis.
CRC Press, Boca Raton, FL, 3rd edition, 2013. [p204]

I. Guttman. Statistical Tolerance Regions: Classical and Bayesian. Charles Griffin and Company, London,
1970. [p200, 203]

S. D. Hafner, C. Howard, R. E. Muck, R. B. Franco, F. Montes, P. G. Green, F. Mitloehner, S. L. Trabue,
and C. A. Rotz. Emission of volatile organic compounds from silage: Compounds, sources, and
implications. Atmospheric Environment, 77:827–839, 2013. [p200]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=rgl
http://CRAN.R-project.org/package=rgl
http://CRAN.R-project.org/package=cranlogs
http://CRAN.R-project.org/package=cranlogs
http://www.epa.gov/sites/production/files/2015-08/documents/g9s-final.pdf
http://www.epa.gov/sites/production/files/2015-08/documents/g9s-final.pdf


CONTRIBUTED RESEARCH ARTICLES 211

G. J. Hahn and W. Q. Meeker. Statistical Intervals: A Guide for Practitioners. Wiley-Interscience, New
York, NY, 1991. [p200]

I. J. Hall. Approximate one-sided tolerance limits for the difference or sum of two independent normal
variates. Journal of Quality Technology, 16(1):15–19, 1984. [p200]

M. M. Heck, M. Retz, M. Bandu, M. Souchay, E. Vitzthum, G. Weirich, M. Mollenhauer, T. Schuster,
M. Autenrieth, H. Kübler, T. Maurer, M. Thalgott, K. Herkommer, J. E. Gschwend, and R. Nawroth.
Topography of lymph node metastases in prostate cancer patients undergoing radical prostatectomy
and extended lymphadenectomy: Results of a combined molecular and histopathologic mapping
study. European Urology, 66(2):222–229, 2014. [p200]

International Atomic Energy Agency. Safety Report Series No. 52: Best Estimate Safety Analysis for
Nuclear Plants: Uncertainty Evaluation. IAEA Publishing Section, Vienna, Austria, 2008. URL
http://www-pub.iaea.org/MTCD/publications/PDF/Pub1306_web.pdf. [p200]

International Organization for Standardization. ISO 16269-6: Statistical Interpretation of Data – Part 6:
Determination of Statistical Tolerance Intervals. International Organization for Standardization, Geneva,
Switzerland, 2014. URL http://www.iso.org/iso/catalogue_detail.htm?csnumber=57191. [p200]

W. A. Jensen. Approximations of tolerance intervals for normally distributed data. Quality and
Reliability Engineering International, 25(5):571–580, 2009. [p202]

K. Krishnamoorthy and T. Mathew. Comparison of approximation methods for computing tolerance
factors for a multivariate normal population. Technometrics, 41(3):234–249, 1999. [p200]

K. Krishnamoorthy and T. Mathew. Statistical Tolerance Regions: Theory, Applications, and Computation.
Wiley, Hoboken, NJ, 2009. [p200, 202, 203, 204]

K. Krishnamoorthy and S. Mondal. Improved tolerance factors for multivariate normal distributions.
Communications in Statistics - Simulation and Computation, 35(2):461–478, 2006. [p200]

T. Mathew and D. S. Young. Fiducial-based tolerance intervals for some discrete distributions. Compu-
tational Statistics and Data Analysis, 61:38–49, 2013. [p200]

M. Okabe and K. Ito. Color Universial Design (CUD) - how to make figures and presentations that are
friendly to colorblind people, 2002. URL http://jfly.iam.u-tokyo.ac.jp/color/. [p208]

D. B. Owen. Control of percentages in both tails of the normal distribution. Technometrics, 6(4):377–387,
1964. [p202]

C. Pasquaretta, G. Bogliani, L. Ranghetti, C. Ferrari, and A. von Hardenberg. The animal locator: A
new method for accurate and fast collection of animal locations for visible species. Wildlife Biology,
18(2):202–214, 2012. [p200]

RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA, 2015.
URL http://www.rstudio.com/. [p200]

L. H. C. Tippett. Technological Applications of Statistics. Wiley, New York, NY, 1950. [p205]

K. Van der Borght, G. Verbeke, and H. van Vlijmen. Multi-model inference using mixed effects from a
linear regression based genetic algorithm. BMC Bioinformatics, 15(88):1–11, 2014. [p200]

A. Wald. An extension of Wilks’ method for setting tolerance limits. Annals of Mathematical Statistics,
14(1):45–55, 1943. [p200]

S. S. Wilks. Determination of sample sizes for setting tolerance limits. The Annals of Mathematical
Statistics, 12(1):91–96, 1941. [p200]

S. S. Wilks. Statistical prediction with special reference to the problem of tolerance limits. The Annals of
Mathematical Statistics, 13(4):400–409, 1942. [p200]

D. S. Young. tolerance: An R package for estimating tolerance intervals. Journal of Statistical Software,
36(5):1–39, 2010. URL http://www.jstatsoft.org/v36/i05/. [p200, 201, 202, 209, 210]

D. S. Young. Computing tolerance intervals and regions using r. In M. B. Rao and C. R. Rao, editors,
Handbook of Statistics, Volume 32: Computational Statistics with R, pages 309–338. North Holland -
Elsevier, Amsterdam, Netherlands, 2014. [p200, 201]

D. S. Young and T. Mathew. Ratio edits based on statistical tolerance intervals. Journal of Official
Statistics, 31(1):77–100, 2015. [p200]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://www-pub.iaea.org/MTCD/publications/PDF/Pub1306_web.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=57191
http://jfly.iam.u-tokyo.ac.jp/color/
http://www.rstudio.com/
http://www.jstatsoft.org/v36/i05/


CONTRIBUTED RESEARCH ARTICLES 212

D. S. Young, C. M. Gordon, S. Zhu, and B. D. Olin. Sample size determination strategies for normal
tolerance intervals using historical data. Quality Engineering, 28(3):335–349, 2016. [p207, 208]

Derek S. Young
Department of Statistics
University of Kentucky
323 Multidisciplinary Science Building
725 Rose Street
Lexington, KY 40536-0082 USA
derek.young@uky.edu

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

mailto:derek.young@uky.edu

