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easyROC: An Interactive Web-tool for
ROC Curve Analysis Using R Language
Environment
by Dincer Goksuluk, Selcuk Korkmaz, Gokmen Zararsiz and A. Ergun Karaagaoglu

Abstract ROC curve analysis is a fundamental tool for evaluating the performance of a marker in a
number of research areas, e.g., biomedicine, bioinformatics, engineering etc., and is frequently used
for discriminating cases from controls. There are a number of analysis tools which are used to guide
researchers through their analysis. Some of these tools are commercial and provide basic methods
for ROC curve analysis while others offer advanced analysis techniques and a command-based user
interface, such as the R environment. The R environmentg includes comprehensive tools for ROC curve
analysis; however, using a command-based interface might be challenging and time consuming when a
quick evaluation is desired; especially for non-R users, physicians etc. Hence, a quick, comprehensive,
free and easy-to-use analysis tool is required. For this purpose, we developed a user-friendly web-
tool based on the R language. This tool provides ROC statistics, graphical tools, optimal cutpoint
calculation, comparison of several markers, and sample size estimation to support researchers in their
decisions without writing R codes. easyROC can be used via any device with an internet connection
independently of the operating system. The web interface of easyROC is constructed with the R
package shiny. This tool is freely available through www.biosoft.hacettepe.edu.tr/easyROC.

Introduction

The receiver operating characteristics (ROC) curve is a graphical approach used to visualize and assess
the performance of a binary classifier system. This unique feature of ROC curve analysis makes it
one of the most extensively used methods in various fields of science. It was originally developed
during World War II to detect whether a signal on the radar screen represented an object or a noise
(Egan, 1975; Swets et al., 2000; Fan et al., 2006) and today it is widely used in medicine, radiology,
biometrics, bioinformatics and various applications of machine learning and data mining research
(Fawcett, 2006; Sonego et al., 2008). ROC curve analysis can be implemented for several reasons: (i)
to assess the overall performance of a classifier using several performance measures, (ii) to compare
the performances of classifiers, and (iii) to determine the optimal cutpoint for a given classifier,
diagnostic test or marker/biomarker. For simplicity of language, we will use the terms classifier
and diagnostic test throughout the manuscript. The performance of a classifier can be summarized
using the point estimations and confidence intervals of several basic performance measures such as
sensitivity, specificity or combined measures of sensitivity and specificity such as likelihood ratios,
accuracy, area under the ROC curve (AUC), etc. A ROC curve is basically a plot of a classifier’s true
positive rates (TPR: sensitivity) versus false positive rates (FPR: 1− specificity) where each point is
generated by a different threshold value, i.e., cutpoint. For the simplicity of equations, we will use the
terms TPR and FPR in the equations. One of the major tasks is to determine the optimum cutpoint
value which corresponds to the reasonable TPR and FPR values. The determination of an optimum
value is usually a trade-off between performance measures. The ROC curve is used to find the optimal
cutpoint located on the curve which is the closest point to the top-left corner. However, finding the
“optimum” cutpoint is not always based on maximizing the sensitivity and specificity. It is reasonable
to select an optimum cutpoint value by regarding alternative selection criteria such as maximization
of predictive values, diagnostic odds ratio, etc.

There are a number of commercial (e.g., IBM SPSS, MedCalc, Stata, etc.) and open-source (R)
software packages which are used to guide researchers through their ROC curve analysis. Some
of these software packages provide basic features for ROC curve analysis while others, such as R,
offer advanced features but also a command-based user interface. The R environment includes
comprehensive tools for ROC curve analysis, such as ROCR (Sing et al., 2005), pROC (Robin et al.,
2011), ROC (Carey and Redestig, 2015) and OptimalCutpoints (Lopez-Raton et al., 2014).

All of the R packages mentioned above perform ROC curve analysis using the related package
functions. Although these packages are comprehensive and flexible, they require a good program-
ming knowledge of the R language. However, working with a command-based interface might be
challenging and time consuming when a quick evaluation is desired especially for non-R users, such
as physicians and other health care professionalists. Fortunately, an R package shiny (Chang et al.,
2015) allows users to create interactive web-tools with a nicely designed, user-friendly and easy-to-use
user interface. In this context, we developed a web-tool, easyROC, for ROC curve analysis. The
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user interface of easyROC is constructed via shiny and HTML codes. easyROC combines several R
packages for ROC curve analysis. This tool has three main parts including ROC statistics, cutpoint
calculations and sample size estimation. Detailed information about easyROC and the related methods
together with mathematical background are given in Section Material and methods. easyROC is
freely available at http://www.biosoft.hacettepe.edu.tr/easyROC and all the source codes are on
GitHub1.

Material and methods

Theory behind ROC analysis

Let us consider the binary classification problem where X denotes the value of the classifier for cases
and controls. Consider the values of controls distributed as X0 ∼ G0(.) and cases as X1 ∼ G1(.).
Let Ŷ = {0, 1} be the estimated class labels of the subjects for a given threshold value c as given in
Equation 1.

Ŷ =

{
1, if X ≥ c
0, if X < c

(1)

Parametric ROC curve. The parametric ROC curve is plotted using the FPR (1− Specificity) and
TPR (Sensitivity) values given in Equation 2 for all possible cutpoints of a classifier.

FPRc =P (X ≥ c | Y = 0) =
∫ ∞

c
G0(x)dx

TPRc =P (X ≥ c | Y = 1) =
∫ ∞

c
G1(x)dx (2)

When the distribution of the classifier is Normal, the parametric ROC curve is fitted using binormal
ROC properties. Suppose X0 ∼ Normal(µ0, σ2

0 ) and X1 ∼ Normal(µ1, σ2
1 ). The ROC curve is the

function of FPRs; as in Equation 3.

ROC(t) = Φ
(

a + bΦ−1 (t)
)

, (3)

where a = (µ1 − µ0)/σ1, b = σ0/σ1, t = FPRc and Φ is the cumulative distribution function of
the standard normal distribution (Zhou et al., 2002). The area under the curve is calculated using
Equation 4.

AUC =

1∫
0

ROC(t)dt = Φ
(

a√
1 + b2

)
(4)

Fitting the ROC curve by using Equation 3 has two major drawbacks: (i) incorrect ROC curves
may arise when the underlying distribution is not normal, (ii) ROC lines are improper when within
class variations are not similar, i.e., heteroscedasticity. An example of improper ROC curves is given
in Figure 1. To overcome these problems, one may nonparametrically fit the ROC curve without
considering distributional assumptions or use parametric/semiparametric alternatives to the binormal
model (Gönen and Heller, 2010).

Nonparametric ROC curve. Consider the estimated class labels in Equation 1. The FPR and TPR
given in Equation 2 are estimated; as given in Equation 5.

1http://www.github.com/dncR/easyROC
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Figure 1: Parametric ROC curves.

F̂PRc =
1

n0

n0

∑
j=1

I
[

X0j ≥ c
]

T̂PRc =
1

n1

n1

∑
i=1

I [ X1i ≥ c ] (5)

The empirical ROC curve is plotted using F̂PRc and T̂PRc and the area under the curve, given
in Equation 6, is estimated by summing the trapezoids enclosed by the points of the ROC curve.
The nonparametric AUC is related to the Mann-Whitney statistic of the rank-sum test (Bamber, 1975;
Hanley and McNeil, 1982).

ÂUC =
1

n0n1

n0

∑
j=1

n1

∑
i=1

Ψ
(

X1i, X0j

)
, (6)

where Ψ = 0 if X0 > X1, Ψ = 1 if X1 > X0 and Ψ = 1/2 if X0 = X1.

Performance measures and optimal cutpoints. The predicted and actual classes, i.e., gold standard
test results, can be shown with a 2× 2 cross table; as seen in Table 1. The performance of a classifier is
basically measured using the total proportion of true positive (TP) and true negative (TN) cases. By
using Table 1, several performance measures are also calculated. Among these performance measures,
we focused on the measures given in Table 1 which are widely used and well-known. The optimal
cutpoint is determined by using one or more performance measures together. An ideal cutpoint, for
example, might be selected by maximizing the sensitivity and specificity of a classifier. A classifier
with perfect discriminative ability would have sensitivity and specificity measures equal to 1. Hence,
the area under the curve for a perfect separation will be equal to 1.

Although researchers are usually interested in the overall diagnostic performance of a classifier,
it is sometimes useful to focus on a portion of the ROC curve to compute the partial AUCs (pAUC).
pAUC is an extension of the AUC measure which considers the trapezoids within a given interval of
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Predicted Labels Actual Labels Total
Positive (Y = 1) Negative (Y = 0)

Positive (Ŷ = 1) TP FP TP + FP
Negative (Ŷ = 0) FN TN FN + TN

Total TP + FN FP + TN n
TP: True positive
FP: False positive
TN: True negative
FN: False negative
NPV: Negative predictive value
PPV: Positive predictive value
PLR: Positive likelihood ratio
NLR: Negative likelihood ratio

Sensitivity = TP/(TP + FN)
Specificity = TN/(FP + TN)
PPV = TP/(TP + FP)
NPV = TN/(TN + FN)
PLR = Sensitivity/(1− Speci f icity)
NLR = (1− Sensitivity)/Speci f icity

Table 1: A 2× 2 classification table and performance measures.

sensitivity and/or specificity. Let us consider the pAUC where specificity (or sensitivity) lies within
the interval [t1, t2]. The pAUC is calculated by taking the integral (parametric) as given in Equation 7
or by summing the trapezoids within the interval (nonparametric).

pAUC(t1, t2) =

t2∫
t1

ROC(x)dx (7)

As the interval [t1, t2] converges to [0, 1], the pAUC will converge to the overall AUC. The best classifier
can be selected using either AUC or pAUC values.

Identification of the optimal cutpoint is an important task to avoid incorrect conclusions. Various
methods are available in the literature to determine the optimal cutpoint. Most of these methods are
based on the sensitivity and specificity measures. However, other methods are also available based on
cost-benefit, prevalence, predictive values and diagnostic likelihood ratios. Two popular methods are,
for example, the Youden index and the minimization of the distance of the point on the curve to the
top-left corner, i.e., the point indicating perfect discrimination.

Youden(c) = max{TPRc − FPRc} (8)

Table 1 gives the list of optimal cutpoint methods we consider in easyROC. For detailed information
and mathematical background, see Lopez-Raton et al. (2014).

Statistical inference. A common subject of interest in ROC analysis is to compare the performances
of several classifiers to select the best one to discriminate cases from controls. For a classifier with
random chance discrimination ability, the equation TPR = FPR holds. In that case, the area under the
curve is 0.50. Hence, the discrimination ability of a classifier is mostly tested against the value 0.50.

H0 : AUC = 0.50

H1 : AUC 6= 0.50

Under the large sample theory, the significance of AUC is tested using the Wald test statistic as
given in Equation 9.

z =
ÂUC− AUC

Var(ÂUC)1/2
(9)

When the parametric approach is used, the variance of AUC is estimated using Equation 10 (McClish,
1989; Zhou et al., 2002).

Var
(

ÂUC
)
= f 2Var(â) + g2Var(b̂) + 2 f g Cov(â, b̂), (10)
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where

f =
e−a2/2(1+b2)√

2π(1 + b2)
and g = − abe−a/2(1+b2)√

2π(1 + b2)3
(11)

and the estimated variances for a and b as follows:

V̂ar(â) =
n1(â2 + 2) + 2n0b̂2

2n0n1
,

V̂ar(b̂) =
(n1 + n0)b̂2

2n0n1
, (12)

Ĉov(â, b̂) =
âb̂

2n0
.

The estimated values of a and b are used in Equation 11. A number of methods have been proposed
for the estimation of the variance of AUC when the nonparametric approach is used. In this paper, we
will focus on the methods described below:

1. Mann-Whitney version of rank-sum test:
Hanley and McNeil (1982) propose the variance estimation given in Equation 13. This method
estimates the variance using an approximation based on exponential distribution as

Var
(

ÂUC
)
=

1
n0n1

{
AUC(1− AUC) + (n1 − 1)(Q1 − AUC2)

+(n0 − 1)(Q2 − AUC2)
}

, (13)

where Q1 = ÂUC/(2− ÂUC) and Q2 = 2ÂUC
2
/(1 + ÂUC). The Mann-Whitney version

might underestimate the variance when the area is nearly 0.5 and overestimate it when the area
is close to 1 (Hanley and McNeil, 1982; Hanley and Hajian-Tilaki, 1997; Obuchowski, 1994). This
estimate is mostly used in sample-size estimation.

2. DeLong et al. (1988)’s estimate:
Since the exponential distribution approximation in Equation 13 gives biased variance estimates,
DeLong et al. (1988) suggest an alternative method which is free from distributional assumptions.
Define the components T1i for the ith subject from cases and T0j for the jth subject from controls
as follows:

ψ (T1i) =
1

n0

n0

∑
j=1

Ψ
(

X1i, X0j

)
i = 1, 2, . . . , n1

ψ
(

T0j

)
=

1
n1

n1

∑
i=1

Ψ
(

X1i, X0j

)
j = 1, 2, . . . , n0 (14)

Using the Equation 14 the variance of AUC is estimated as

Var
(

ÂUC
)
=

1
n1

S2
T1
+

1
n0

S2
T0

, (15)

where S2
T1

and S2
T0

are variance estimates of T1 and T0 as in Equation 16.

S2
Ti
=

1
ni − 1

ni

∑
j=1

[
ψ
(

Tij

)
− ÂUC

]2
i = 0, 1 (16)

3. Normal approximation of binomial proportion:
Another alternative for variance estimation is to use binomial approximation under the large
sample theory, as given in Equation 17. For small samples, this method may give biased
estimates.
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Var(ÂUC) =
AUC(1− AUC)

n0 + n1
(17)

The estimated variance derived from one of the methods described above is used to construct the
confidence intervals of the AUC. A common method is to use large sample approximation as below:

ÂUC− z1−α/2Var(ÂUC)1/2 < AUC < ÂUC + z1−α/2Var(ÂUC)1/2. (18)

When the area under the curve is close to 1 or the sample size is relatively small, the large sample
approximation in Equation 18 produces improper confidence intervals since the upper limit exceeds 1.
To solve this problem, Agresti and Coull (1998) proposed the score confidence interval that guarantees the
upper limit is less than or equal to 1. Another alternative is to construct the binomial exact confidence
intervals given in Equation 19 using the relationship between binomial and F-distribution (Morisette
and Khorram, 1998)

1

1 +
n− x + 1

x
F2(n−x+1),2x,α/2

≤ p ≤

x + 1
n− x

F2(x+1),2(n−x),α/2

1 +
x + 1
n− x

F2(x+1),2(n−x),α/2

, (19)

where p = x/n is the binomial proportion such as sensitivity, specificity and AUC.

Sample size calculation. In most studies, determining the required sample size is an important step
for the research to be able to detect significant results. Sample size determination is required for both
constructing the confidence interval of the unknown population parameter and testing a research
hypothesis. Obuchowski (1998) reviewed sample size determination for several study designs. In
this paper, we cover the sample size determination for three types of studies based on AUCs. In
addition, the following sample size calculations can be extended to other performance measures such
as sensitivity, specificity, etc.

The variance estimates of AUCs can be obtained using one of the Equations 13, 15 and 17. While
Equation 13 is a good approximation for a variety of underlying distributions, the estimated variance
will be underestimated if the test results are in a discrete rating format. To overcome this problem,
Obuchowski (1998) and Obuchowski et al. (2004) suggest an alternative variance estimation method
for rating data using the variance function as given in Equation 20 which is based on an underlying
binormal distribution. In this section, we focused on sample size calculation for discrete scale data.
However, the same formulas are valid for continuous scale diagnostic tests since the only difference is
about estimating the variance of diagnostic test accuracy.

V(ÂUC) = 0.0099 e−a2/2 ×
[
(5a2 + 8) + (a2 + 8)/R

]
, (20)

where a =
√

2 Φ−1(AUC) and R = n0/n1 is the allocation ratio, i.e., the ratio of the number of controls
to the number of cases. The estimated variance is then Var(ÂUC) = V(ÂUC)/n1. The total sample
size is equal to n = n1(1 + R). One of the variance estimations from Equations 13, 15, 17 and 20 is
used for the sample size calculations. The selection of the appropriate variance estimation method is
based on the variable type of the test results and underlying distributions.

1. Hypothesis test to determine the AUC of a single classifier:
In most of the studies with a single classifier, the aim of the study is to determine whether the
diagnostic test performs well for discriminating diseased patients from controls. Consider the
hypotheses H0 : AUC = 0.5 versus H1 : AUC > 0.5 (i.e, one-sided test). The required number
of cases is determined using Equation 21 (Obuchowski et al., 2004).
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n1 =

[
z1−α

√
Var0(ÂUC) + z1−β

√
Var1(ÂUC)

]2

(AUC− 0.5)2

=

[
z1−α

√
0.0792× (1 + 1/R) + z1−β

√
Var1(ÂUC)

]2

(AUC− 0.5)2 , (21)

where Var0 and Var1 are the variance estimations under the null and alternative hypotheses
using Equation 20. z1−α and z1−β are lower-tailed percentile values of the cumulative standard
normal distribution. Finally, the total sample size is obtained using n = n1 + n1 × R.

2. Comparing the AUCs of two classifiers:
When the aim of a study is to compare two classifiers, one may consider the hypotheses
H0 : AUC1 = AUC2 versus H1 : AUC1 6= AUC2. The two classifiers will be equally performing
under the null hypothesis. The required number of cases is calculated using Equation 22.

n1 =

[
z1−α/2

√
Var0(ÂUC1 − ÂUC2) + z1−β

√
Var1(ÂUC1 − ÂUC2)

]2

(AUC1 − AUC2)2 , (22)

where Var0 and Var1 are the variance estimations under the null and alternative hypotheses; as
given in Equation 23 (Zhou et al., 2002; Obuchowski et al., 2004).

Var(ÂUC1 − ÂUC2) = Var(ÂUC1) + Var(ÂUC2)− 2Cov(ÂUC1, ÂUC2) (23)

The total sample size is calculated using the allocation ratio. When two classifiers are performed
on the same subjects, the design will be paired yielding the covariance term to be a nonzero
(usually positive) quantity. However, the covariance term will be zero (i.e., independent
classifiers) if each test is performed on different subjects. Detailed information on the calculation
of the covariance term can be found in Zhou et al. (2002).

3. Non-inferiority of a new classifier to a standard one:
In addition to comparing two classifiers, some studies are designed to explore the performance
of a new classifier to that of a standard one. The new classifier should perform as well as but
not necessarily better than the standard test (Obuchowski et al., 2004). The hypotheses are
H0 : AUCstd − AUCnew ≥ ∆ versus H1 : AUCstd − AUCnew < ∆. The required number of cases
is calculated using Equation 24

n1 =
(z1−α + z1−β)

2 Var1(ÂUCstd − ÂUCnew)

(AUCstd − AUCnew − ∆)2 , (24)

where ∆ is the non-inferiority margin, i.e., the minimum acceptable difference between the
AUCs of the standard and new classifiers.

Current ROC analysis tools and easyROC

ROC curve analysis is one of the standard procedures included in most statistical analysis tools such as
IBM SPSS, Stata, MedCalc and R. Each tool offers different features within ROC curve analysis. Among
commercial software packages, IBM SPSS, which is one of the most widely used commercial software
packages, plots the ROC curve and computes some basic statistics such as AUC and its standard error,
confidence interval and statistical significance. However, it does not provide any method for sample
size calculation or cutpoint determination. Stata offers a variety of calculations for ROC curve analysis
including partial AUC, multiple comparisons of ROC curves, optimal cutpoint determination using
the Youden index and several performance measures. Another commercial software alternative for
ROC curve analysis is MedCalc, which has comprehensive features compared to most of the other
available commercial software packages and is especially developed for biomedical research. MedCalc
provides sample size estimation for a single diagnostic test, but it does not have an option for pAUC
calculation.

Unlike commercial software packages, R is an open source and free software package that includes
all the features of commercial software packages and more through several packages such as ROC,
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IBM SPSS Stata MedCalc ROC ROCR pROC easyROC

Plots Yes Yes Yes* Yes Yes* Yes* Yes*
Conf. intervals Yes Yes* Yes Yes Yes Yes* Yes*
pAUC No Yes No Yes Yes Yes* Yes*
Statistical tests No Yes No Yes Yes Yes* Yes*
Diagnostic measures No Yes Yes No Yes* Yes Yes
Multiple comp. No Yes Yes* No No Yes* Yes
Cutpoints No Yes Yes No No Yes Yes*
Sample size No No Yes No No Yes Yes*
Free license No No No Yes* Yes* Yes* Yes*
Open source No No No Yes* Yes* Yes* Yes*
Web-tool access No No No No No No Yes*
User interface Yes Yes* Yes* No No Yes* Yes*

* Comprehensive ones.

Table 2: Comparison of easyROC with other tools.

ROCR, pROC and OptimalCutpoints. ROC is an R/Bioconductor package which can plot the
ROC curve and calculate the AUC. It also calculates pAUCs based on false positive rates. This
package is originally developed to be used for the ROC analysis with DNA microarrays. ROCR is
a comprehensive R package providing over 25 different performance measures (based on package
version 1.0-7). It allows users to create two dimensional performance curves. Although ROCR is
one of the most comprehensive packages for assessing the performance measures, it provides limited
options to select the optimum cutpoint. One may use any of the two-dimensional performance graphs
to determine the optimal cutpoint graphically. It computes the AUC and its confidence interval,
however, it does not provide a statistical test for performance measures.

pROC, on the other hand, offers more comprehensive and flexible features than its free and
commercial counterparts. It performs statistical tests for the comparison of ROC curves using DeLong
et al. (1988), Venkatraman and Begg (1996) and Venkatraman (2000) for AUC, and Hanley and McNeil
(1983) and Pepe et al. (2009) for both AUC and pAUC. It also calculates the confidence intervals for the
sensitivity, specificity, ROC curves, pAUC, and smoothed ROC curves. The confidence intervals are
computed using DeLong et al. (1988)’s method for AUCs and using bootstrap for pAUCs, sensitivity
and specificity at given threshold(s). Bootstrap confidence intervals and pAUC regions are shown in
the ROC curve plot. Several diagnostic measures, such as sensitivity, specificity, negative and positive
predictive values, are computed for a given threshold. Like ROCR, pROC also offers limited features
for detecting the optimal cutpoint. Two methods, i.e., Youden index and closest point to the top-left
corner, are available to find the optimal cutpoint. In addition, pROC is an alternative among the ROC
packages on CRAN to find the required sample size for a single diagnostic test or the comparison of
two diagnostic tests. Two versions of pROC are available: (i) for the R programming language and (ii)
with a graphical user interface for the S-PLUS statistical software package.

There are several packages providing optimal cutpoint calculations through R. OptimalCutpoints
is a sophisticated R package specifically developed to determine the optimal cutpoint of a test or
biomarker (Lopez-Raton et al., 2014). It includes 34 different cutpoint calculation methods based on
sensitivity/specificity measures, cost-benefit analysis, predictive values, diagnostic likelihood ratios,
prevalences and p-values. A brief description of these methods is given in Supplementary 1. Although
these R packages, especially pROC, seem to be a perfect match for ROC curve analysis, none of them
has a graphical user interface and all require coding knowledge, which makes them hard to use;
especially for non-R users.

Another R package worth mentioning is plotROC (Sachs, 2016) which is available on CRAN and
also for shiny platforms. plotROC is a flexible and sophisticated R package which can be used to
create nice-looking and interactive ROC graphs. Unlike the packages described above, plotROC has a
web-based user interface which is very useful for non-R users. Researchers can use its web service to
create ROC graphics and download the figures to their local computer. However, it does not provide
any statistical tests or sample size calculations.

easyROC aims to extend the features of several ROC packages in R and allows researchers to
conduct their ROC curve analysis through a single and easy-to-use interface without writing any R
code. This tool is a web-based application created via shiny and HTML programming. easyROC
makes use of the R packages plyr (Wickham, 2011), pROC and OptimalCutpoints for conducting ROC
analysis. plyr is used for manipulating data while pROC is used for estimation and hypothesis testing
of pAUCs. easyROC has comprehensive options for ROC curve analysis which other tools do not have
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Modules (Tab panels) Features

ROC curve • Parametric/Nonparametric ROC
• AUC, pAUC

– Confidence interval (Exact and Asymptotic)
– Significance test (Wald)

• Standard error estimation
– DeLong (1988)
– Mann-Whitney
– Binomial approximation

• Multiple comparison of AUCs
– Bonferroni
– False discovery rate

• ROC plot (customizable)

Cutpoints • 34 different methods for optimum cutpoints
(Lopez-Raton et al., 2014)

• Performance measures with confidence intervals
– Exact CIs
– Asymptotic CIs

• Cutpoint graphs (fully customizable)
– ROC curve
– Sensitivity & specificity plot
– Density plot
– Scatter plot

Sample size • Single diagnostic test
• Comparison of two diagnostic tests
• Noninferiority of a new test to a standard test

Table 3: Features of easyROC.

(or partially shares some features). The ROC curve can be estimated using parametric or nonparametric
approaches. It offers four different methods for the calculation of the standard error and confidence
interval of the AUC. Researchers can calculate the pAUCs based on sensitivity and specificity, if
necessary. One may perform pairwise comparisons to find the classifiers which have similar or
different discrimination ability. However, the pairwise comparison should be carried out carefully
since the type I error increases with the increasing number of comparisons. easyROC offers multiple
test corrections in order to keep type I error at a given level. Multiple comparisons of diagnostic tests
can be applied using either Bonferroni or false discovery rate correction. Furthermore, the optimal
cutpoints are determined using the methods from OptimalCutpoints and the corresponding measures
at a given cutpoint, including sensitivity, specificity, positive and negative predictive values, and
positive and negative likelihood ratios are also returned. One can determine the desired sample size
for ROC curve analysis using this tool for three different cases. All these comprehensive features are
accessible through a graphical user interface, which makes the analysis process easier for all users. The
comparison with other tools is given in Table 2 and the features of each module are given in Table 3.

Results

Case study on non-alcoholic fatty liver disease

To illustrate our application, we used the non-alcoholic fatty liver disease (NAFLD) dataset of Celik-
bilek et al. (2014). This study was designed to identify the non-invasive miRNA biomarkers of NAFLD.
The authors obtained the serum samples of 20 healthy and 20 NAFLD observations and quantified
the expression levels of eight miRNAs using quantitative Real-Time PCR (qPCR) technology. After
performing the necessary statistical analysis, the authors revealed that miR-197, miR-146b, miR-181d
and miR-99a may be potential biomarkers in identifying NAFLD. The normalized expression values
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Figure 2: Uploading data into easyROC.

of these miRNAs and the class information (the column named “Group”, where 0 refers to controls
and 1 refers to cases) of each observation are given in Supplementary 2. This file can be directly
used as input to the easyROC web-tool and users can arrange their own data based on this file. Two
example datasets, Mayo and PBC (Murtaugh et al., 1994), are also available in the web-tool for users
to practice the application. In our example, the aim is to investigate the discriminative performances
of each miRNA, compare each other and identify the optimal cutpoints for each miRNA in identifying
NAFLD.

Implementation of easyROC web-tool

The data are uploaded to the easyROC interface using the Data upload tab (Figure 2). easyROC accepts
a delimited text file with variable names in the first row. The status variable is also set by the same tab
panel. easyROC automatically detects the variable names and exports them into related fields. When
data are correctly uploaded, researchers may proceed with ROC curve analysis, cutpoint estimations
or sample size calculations. The area under the curve, confidence intervals and significance tests for
AUC, multiple comparisons (if multiple markers are selected) and pAUCs are calculated with the
ROC curve tab (Figures 3 and 4). The ROC curve is estimated using the nonparametric approach. The
advanced option allows researchers to select a method for standard error estimation and confidence
intervals. easyROC selects the DeLong et al. (1988) method by default.

Here, we select mir197, mir146b, mir181d and mir99a miRNAs to assess their performances and
to compare them with each other in identifying NAFLD. Since the expression levels of all miRNAs
are underexpressed in the NAFLD group, lower values will indicate higher risk and therefore we
should uncheck the “Higher values indicate higher risks” box. Using DeLong et al. (1988) standard
error estimations, we obtained the ROC curves for each miRNA biomarker and AUC values as 0.86
(0.75–0.97), 0.77 (0.61–0.92), 0.76 (0.60–0.93) and 0.75 (0.59–0.91) for mir181d, mir197, mir99a and
mir146b, respectively. The results revealed that all miRNAs’ predictive performances are significant
and higher than random chance in identifying NAFLD (Figure 3). By controlling the type I error using
Bonferroni correction, all pairwise comparisons showed non-significant results (p > 0.05). This may
be due to the small sample size of the data. Increasing the sample size, thus the statistical power of the
test, may concretize the predictive ability of mir181d as compared to other miRNAs.

Finding a suitable cutpoint is one of the aims of ROC curve analysis. We made use of the
OptimalCutPoints package from R (Lopez-Raton et al., 2014), which has 34 different methods, to
calculate cutpoints for each marker. An optimal cutpoint can be computed via the Cut point tab
by selecting a marker and a method. Then, the application will calculate an optimal cutpoint and
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Figure 3: ROC curve analysis results.

Figure 4: Multiple comparison of the diagnostic tests.

performance measures such as sensitivity, specificity, positive and negative predictive value, and
positive and negative likelihood ratio based on the corresponding cutpoint value. The “ROC01”
method, for example, determines the optimal cutpoint as −0.12977 for mir181d. Using this cutpoint,
a new test observation with a mir181d expression level lower than this value can be assigned as an

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 224

Figure 5: Determination of optimal cutpoint(s).

NAFLD patient. Based on the identified cutpoint, we obtained statistical diagnostic measures with
95% confidence intervals (Figure 5). We obtain a sensitivity of 0.75 (0.51–0.91) and specificity of 0.80
(0.56–0.94). If users select the “Include plots” option, four plots will appear under the statistics results.
The first plot in the upper-left corner displays the optimal cutpoint on the ROC curve. Users can
observe the change of sensitivity and specificity measures based on the value of the marker on the plot
placed in the upper-right corner. The density and scatter of the expression values in each group are
displayed in the bottom-left and bottom-right corners. The plots can be modified through the “More
plot options” section. All the results and figures can be downloaded using the related “Download”
buttons in each tab panel.

Conclusion

Since ROC curve analysis is one of the principal statistical analysis methods, it is used by a wide
range of the scientific community. Both commercial and free software tools are available for users to
perform it. Generally, easy-to-use and nicely-designed interfaces are offered by commercial software
packages whereas flexible and comprehensive tools are available in free, open-access, code-based
software packages, such as R. The first novelty of our tool is that it allows the user to use free and
open-access software with an easy-to-use interface. In other words, we combine the power of an
open-source and free language with a nicely designed and easily accessible interface. This tool offers
more comprehensive features and a wide variety of implementations for ROC curve analysis than
its commercial and free counterparts, which is another novelty of this application. It is specifically
constructed for ROC curve analysis, unlike the commercial software packages, such as IBM SPSS, Stata
and MedCalc.

This web-based application is intended for research purposes only, not for clinical or commercial
use. Since it is a non-profit service to the scientific community, it comes with no warranty and no
data security. However, since this web server uses the R package shiny, each user performs his/her
analyses in a new R session. After uploading data, the application only saves responses within its
R session and prints the results instantly. After a user has quit the application, the corresponding
R session will be closed and any uploaded data, responses or outputs will not be saved locally or
remotely.

This tool is freely available through http://www.biosoft.hacettepe.edu.tr/easyROC/ and all
the source codes are available at http://www.github.com/dncR/easyROC under GPL version 3. It will
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be regularly updated upon the dependent R packages used in this application, including shiny and
OptimalCutpoints, and new features will be continually added as they are developed.
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Supplementary material

Supplementary 1: A brief description of optimal cutpoint methods.

Method Description

Youden Youden index identifies the cutpoint that maximizes the sum of Sensitivity and Speci f icity.

CB CB is a measure based on the cost and benefit method, and is calculated from the slope of the ROC curve.

MinValueSp
MinValueSe

For a given minimum value for Speci f icity, MinValueSp identifies the optimal value as the one that gives the maximum Sensitivity.
In contrast, for a given minimum value for Sensitivity, MinValueSe identifies the optimal value as the one that gives the maximum
Speci f icity.

ValueSp
ValueSe

For a given particular value for Speci f icity, ValueSp identifies the optimal value as the one that gives the maximum Sensitivity. In
contrast, for a given particular value for Sensitivity, ValueSe identifies the optimal value as the one that gives the maximum Speci f icity.

MinValueSpSe For given minimum values for Speci f icity and Sensitivity measures, MinValueSpSe identifies the optimal value as the one that gives the
maximum Sensitivity or Speci f icity (user-defined).

MaxSp
MaxSe

MaxSp and MaxSe are two measures based on the maximization of Speci f icity and Sensitivity, respectively.

MaxSpSe MaxSpSe is a measure based on the simultaneous maximization of both Speci f icity and Sensitivity measures.

MaxProdSpSe MaxProdSpSe is a measure based on the maximization of the product of Sensitivity and Speci f icity.

ROC01 ROC01 identifies the optimal cutpoint that is closest to the upper-left corner (0, 1) of the ROC graph.

SpEqualSe SpEqualSe is a measure based on the minimization of the absolute difference between Sensitivity and Speci f icity.

MaxEfficiency MaxEfficiency is a measure based on the minimization of the misclassification error, (FP + FN)/n.

Continued on next page
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Supplementary 1 – Continued from previous page

Method Description

Minimax Minimax is a measure based on the minimization of the most frequent error. Minimax is computed using the equation Minimaxc =
minc(max(p(1− Sensitivity) + (1− p)(1− Speci f icity))) where c is the cutpoint and p is the prevalence.

MaxDOR MaxDOR is a measure based on the maximization of the diagnostic odds ratio, calculated using the equation MaxDORc =
maxc[(Sensitivity× Speci f icity)/((1− Sensitivity)(1− Speci f icity))].

MinValueNPV
MinValuePPV

For a given minimum value for NPV, MinValueNPV identifies the optimal value as the one that gives the maximum PPV. In contrast,
for a given minimum value for PPV, MinValuePPV identifies the optimal value as the one that gives the maximum NPV.

ValueNPV
ValuePPV

For a given particular value for NPV, ValueNPV identifies the optimal cutpoint as the one that gives the maximum PPV. In contrast, for
a given particular value for PPV, ValuePPV identifies the optimal cutpoint as the one that gives the maximum NPV.

MinValueNPVPPV For given minimum values for predictive values, MinValueNPVPPV identifies the optimal value as the one that gives the maximum
NPV or PPV (user-defined).

PROC01 PROC01 identifies the optimal cutpoint that is closest to the upper-left corner (0, 1) of the partial ROC (pROC) graph.

NPVEqualPPV NPVEqualPPV is a measure based on the minimization of the absolute difference between NPV and PPV.

MaxNPVPPV MaxNPVPPV is a measure based on the simultaneous maximization of both NPV and PPV measures.

MaxSumNPVPPV MaxSumNPVPPV is a measure based on the maximization of the sum of NPV and PPV measures.

MaxProdNPVPPV MaxProdNPVPPV is a measure based on the maximization of the product of NPV and PPV.

ValueDLR.Negative
ValueDLR.Positive

These two measures are based on setting particular values for negative and positive diagnostic likelihood ratios, respectively.

MinPvalue MinPvalue is a measure based on the minimization of the p-value of the Chi-square test on assessing the independence between the
diagnostic and gold standard test.

Continued on next page

T
he

R
JournalVol.8/2,D

ecem
ber

2016
ISSN

2073-4859



C
O

N
T

R
IB

U
T

E
D

R
E

SE
A

R
C

H
A

R
T

IC
L

E
S

229

Supplementary 1 – Continued from previous page

Method Description

ObservedPrev ObservedPrev is a measure which identifies the optimal cutpoint closest to the observed prevalence by minimizing the quantity |c− p|.
This method is valid when the diagnostic test takes values within the interval [0, 1].

MeanPrev MeanPrev is a measure which identifies the optimal cutpoint closest to the average of the diagnostic test values. It is suggested to use
this measure if the diagnostic test takes values between 0 and 1.

PrevalenceMatching PrevalenceMatching is a measure based on the equality of actual and predicted prevalence. The cutpoint minimizes the absolute quantity
|p(1− Sensitivity)− (1− p)(1− Speci f icity)|. This method is valid when the diagnostic test takes values within the interval [0, 1].

For details, see Lopez-Raton et al. (2014).
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Supplementary 2: Non-alcoholic fatty liver disease (NAFLD) data (Çelikbilek et al., 2014).

Grup mir197 mir146b mir181d mir99a Grup mir197 mir146b mir181d mir99a

1 0.921 0.687 0.474 −0.941 0 1.214 1.122 0.882 1.610
1 0.967 1.059 0.474 0.575 0 1.401 0.148 0.444 0.625
1 0.854 1.105 0.722 0.936 0 0.494 −0.179 1.386 0.134
1 −1.088 −1.353 −0.577 −1.077 0 1.608 1.386 2.242 0.926
1 0.107 0.515 −0.286 0.560 0 1.274 1.609 0.769 1.108
1 0.547 1.191 0.583 1.119 0 0.827 1.128 0.452 0.374
1 −1.081 −1.445 −1.303 −1.202 0 −0.147 −0.545 0.878 0.044
1 −1.081 −1.308 −1.276 −1.066 0 0.353 0.320 −0.225 0.367
1 0.841 0.463 −0.290 0.747 0 −1.635 −0.677 −0.838 −0.543
1 −1.188 −0.975 −1.407 −2.123 0 1.848 1.523 1.712 0.940
1 −1.014 −0.649 −1.194 −1.786 0 0.987 0.606 0.626 0.542
1 −1.081 −1.256 −1.229 −0.679 0 0.020 0.503 0.600 0.367
1 −1.295 −1.204 −1.607 −2.216 0 1.061 1.518 1.217 0.209
1 −1.081 −1.268 −0.829 −0.658 0 0.474 0.572 0.292 0.786
1 −1.081 −1.365 −1.376 −1.457 0 −0.868 −0.505 −0.408 −0.117
1 −1.081 −1.371 −0.812 −1.804 0 −0.414 −0.259 0.665 0.363
1 −1.081 −0.769 −1.359 −0.156 0 0.394 0.417 1.000 0.130
1 0.854 1.243 0.444 1.460 0 0.941 0.543 0.431 1.083
1 −1.074 −1.365 −1.572 −0.339 0 −0.387 −0.202 −0.568 0.345
1 −0.634 −0.276 −0.130 −0.081 0 −0.674 −0.689 0.995 0.893

T
he

R
JournalVol.8/2,D

ecem
ber

2016
ISSN

2073-4859


