
CONTRIBUTED RESEARCH ARTICLES 382

nmfgpu4R: GPU-Accelerated
Computation of the Non-Negative Matrix
Factorization (NMF) Using CUDA
Capable Hardware
by Sven Koitka and Christoph M. Friedrich

Abstract In this work, a novel package called nmfgpu4R is presented, which offers the computation
of Non-negative Matrix Factorization (NMF) on Compute Unified Device Architecture (CUDA) platforms
within the R environment. Benchmarks show a remarkable speed-up in terms of time per iteration
by utilizing the parallelization capabilities of modern graphics cards. Therefore the application of
NMF gets more attractive for real-world sized problems because the time to compute a factorization is
reduced by an order of magnitude.

Introduction

Dimension reduction techniques are commonly used in machine learning and data mining tasks. For
instance in text mining a corpora with thousands of words in the vocabulary could be too complex to
be learned by Support Vector Machines (SVM) directly. Therefore the most important structure within
the data must be extracted prior to the learning process. In the context of text mining new data
axes at best represent topics in the corpora, which are used to approximate the original documents.
Furthermore by reducing the feature space of the data it is less likely to be influenced by the Curse of
Dimensionality (CoD) (Bellman, 1961).

There are several methods to reduce the dimension of a data matrix, for example Principal Compo-
nent Analysis (PCA) (Pearson, 1901) and Latent Dirichlet Allocation (LDA) (Blei et al., 2003). Another
powerful technique namely Non-negative Matrix Factorization (NMF) (Lee and Seung, 1999) will be
discussed in the first section of this work. Currently available NMF implementations require a
prohibitively long computation time, which make the usage for real-world applications impracti-
cal. Therefore we present an implementation using the Compute Unified Device Architecture (CUDA)
platform with a binding to the R environment. Furthermore the package is developed platform
independent and is compatible with all three major platforms for R: Windows, Linux and Mac OS X.

Overview of non-negative matrix factorization

Let X ∈ Rn×m
+ be a matrix with n attributes and m observations in the dataset, then the data matrix X

is approximated by the product of two new matrices W and H (Lee and Seung, 2001):

X ≈WH (1)

Each column of the matrix W ∈ Rn×r
+ represents a single basis vector, whereas each column of the

matrix H ∈ Rr×m
+ represents an encoding vector. Therefore a column of the data matrix can be

approximated by the linear combination of all basis vectors with one encoding vector (Lee and Seung,
2001). The importance of each basis vector can be seen by analysing the row sums of matrix H. Row
sums with a low value identify basis vectors with very little influence on the dataset and vice versa
(Skillicorn, 2007). It is also important to note that the data matrix as well as both matrices W and H
contain only non-negative values.

Besides the general convention in the context of data mining, NMF expects columns to represent
observations of the dataset instead of attributes (Skillicorn, 2007), as visualized in Figure 1. For that
reason it is very important to read the data matrix definition in the literature carefully.

Contrary to PCA or Singular Value Decomposition (SVD), the basis vectors are not linearly inde-
pendent and thus the solution is not unique. However the reconstruction of the data matrix is purely
additive and yields a more natural parts-based decomposition (Lee and Seung, 1999).

As the factorization should represent a compressed form of the original data matrix, one approach
is to choose r depending on the number of rows and columns of the data matrix (Lee and Seung, 2001):

r <
n ·m

n + m
(2)

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 383

XTrain WTrain

HTrain

Observations

A
tt

ri
b

u
te

s
n x mTrain n x r

r x mTrain

A
tt

ri
b

u
te

s

ObservationsBasis Vectors

En
co

d
in

g

≈
.

Figure 1: NMF model which approximates the data matrix by a linear combination of basis vectors
and an encoding matrix.

In general, one should choose r � m (Shahnaz et al., 2006). However, choosing the right parameter
depends on the dataset and usage of the factorization.

Pseudo-code

1. Input: Data matrix X ∈ Rn×m
+ and number of features r

2. Initialize W(0) ∈ Rn×r
+ , H(0) ∈ Rr×m

+ with non-negative values and set k = 0

3. while k < kmax and not converged:

(a) Fix matrix W(k) and compute matrix H(k+1)

(b) Fix matrix H(k+1) and compute matrix W(k+1)

(c) Evaluate error function to check for convergence

(d) k = k + 1

4. Set W = W(k) and H = H(k)

Initialization of factor matrices

Using a good initialization of the matrices can decrease the required number of iterations and further
improve the factorization’s quality. Depending on the chosen algorithm either only matrix W or both
matrices need to be initialized.

Several different approaches were presented to execute step 2 of the pseudo-code, the most simple
one by Lee and Seung (1999, 2001) namely initializing both matrices just with random values. A
more complex initialization uses the SVD of the data matrix (Boutsidis and Gallopoulos, 2008), a very
expensive approach which should be only used if the SVD is already available (Langville et al., 2014).
However this initialization yields a unique factorization because SVD is also unique.

In general, the convergence theory of NMF is not researched enough. For example, Lee and
Seung (2001) had shown that the multiplicative update rules converge to a local minimum. However
Gonzalez and Zhang (2005) disproved that and clearly state the algorithm is only proven to converge
at most to a saddle point. In fact most of the newer algorithms are only guaranteed to converge to a
local minimum. This is mainly because NMF is a non-convex optimization problem (Lee and Seung,
2001). In each computation step only one of two matrices gets updated, independently from the other
one. Hence finding a global minimum is unlikely, however multiple local minima do exist. If the
execution time of an algorithm is short enough, then a Monte-Carlo like approach can be chosen (Berry
et al., 2007). That implies executing the algorithm multiple times using different initializations each
time and picking the factorization with the best quality.

Error function

In the literature, different error or loss functions are proposed. The most common are Kullback-Leibler
Divergence (Lee and Seung, 1999) and Frobenius norm (Paatero and Tapper, 1994; Lee and Seung, 2001).
Since only the Frobenius norm is used in this work, Kullback-Leibler divergence won’t be discussed.

In an abstract sense, the Frobenius norm of a matrix A ∈ Rn×m
+ is equal to the Euclidean distance

of a vector ~a ∈ Rn·m
+ . To be more precise the Frobenius norm is the square root of the sum of all

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 384

squared matrix elements (Reinhardt et al., 2013):

‖A‖F :=

√√√√ n

∑
i=1

m

∑
j=1

∣∣∣aij

∣∣∣2 (3)

Besides this general definition there do exist alternative representations, among others the representa-
tion using the trace of a matrix (Reinhardt et al., 2013):

‖A‖F :=
√

trace (AT A) (4)

For optimized computation the widely used minimization problem is rearranged using this equiva-
lence:

min
1
2
· ‖X−WH‖2

F = min
1
2

(
trace

(
XT X

)
− 2 · trace

(
HTWT X

)
+ trace

(
HHTWTW

))
(5)

Upon first sight the error function seems to be more expensive to compute but actually most terms
get computed during the algorithm execution anyway (Berry et al., 2007; Langville et al., 2014).
Furthermore, the trace

(
XT X

)
is constant and can be precomputed.

The following algorithms minimize the Frobenius norm, but can also easily be derived for other
error functions.

Updating with multiplicative update rules

Multiplicative update rules have been first described by Lee and Seung (1999, 2001) and are the fastest
algorithms in terms of computational cost per iteration. In fact this type of algorithm is a special case
of the gradient-descent algorithm with a specific step size (Lee and Seung, 2001). Both update rules
for the matrices W and H are applied in an alternating fashion to solve step 3a) and 3b) of the NMF
pseudo-code:

H(k+1) = H(k) ⊗
((

W(k)
)T

X
)
�
((

W(k)
)T

W(k)H(k)
)

(6)

W(k+1) = W(k) ⊗
(

X
(

H(k+1)
)T
)
�
(

W(k)H(k+1)
(

H(k+1)
)T
)

(7)

Where ⊗ denotes the element-wise matrix multiplication and � the element-wise matrix division.
However it is advised to add an epsilon to the denominator, e.g. ε ≈ 10−9 for double precision floating
point values, to avoid divisions by zero (Berry et al., 2007). Referring to table 3 in the implementation
section, multiplicative update rules are used in mu and nsNMF for both matrices, in gdcls only for
matrix W.

Updating with alternating least squares

Alternating Least Squares (ALS) type algorithms are another approach to solve step 3a) and 3b) of the
NMF pseudo-code. The central idea is that for one given matrix the other one can be computed using
a least-squares projection (Paatero and Tapper, 1994).(

W(k)
)T

W(k)H(k+1) =
(

W(k)
)T

X (8)

H(k+1)
(

H(k+1)
)T (

W(k+1)
)T

= H(k+1)XT (9)

In the first step, Equation 8 gets solved to H(k+1) whereby the computation of matrix W becomes

possible. Equation 9 gets solved for
(

W(k+1)
)T

, followed by transposing the solution to acquire the

matrix W(k+1).

Since solving a linear equation system possibly yields negative values, the non-negativity con-
straint for both matrices W and H must be ensured after each solving step. One possible solution for
this problem is to set all negative values to zero (Langville et al., 2014).

Langville et al. (2014) describe ALS extensions like Alternating Constraint Least Squares (ACLS) and
Alternating Hoyer Constraint Least Squares (AHCLS), which use additional parameters to provide a more

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 385

sparse factorization. Therefore both diagonal and non-diagonal values of the covariance matrices
WTW and HHT get manipulated. For example, the AHCLS uses the additional parameters λW , λH , αW
and αH to solve the following equations:((

W(k)
)T

W(k) + λH · βH · I − λH · E
)

H(k+1) =
(

W(k)
)T

X (10)

(
H(k+1)

(
H(k+1)

)T
+ λW · βW · I − λW · E

)(
W(k+1)

)T
= H(k+1)XT (11)

Where I ∈ Rr×r denotes the identity matrix and E ∈ Rr×r a matrix of ones, furthermore βW and βH
are defined as:

βW :=
(
(1− αH) ·

√
r + αH

)2 (12)

βH :=
(
(1− αW) ·

√
r + αW

)2 (13)

n The authors have advised to use λW , λH ∈ [0, ∞) and αW , αH ∈ [0, 1), where αW and αH should
represent the requested percentage of sparsity. As a head start all four values should be set to 0.5.
Once more referring to Table 3 in the implementation section, ALS update rules are used in als, acls,
and ahcls for both matrices, in gdcls only for matrix H.

The NMF algorithm for R using CUDA: nmfgpu4R

There already exist some approaches to compute NMF in R, for example the NMF (Gaujoux and
Seoighe, 2010) and NMFN (Liu, 2012) packages on CRAN. However both packages use the CPU for
the computational process and even with parallelization of multiple runs the usage for real-world
datasets is limited.

CUDA-based implementations of NMF are already part of the GPUMLib1 (Lopes and Ribeiro, 2010),
which itself contains various algorithms of machine learning tasks for CUDA platforms. Currently,
as of version 0.3.4, there are two algorithms available, one additive and one multiplicative, for both
Frobenius norm and Kullback-Leibler divergence. Besides that no complex initialization strategies or
algorithms incorporating constraints are available. Furthermore the computation of NMF is restricted
to single precision format, which might not be suitable for every dataset.

In this work we propose a new package called nmfgpu4R2, which is a binding to a separate
library called nmfgpu3 written in C++11 using CUDA (version ≥ 7.0) for Nvidia GPUs with compute
capability ≥ 3.0 (Kepler). When using CUDA, different build tools must be chosen depending on the
platform. This limitation is induced by Nvidia’s nvcc compiler, which only supports one compiler per
platform (nvcc itself is built on top of one compiler). By splitting the package and C++ library in two
separate modules, it is possible to provide both nmfgpu4R and nmfgpu for all three major platforms:
Windows, Linux, and Mac OS X.

Modern Graphics Processing Units (GPU) can also be used as High Performance Computing (HPC)
devices using either OpenCL or CUDA. Latter is restricted to only Nvidia hardware but is more
common and can be integrated directly into C/C++ source code. One advantage of the GPU over CPU
parallelization is that algorithms have to be developed scalable and data parallel. Synchronization
and data transfer logic has to be handled by the developer and therefore these algorithms are able
to profit more from new and more powerful hardware generations. For more information about the
CUDA platform please visit the Nvidia CUDA website4.

Supported data matrix formats

Internally the library computes the algorithms using dense matrices, so one option is to pass in a
numeric matrix with proper dimensions. Furthermore the nmfgpu4R package currently supports S4
classes from the Matrix package, developed by Bates and Maechler (2014), and the SparseM package,
developed by Koenker and Ng (2015). A complete reference about supported S4 classes is listed

1https://sourceforge.net/projects/gpumlib/ (last access: 18.04.2016)
2https://github.com/razorx89/nmfgpu4R (last access: 18.04.2016)
3https://github.com/razorx89/nmfgpu (last access: 18.04.2016)
4http://www.nvidia.com/object/cuda_home_new.html (last access: 18.04.2016)

https://developer.nvidia.com/cuda-zone (last access: 18.04.2016)

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=NMF
https://CRAN.R-project.org/package=NMFN
https://CRAN.R-project.org/package=nmfgpu4R
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=SparseM
https://sourceforge.net/projects/gpumlib/
https://github.com/razorx89/nmfgpu4R
https://github.com/razorx89/nmfgpu
http://www.nvidia.com/object/cuda_home_new.html
https://developer.nvidia.com/cuda-zone

CONTRIBUTED RESEARCH ARTICLES 386

in table 1. It is important to note that the sparse matrices get converted into dense matrices on the
GPU-side. At the moment, a computation using sparse algorithms does not take place at any time.

Storage Format Matrix SparseM

Dense "dgeMatrix" -
Coordinate (COO) "dgTMatrix" "matrix.coo"
Compressed Sparse Column (CSC) "dgCMatrix" "matrix.csc"
Compressed Sparse Row (CSR) "dgRMatrix" "matrix.csr"

Table 1: Supported S4 classes as input data matrix to nmfgpu4R.

However this feature allows large sparse matrices to be converted much faster in GPU memory.
For example this might be quite useful for Bag-of-Words (BoW) in text mining (Salton and Buckley,
1988) or Bag-of-Visual-Words (BoVW) in image classification / retrieval (Cula and Dana, 2001), where
the vocabulary is commonly very large but the frequencies are mostly zero.

Customizing the initialization

Algorithms of the Non-negative Matrix Factorizations solve a non-convex optimization problem. Thus
choosing a good initialization can reduce the number of iterations and yield better results. In NMF
four different initialization strategies are implemented. There are different approaches to choose an
initialization for both matrices W and H. It is important to keep in mind that when an ALS type
algorithm is chosen only matrix W has to be initialized. Matrix H will be computed in the first iteration
from only matrix W and the data matrix.

Strategy Matrix W Matrix H

CopyExisting Copy W Copy H
AllRandomValues Random Random
MeanColumns Mean of k random columns Random
k-means/Random k-means Random
k-means/NonNegativeWTH k-means hij = max

(
0,
(
WT X

)
ij

)
EIn-NMF k-means hij = 1/

(
i

∑
k=1

(
||xj−ck||2
||xj−ci||2

) 2
1−m
)

Table 2: Supported initialization strategies for initializing matrix W and H.

All supported initializations by nmfgpu4R are listed in Table 2. Strategy CopyExisting can be used
to provide user-defined initializations for both matrices W and H which get copied directly into GPU
memory. When using AllRandomValues both matrices W and H get initialized by random values which
is the most common but also the simplest strategy (Pauca et al., 2006). Langville et al. (2014) presented
a method called MeanColumns to form initial basis vectors from data columns. The idea behind this
initialization is that if the data columns are sparse then the initial basis vectors should be sparse as
well. Furthermore, k-means clustering can be used to find initial basis vectors (Gong and Nandi, 2013).
If matrix H has to be initialized in the context of k-means based initializations, then there are different
approaches. Most complex is the EIn-NMF initialization which computes the membership degree of
each data column (Gong and Nandi, 2013).

Using different algorithms

There are currently six different algorithms implemented in nmfgpu4R, because NMF models can
be computed in different ways and, furthermore, can be restricted by constraints. Those algorithms
which do have extra constraints, can also be adjusted through parameters. In Table 3 all implemented
algorithms and their corresponding publications are listed.

A few of these algorithms will be evaluated in the benchmark section, using two different image
datasets. In general the right choice of algorithm depends on the data and noise within the data. For
an overview of all required parameters for a specific algorithm, please have a look at the package
documentation.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 387

Method Name Publication

acls Alternating Constrained Least Squares Langville et al. (2014)
ahcls Alternating Hoyer Constrained Least Squares Langville et al. (2014)
als Alternating Least Squares Paatero and Tapper (1994)
gdcls Gradient Descent Constrained Least Squares Shahnaz et al. (2006)
mu Multiplicative Update Rules (Frobenius Norm) Lee and Seung (2001)
nsnmf non-smooth Non-negative Matrix Factorization Pascual-Montano et al. (2006)

Table 3: Overview of implemented algorithms in nmfgpu4R.

Adjusting convergence tests

Most NMF implementations only use the number of iterations as a convergence test, as this is a
very cheap test. However, for a mathematically correct convergence test an error function has to be
computed and observed during the algorithm execution. In NMF there are four different stopping
criteria implemented, which can also be combined. The nmfgpu4R package implements both: the
convergence test by observing an error function, as the primary and an upper limit of iterations, as the
secondary convergence criterion.

Setting the threshold value can be done by passing in the parameter threshold. This value is
actually interpreted differently depending on the configured error function. Currently the Frobenius
Norm and Root Mean Squared Deviation (RMSD) are supported. One advantage of the RMSD error
function is that it is normalized by the number of data matrix elements and therefore independent of
the data matrix dimension. By passing in the parameter maxiter the maximum number of iterations
can be overwritten, which is by default set to 2000. For example, execute the algorithm until the delta
error is less than 0.1 regarding the RMSD error function but at most 500 iterations:

result <- nmf(data, r, threshold=0.1, thresholdType="rmsd", maxiter=500)

Depending on the datasets the ALS type algorithms are sometimes not stable and therefore not
monotonically decreasing. In such a case the convergence test using the threshold value will not work
properly.

Encoding matrix for new unseen data

A simple but effective method to calculate an encoding matrix for unseen data was described by Lopes
and Ribeiro (2011), which allows NMF to be used within learning algorithms. Using this method the
training data gets factorized with a normal NMF step. However the factorization step of the testing
data reuses the matrix W and only updates the matrix H. Thus the resulting matrix H is an encoding
of learned basis vectors from the training data. A complete scheme of the process is visualized in
figure 2.

As a result, structures between both training and test data are being preserved, but the feature
dimension in matrix H can be reduced to a fraction of the original dimension. Hence, learning, for
example, a Support-Vector-Machine (SVM) can be speeded up and furthermore prediction accuracy
can be improved.

In the following example code the nmf method is used to train the basis vectors for the training
dataset. After that, the generic predict method can be used to either retrieve the encoding matrix H
of the training data or to generate an encoding matrix for a new data matrix. The objective here is to
reduce the 4 dimensions of the iris dataset (Fischer, 1936) to 2 dimensions.

Set seed for reproducible results
set.seed(42)

Split iris dataset into training and test data
idx <- sample(1:nrow(iris), 100, replace=F)
data.train <- iris[idx,-5]
data.test <- iris[-idx,-5]

Compute model and retrieve encoding matrix H for both training and test data
library(nmfgpu4R)
nmfgpu4R.init()
model <- nmf(t(data.train), 2)
encoding.train <- t(predict(model)) # Identical: encoding.train <- t(model$H)

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 388

NMFXTrain XTest NMF

WTrain

HTrain

WTest

HTest

=

SVM

XTrain WTrain

HTrain
XTest

HTest

Observations

A
tt

ri
b

u
te

s

A
tt

ri
b

u
te

s

Basis Vectors

n x mTest

r x mTest

n x mTrain n x r

r x mTrain

(a)

(b)

Observations

.

En
co

d
in

g

Figure 2: (a) Prediction of an encoding matrix for unseen data. The data matrix of the existing NMF
model is "extended" by new data, but the basis vectors are fixed. (b) Data flow visualization of the
prediction process in the context of a SVM (derived from Lopes and Ribeiro (2011)).

encoding.test <- t(predict(model, t(data.test)))

Use encoding matrices to predict "Species"
library(e1071)
model.svm <- best.svm(x=encoding.train, y=iris$Species[idx])
prediction <- predict(model.svm, encoding.test)
table(iris[-idx,5], prediction)

Using the iris dataset is just an example and should be replaced with a much larger dataset to fully
utilize the GPU. Furthermore an improvement in speed and possibly in accuracy over non-reduced
data is more likely to be observed when the dimension is reduced by a larger magnitude.

This example learns basis vectors from a training dataset and predicts the encoding matrix for
the test dataset. To visualize the encoding matrices of both datasets and their relationships, a simple
scatter plot can be made with the following code:

Plot encoding matrices
library(ggplot2)
data.plot <- data.frame(rbind(encoding.train, encoding.test),

class=unlist(list(iris[idx,5], iris[-idx,5])),
type=c(rep("Train", nrow(data.train)),
rep("Test", nrow(data.test))))

ggplot(data.plot, aes(x=r1, y=r2, color=class, shape=type)) + geom_point()

As shown in Figure 3, both datasets share the same structure. Observations from each of the three
classes are predicted to belong to the same area as the training observations.

Issues during developement

The nmfgpu4R package provides a binding to an independent C++ library, which uses the latest C++
features from the C++11 standard. In order to support multiple platforms deploying an extra library
is a necessary step since the Nvidia CUDA compiler nvcc only supports the Microsoft Visual C++
compiler on Windows platforms. But R uses its own compilation tool chain and therefore does not
allow the Microsoft Visual C++ compiler.

The main problem is that C++ compilers emit an object code which is not compatible with the
object code of another compiler. R uses g++ from the MinGW tool chain and therefore both compiled
binaries are not link-compatible, virtual tables are only compatible in some situations and struct returns
simply do not work. Furthermore since the object code is not link-compatible one must fall back to
an extern "C" interface, which then can be loaded using native system calls like GetProcAddress on
Windows or dlsym on Linux/Mac OS. Such issues do not come up on Linux or Mac OS because R uses
on these platforms the default configured compiler which is also supported by the nvcc compiler.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 389

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

2

3

4

5

6

7

0.0 2.5 5.0 7.5 10.0
r1

r2
class

●

●

●

setosa

versicolor

virginica

type
● Test

Train

● ●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

1.5

−4 −2 0 2
PC1

P
C

2

class
●

●

●

setosa

versicolor

virginica

type
● Test

Train

Figure 3: Visualization of the encoding matrices for the iris dataset (Fischer, 1936), which is reduced
by the nmf method (left) and by the pcromp method (right) to 2 dimensions.

Benchmarks

In this section multiple benchmarks are described which were performed on the Yale Face Database
(Belhumeur et al., 1997) and Cropped Extended Yale Face Database B (Lee et al., 2005). As a preprocessing
step all images were scaled to a common height of 64 pixels while preserving the aspect ratio. The
resulting matrix dimensions can be taken from table 4.

Dataset Pixels (orig.) Pixels (scaled) Count Matrix

Yale Face Database 320× 243 64× 64 165 4096× 165
Extended Yale Face Database B 168× 192 56× 64 2414 3584× 2414

Table 4: Dimensions of data matrices which where used to benchmark existing CPU implementations
as well as GPU implementations by the nmfgpu4R package.

For testing, a system server with CentOS 7.2.1511, Intel Xeon E5-2687W v3 @3.10GHz (10 physical
cores), 256GB RAM, Nvidia GeForce GTX Titan X and two Nvidia Tesla K80 was used. R is a custom
build of version 3.3.1 using OpenBLAS5 as BLAS back-end.

In this benchmark the nmfgpu4R (version 0.2.5.1) package is compared to the CRAN packages
NMF (version 0.20.6) and NMFN (version 2.0), which both provide CPU implementations of common
NMF algorithms. The NMF package does provide optimized C++ algorithms as well as pure R
implementations. Regarding the package documentation parallelization is only performed using
clusters for parallelizing multiple runs of the same algorithm with different initializations. In order
to fully utilize the CPU cores, pure R algorithms were benchmarked using an OpenBLAS back-
end with OPENBLAS_NUM_THREADS=10. Algorithms from the NMFN package were modified to accept
preinitialized matrices to be able to compare the algorithms with identical starting points. Both the
CPU and GPU algorithms were executed 10 times each.

As already stated in the previous section Alternating Least Squares algorithms seem to perform
poorly on very dense datasets, leading to a non-stable factorization or even no solution at all. However
the execution times of the ALS algorithms in nmfgpu4R are the highest of all GPU algorithms, but they
are still very low compared to the ALS implementation in NMFN, which is shown by Figure 4 (top).
Furthermore, the optimized C++ algorithms in the NMF package are much slower when computed in
sequential mode compared to the R implementations, which are accelerated by the multi-threaded
OpenBLAS back-end.

Overall the multiplicative algorithm is the fastest algorithm for both GPU and CPU. Depending on
the dataset it might be useful to compute the factorization in single precision format, because modern
GPUs have still more single precision than double precision floating point units. As shown by Figure
4, GPUs of Nvidia’s GeForce series are optimized for single precision calculations, which is sufficient
for end-user gaming experience. However double precision computation is very limited on those
cards, whereas the Tesla series also provides enough double precision units for fast calculations. As
Table 5 indicates, there is no noticeable difference in terms of factorization quality but very much in
execution time. Small variations between error functions can be caused due to computational ordering
and on GPU-side due to dispatching of thread blocks.

5http://www.openblas.net (last access: 31.10.2016)

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://www.openblas.net

CONTRIBUTED RESEARCH ARTICLES 390

Yale Face Database Extended Yale Face Database B+
Device Package Algorithm ||X−WH||F Elapsed Time ||X−WH||F Elapsed Time

Intel Xeon
E5-2687W v3
@3.10GHz

NMF .R#brunet 82.12± 0.68 42.11± 2.28s 218.39± 0.58 857.64± 134.77s
.R#lee 75.68± 0.56 23.10± 0.75s 208.15± 0.78 153.53± 4.98s
.R#nsNMF (θ=0.25) 92.15± 0.69 59.75± 0.64s 243.59± 0.50 732.97± 216.69s
brunet 82.12± 0.68 359.15± 0.34s 218.39± 0.58 20891.94± 718.52s
lee 75.68± 0.56 206.76± 0.08s 208.15± 0.78 11877.49± 121.46s
nsNMF (θ=0.25) 92.15± 0.69 437.58± 3.91s 243.59± 0.50 21503.39± 566.04s

NMFN nnmf_als 227.86± 18.11 35.37± 0.28s 1188.68± 49.38 289.41± 2.41s
nnmf_mm 75.72± 0.52 46.74± 1.23s 208.02± 0.75 356.53± 4.56s

Nvidia
GeForce GTX
TITAN X
(Maxwell)

nmfgpu4R
(double)

als 218.97± 8.71 10.56± 0.38s 1182.94± 50.47 219.77± 9.24s
gdcls (λ=0.01) 92.47± 0.91 2.91± 0.01s 217.94± 0.85 137.75± 1.63s
mu 75.86± 0.49 2.40± 0.01s 208.37± 0.72 70.03± 0.15s
nsNMF (θ=0.25) 88.97± 0.47 2.43± 0.01s 254.38± 0.85 69.20± 0.05s

nmfgpu4R
(float)

als 231.60± 19.44 6.43± 0.07s 1161.70± 34.22 121.20± 2.24s
gdcls (λ=0.01) 92.75± 1.06 1.44± 0.01s 219.04± 0.90 62.95± 0.68s
mu 75.86± 0.49 1.05± 0.01s 208.38± 0.72 4.14± 0.04s
nsNMF (θ=0.25) 86.74± 0.33 0.88± 0.01s 237.35± 0.77 3.76± 0.01s

Nvidia
Tesla K80
(Kepler)

nmfgpu4R
(double)

als 223.00± 14.60 9.84± 0.30s 1160.46± 57.60 173.40± 1.17s
gdcls (λ=0.01) 93.26± 1.31 2.57± 0.01s 218.75± 1.37 88.89± 1.68s
mu 74.24± 0.32 2.84± 0.01s 217.71± 0.94 13.51± 0.01s
nsNMF (θ=0.25) 88.36± 0.93 1.75± 0.01s 254.58± 1.16 13.54± 0.01s

nmfgpu4R
(float)

als 233.16± 21.10 8.01± 0.48s 1147.49± 36.85 130.43± 0.35s
gdcls (λ=0.01) 93.80± 1.53 2.26± 0.01s 218.83± 1.02 70.69± 0.69s
mu 74.25± 0.32 2.19± 0.02s 217.72± 0.94 6.95± 0.06s
nsNMF (θ=0.25) 84.60± 0.39 1.39± 0.02s 246.74± 0.74 6.98± 0.02s

Table 5: Benchmark results for the Yale Face Database with r = 32 features and Cropped Extended Yale
Face Database with r = 128. Each measurement was taken at iteration 2000 with n = 10 computations.

0.44 ms ± 0.00 ms
0.70 ms ± 0.01 ms

0.52 ms ± 0.00 ms
1.10 ms ± 0.01 ms

0.72 ms ± 0.00 ms
1.13 ms ± 0.00 ms
1.22 ms ± 0.00 ms

0.87 ms ± 0.00 ms
1.20 ms ± 0.00 ms

1.42 ms ± 0.01 ms
1.46 ms ± 0.00 ms

1.28 ms ± 0.01 ms
3.22 ms ± 0.03 ms

4.01 ms ± 0.24 ms
5.28 ms ± 0.19 ms

4.92 ms ± 0.15 ms

11.55 ms ± 0.38 ms

17.69 ms ± 0.14 ms

21.05 ms ± 1.14 ms

23.37 ms ± 0.62 ms

29.88 ms ± 0.32 ms

103.38 ms ± 0.04 ms

179.58 ms ± 0.17 ms

218.79 ms ± 1.96 ms

nsNMF (theta=0.25) {nmfgpu4R} (float)

mu {nmfgpu4R} (float)

gdcls (lambda=0.01) {nmfgpu4R} (float)

nsNMF (theta=0.25) {nmfgpu4R} (double)

mu {nmfgpu4R} (double)

gdcls (lambda=0.01) {nmfgpu4R} (double)

als {nmfgpu4R} (float)

als {nmfgpu4R} (double)

.R#lee {NMF}

nnmf_als {NMFN}

.R#brunet {NMF}

nnmf_mm {NMFN}

.R#nsNMF (theta=0.25) {NMF}

lee {NMF}

brunet {NMF}

nsNMF (theta=0.25) {NMF}

1e−04 1e−02 1e+00
Seconds

Architecture

Intel Xeon E5−2687W v3 @ 3.10GHz

Nvidia GeForce GTX TITAN X

Nvidia Tesla K80

1.88 ms ± 0.01 ms
3.49 ms ± 0.01 ms

2.07 ms ± 0.02 ms
3.47 ms ± 0.03 ms

34.60 ms ± 0.03 ms
6.77 ms ± 0.01 ms

35.02 ms ± 0.08 ms
6.75 ms ± 0.01 ms

31.47 ms ± 0.34 ms
35.35 ms ± 0.35 ms

68.88 ms ± 0.82 ms
44.45 ms ± 0.84 ms

60.60 ms ± 1.12 ms
65.22 ms ± 0.18 ms

76.76 ms ± 2.49 ms

109.88 ms ± 4.62 ms
86.70 ms ± 0.58 ms

144.71 ms ± 1.20 ms

178.27 ms ± 2.28 ms

366.49 ms ± 108.34 ms

428.82 ms ± 67.39 ms

5.94 s ± 60.73 ms

10.45 s ± 359.26 ms

10.75 s ± 283.02 ms

nsNMF (theta=0.25) {nmfgpu4R} (float)

mu {nmfgpu4R} (float)

nsNMF (theta=0.25) {nmfgpu4R} (double)

mu {nmfgpu4R} (double)

gdcls (lambda=0.01) {nmfgpu4R} (float)

gdcls (lambda=0.01) {nmfgpu4R} (double)

als {nmfgpu4R} (float)

.R#lee {NMF}

als {nmfgpu4R} (double)

nnmf_als {NMFN}

nnmf_mm {NMFN}

.R#nsNMF (theta=0.25) {NMF}

.R#brunet {NMF}

lee {NMF}

brunet {NMF}

nsNMF (theta=0.25) {NMF}

1e−04 1e−02 1e+00
Seconds

Architecture

Intel Xeon E5−2687W v3 @ 3.10GHz

Nvidia GeForce GTX TITAN X

Nvidia Tesla K80

Figure 4: Computation time for one iteration on the Yale Face Database with r = 32 (top) and Cropped
Extended Yale Face Database B with r = 128 (bottom) shown on a logarithmic scale.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 391

Summary

In this work a new possibility to compute Non-negative Matrix Factorizations (NMF) using CUDA
hardware is presented. As shown in the benchmarks, the performance gain is remarkable and therefore
much larger datasets can be reduced, without having to wait on completion for weeks or even months.
Currently the implementation is only limited by the available memory on the device, because all
algorithms work directly in device memory without transfering intermediate results back to the
host. Possible extensions to this library/package could make use of out-of-core computation and
multiple CUDA devices, either to compute one distributed factorization or multiple factorizations
with different initializations. Furthermore more complex algorithms and initialization strategies could
be implemented in the future.

Bibliography

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2014. URL http:
//CRAN.R-project.org/package=Matrix. R package version 1.1-4. [p385]

P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. Fisherfaces: Recognition using class
specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):711–720,
Jul 1997. ISSN 0162-8828. doi: 10.1109/34.598228. [p389]

R. Bellman. Adaptive control processes: A guided tour. (A RAND corporation research study).
Princeton, N. J.: Princeton University Press, XVI, 255 p., 1961. [p382]

M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. Algorithms and applications
for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis, 52
(1):155 – 173, 2007. ISSN 0167-9473. doi: http://dx.doi.org/10.1016/j.csda.2006.11.006. URL
http://www.sciencedirect.com/science/article/pii/S0167947306004191. [p383, 384]

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3:
993–1022, Mar. 2003. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=944919.944937.
[p382]

C. Boutsidis and E. Gallopoulos. SVD based initialization: A head start for nonnegative matrix
factorization. Pattern Recognition, 41(4):1350 – 1362, 2008. ISSN 0031-3203. doi: http://dx.doi.
org/10.1016/j.patcog.2007.09.010. URL http://www.sciencedirect.com/science/article/pii/
S0031320307004359. [p383]

O. G. Cula and K. J. Dana. Compact representation of bidirectional texture functions. In Proceedings
of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1,
pages I–1041–I–1047, 2001. doi: 10.1109/CVPR.2001.990645. [p386]

R. A. Fischer. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):
179–188, 1936. ISSN 2050-1439. doi: 10.1111/j.1469-1809.1936.tb02137.x. URL http://dx.doi.org/
10.1111/j.1469-1809.1936.tb02137.x. [p387, 389]

R. Gaujoux and C. Seoighe. A flexible R package for nonnegative matrix factorization. BMC
Bioinformatics, 11(1):367, 2010. ISSN 1471-2105. doi: 10.1186/1471-2105-11-367. URL http:
//www.biomedcentral.com/1471-2105/11/367. [p385]

L. Gong and A. Nandi. An enhanced initialization method for non-negative matrix factorization. In
IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6, Sept 2013.
doi: 10.1109/MLSP.2013.6661949. [p386]

E. F. Gonzalez and Y. Zhang. Accelerating the Lee-Seung algorithm for nonnegative matrix factoriza-
tion. CAAM Technical Report TR05-02, Rice University, Mar. 2005. URL http://www.caam.rice.
edu/caam/trs/2005/TR05-02.pdf. [p383]

R. Koenker and P. Ng. SparseM: Sparse Linear Algebra, 2015. URL http://CRAN.R-project.org/
package=SparseM. R package version 1.6. [p385]

A. N. Langville, C. D. Meyer, R. Albright, J. Cox, and D. Duling. Algorithms, initializations, and
convergence for the nonnegative matrix factorization. CoRR, abs/1407.7299, 2014. URL http:
//arxiv.org/abs/1407.7299. [p383, 384, 386, 387]

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature,
401(6755):788–791, 1999. [p382, 383, 384]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=Matrix
http://CRAN.R-project.org/package=Matrix
http://www.sciencedirect.com/science/article/pii/S0167947306004191
http://dl.acm.org/citation.cfm?id=944919.944937
http://www.sciencedirect.com/science/article/pii/S0031320307004359
http://www.sciencedirect.com/science/article/pii/S0031320307004359
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://www.biomedcentral.com/1471-2105/11/367
http://www.biomedcentral.com/1471-2105/11/367
http://www.caam.rice.edu/caam/trs/2005/TR05-02.pdf
http://www.caam.rice.edu/caam/trs/2005/TR05-02.pdf
http://CRAN.R-project.org/package=SparseM
http://CRAN.R-project.org/package=SparseM
http://arxiv.org/abs/1407.7299
http://arxiv.org/abs/1407.7299

CONTRIBUTED RESEARCH ARTICLES 392

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In T. Leen, T. Dietterich,
and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 556–562. MIT
Press, 2001. URL http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-
factorization.pdf. [p382, 383, 384, 387]

K.-C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable
lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):684–698, May 2005.
ISSN 0162-8828. doi: 10.1109/TPAMI.2005.92. [p389]

S. T. Liu. NMFN: Non-negative Matrix Factorization, 2012. URL http://CRAN.R-project.org/package=
NMFN. R package version 2.0. [p385]

N. Lopes and B. Ribeiro. Non-negative matrix factorization implementation using graphic processing
units. Intelligent Data Engineering and Automated Learning – IDEAL 2010, Jan. 2010. doi: 10.1007/978-
3-642-15381-5_34. URL http://dx.doi.org/10.1007/978-3-642-15381-5_34. [p385]

N. Lopes and B. Ribeiro. A fast optimized semi-supervised non-negative matrix factorization algorithm.
In The 2011 International Joint Conference on Neural Networks (IJCNN), pages 2495–2500, July 2011.
doi: 10.1109/IJCNN.2011.6033543. [p387, 388]

P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal
utilization of error estimates of data values. Environmetrics, 5(2):111–126, 1994. ISSN 1099-095X. doi:
10.1002/env.3170050203. URL http://dx.doi.org/10.1002/env.3170050203. [p383, 384, 387]

A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann, and R. D. Pascual-Marqui. Nonsmooth
nonnegative matrix factorization (nsNMF). IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(3):403–415, Mar. 2006. ISSN 0162-8828. doi: 10.1109/TPAMI.2006.60. [p387]

V. P. Pauca, J. Piper, and R. J. Plemmons. Nonnegative matrix factorization for spectral data
analysis. Linear Algebra and its Applications, 416(1):29 – 47, 2006. ISSN 0024-3795. doi: http:
//dx.doi.org/10.1016/j.laa.2005.06.025. URL http://www.sciencedirect.com/science/article/
pii/S002437950500340X. Special Issue devoted to the Haifa 2005 conference on matrix theory.
[p386]

K. Pearson. On lines and planes of closest fit to system of points in space. Philiosophical Magazine, 2:
559–572, 1901. [p382]

R. Reinhardt, A. Hoffmann, and T. Gerlach. Nichtlineare Optimierung - Theorie, Numerik und Experimente.
Springer, 2013. ISBN 978-3827429490. [p384]

G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information Processing
& Management, 24(5):513 – 523, 1988. ISSN 0306-4573. doi: http://dx.doi.org/10.1016/0306-
4573(88)90021-0. URL http://www.sciencedirect.com/science/article/pii/0306457388900210.
[p386]

F. Shahnaz, M. W. Berry, V. Pauca, and R. J. Plemmons. Document clustering using nonnegative matrix
factorization. Information Processing & Management, 42(2):373–386, Mar. 2006. ISSN 0306-4573. URL
http://www.sciencedirect.com/science/article/pii/S0306457304001542. [p383, 387]

D. Skillicorn. Understanding Complex Datasets: Data Mining with Matrix Decompositions. Chapman &
Hall/CRC, 2007. ISBN 978-1584888321. [p382]

Sven Koitka
Department of Computer Science
University of Applied Sciences and Arts Dortmund (FHDO)
Emil-Figge-Straße 42, 44227 Dortmund
Germany
sven.koitka@fh-dortmund.de

Christoph M. Friedrich
Department of Computer Science
University of Applied Sciences and Arts Dortmund (FHDO)
Emil-Figge-Straße 42, 44227 Dortmund
Germany
christoph.friedrich@fh-dortmund.de

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://CRAN.R-project.org/package=NMFN
http://CRAN.R-project.org/package=NMFN
http://dx.doi.org/10.1007/978-3-642-15381-5_34
http://dx.doi.org/10.1002/env.3170050203
http://www.sciencedirect.com/science/article/pii/S002437950500340X
http://www.sciencedirect.com/science/article/pii/S002437950500340X
http://www.sciencedirect.com/science/article/pii/0306457388900210
http://www.sciencedirect.com/science/article/pii/S0306457304001542
mailto:sven.koitka@fh-dortmund.de
mailto:christoph.friedrich@fh-dortmund.de

