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Market Area Analysis for Retail and
Service Locations with MCI
by Thomas Wieland

Abstract In retail location analysis, marketing research and spatial planning, the market areas of
stores and/or locations are a frequent subject. Market area analyses consist of empirical observations
and modeling via theoretical and/or econometric models such as the Huff Model or the Multiplicative
Competitive Interaction Model. The authors’ package MCI implements the steps of market area
analysis into R with a focus on fitting the models and data preparation and processing.

Introduction

A market area (also called trading area , service area or catchment area) is a part of the earth’s surface
where the actual or potential customers of a supply location come from. This supply location can be
any kind of location which provides goods and/or services and generates a geographically segmented
market. In retailing, a supply location can be a single store, a retail agglomeration (planned or
unplanned shopping centre) or even an entire city (Berman and Evans, 2013; Löffler, 1998).

The market area of a store/location can be regarded as the spatial equivalent to its sum of all
customers and/or sales. The total customers/sales of a supply location can be determined by summing
the customer flows/expenditures from each geographic region in its market area (Huff and McCallum,
2008; Rodrigue et al., 2006). For practical reasons, a market area can also be divided by zones of market
penetration and/or distance/travel time (Berman and Evans, 2013).

Market areas of retail locations result from the consumer spatial shopping behaviour, more
precisely, their store choice . Thus, a market area is influenced by many factors such as the transport
costs (e.g. distance, travel time) between customers and locations and, of course, the characteristics of
the competitors (e.g. perceived "attraction", pricing, image or the opportunity for multi-purpose and
comparison shopping). Mostly, the market areas of competing supply locations overlap, which means
that they are in spatial competition (Rodrigue et al., 2006; Wieland, 2015a).

Traditionally, market area analysis includes the delineation and segmentation of market areas and
can be divided into inductive-empirical and deductive-theoretical approaches. The first type consists
of constructing market areas based on empirical observations such as point-of-sale (POS) surveys
(customer spotting), while in the latter approach this work is done by using mathematical market area
models (Löffler, 1998). Modern market area analyses are mostly a combination of both, especially
when using econometric market area models which are fitted by empirical data (Wieland, 2015a).

Market area models can be used in retail location analysis to find new locations, to evaluate
the existing outlets or to assess the impact of changes in the competitive landscape (Berman and
Evans, 2013; Huff and McCallum, 2008). Market area analyses are also subject of governmental spatial
planning in Germany (Wolf, 2012). The econometric models can also be utilized to identify variables
influencing consumer decisions and market areas and to check hypotheses about these relations, which
means to find out what affects store choice (Wieland, 2015a). The usage of market area models can
also be transferred to other service locations, such as health services (Jia et al., 2015).

This paper presents two market area models, the Huff Model and the Multiplicative Competitive
Interaction (MCI) Model, and their implementation into R by the authors’ package MCI (Wieland, 2016).
Yet, only the basic Huff Model formula is integrated in R by the packages SpatialPosition (Giraud and
Commenges, 2016), which can be used especially for graphical visualization, and huff-tools (Pavlis
et al., 2014), which combines the basic formulation with GIS functions. In contrast, the emphases of
the MCI package lie on 1) fitting the MCI Model and the Huff Model via OLS (ordinary least squares)
regression and nonlinear techniques, respectively, and 2) the steps of processing and transforming
empirical data to be usable in the models (especially working with interaction matrices).

Market area models: theory and application

Almost all market area models have in common that they are based on an attraction/utility function
including transport costs and further characteristics of the supply locations which are subjects of a
trade-off by the consumers. The dependent variable of these models is the store choice and/or the
choice probability and/or the market shares of the stores/locations (Wieland, 2015a).

The first retail market area models (Reilly, 1929; Converse, 1949) were deterministic , which means
that each customer origin is assigned completely to one supply location while overlapping market
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areas are not envisaged. Furthermore only two supply locations can be processed and the explaining
variables of the models are not founded theoretically. These gaps were filled by Huff (1962, 1963,
1964) by introducing his probabilistic market area model. An important content enhancement and, at
the same time, an econometric transformation of the Huff Model was introduced in the form of the
Multiplicative Competitive Interaction Model by Nakanishi and Cooper (1974, 1982).

The Huff Model

Theoretical background and formulation

The basis of the Huff Model is the following multiplicative utility function with two explanatory
variables representing two determinants of store choice (Huff and Batsell, 1975):

Uij = Aγ
j d−λ

ij , (1)

where Uij is the utility of the supply location j for the customers at origin i, Aj reflects the attraction
of supply location j and dij contains the transport costs customers from i have to take to reach j. The
exponents γ and λ are weighting parameters.

The attraction is translated as the size of the location due to the increasing probability for a
"successful" shopping trip on condition of consumer uncertainty (the greater the locations’ offer, the
more likely is to get the desired goods). The size is operationalized by the sales area of the locations.
But, as the consumers’ decision costs normally rise with an increasing number of offered goods, the
marginal utility of the locations’ offer decreases which is reflected by a degressive weighting of size
(0 < γ < 1). The indicator for the transport costs is the travel time from i to j, reflecting the time
consumed by a shopping trip. To integrate the opportunity costs and the perceived disutility of
traveling, the travel time is weighted negatively and progressively (|λ| > 1) (Huff, 1962).

The parameter λ also reflects the range of the offered goods dependent on the shopping frequency:
the more high-order the good/less frequently purchased, the less is the disutility of transport costs
(Güssefeldt, 2002). But this distance decay function of the power type can also be replaced by an
exponential or a logistic function (Kanhäußer, 2007). As suggested by Huff (1962), also the attraction
function can be logistic to better reflect the effect of decreasing marginal utility of size.

Derived from the behavioral scientific Luce choice axiom (Luce, 1959), the consumer decision in
the Huff Model is regarded as probabilistic. The probability to choose the alternative j from a set of
alternatives (j = 1, ..., n) is the quotient of its utility Uij and the sum of the utilities of all alternatives
(Huff, 1962):

pij =
Uij

∑n
j=1 Uij

=
Aγ

j d−λ
ij

∑n
j=1 Aγ

j d−λ
ij

, (2)

where pij is the probability that the customers from origin i travel to location j, what can be called
interaction probability , where: ∑n

j=1 pij = 1 and 0 < pij < 1. These probabilites can be interpreted as
market shares of location j in origin i, what can be called local market shares . These shares implicitly
represent a final state of consumer preference patterns in a spatial equilibrium (Huff and Batsell, 1975).
Thus, in the Huff Model, the revenues of a retail store/location j depend on its own attraction, the
attraction of all competitors and the transport costs between all locations and the customer origins.

The expected customer/expenditure flows from i to j are estimated by multiplying the local market
shares with the local market potential (Huff, 1962):

Eij = pijCi, (3)

where Eij is the number of expected customer/purchasing power flows from origin i to location j and
Ci is the total market potential (number of potential customers or purchasing power) in i.

The complete market area of location j is the sum of all regional customer or purchasing power
flows, while the former represents the total number of customers and the latter equals the total sales
of the location, e.g. within a year (Huff, 1964):

Tj =
m

∑
i=1

Eij, (4)

where Tj is the market area of j containing m submarkets, normally measured in persons or money.
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i j dij Aj Uij ∑ Uij pij Ci Eij

i1 j1 di1 j1 Aj1 Ui1 j1 ∑ Ui1 pi1 j1 Ci1 Ei1 j1

i1 j2 di1 j2 Aj2 Ui1 j2 ∑ Ui1 pi1 j2 Ci1 Ei1 j2

i1 j3 di1 j3 Aj3 Ui1 j3 ∑ Ui1 pi1 j3 Ci1 Ei1 j3

i2 j1 di2 j1 Aj1 Ui2 j1 ∑ Ui2 pi2 j1 Ci2 Ei2 j1

i2 j2 di2 j2 Aj2 Ui2 j2 ∑ Ui2 pi2 j2 Ci2 Ei2 j2

... ... ... ... ... ... ... ... ...

im jn dim jn Ajn Uim jn ∑ Uim pim jn Cim Eim jn

Table 1: Huff interaction matrix (schematic).

Empirical usage

While working with the Huff Model, the first step is to delineate the study area itself and to record the
focused origins and locations. The explanatory variables must be observed empirically by mapping
the regarded stores/locations (Aj) and calculating travel times (dij), respectively (Huff, 1962).

All data is stored into a special kind of linear table that is called interaction matrix and is the
basis for all further calculation steps (see Table 1). The interaction matrix contains one row for each
(potential) spatial interaction between the origins, i (where i = 1, ..., m), and the locations, j (where
j = 1, ..., n), so the number of rows sums up to m ∗ n. For every row, the utilities and probabilities are
calculated using the formulas mentioned above (Wieland, 2015a).

Many approaches were developed to estimate the weighting coefficients by nonlinear iterative
techniques. Huff (1962) showed a way to estimate λ with a fitting algorithm comparing expected and
observed market shares by correlation coefficients while keeping γ constantly equal to one. But, if
pij, the dependent variable in the Huff Model, was observed, probably the best way to estimate the
parameters is the econometric transformation of the model which was achieved by the Multiplicative
Competitive Interaction Model by Nakanishi and Cooper (1974) (see the next section).

In many cases, no empirical market shares are available but only observed total sales of stores or
locations, Tj. Thus, many studies focus the model fitting by nonlinear optimization algorithms based
on empirical total values (Baecker-Neuchl and Wagenseil, 2015; De Beule et al., 2014; Güssefeldt, 2002;
Marinov and Czamanski, 2012; Orpana and Lampinen, 2003; Klein, 1988; Yingru and Lin, 2012). In the
following, a new optimization algorithm of this type is introduced which is based on the idea of the
local optimization of attraction approach by Güssefeldt (2002) (which is the only one with an explicit
theoretical fundament) and features of other mentioned procedures.

A new optimization algorithm for the Huff Model

Consider a location system with j supply locations (where j = 1, ..., n), where Tjobs
defines the real

(observed) annual sales of j. Güssefeldt (2002) argues that every store or location has its own unknown
revenue function and the sales (=revenues) depend on its own attraction (=input) and each competitors’
behaviour. The attraction variable in the Huff Model, Aj, is a proxy variable for size (e.g. sales area)
reflecting the extent of offers which is the input in the unknown revenue function. But this non-
adjusted attraction measure does not reflect the "real" attraction because every competitor modifies
the input in his revenue function (e.g. via marketing efforts) without any change in the size variable.

Thus, the expected sales using non-adjusted attractions in the Huff Model, Tjexp , do not correspond
to the observed sales what can be measured on the local level (which means a single store/location)
by the absolute percentage error :

APEj =
|Tjexp − Tjobs

|
Tjobs

, (5)

where Tjexp is the expected total sales of supply location j (Huff Model result), Tjobs
is the observed total

sales and APEj is the absolute percentage error for supply location j.
Since the algorithm by Güssefeldt (2002) addresses the local level, there is no fit measure for the

global level (which means the model fit for the complete location system). The global model fit can be
evaluated in different ways, where three fit measures were already used in the context of optimizing
the Huff Model: the mean absolute percentage error (MAPE) and a PseudoR2 measure, both used by
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De Beule et al. (2014), and the global error (GE) used by Klein (1988):

MAPE =
1
N

N

∑
n=1

|Tjexp − Tjobs
|

Tjobs

, (6)

where Tjexp is the expected total sales of location j (Huff Model result), Tjobs
is the observed total sales

and N is the number of objects.

PseudoR2 =
var

(
Tjobs

)
− var

(
ε j

)
var

(
Tjobs

) , (7)

where Tjobs
is the observed total sales and ε j is the residuum, Tjobs

− Tjexp .

GE =
∑ |ε j|
∑ Tjobs

, (8)

where Tjobs
is the observed total sales and ε j is the residuum, Tjobs

− Tjexp .

Since the real sales are known and on condition that the location attraction and the sales are related
to each other, the attraction Aj can be described as a function of the sales (Güssefeldt, 2002):

Aj = a + bTj, (9)

where Aj is the predicted attraction of location j, Tj is the total sales of j, a is the intercept and b is
the slope of the attraction function. As every supply location has its own revenue function (each
competitor has an individual factor use), the attraction function is also different for each store/location.

On condition that an interval is known, this function can be parametrized by calculating the slope
using the difference quotient and the intercept, thereafter (Güssefeldt, 2002). Unlike in the mentioned
approach, this function must pass the origin because in the Huff Model with its multiplicative utility
function (Formula 1), an attraction equal to zero (Aj = 0) must result in an utility equal to zero
(Uij = 0) which results in local market shares equal to zero (pij = 0, Formula 2). Thus, the total
sales (Formulae 3 and 4) must be equal to zero (Tj = 0), too. This is a logical consequence from the
theoretical basement of the Huff Model but is also part of the principle of logical consistency of market
shares in marketing research (Cooper and Nakanishi, 2010).

Thus, formula 9 has no intercept (a = 0) which means a directly proportional relation between
sales and attraction. But, as the revenue function differs by each supply location, the attraction function
must also be parametrized for each store/location. The slope in the attraction function of location j
can be calculated via:

bj =
Aj − Aj0

Tjexp − Tj0
=

Aj

Tjexp

, (10)

where bj is the slope of the attraction function for j, Aj is the non-adjusted attraction of location j (such
as sales area), Tjexp is the total expected sales of j predicted by the Huff Model, Aj0 is the attraction
when the sales are equal to zero and Tj0 represents the sales when the attraction is equal to zero, both
equal to zero (Aj = 0⇔ Tj = 0). The adjusted attraction of supply location j can be calculated via:

Ajadj
= bjTjobs

, (11)

where Ajadj
is the adjusted attraction of j, bj is the slope of the attraction function for j and Tjobs

represents the real (observed) sales of j.
The relations mentioned above can be brought together in an optimization algorithm for the Huff

Model with respect to a location system with j locations (j = 1, ..., n) containing the following 8 steps:

1. Set a tolerance value, tolAPE, to define which difference between the real and the expected sales
of location j is accepted, e.g. tolAPE = 5, which means an accepted deviation of +/- 5 percent.
Define a transport costs weighting function (power, exponential or logistic) and the weighting
parameter(s) λ for formula 2.

2. Calculate the market areas for the location system and the total sales of the n locations using
formulae 2 to 4 with γ = 1 and the transport costs weighting as defined in step 1.

3. Calculate the absolute percentage error between the expected and the observed total sales of
location j (APEj) by formula 5. If the error APEj is smaller than the tolerance tolAPE, no further
local optimization for location j is needed, so you can repeat step 3 with location j + 1. If
APEj > tolAPE, go to step 4.

4. Calculate the slope of the attraction function by formula 10. Calculate the adjusted attraction
via formula 11.
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5. Save the adjusted attraction of location j, Ajadj
, in the actual Huff interaction matrix and repeat

the procedure beginning at step 2 with the next location, j + 1.

6. Repeat steps 2 to 5 for all locations (j = 1, ..., n).

7. After the last location j = n was processed, calculate the global fit measures for the complete
location system by formulae 6 to 8.

8. Repeat steps 2 to 7 for the complete location system until the local optima and/or the global
optimum is sufficiently approximated. The former can be evaluated by the tolerance value (step
3) for every j location, while the latter can be controlled by the global fit measures (step 7).

The Multiplicative Competitive Interaction (MCI) Model

Theoretical background and formulation

The Multiplicative Competitive Interaction Model (in short: MCI Model ) is based on the Huff Model
but also belongs to the model family of market share models which were developed in marketing
science. Thus, it can be regarded as a crossover of these two model families (Cliquet, 2013). The
fundamental theorem behind market share models is the following simple relationship between the
competitors’ characteristics and their market shares (Cooper and Nakanishi, 2010):

MSj =
Aj

∑n
j=1 Aj

, (12)

where MSj is the market share of competitor j and Aj is the attraction of j. This leads to two
characteristics of market shares which are summarized as logical-consistency requirements for market
shares: 0 < MSj < 1, and ∑n

j=1 MSj = 1, respectively (Cooper and Nakanishi, 2010). This market
share logic is obviously related to the probabilistic concept of the Huff Model when the term "market
shares" is replaced by "choice probabilities", "interaction probabilities" or "local market shares" and the
construct "attraction" is replaced by the construct "utility" (Wieland, 2015a).

Derived from the Huff Model, the MCI Model is explicitly formulated to regard a market which
is segmented into i submarkets (i = 1, ..., m) and which is served by j suppliers (j = 1, ..., n). The
attraction function is multiplicative and consists of h (h = 1, ..., H) explanatory variables which are
weighted exponentially to reflect their sensitivity (Nakanishi and Cooper, 1974):

pij =
∏H

h=1 Aγh
hj

∑n
j=1 ∏H

h=1 Aγh
hj

, (13)

where pij is the probability that the customers from submarket i choose supplier j, Ahj
is the value of

the h-th variable describing the object j, γh is the weighting parameter for the sensitivity of pij with
respect to the variable h. The next steps (customer or expenditure flows, total market area) can be
taken analogously to the Huff Model (Formulae 3 and 4).

The market can be subdivided in any kind of submarkets (e.g. customer groups, time periods,
geographic areas). When the market is segmented geographically, it is a matter of a Spatial MCI
Model , especially when integrating transport costs as an explanatory variable (Cliquet, 2013; Huff and
McCallum, 2008). The MCI Model can also be regarded as a generalization of the Huff Model, while
the Huff Model can be considered as a special case of multiplicative competitive interaction model.

The log-centering transformation

The models mentioned above are deterministic (no random variation) and nonlinear models which
cannot be estimated directly by common econometric techniques but by iterative algorithms (see the
former section) which do not allow statements about the statistical significance of the explanatory
variables and other inference statistics. The main breakthrough of the MCI Model is the transformation
of the nonlinear structure into a linear stochastic model which can be estimated via OLS (Ordinary
Least Squares) regression (Huff and McCallum, 2008).

This requires a re-arrangement of the model to be linear in parameters which is achieved by a
multi-step transformation of the variables using geometric means and logarithms for standardization
and linearization called the log-centering transformation (Nakanishi and Cooper, 1974):

log
( pij

p̃i

)
=

H

∑
h=1

γh log

(
Ahj

Ãhj

)
+ log

(
εij

ε̃i

)
, (14)
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where p̃i and Ãhj
are the geometric means of pij and Ahj

, respectively, and ε̃i is the geometric mean
of the disturbance term (residuum) εij which is added to the original model to be stochastic. The
geometric means of pij and any submarket-related explanatory variable (such as travel time, dij) are
calculated on the submarket level. As in the original model, the transformation does not include an
intercept (regression through the origin) to match the logical-consistency requirements for market
shares (Nakanishi and Cooper, 1982).

Once the variables are transformed, the model function is linear in its parameters and can be
processed as a multiple linear regression model to be estimated by OLS regression (Rawlings et al.,
1998). Thus, the model allows to test hypotheses about the influence of store/location characteristics
(such as sales area, pricing) and transport costs (such as travel time, distance) on the local market shares
in the submarkets (customer origins) by interpreting the regression coefficients and their inference
statistics (Nakanishi and Cooper, 1974, 1982; Huff and McCallum, 2008).

After an estimation of the parameters, they can be included as exponents in the original nonlinear
model (Formula 13) to be utilized for market share/market area predictions (Nakanishi and Cooper,
1982; Huff and McCallum, 2008). It is also possible to integrate dummy variables reflecting qualitative
information (such as brands or store chains) or an intercept (if necessary). Since the former causes
problems in the multiplicative attraction/utility function (multiplication by zero) and the latter is
contrary to the logical consistency requirement, a different retransformation of the model called the
inverse log-centering transformation is required (Nakanishi and Cooper, 1982):

ŷij =
H

∑
h=1

γ̂h log

(
Ahj

Ãhj

)
, (15)

p̂ij =
eŷij

∑n
j=1 eŷij

, (16)

where ŷij is the transformed attraction/utility function and p̂ij is the expected response variable, the
interaction probabilities/market shares of the supplier j in the submarket i. Thus, in that cases, the
variables are processed as they were transformed in formula 14.

Empirical usage

In the first step, a MCI Model analysis requires the formulation of hypotheses and/or research
questions addressing the influence of the H explanatory variables on the market shares based on
theoretical considerations. The Huff Model can be regarded as a theoretical base since Huff (1962)
assumes size and transport costs as explanatory variables which can be tested by the MCI Model
(Kubis and Hartmann, 2007; Suárez-Vega et al., 2015). But the number of additional influences tested
is nearly unlimited and ranges from further store/location attributes like age or price level (Huff
and McCallum, 2008; Tihi and Oruc, 2012) to the surrounding coupling and competition potential
(Wieland, 2015a) to consumer-related subjective variables (Cliquet, 2013; González-Benito et al., 2000).

Since the delineation of the study area and the identification of the relevant competing locations
have an enormous impact on the results, these definitions should be made corresponding to the LIFO
(little in from outside) and LOFI (little out from inside) principles (Huff and McCallum, 2008). This
means that the majority of shopping interactions should take place within the study area.

The supplier characteristics can be obtained by mapping the relevant stores/locations and addi-
tional research. The market shares, pij, cannot be observed directly but have to be calculated based on
empirically observed shopping interactions (shopping trips and/or expenditures) which are collected
on the individual or household level. In a representative household survey (or, if not possible, a
point-of-sale survey), every respondent is asked for the destination(s) of the last shopping trip(s) at
the j location(s) and/or the associated expenditures (Huff and McCallum, 2008; Wieland, 2015a).

To calculate the local market shares of shopping trips and/or expenditures, the individual data
must be aggregated on the submarket level:

pij =
Oij

∑n
j=1 Oij

, (17)

where pij is the empirical market share of supplier j in submarket i and Oij equals the observed
frequencies/expenditures of the customers in i with respect to supplier j. ∑n

j=1 Oij is the empirical
equivalent to the total customer/purchasing power potential in i, Ci, in the Huff Model (formula
3). As in the Huff Model, the empirical market shares, pij, and the observed explanatory variables
(A1, ..., AH , dij) are stored in an interaction matrix (see Table 2).

Mostly, the observed variables cannot be processed directly: the log-centering transformation
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i j pij A1j A2j A3j ... AHj dij

i1 j1 pi1 j1 A11 A21 A31 ... AH1 di1 j1

i1 j2 pi1 j2 A12 A22 A32 ... AH2 di1 j2

i1 j3 pi1 j3 A13 A23 A33 ... AH3 di1 j3

i2 j1 pi2 j1 A11 A21 A31 ... AH1 di2 j1

i2 j2 pi2 j2 A12 A22 A32 ... AH2 di2 j2

... ... ... ... ... ... ... ... ...

im jn pim jn A1n A2n A3n ... AHn dim jn

Table 2: MCI interaction matrix (schematic).

requires every variable to be ratio-scaled, non-negative and greater than zero. Thus, also market
shares equal to zero, pij = 0, what may occur, are invalid. A simple way to correct the raw data
accepting a small bias is to increase the variable by a small constant (Kubis and Hartmann, 2007;
Wieland, 2015a) and/or to aggregate the submarkets (Perales, 2002; Tihi and Oruc, 2012). Anyway,
the raw data should be adjusted by removing singular instances and outliers to fulfil the LIFO/LOFI
requirements mentioned above (Huff and McCallum, 2008; Wieland, 2015a).

Interval scaled variables (e.g. consumer judgements in rating scales) which may contain negative
values can be transformed by the zeta-squared transformation (Cooper and Nakanishi, 1983):

zhij
=

Xhij
− Xhi

ρhi

, (18)

ζ2
hij

=

{ (
1 + z2

hij

)
if zhij

≥ 0(
1

1+z2
hij

)
if zhij

≤ 0
, (19)

where zhij
is the z-standardized score of Xhij

and ζ2
hij

is the zeta-squared value resulting from zhij
.

Nominal scaled variables (e.g. store chains, brands) cannot be processed directly in the MCI Model
but can be transformed into dummy variables which are ignored in the log-centering transformation.

All in all, an econometric market share/market area analysis using the MCI Model on condition of
existing research questions and hypotheses contains the following 8 steps:

1. Define the study area and divide it into i submarkets (here: customer origins).

2. Obtain the relevant variables: shopping trips and/or expenditures on the individual/household
level (Oij), H characteristics of the j regarded suppliers and the transport costs, dij.

3. If necessary, correct or transform the variables to match the requirements of the log-centering
transformation: if some Oij or other variables are equal to zero, add a constant, aggregate the
submarkets in the study area and remove outliers, respectively. If there are interval scaled
variables, transform them by formulae 18 and 19. If there are nominal variables, transform them
to dummy variables.

4. Calculate the market shares, pij, by formula 17.

5. Store the submarkets, suppliers, local market shares and the H explanatory variables in an
interaction matrix (see Table 2).

6. Apply the log-centering transformation (formula 14) to the previously created interaction matrix.

7. Apply the OLS regression to the log-centering transformed interaction matrix with log( pij
p̃i
)

as dependent variable treating the model like any other multiple linear regression model:
determine the estimators, compute fit measures and inference statistics for the hypothesis tests.

8. Interpret the model results. For market share predictions, insert the estimated parameters in the
nonlinear model using formula 13 or formulae 15 and 16.

R implementation

As outlined in the former section, market area analysis for retail and service locations requires a
mixture of descriptive and inference statistics, iterative optimization and, of course, a lot of processing
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and preparation of empirical data which may be even more complex (or, at least, more time-consuming)
than the models themselves. Except the Huff Model basis formulation which is implemented in R
by the packages SpatialPosition and huff-tools none of the mentioned models were integrated in R
yet. The former mentioned package is focused on graphical visualization and other spatial interaction
models while the latter combines the basic Huff formula with GIS-related functions. The Multiplicative
Competitive Interaction Model and the related procedures of data handling are just as little integrated
in R as the OLS and nonlinear fitting procedures for the Huff Model and the MCI Model, respectively.
The motivation of the presented package MCI is to fill this gap.

The MCI package

The Huff Model and the Multiplicative Competitive Interaction (MCI) Model are implemented in the
MCI package which is focused on:

1. Fitting the mentioned models by empirically observed data using the MCI linearization (log-
centering transformation) combined with OLS regression (functions mci.fit(), mci.transmat()
and mci.transvar()) and the Huff Model optimization algorithm described above (functions
huff.attrac() and huff.fit()).

2. The steps of data preparation and processing to make empirical data usable in these models,
especially the creation and processing of interaction matrices used in MCI analyses which is
subject of the function ijmatrix.create().

The MCI package also provides tools that can be used for descriptive analyses of empirical or
estimated market areas, such as zoning (see the function shares.segm()) and, of course, the basic
Huff and MCI formulations (see the functions mci.shares() and huff.shares(), respectively). The
correction of variables to match the MCI requirements can be done by the functions var.correct()
and var.asdummy().

The input of the most functions is required to be a "data.frame" where the first function argument
is the dataset name, followed by a set of variable names (columns) each one in double quotation marks
and further function arguments. Also, the output of nearly every function is a "data.frame", except
the mci.fit() function which returns an object of type "lm" and model.fit() which returns a "list".
Three functions (huff.decay(), model.fit() and shares.total()) also provide an optional graphical
output.

The package does not import any other packages (except some already implemented functions
from stats and graphics, of course) and does not contain any non-R scripts.

The data used in the following examples is distributed over several datasets to demonstrate the
several data sources and the components of a market area analysis, respectively. In fact, there is no
need to split the working data like this, but, of course, it is recommended since the voluminous data
may lead to confusion.

Examples

Analyzing market areas of single locations

The first example deals with a more descriptive analysis of empirical market areas obtained by a POS
survey (customer spotting technique). The package-included example dataset shopping1 is a survey
conducted at two supply locations in the east of Karlsruhe, Germany, in May 2016.

The dataset contains 434 surveyed individuals at both locations, including 410 cases from the main
survey and 24 cases from the pretest. Amongst other things, the respondents were asked about their
place of residence, their shopping preferences in general (last shopping trip with respect to different
goods) and their on-site shopping behaviour (duration of stay, expenditures). The customers’ origin is
stored in the column resid_code. The variable POS indicates the location: "POS1" is a town centre and
thus, an evolved retail agglomeration, while "POS2" is an out-of-town planned shopping centre.

It should be noted that a POS survey mostly does not fulfill the requirements of statistical represen-
tativity: besides that shopping behaviour differs by weekdays, time periods and, of course, weather,
independent from the size and heterogeneity of the sample, the statistical population is unknown.

library(MCI)
data(shopping1)
# The survey dataset
data(shopping2)
# Dataset with distances and travel times

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 306

The first step is to filter the dataset since only the interviews are needed which were conducted at
both supply locations simultaneously. We subset the relevant data and store it into a new working
data frame (shopping1_adj) which we use to create an interaction matrix of type "data.frame" called
ijmatrix using the function ijmatrix.create():

shopping1_adj <- shopping1[(shopping1$weekday != 3) & (shopping1$holiday != 1)
& (shopping1$survey != "pretest"),]
# Removing every case from tuesday, holidays and the ones belonging to the pretest

ijmatrix <- ijmatrix.create(shopping1_adj, "resid_code", "POS", "POS_expen")
# Creates an interaction matrix based on the observed frequencies (automatically)
# and the POS expenditures (Variable "POS_expen" separately stated)

ijmatrix
interaction resid_code POS freq_ij_abs freq_i_total p_ij_obs

1 resid1-POS1 resid1 POS1 91 113 0.8053097
2 resid1-POS2 resid1 POS2 22 113 0.1946903
3 resid10-POS1 resid10 POS1 3 7 0.4285714
...

freq_ij_abs_POS_expen freq_i_total_POS_expen p_ij_obs_POS_expen
1 2318.25 3245.25 0.71435174
2 927.00 3245.25 0.28564826
3 30.00 328.00 0.09146341
...

The resulting data frame (rows 1-3 are displayed) contains the interaction (from each origin to
each destination) in the first column (interaction) and each origin and destination in the columns
resid_code and POS, respectively, both adopted from the column names in the input dataset. The
absolute number of respondents and the total value of expenditures from the origins, i, at the des-
tinations, j, is stored in freq_ij_abs and freq_ij_abs_POS_expen, respectively. The freq_i_total*
columns contain the total number/sum of observed customers/expenditures from each origin, while
the p_ij_obs* are the local market shares of customers and expenditures, pij, respectively. The names
are set automatically based on the original variable names (e.g. POS_expen).

The next step is the zoning of the empirical market areas by driving time using the function
shares.segm() and the travel time stored in the shopping2 dataset. The routes were calculated in R
using the package ggmap (Kahle and Wickham, 2013). We want to know how much of the customers
and expenditures come from origins with a maximal travel time of 10, 20, 30 and more than 30 minutes:

ijmatrix_dist <- merge(ijmatrix, shopping2, by.x = "interaction", by.y = "route",
all.x = TRUE)

# Adding the distances and travel times

visit <- shares.segm(ijmatrix_dist, "resid_code", "POS", "d_time", "freq_ij_abs",
0, 10, 20, 30)

# Segmentation by travel time using the number of customers/visitors
# Parameters: interaction matrix (data frame), columns with origins and destinations,
# variable to divide in classes, absolute frequencies/expenditures, class segments

expen <- shares.segm(ijmatrix_dist, "resid_code", "POS", "d_time",
"freq_ij_abs_POS_expen", 0, 10, 20, 30)

# Segmentation by travel time using the POS expenditures

visit
d_time_class POS1_abs POS1_rel POS2_abs POS2_rel

1 0-10 108 72.483221 58 40.277778
2 10-20 24 16.107383 62 43.055556
3 20-30 10 6.711409 12 8.333333
4 Other 7 4.697987 12 8.333333

expen
d_time_class POS1_abs POS1_rel POS2_abs POS2_rel

1 0-10 2858.25 76.418689 2900.0 34.354491
2 10-20 541.00 14.464274 4052.4 48.006255
3 20-30 283.00 7.566339 478.0 5.662568
4 Other 58.00 1.550698 1011.0 11.976686
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The "data.frame" output of the used function contains the segment classes, named based on the
input variable name (d_time_class), e.g. d_time_class="0-10" represents the zone up to 10 minutes
of travel time. The further columns contain the sums and the percentage shares for each location,
respectively, both named based on the original values (e.g. POS1_abs, POS1_rel).

We see that, at "POS1" (town centre) 108 surveyed customers come from an origin up to 10 minutes
of driving time what corresponds to 72.48% of all customers. At POS2 (out-of-town planned shopping
centre), only 40.28% of the visitors are generated from places of residence where to drive less or equal
to 10 minutes. The difference is more clear when looking at the expenditures: at the town centre,
76.42% of the observed expenditures are spent by customers from origins of the first driving time class,
while the share in the corresponding class at the shopping centre is 34.35%.

Since the survey was only conducted at these two supply locations but not at other possible com-
petitive locations, it would not make any sense to use these empirical market areas in an econometric
market area model. But, of course, it is possible to analyze the distance decay on the level of single
locations.

Before fitting and plotting distance decay functions, some corrections of the data have to be
made and, since we don’t have local market shares, the dependent variable reflecting the intensity of
interaction (surveyed visitors per 1,000 inhabitants) has to be calculated:

ijmatrix_dist$freq_ij_abs_cor <- var.correct(ijmatrix_dist$freq_ij_abs,
corr.mode = "inc", incby = 0.1)

# Correcting the absolute values (frequencies) by increasing by 0.1

data(shopping3)
ijmatrix_alldata <- merge(ijmatrix_dist, shopping3)
# Adding the information about the origins (places of residence) stored in shopping3

ijmatrix_alldata$visitper1000 <- (ijmatrix_alldata$freq_ij_abs_cor /
ijmatrix_alldata$resid_pop2015) * 1000

# Calculating the dependent variable
# visitper1000: surveyed customers per 1,000 inhabitants of the origin

ijmatrix_alldata <- ijmatrix_alldata[(!is.na(ijmatrix_alldata$visitper1000))
& (!is.na(ijmatrix_alldata$d_time)),]
# Removing NAs (data for some outlier origins and routes not available)

POS1 <- ijmatrix_alldata[ijmatrix_alldata$POS == "POS1",]
# Dataset for POS1 (town centre)
POS2 <- ijmatrix_alldata[ijmatrix_alldata$POS == "POS2",]
# Dataset for POS2 (out-of-town shopping centre)

A fit of distance decay functions can be done with the package function huff.decay() which
compares four types of possible distance decay functions (linear, power, exponential, logistic). For
both locations, "POS1" and "POS2", we test the influence of distance in km (d_km) and travel time in
minutes (d_time) on the dependent variable (visitper1000):

huff.decay(POS1, "d_km", "visitper1000")
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared

1 Linear 0.7354 2e-04 -0.0455 0.0038 0.216 0.1936
2 Power 1.9121 0.4434 -1.5267 2e-04 0.333 0.3139
3 Exponential 0.2788 0.0222 -0.1353 0.0044 0.2092 0.1866
4 Logistic 1.6999 0.0164 0.1823 0.0026 0.2311 0.2092

huff.decay(POS1, "d_time", "visitper1000")
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared

1 Linear 1.2112 0 -0.0585 1e-04 0.3516 0.3331
2 Power 34.6019 0.0289 -2.2968 3e-04 0.3211 0.3017
3 Exponential 0.691 0.6322 -0.1432 0.0027 0.23 0.208
4 Logistic 0.2659 0.7795 0.2058 6e-04 0.2893 0.2689

huff.decay(POS2, "d_km", "visitper1000")
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared

1 Linear 0.6734 0 -0.0316 7e-04 0.2812 0.2606
2 Power 5.7372 0.0348 -1.5978 0 0.3863 0.3688
3 Exponential 0.9161 0.8318 -0.1605 0 0.4086 0.3917
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4 Logistic -0.4868 0.4212 0.2043 1e-04 0.3444 0.3256

huff.decay(POS2, "d_time", "visitper1000")
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared

1 Linear 0.9353 0 -0.0411 1e-04 0.3706 0.3526
2 Power 213.9932 7e-04 -2.7363 0 0.4213 0.4048
3 Exponential 2.3946 0.14 -0.184 0 0.4191 0.4025
4 Logistic -1.8572 0.031 0.2441 0 0.3835 0.3659

The huff.decay() function returns a "data.frame" containing a summary of the regression results
and a plot of the four estimated functions and the observed values (see Figure 1). The output shows
the model estimators (Intercept and Slope), their p-values (p Intercept, p Slope) and the goodness
of fit measures (R-Squared, Adj. R-Squared) for every model type.

Figure 1: Distance decay functions for POS1 (top) and POS2 (bottom).

Note that the nonlinear models are not fitted via nonlinear regression but by linearization and
retransformation, thereafter, since the usually used distance decay functions mentioned above are
intrinsically linear (Rawlings et al., 1998). Internally, the linearized models are fitted via lm(). It is
important to say that the usage of logarithmic transformations has, apart from many advantages of lin-
earization, also serious drawbacks: with respect to gravity models, Silva and Tenreyro (2006) point out
that OLS fitting of log-transformed data produces significant biases depending on heteroscedasticity.
The same issue is also addressed by Manning and Mullahy (2001).

Huff (1962) assumed that a power function fits best to describe the distance decay. Since other types
of distance decay functions are possible, Kanhäußer (2007) uses the explained variance as a criterion
for choosing the best function type. Note that, strictly speaking, the R2 values of the models can not
be compared directly since they rest on different dependent variables. In the practical application, the
choice for the preferred function type should be based on examining the model results and the plot as
a case-by-case decision. With respect to R2 the best distance decay functions for the two locations are:

ÎijPOS1 = 1.91 d_km−1.53
ij , (20)
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ÎijPOS1 = 1.21− 0.06 d_timeij, (21)

ÎijPOS2 = 0.92 e−0.16 d_kmij , (22)

ÎijPOS2 = 213.99 d_time−2.74
ij , (23)

where ÎijPOS1 and ÎijPOS2 is the expected value of interaction intensity from i to j (visitors per 1,000
inhabitants) for the supply locations POS1 and POS2, respectively, d_kmij is the distance from i to j in
km, d_timeij is the travel time from i to j and e is Euler’s number ≈ 2.71828.

As expected, the distance/travel time influences the interaction intensity significantly and, as Huff
(1962) states, mostly exponentially. In the second case, the regression regarding POS1 with the travel
time, surprisingly, the best fit can be achieved by a linear function. But, all in all, the model fits can be
regarded as rather poor, since the highest R2 is equal to 0.42 in the fourth function (POS2 with travel
time). Of course, that is because the distance/travel time is just one important determinant of store
choice, while the attraction and other attributes of the retail locations are not considered here.

Econometric market area analysis using the MCI Model

Since, in the Huff Model, the store choices are explained by sales area and travel time, we want to test
these hypotheses empirically with respect to grocery shopping trips. First, we have to calculate the
dependent variable (market shares) and to link it to the explanatory variables in an interaction matrix,
then we need to apply the log-centering transformation and, finally, we have to fit the MCI Model.

As in the former example, we use the shopping1 dataset which also contains questions about the
general shopping behaviour. The respondents were asked about the destination of their last grocery
shopping trip (gro_purchase_code) and the related expenditures (gro_purchase_expen).

We have to clean our working dataset from respondents living outside our study area, since we
want to analyze the shopping patterns of the grocery shoppers in the eastern districts of Karlsruhe:

data(shopping1)
# Survey dataset
data(shopping3)
# Dataset containing information about the city districts
data(shopping4)
# Dataset containing the grocery stores
shopping1_KAeast <- shopping1[shopping1$resid_code %in%

shopping3$resid_code[shopping3$KA_east == 1],]
# Extracting only inhabitants of the eastern districts of Karlsruhe

From the adjusted dataset, we create an interaction matrix using the function ijmatrix.create()
with default values (no further adjusting except ignoring NA values). The calculation includes the
shopping trip frequency that is counted automatically and the expenditures that must be specified
separately by stating the variable containing the individual trip expenditures, gro_purchase_expen.
The interaction matrix is stored in a new "data.frame", ijmatrix.

ijmatrix <- ijmatrix.create(shopping1_KAeast, "resid_code", "gro_purchase_code",
"gro_purchase_expen")

ijmatrix
interaction resid_code gro_purchase_code freq_ij_abs freq_i_total p_ij_obs

1 resid1-ALDI1 resid1 ALDI1 10 186 0.053763441
2 resid1-ALDI11 resid1 ALDI11 0 186 0.000000000
3 resid1-ALDI2 resid1 ALDI2 0 186 0.000000000
...

freq_ij_abs_gro_purchase_expen freq_i_total_gro_purchase_expen
1 420.0 5270.0
2 0.0 5270.0
3 0.0 5270.0
...

p_ij_obs_gro_purchase_expen
1 0.0796963947
2 0.0000000000
3 0.0000000000
...

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 310

The interaction matrix (rows 1-3 are displayed) shows the interaction (origin-destination) in
the first column interaction and the origins and destinations in the columns resid_code and
gro_purchase_code, respectively, adopted from the column names in the input dataset shopping1_KAeast.
The absolute number of respondents and the total value of expenditures from the origins, i, at the
destinations, j, is stored in freq_ij_abs and freq_ij_abs_POS_expen, respectively. The names are set
automatically based on the original variable names (e.g. POS_expen). The freq_i_total* columns con-
tain the total number/sum of observed customers/expenditures from each origin, while the p_ij_obs*
are the local market shares of customers and expenditures, pij, respectively.

Next, we calculate the total customers and expenditures and the corresponding over-all market
shares, respectively, using the function shares.total():

shares.total(ijmatrix, "resid_code", "gro_purchase_code", "p_ij_obs",
"freq_i_total")

# Total values for the shopping trips

suppliers_single sum_E_j share_j
1 ALDI1 11 0.039426523
2 ALDI11 1 0.003584229
3 ALDI2 3 0.010752688
4 ALDI4 1 0.003584229
...

shares.total(ijmatrix, "resid_code", "gro_purchase_code",
"p_ij_obs_gro_purchase_expen", "freq_i_total_gro_purchase_expen")

# Total values for the shopping expenditures

suppliers_single sum_E_j share_j
1 ALDI1 470.0 0.0492378608
2 ALDI11 60.0 0.0062856844
3 ALDI2 87.0 0.0091142423
4 ALDI4 80.0 0.0083809125
...

The resulting tables (rows 1-4 are displayed) contain 42 suppliers: in the first row, the store "ALDI1"
has a share of about 3.94% of the obtained shopping trips and about 4.92% of the related expenditures.
Obviously, the survey contains several singular instances and outliers: as can be seen in the second
and third row of the interaction matrix, there are observed market shares equal to zero. The table with
the total market areas show several stores only observed once (e.g. "ALDI11").

Thus, this interaction matrix cannot be processed in the MCI Model since it would not pass the
log-centering transformation. Consequently, the data has to be “cleaned” distinctly by creating a
corrected and simplified interaction matrix. Only stores obtained more than twice are incorporated
and the absolute values are increased by a small constant of 0.1 before calculating the shares.

ijmatrix_adj <- ijmatrix.create(shopping1_KAeast, "resid_code",
"gro_purchase_code", "gro_purchase_expen",
remSing = TRUE, remSing.val = 1,
remSingSupp.val = 2, correctVar = TRUE,
correctVar.val = 0.1)

# Removing singular instances/outliers (remSing = TRUE) incorporating
# only suppliers which are at least obtained three times (remSingSupp.val = 2)
# Correcting the values (correctVar = TRUE)
# by adding 0.1 to the absolute values (correctVar.val = 0.1)

There are still some observations that have to be excluded because, in the survey, any kind of
grocery shopping trip was inquired, including non-relevant stores and shopping channels (such as
bakeries, health food shops and even the local weekly market). There has been some incomplete
answers as well (gro_purchase_code="X_INCOMPLETE_STORE".) Thus, the interaction matrix has to be
adjusted again:

ijmatrix_adj <- ijmatrix_adj[(ijmatrix_adj$gro_purchase_code != "REFORMHAUSBOESER") &
(ijmatrix_adj$gro_purchase_code != "WMARKT_DURLACH") &
(ijmatrix_adj$gro_purchase_code != "X_INCOMPLETE_STORE"),]

# Remove non-regarded observations

Now, the interaction matrix (rows 1-3 are displayed) consists of 11 customer origins and 11
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suppliers (121 rows). Structured as mentioned above, there are no zero values anymore and the
absolute values (freq_ij_abs and freq_ij_abs_POS_expen) are increased by 0.1:

ijmatrix_adj
interaction resid_code gro_purchase_code freq_ij_abs freq_i_total

1 resid1-ALDI1 resid1 ALDI1 10.1 172.4
2 resid1-ALDI2 resid1 ALDI2 0.1 172.4
3 resid1-CAP1 resid1 CAP1 18.1 172.4
...

p_ij_obs freq_ij_abs_gro_purchase_expen freq_i_total_gro_purchase_expen
1 0.0585846868 420.1 4745.4
2 0.0005800464 0.1 4745.4
3 0.1049883991 224.1 4745.4
...

p_ij_obs_gro_purchase_expen
1 8.852784e-02
2 2.107304e-05
3 4.722468e-02
...

In the next step, we have to add the travel times stored in the dataset shopping2 (the route
calculation was made in R using the ggmap package) and the grocery store characteristics (sales area
in sqm and store chain, collected in June 2016 subsequent to the survey) from the shopping4 dataset:

ijmatrix_dist <- merge (ijmatrix_adj, shopping2, by.x="interaction", by.y="route")
# Include the distances and travel times (shopping2)

ijmatrix_alldata <- merge (ijmatrix_dist, shopping4, by.x = "gro_purchase_code",
by.y = "location_code")

# Adding the store information (shopping4)

The next step is to apply the necessary log-centering transformation to the interaction matrix. The
function mci.transmat() processes this transformation with a given number of MCI variables. The
functions output is a "data.frame" containing the transformed variables (ready for OLS regression):

ijmatrix_transf <- mci.transmat(ijmatrix_alldata, "resid_code", "gro_purchase_code",
"p_ij_obs", "d_time", "salesarea_qm")

ijmatrix_transf
resid_code gro_purchase_code p_ij_obs_t d_time_t salesarea_qm_t

1 resid1 ALDI1 0.5586409 0.060847455 -0.193400118
14 resid1 ALDI2 -1.4456805 -0.008788473 -0.193400118
23 resid1 CAP1 0.8119981 -0.091762709 -0.545582636
...
109 resid29 REWE1 -0.1893441 -0.060611802 -0.001514591
119 resid29 TREFF1 -0.1893441 -0.027694956 -0.169919022
6 resid3 ALDI1 -0.2768831 0.058442499 -0.193400118
...

In the transformed interaction matrix (2 x 3 rows are displayed), the column names of the origins
(resid_code) and destinations (gro_purchase_code) are adopted from the columns in the input dataset.
The metric MCI variables are marked with a "_t" to indicate that they were transformed (e.g. d_time_t
is the log-centering transformation of d_time which contains the travel time, dij). The transformed
interaction matrix is in alphabetical order with respect to the origins (first) and the locations (second).
If stated, the function recognizes dummy variables which are, of course, not transformed.

To combine transformation and fitting in one step, we use the function mci.fit() whose parame-
ters are equal to those in mci.transmat() except that the column containing the market shares must
be stated as the first variable. The default is a no-intercept model (to be set by the logical argument
origin with default TRUE). The function returns an object of type "lm" which can be accessed via
summary():

mci_trips <- mci.fit(ijmatrix_alldata, "resid_code", "gro_purchase_code", "p_ij_obs",
"d_time", "salesarea_qm")

# shares: "p_ij_obs", explanatory variables: "d_time", "salesarea_qm"

summary(mci_trips)
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Call:
lm(formula = mci_formula, data = mciworkfile)

Residuals:
Min 1Q Median 3Q Max

-1.27457 -0.28725 -0.02391 0.32163 1.29351

Coefficients:
Estimate Std. Error t value Pr(>|t|)

d_time_t -1.2443 0.2319 -5.367 4.02e-07 ***
salesarea_qm_t 0.9413 0.1158 8.132 4.59e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4458 on 119 degrees of freedom
Multiple R-squared: 0.4603, Adjusted R-squared: 0.4512
F-statistic: 50.74 on 2 and 119 DF, p-value: < 2.2e-16

The output can be interpreted like any other linear model fitted by lm(). The results show a strong
significant influence of the explanatory variables (travel time and sales area) on the observed local
market shares (both p < 0.001). As the estimators are exponents in the original nonlinear model,
the impact of travel time can be regarded as negative superlinear (λ = −1.2443) while the effect of
the sales area is positive sublinear (γ = 0.9413). Thus, the model fit corresponds to the theoretical
underpinning of the utility function in the Huff Model (Huff, 1962).

For the interpretation of the explained variance it is noteworthy that the common formulation of
R2 is only designed for models that include an intercept. For no-intercept models, in R, the function
summary() returns a modified R2 which reflects the explained variance of the no-intercept model but
can not be compared to the related fit measure in a model including an intercept. Apart from this, the
model fit seems to be in need of improvement (R2 = 0.4458 and Adj.R2 = 0.4512, respectively).

But the market shares with respect to customer flows are not to be confused with market shares of
expenditures: especially in grocery shopping, there are different kinds of shopping trips, such as less
frequent major trips with high efforts and expenditures and more frequent and fast fill-in trips with
low expenditures (Reutterer and Teller, 2009). Thus, the MCI analysis is repeated with the shares of
expenditures (p_ij_obs_gro_purchase_expen) as dependent variable:

mci_expen <- mci.fit(ijmatrix_alldata, "resid_code", "gro_purchase_code",
"p_ij_obs_gro_purchase_expen", "d_time", "salesarea_qm")

summary(mci_expen)

Call:
lm(formula = mci_formula, data = mciworkfile)

Residuals:
Min 1Q Median 3Q Max

-2.07495 -0.61794 -0.07452 0.70263 2.60085

Coefficients:
Estimate Std. Error t value Pr(>|t|)

d_time_t -2.3788 0.4517 -5.267 6.26e-07 ***
salesarea_qm_t 2.0409 0.2255 9.051 3.30e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8683 on 119 degrees of freedom
Multiple R-squared: 0.4954, Adjusted R-squared: 0.487
F-statistic: 58.43 on 2 and 119 DF, p-value: < 2.2e-16

As in the first model, both predictors are highly significant, but, in contrast, the impact of size
(sales area) is also superlinear. The model fit is a little better than in the first model, what may also
be explained by a smaller bias based on the variable correction above: due to their dimensions, the
increase of the absolute values by 0.1 has a smaller impact on the expenditures than on the shopping
trips.
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The utility/attraction function (or, more precisely, its deterministic component) with respect to the
shopping trips (first model) can be written as:

Uijtrips = salesarea_qm0.9413
j d_time−1.2443

ij , (24)

where Uijtrips is the utility/attraction of grocery store j for the customers in submarket/origin i, derived
from the shares of empirically obtained shopping trips, salesarea_qmj is the sales area of store j and
d_timeij is the travel time from i to j.

In consequence, the utility function is included in the Huff/MCI probability function. Thus, the
local market shares of shopping trips can be estimated by:

p̂ijtrips =
salesarea_qm0.9413

j d_time−1.2443
ij

∑n
j=1 salesarea_qm0.9413

j d_time−1.2443
ij

, (25)

where p̂ijtrips is the expected market share of shopping trips of the grocery store j in the submarket i.
Analogously, the utility/attraction function and the market share/probability function of the

expenditures (second model) are:

Uijexpen = salesarea_qm2.0409
j d_time−2.3788

ij , (26)

p̂ijexpen =
salesarea_qm2.0409

j d_time−2.3788
ij

∑n
j=1 salesarea_qm2.0409

j d_time−2.3788
ij

, (27)

where p̂ijexpen is the expected market share of expenditures of the grocery store j in the submarket i.
A market share prediction can be done using the functions mci.shares() and huff.shares().

These functions can be used similarly but differ in the formulation of the utility/attraction function:
according to the Huff Model, huff.shares() allows only two explanatory variables (attraction/size
and transport costs) but three types of weighting function for each variable (power, exponential,
logistic). The function mci.shares() is able to process any number of variables but only using the
power function from the MCI Model either retransformed or transformed (inverse log-centering
transformation).

We predict market shares using the function mci.shares() and the estimations from the sec-
ond model (expenditures). The variables and their weightings are function arguments which have
to be stated one after another (variable1,weighting1,variable2,weighting2, ...). The estimated
interaction matrix containing the predicted shares is stored in a new dataset, expen:

expen <- mci.shares(ijmatrix_alldata, "resid_code", "gro_purchase_code",
"salesarea_qm", 2.0409, "d_time", -2.3788)

# MCI market share prediction with two variables
# salesarea_qm (weighting power function with exponent equal to 2.0409)
# d_time (weighting power function with exponent equal to -2.3788)

expen
gro_purchase_code interaction resid_code

1 ALDI1 resid1-ALDI1 resid1
14 ALDI2 resid1-ALDI2 resid1
23 CAP1 resid1-CAP1 resid1
...

d_time salesarea_qm storetype_dc store_chain
1 5.4 900 1 Aldi
14 4.6 900 1 Aldi
23 3.8 400 0 Edeka
...

U_ij sum_U_ij p_ij
1 1.936847e+04 9682538 2.000350e-03
14 2.836255e+04 9682538 2.929247e-03
23 8.537978e+03 9682538 8.817913e-04
...

The interaction matrix (rows 1-3 are displayed) contains the submarkets (resid_code), the suppliers
(gro_purchase_code), the interaction between them (interaction), the explanatory variables (d_time,
salesarea_qm) and the steps of calculation, named according to the Huff Model (U_ij, sum_U_ij) and
resulting in the local market shares stored in the last column (p_ij). The sum of p_ij is equal to the
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sum of submarkets, since, on the submarket level, the local market shares sum up to one.

Before using the MCI Model for further market share predictions, the validity of the model
should be improved since store choices are, of course, not only influenced by size and transport costs.
Especially in grocery retailing, there is a great heterogeneity between the store formats (supermarket,
discounter etc.) and the store chains, such as concerning the image or price level of a chain. These
more qualitative differences should be reflected in a grocery store market area model. According to
Wieland (2015a), the model above is extended with dummy variables reflecting the grocery store chain.

The chains are already stored in the interaction matrix (column store_chain, adopted from
shopping4). As they are nominal scaled variables in character format, they have to be converted to
dummy variables using the function var.asdummy() which returns a new "data.frame" containing
corresponding dummy variables (0, 1) named automatically based on the original characteristics and
marked with "_DUMMY". Since they are in the same order, they can be directly attached:

chain <- var.asdummy(ijmatrix_alldata$store_chain)
# Converting the character vector (column store_chain) to dummy variables
# and storing in a new data frame

chain
Aldi_DUMMY Edeka_DUMMY Lidl_DUMMY Netto_DUMMY Real_DUMMY Rewe_DUMMY Treff 3000_DUMMY

1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
...
66 0 1 0 0 0 0 0
67 0 0 1 0 0 0 0
...

ijmatrix_alldata <- cbind(ijmatrix_alldata, chain)
# Add dummy dataset to interaction matrix

In the next step, we repeat the fitting of the second MCI Model (expenditures) including the new
dummy variables. Since one dummy is explained by the content of all the others, the last dummy is
not used:

mci_expen2 <- mci.fit(ijmatrix_alldata, "resid_code", "gro_purchase_code",
"p_ij_obs_gro_purchase_expen", "d_time", "salesarea_qm",
"Aldi_DUMMY", "Edeka_DUMMY", "Lidl_DUMMY", "Netto_DUMMY",
"Real_DUMMY", "Rewe_DUMMY")

# Same model as above with additional dummy variables

summary(mci_expen2)
Call:
lm(formula = mci_formula, data = mciworkfile)

Residuals:
Min 1Q Median 3Q Max

-2.1601 -0.4338 -0.1041 0.2561 2.5342

Coefficients:
Estimate Std. Error t value Pr(>|t|)

d_time_t -2.56243 0.41753 -6.137 1.28e-08 ***
salesarea_qm_t 1.31622 0.30754 4.280 3.94e-05 ***
Aldi_DUMMY -0.05658 0.17995 -0.314 0.753763
Edeka_DUMMY 0.11873 0.12051 0.985 0.326637
Lidl_DUMMY -0.59177 0.24441 -2.421 0.017060 *
Netto_DUMMY -0.19785 0.25719 -0.769 0.443330
Real_DUMMY 1.32882 0.33093 4.015 0.000107 ***
Rewe_DUMMY -0.38429 0.24012 -1.600 0.112299
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7955 on 113 degrees of freedom
Multiple R-squared: 0.5978, Adjusted R-squared: 0.5694
F-statistic: 21 on 8 and 113 DF, p-value: < 2.2e-16

The independent variables d_time_t and salesarea_qm_t are still statistically significant (both
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p < 0.001) but especially the latter estimator has strikingly decreased. Two dummy variables are also
significant: Lidl_DUMMY (p < 0.05) and Real_DUMMY (p < 0.001). Regarding R2 and Adj.R2, the model
validity could be improved compared to the former model.

As this new model includes dummies, it would not make any sense to insert the estimated
parameters in the multiplicative MCI function: if one dummy variable is equal to zero, the complete
term is equal to zero. Thus, in this case, it is necessary to use the inverse log-centering transformation
which leads to the following transformed utility/attraction function:

ŷijexpen = −2.56243 log

(
d_time_tij

˜d_time_ti

)
+ 1.31622 log

 salesarea_qm_tj

˜salesarea_qm_tj


−0.59177Lidl_DUMMYj + 1.32882Real_DUMMYj,

(28)

where ŷijexpen is the log-centering transformed utility/attraction of store j for the customers in i,
˜d_time_ti and ˜salesarea_qm_tj are the geometric means of d_time_tij and salesarea_qm_tj, respectively,

and Lidl_DUMMYj and Real_DUMMYj are dummy variables reflecting if the store chain of j is Lidl
or Real, respectively. Now, the local market shares are defined by:

p̂ijexpen =
eŷijexpen

∑n
j=1 eŷijexpen

, (29)

where p̂ijexpen is the expected market share of store j in i and e is Euler’s number ≈ 2.71828.

We repeat the market shares prediction including the dummies and their weights. The inverse
log-centering transformation, which is required here, can be used in the function mci.shares()
by stating the function parameter mcitrans to "ilc" (default: "lc"). In the next step, the total
expenditures for each grocery store and the corresponding over-all shares are computed by the
function shares.total():

expen2 <- mci.shares(ijmatrix_alldata, "resid_code", "gro_purchase_code",
"salesarea_qm", 1.31622, "d_time", -2.56243, "Lidl_DUMMY", -0.59177,
"Real_DUMMY", 1.32882, mcitrans = "ilc")

# MCI market share prediction with four variables
# (ratio-scaled variables are log-centering transformed)
# salesarea_qm (multiplicative weighting with factor equal to 1.31622)
# d_time (multiplicative weighting with factor equal to -2.56243)
# Lidl_DUMMY (multiplicative weighting with factor equal to -0.59177)
# Real_DUMMY (multiplicative weighting with factor equal to 1.32882)

shares.total(expen2, "resid_code", "gro_purchase_code", "p_ij",
"freq_ij_abs_gro_purchase_expen")

# Expected total sales and shares based on the observed local
# market potential (sum of all obtained expenditures for each origin)

suppliers_single sum_E_j share_j
1 ALDI1 16.029089 0.008058517
2 ALDI2 2.157771 0.001084805
3 CAP1 7.101650 0.003570307
4 EDEKA1 790.385662 0.397361072
5 EDEKA2 34.432270 0.017310592
6 EDEKA3 25.098495 0.012618099
7 LIDL1 40.925354 0.020574946
8 NETTO1 2.063759 0.001037541
9 REAL1 1019.935563 0.512765741
10 REWE1 35.451053 0.017822778
11 TREFF1 15.506130 0.007795602

The result of shares.total is a "data.frame" containing the suppliers (suppliers_single), the
total values (sum_E_j) and the corresponding over-all market shares share_j, where the sum of all
share_j is equal to one. Here, the stores with the biggest shares of customer expenditures are "REAL1"
(51.28%) and "EDEKA1" (39.74%).

Now, we analyze the impact of a change in the competitive environment: the biggest grocery
store in the study area is Real (gro_purchase_code = "REAL1"). On condition that the sales area of
this store is increased by 10 % (because of an increase of offered goods), how will, ceteris paribus, the
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purchasing power flows with respect to this supplier and to all other stores change? First, we update
the regarded variable in the existing interaction matrix:

ijmatrix_alldata[ijmatrix_alldata$gro_purchase_code == "REAL1",]$salesarea_qm <- 8525
# Replacing the sales area of REAL1 with a new value: 8525 sqm (increase of 10 %)

Now, we only have to repeat the MCI market share prediction above:

expen2_new <- mci.shares(ijmatrix_alldata, "resid_code",
"gro_purchase_code", "salesarea_qm", 1.31622,
"d_time", -2.56243,
"Lidl_DUMMY", -0.59177, "Real_DUMMY", 1.32882,
mcitrans = "ilc")

shares.total(expen2_new, "resid_code", "gro_purchase_code", "p_ij",
"freq_ij_abs_gro_purchase_expen")

suppliers_single sum_E_j share_j
1 ALDI1 15.787692 0.007886640
2 ALDI2 2.097968 0.001048026
3 CAP1 6.995287 0.003494451
4 EDEKA1 778.019361 0.388654556
5 EDEKA2 33.873811 0.016921444
6 EDEKA3 24.365708 0.012171732
7 LIDL1 40.262537 0.020112891
8 NETTO1 2.032720 0.001015432
9 REAL1 1048.206517 0.523624808
10 REWE1 34.910285 0.017439208
11 TREFF1 15.275568 0.007630811

The results in the total sales/shares table show an impact of the trading-up in the regarded
hypermarket: the over-all share of Real increases from 51.28% to 52.36%. The other stores are affected
differently: the over-all share of EDEKA1 decreases from 39.74% to 38.87%. Since this model does
not consider any kind of agglomeration economies, the market shares of the competitors decrease
dependent on their proximity to the hypermarket and the spatial distribution of customers.

It should be noticed that the survey in the shopping1 dataset is not statistically representative, since
it is a POS survey not regarding customers shopping at other supply locations. Thus, the analyses
and results shown here should not be overinterpreted but regarded as an example how to use the
MCI-related functions in the MCI package.

Huff Model optimization

The final example deals with the problem of fitting the Huff Model on condition that no empirically
observed store choices, market shares and market areas, respectively, are available. The aim of the
analysis is to estimate the market areas of the grocery stores in Freiburg, Germany, based on their total
annual sales and their "attraction" (size).

The dataset Freiburg1 contains the preliminary stage of a Huff interaction matrix, containing
the origins (statistical districts of Freiburg, column district), codes representing the grocery stores
(store), the sales area of these stores in sqm (salesarea) and the street distances between the origins
and the stores (distance). The grocery stores and their characteristics were obtained in spring 2015
(Wieland, 2015b), while the street distances were calculated via network analysis in GRASS (GRASS
Development Team, 2015) using OpenStreetMap vector data.

data(Freiburg1)
# Distance matrix and sales area

First, we try to approximate the market areas using a conventional Huff Model calculation using
the function huff.shares(). This function is similar to the mci.shares() function and allows two
explanatory variables (size, transport costs) which can be weighted by given parameters in a power,
exponential or logistic function. The function type (power) and the exponents are set corresponding to
the default parameters of the Huff Model: γ = 1 and λ = −2 (Güssefeldt, 2002):

huff_mat <- huff.shares (Freiburg1, "district", "store", "salesarea", "distance")
# Market area estimation using the Huff Model with standard parameters
# (gamma = 1, lambda = -2)
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In the next step, the total annual sales of the grocery stores are computed based on the estimated
interaction probabilities/local market shares and the grocery purchasing power potential on the district
level in EUR (calculated based on the local population size and the national average expenditures for
groceries), stored in the dataset Freiburg2:

data(Freiburg2)
# Grocery purchasing power on the city district level

huff_mat_pp <- merge (huff_mat, Freiburg2)
# Adding the purchasing power data for the city districts

huff_total <- shares.total (huff_mat_pp, "district", "store", "p_ij", "ppower")
# Total expected sales and shares

huff_total
suppliers_single sum_E_j share_j

1 1 4057591 0.010759819
2 10 5809861 0.015406444
3 11 1289847 0.003420383
4 12 7103210 0.018836115
5 13 3476313 0.009218400
...

The new dataset huff_total contains the expected total annual sales in EUR (sum_E_j) and the
corresponding over-all market shares (share_j). Since the “real” annual sales are known (calculated
by chain-based average retail space productivity, stored in the dataset Freiburg3), we compare the
expected values to the observed values using the help function model.fit():

data(Freiburg3)
# Annual sales of the grocery stores

huff_total_control <- merge(huff_total, Freiburg3, by.x = "suppliers_single",
by.y = "store")

model.fit(huff_total_control$annualsales, huff_total_control$sum_E_j, plotVal = TRUE)
$resids_sq_sum
[1] 2.125162e+15

$pseudorsq
[1] 0.5128422

$globerr
[1] 0.5210329

$mape
[1] 0.6383766

The function model.fit() returns a "list" with four entries containing the following goodness-
of-fit measures: the sum of the squared residuals (resids_sq_sum), a Pseudo-R2 measure (pseudorsq),
the global error (globerr) and the MAPE (mape), as described in the Huff Model section. Note that
these fit measures are closely related to each other. Optionally, the function returns a plot to compare
the observed and expected values graphically (see the plot in Figure 2, top left).

Obviously, the fit in this Huff Model market area estimation using the default values is quite poor
as can be seen from the fit measures and, of course, from the plot. E.g. the sales of the most high-selling
grocery store is extremely underestimated. From this, one can conclude that also the estimated market
shares/market areas will not reflect the reality to some extent.

Thus, we have to use the optimization algorithm as discussed in the Huff Model section. The
function huff.attrac() provides one iteration of this algorithm, requiring the interaction matrix, the
local market potential and the total values (e.g. sales) of the suppliers. The tolerance value to accept
a difference of individual total sales or not is set equal to 5, while the function output contains the
estimated total values (Internally, huff.attrac() uses the function shares.total()). We apply the
function to the three datasets (Freiburg1, Freiburg2 and Freiburg3):

huff_total_opt1 <- huff.attrac(Freiburg1, "district", "store", "salesarea", "distance",
lambda = -2, dtype= "pow", lambda2 = NULL,
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Freiburg2, "district", "ppower",
Freiburg3, "store", "annualsales",
tolerance = 5, output = "total")

# One-time optimization (one iteration) with an accepted difference of +/- 5 %
# Output of total sales/shares

Note that this calculation includes a great many calculation steps while working with 63 stores
and 42 statistical districts. In a test environment (computer with CPU: Intel Core i3-2100, RAM: 4.00
GB, OS: Windows 7 64bit), the command above takes about 43 seconds.

huff_total_opt1
suppliers_single sum_E_j share_j total_obs diff attrac_new_opt

1 1 7097226 0.018820246 7210720 113494.39 1329.26622
2 10 5043058 0.013373057 5600000 556941.50 1400.00000
3 11 1136322 0.003013270 1000000 -136321.73 193.82148
4 12 2849360 0.007555862 2776000 -73360.04 271.22161
...

Since the option output was set to "total", the huff.attrac() function returns a "data.frame"
(rows 1-4 are displayed) that contains a comparison between the observed (total_obs) and the
expected total values (sum_E_j) as well as the corresponding difference (diff) and the estimated new
attractions (attrac_new_opt). If output is set to "matrix", the function returns an interaction matrix
equal to the output of mci.shares() or huff.shares().

Next, the validity analysis of the new model using model.fit() is repeated as described above:

model.fit(huff_total_opt1$total_obs, huff_total_opt1$sum_E_j, plotVal = TRUE)
# total_obs = observed total values, originally from dataset Freiburg3
# sum_E_j = expected total values

$resids_sq_sum
[1] 2.901841e+14

$pseudorsq
[1] 0.9334801

$globerr
[1] 0.1564878

$mape
[1] 0.1620126

The goodness-of-fit measures and the plot (see the plot in Figure 2, top right) reveal a much better
fit: the Pseudo-R2 increases from 0.51 to 0.93 while the error measures decrease accordingly.

To extend this optimization algorithm to a given number of iterations, the MCI package provides
the function huff.fit(). First, we run two iterations decreasing the tolerance value equal to one
which means a more strict check. Since this optimization takes some time, we enable the printing of
status messages. The output of the function huff.fit() is equal to the output of huff.attrac() and
can be processed in the same way. As above, the estimated total sales are compared to the observed
sales using model.fit():

huff_total_opt2 <- huff.fit(Freiburg1, "district", "store", "salesarea", "distance",
lambda = -2, dtype= "pow", lambda2 = NULL,
Freiburg2, "district", "ppower",
Freiburg3, "store", "annualsales",
tolerance = 1, iterations = 2, output = "total",
show_proc = TRUE)

# 2 iterations of the optimization algorithm with an accepted difference of +/- 1 %
# Output of total sales/shares, stored in dataset huff_total_opt2

# printing of status messages:
Iteration 1 of 2 ...
Processing location 1 ...
...

model.fit(huff_total_opt2$total_obs, huff_total_opt2$sum_E_j, plotVal = TRUE)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 319

# total_obs = observed total values, originally from dataset Freiburg3
# sum_E_j = expected total values

$resids_sq_sum
[1] 4.806282e+13

$pseudorsq
[1] 0.9889824

$globerr
[1] 0.05946104

$mape
[1] 0.0618133

To run the algorithm twice with a smaller tolerance leads to a much better fit: while Pseudo-R2

increases from 0.93 to 0.98, the global error and the MAPE reduce from about 15 and 16% to about 6%,
respectively. This improvement is also obvious when looking at the plot (Figure 2, bottom left).

In the test environment mentioned above, this huff.fit operation takes about one and a half
minute (89 seconds). Consequently, to extend the procedure to more iterations means also an increase
of calculating time. We repeat the algorithm with 10 iterations and compare the results once more:

huff_total_opt10 <- huff.fit(Freiburg1, "district", "store", "salesarea", "distance",
lambda = -2, dtype= "pow", lambda2 = NULL,
Freiburg2, "district", "ppower",
Freiburg3, "store", "annualsales",
tolerance = 1, iterations = 10, output = "total",
show_proc = TRUE)

# 10 iterations of the optimization algorithm with an accepted difference of +/- 1 %
# Output of total sales/shares, stored in dataset huff_total_opt10
# with printing of status messages

model.fit(huff_total_opt10$total_obs, huff_total_opt10$sum_E_j, plotVal = TRUE)

$resids_sq_sum
[1] 185646134781

$pseudorsq
[1] 0.9999574

$globerr
[1] 0.004508996

$mape
[1] 0.004405252

This operation is, of course, very time-consuming: in the test environment mentioned above,
ten iterations of the algorithm took about five minutes (308 seconds), while the time of an iteration
decreases since the local fits (for each store/locations) also gets better with each iteration. The final
result is a nearly perfect fit with a MAPE of about 0.4% and a global error of about 0.5% while the
Pseudo-R2 approaches the maximum (0.99). The expected annual sales are highly accurate as can be
seen in the corresponding plot (Figure 2, bottom right).

The function huff.fit() allows an evaluation of the iterations by returning the corresponding
global fit measures for each step (Internally, huff.fit() uses the model.fit() function). We set the
function parameter output = "diag" to make the function return a "data.frame" containing the
iteration statistics:

huff.fit(Freiburg1, "district", "store", "salesarea", "distance", lambda = -2,
dtype= "pow", lambda2 = NULL,
Freiburg2, "district", "ppower",
Freiburg3, "store", "annualsales",
tolerance = 1, iterations = 10, output = "diag", show_proc = TRUE)

iterations_count resids_sq_sum pseudorsq globerr mape
1 1 2.886177e+14 0.9338392 0.155826392 0.162228371
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2 2 4.806282e+13 0.9889824 0.059461039 0.061813302
3 3 9.936652e+12 0.9977222 0.031229899 0.032170472
4 4 2.318130e+12 0.9994686 0.018162793 0.019737125
5 5 6.378060e+11 0.9998538 0.010563610 0.011844831
6 6 5.567110e+11 0.9998724 0.007654992 0.007507305
7 7 1.776295e+11 0.9999593 0.005357527 0.005444095
8 8 1.778885e+11 0.9999592 0.004689937 0.004669445
9 9 1.828774e+11 0.9999581 0.004587815 0.004541543
10 10 1.856461e+11 0.9999574 0.004508996 0.004405252

Obviously, all goodness-of-fit measures show an improvement of the model fit with each iteration.
But there is no noticeable improvement after the eighth iteration. All in all, the accuracy of the results
are determined by the error tolerance (parameter tolerance) and the number of iterations (parameter
iterations) which are stated by the user who has to trade off accuracy against computing time.

Figure 2: Huff Model fit algorithm.

Conclusions and limitations

Model-based market area analysis for retail and service locations includes 1) theoretical considerations,
2) collection of empirical data regarding the locations and the customers, 3) data processing and, in
some cases, data transformation, 4) fitting of the used models and 5) the market area prediction itself.
While the first two aspects can not be offered by a statistical software, the presented package MCI
provides several functions to process the other mentioned steps by implementing the Huff Model and
the Multiplicative Competitive Interaction (MCI) Model into R.

The focus of the package is 1) on model fitting via OLS regression (MCI Model) or iterative
optimization (Huff Model) and 2) on data preparation, while both aspects are closely related (especially
in the MCI Model). As a consequence, some other related substeps are not considered.

Though the package is designed to allow a data exchange with a GIS (e.g. ijmatrix.crosstab() to
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prepare an interaction matrix for a map visualization), it does not provide any GIS functions. Thus, the
GIS-related steps of market area analysis have to be borrowed from other packages: especially distance
or travel time calculations are needed what can be done using GIS-orientated packages like ggmap
which utilizes the Google API for routing (and was used in the example dataset shopping2), osmar
(Eugster and Schlesinger, 2013) and osrm (Giraud, 2016) providing similar functions with respect to
OpenStreetMap, or the huff-tools package mentioned above.

In econometric market area analyses using the MCI Model, also further diagnostics of the model
are recommended, especially with respect to the possible violations of the OLS-related assumptions,
such as heteroscedasticity or multicollinearity. A discussion of specific problems and opportunities
regarding logarithmic transformations can be found in Silva and Tenreyro (2006) and Manning and
Mullahy (2001). The violation of OLS assumptions and possible solutions have beed addressed in
MCI studies several times (Nakanishi and Cooper, 1974; Kubis and Hartmann, 2007; Tihi and Oruc,
2012; Wieland, 2015a), but there are no corresponding extensions implemented in MCI yet. Other
packages may be helpful for this analyses: since the implemented functions return "data.frame"
(mci.transmat()) and "lm" objects (mci.fit()), respectively, this data can be processed e.g. in car (Fox
and Weisberg, 2011) for further diagnostics.

Another remaining step not yet provided by the presented package is the combination of the MCI
Model with the Geographically Weighted Regression (GWR) which has been already used to identify
spatial nonstationarity in the estimated parameters (Suárez-Vega et al., 2015; Wieland, 2015a). The
GWR is implemented in R by the package spgwr (Bivand and Yu, 2015).
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