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Discrete Time Markov Chains with R
by Giorgio Alfredo Spedicato

Abstract The markovchain package aims to provide S4 classes and methods to easily handle Discrete
Time Markov Chains (DTMCs), filling the gap with what is currently available in the CRAN repository.
In this work, I provide an exhaustive description of the main functions included in the package, as
well as hands-on examples.

Introduction

DTMCs are a notable class of stochastic processes. Although their basic theory is not overly complex,
they are extremely effective to model categorical data sequences (Ching et al., 2008). To illustrate, no-
table applications can be found in linguistic (see Markov’s original paper Markov (1907)), information
theory (Google original algorithm is based on Markov Chains theory, Lawrence Page et al. (1999)),
medicine (transition across HIV severity states, Craig and Sendi (2002)), economics and sociology
(Jones (1997) shows an application of Markov Chains to model social mobility).

The markovchain package (Spedicato, Giorgio Alfredo, 2016) provides an efficient tool to create,
manage and analyse Markov Chains (MCs). Some of the main features include the possibility to:
validate the input transition matrix, plot the transition matrix as a graph diagram, perform structural
analysis of DTMCs (e.g. classification of transition matrices and states, analysis of the stationary
distribution, etc . . . ), perform statistical inference (such as fitting transition matrices from various
input data, simulating stochastic processes trajectories from a given DTMC, etc..). The author believes
that no R package provides a unified infrastructure to easily manage DTMCs as markovchain does at
the time this paper is being drafted.

The package targets data scientists using DTMC, Academia members, supporting faculty instruc-
tors, as well as students of undergraduate courses on Stochastic Processes.

The paper will be organized as follows: Section 2.2 gives a brief overview on R packages and
alternative software that provide similar functionalities, Section 2.3 reviews DTMC basic theory,
Section 2.4 discusses the package design and structure, Section 2.5 shows how to create and manipulate
homogeneous DTMCs, Section 2.6 and Section 2.7 respectively present the functions created to perform
structural analysis, and statistical inference on DTMCs. A brief overview of the functionalities written
to deal with non - homogeneous discrete dime Markov chains (NHDTMCs) is provided in Section
2.8. A discussion on numerical reliability and computational performance is provided in Section 2.9.
Finally, Section 2.10 draws final conclusions and briefly discusses future potential developments of the
package.

Analysis of existing DTMC-related software

As reviewed later in more details, a DTMC is defined by a stochastic matrix known as transition matrix
(TM), which is a square matrix satisfying Equation 1.{

Pij ∈ [0, 1] ∀i, j
∑i Pij = 1 (1)

Although defining a stochastic matrix is trivial in any mathematical or statistical software, a DTMC
dedicated infrastructure can provide object oriented programmed methods to verify the validity of the
input data (i.e. if the input matrix is a stochastic one) , as well as to perform structural analysis on
DTMC objects.

Various packages mention MCs - related models in the CRAN repository, whereby a few of them
will be now reviewed. The clickstream package (Scholz, 2016), on CRAN since 2014, aims to model
websites click stream using higher order Markov Chains. It provides a MarkovChain S4 class that is
similar to the markovchain class. Further, DTMCPack (Nicholson, William, 2013) and MTCM (Bessi,
Alessandro, 2015) also work with DTMCs but provide even more limited functions: the first one
focuses on creating simulations from a given DTMC, whilst the second contains only one function for
estimating the underlying transition matrix for a given categorical sequence. Moreover, none of them
appears to have been updated since 2015. The coverage of functionalities provided by markovchain
package for analysing DTMCs appears to be more complete than the above mentioned packages, since
none of them provides methods for importing or coercing transition matrices from other objects, such
as R matrices or data.frames. Furthermore, markovchain is the only package providing a quick
graph plotting facility for DTMC objects. The same applies when considering the functionalities used
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to perform structural analysis of transition matrices and to fit DTMCs from various kind of input data.
More interestingly, the FuzzyStatProb package (Pablo J. Villacorta and José L. Verdegay, 2016) gives
an alternative approach for estimating the parameters of DTMCs using "fuzzy logic".

This review voluntarily omits discussing packages that are not specifically focused on DTMC.
Nonetheless, the depmixS4 (Visser and Speekenbrink, 2010) and the HMM (Himmelmann, 2010)
packages deal with Hidden Markov Models (HMMs). In addition, the number of R packages focused
on the estimation of statistical models using the Markov Chain Monte Carlo simulation approach
is sensibly bigger. Finally, the msm (Jackson, 2011), heemod (Antoine Filipovi et al., 2017) and the
TPmsm packages (Artur Araújo et al., 2014) focus on health applications of multi - state analysis using
different kinds of models, including Markov-related ones among them.

Finally, among other well known software used in Mathematics and Statistics, only Mathematica
(Wolfram Research, Inc., 2013) provides routines specifically written to deal with Markov processes
at the author’s knowledge. Nevertheless, the analysis of DTMCs could be easily handled within the
Matlab programming language (MATLAB, 2017) due to its well known linear algebra capabilities.

Review of underlying theory

In this section a brief review of the theory of DTMCs is presented. Readers willing to dive deeper can
inspect Cassandras (1993) and Grinstead and Snell (2012).

A DTMC is a stochastic process whose domain is a discrete set of states, {s1, s2, . . . , sk}. The
chain starts in a generic state at time zero and moves from a state to another by steps. Let pij be the
probability that a chain currently in state si moves to state sj at the next step. The key characteristic
of DTMC processes is that pij does not depend upon the previous state in the chain. The probability
pij for a (finite) DTMC is defined by a transition matrix previously introduced (see Equation 1). It is
also possible to define the TM by column, under the constraint that the sum of the elements in each
column is 1.

To illustrate, a few toy - examples on transition matrices are now presented; the "Land of Oz"
weather Matrix, Kemeny et al. (1974). Equation 2 shows the transition probability between (R)ainy,
(N)ice and (S)now weathers. 

R N S
R 0.5 0.25 0.25
N 0.5 0 0.5
S 0.25 0.25 0.5

 (2)

Further, the Mathematica Matrix 3, taken from the Mathematica 9 Computer Algebra System
manual (Wolfram Research, Inc., 2013), that will be used when discussing the analysis the structural
proprieties of DTMCs, is as follows:

A B C D
A 0.5 0.5 0 0
B 0.5 0.5 0 0
C 0.25 0.25 0.25 0.25
D 0 0 0 1

 (3)

Simple operations on TMs allow to understand structural proprieties of DTMCs. For example, the
n− th power of P is a matrix whose entries represent the probabilities that a DTMC in state si at time t
will be in state sj at time t + n. In particular, if ut is the probability vector for time t (that is, a vector
whose j− th entries represent the probability that the chain will be in the j− th state at time t), then
the distribution of the chain at time t + n is given by un = u ∗ Pn. Main properties of Markov chains
are now presented.

A state si is reachable from state sj if ∃n→ pn
ij > 0. If the inverse is also true then si and sj are said

to communicate . For each MC, there always exists a unique decomposition of the state space into a
sequence of disjoint subsets in which all the states within each subset communicate. Each subset is
known as a communicating class of the MC. It is possible to link this decomposition to graph theory,
since the communicating classes represent the strongly connected components of the graph underlying
the transition matrix (Jarvis and Shier, 1999).

A state sj of a DTMC is said to be absorbing if it is impossible to leave it, meaning pjj = 1. An
absorbing Markov chain is a chain that contains at least one absorbing state which can be reached, not
necessarily in a single step. Non - absorbing states of an absorbing MC are defined as transient states .
In addition, states that can be visited more than once by the MC are known as recurrent states .

If a DTMC contains r ≥ 1 absorbing states, it is possible to re-arrange their order by separating
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transient and absorbing states such that the t transient states come before the r absorbing ones. Such
re-arranged matrix is said to be in canonical form (see Equation 4), where its composition can be
represented by sub - matrices. (

Qt,t Rt,r
0r,t Ir,r

)
(4)

Such matrices are: Q (a t-square sub - matrix containing the transition probabilities across transient
states), R (a nonzero t-by-r matrix containing transition probabilities from non-absorbing to absorbing
states), 0 ( an r-by-t zero matrix), and Ir (an r-by-r identity matrix). It is possible to use these matrices
to calculate various structural proprieties of the DTMC. Since limn→∞ Qn = 0, it can be shown that in
every absorbing matrix the probability to be eventually absorbed is 1, regardless of the state where the
MC is initiated.

Further, in Equation 5 the fundamental matrix is presented, where the generic nij entry expresses
the expected number of times the process will transit in state sj, given that it started in state si. Also,
the i-th entry of vector t = N ∗ 1̄, being 1̄ a t-sized vector of ones, expresses the expected number of
steps before an absorbing DTMC, started in state si, is absorbed. The bij entries of matrix B = N ∗ R
are the probabilities that a DTMC started in state si will eventually be absorbed in state sj. Finally, the
probability of visiting the transient state j when starting from the transient state i is the hij entry of the
matrix H = (N − It) ∗ N−1

dg , being dg the diagonal operator.

N = (I −Q)− 1 = I + ∑
i=0,1,...,∞

Qi (5)

A DTMC is said to be ergodic if there exist a number N such that it is possible to reach every state
in at most N steps. If Pn > 0 for some n, then P is a regular DTMC.

Fixed row vectors w̄, also known as steady state vectors , are vectors such that w̄P = w̄. Mathemat-
ically, they correspond to eigenvectors associated to unitary eigenvalues of the TM. It can be shown
that limn→∞ v ∗ Pn = w and that limn→∞ Pn = W, where v is a generic stochastic vector and w is a
matrix where all rows are w̄.

The mean first passage time mij is the expected the number of steps needed to reach state sj starting
from state si, where mii = 0 by convention. For ergodic MCs, ri is the mean recurrence time, that is the
expected number of steps to return to si from si. It is possible to prove that ri =

1
wi

, where wi is the i-th
entry of w̄. Further, let D be a diagonal matrix, in which the diagonal elements come from ri, and let C
be a matrix filled with ones. It is then possible to get the mean first passage matrix M from Equation 6.

(I − P) = C−M (6)

Let Z = (I − P + M)−1 be the fundamental matrix for an ergodic MC. It is possible to write mij as
a function of Z and w̄, as Equation 7 shows.

mij =
zjj − zij

wj
(7)

A further topic in structural analysis of irreducible DTMCs is periodicity. The period of a state si,
denoted as d (i), is the greatest common divisor of n for which pn

ii > 0. If the period is 1, the state is
aperiodic, while if the period is greater than 2, the state is periodic; all states in the same class share
the same period.

Given a generic DTMC, it is possible to simulate stochastic trajectories following the underlying
MC from the TM. Given an initial state s(t) = j, the s(t + 1) state is sampled from the multinomial
distribution whose probabilities are expressed by the j-th row. The sampled state indicates from which
row the probabilities to sample s(t + 2) are taken from. Also, given a sample sequence, it is possible to
estimate the TM of the underlying DTMC. Equation 8 shows the maximum likelihood estimator (MLE)

of the TM pij entry, being the nij elements the number of sequences
(

Xt = si, Xt+1 = sj

)
counted in

the sample, that is:

p̂MLE
ij =

nij
k
∑

u=1
niu

. (8)

Equation 10 shows asymptotic confidence intervals for pij. The bootstrap approach allows to
define non - parametric ones.
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LowerEndpointij = pij − 1.96 ∗ SEij (9)

UpperEndpointij = pij + 1.96 ∗ SEij (10)

The mode of the Xt+1 conditional distribution given Xt = sj represents the prediction from a given
DTMC and the current chain state Xt = sj.

In conclusion, the markovchain package allows to perform statistical analysis on NHDTMCs, in
the special case where they can be treated as sequential lists of DTMCs.

Implementation design and details

The markovchain package has been originally written in "native" R. Most functions have been therefore
ported in Rcpp (Eddelbuettel, Dirk, 2013) since 2015, yielding sensible improvements in computational
time. Other dependencies of markovchain are: igraph Csardi, Gabor and Nepusz, Tamas (2006),
matlab Roebuck (2014), Matrix Bates and Maechler (2016) and expm Goulet et al. (2015) ( for operation
on matrices ), and the method package for defining S4 classes.

Homogeneous DTMCs are defined by a dedicated S4 class, "markovchain". Such class is defined
by the following slots:

1. states: a character vector, listing the states for which transition probabilities are defined.

2. byrow: a logical variable, indicating whether transition probabilities are shown by row or by
column.

3. transitionMatrix: a matrix variable defining the TM.

4. name: an optional character variable to name the DTMC.

A "markovchain" S4 class has been designed based on Chambers, J.M. (2008) suggestions. For
example, a S4 setValidity method checks the coherence of any newly created markovchain object, by
verifying that either the rows or columns of the transition matrix sum to one, and that all elements are
bounded between 0 and 1.
Another S4 class,"markovchainList", has been created for handling non - homogeneous DTMCs.
Finally, the package provides functions and S4 to analyse continuous MCs, as well as higher order
MCs, although their discussion is beyond the scope of this paper.

Three vignettes documents the markovchain package. The first one broadly describes the func-
tionalities of the package and it also presents real - world applications of DTMCs using the package.
The second one, written using knit and rmarkdown, is a beamer presentation that quickly introduces
the key functionalities of the package. The third one presents experimental functions for higher order
and multivariate MCs. Finally, the www.github.com/spedygiorgio/markovchain GitHub page hosts
the package’s wiki as well as its development version.

Creating and manipulating markovchain objects

The package is loaded within R as follows:

library("markovchain")

Creating a markovchain object is easy, and can be done with provided code.

#using "long" approach for mcWeather

weatherStates <- c("rainy", "nice", "sunny")
weatherMatrix <- matrix(data = c(0.50, 0.25, 0.25,
0.5, 0.0, 0.5, 0.25, 0.25, 0.5), byrow = TRUE,
nrow = 3,dimnames = list(weatherStates, weatherStates))
mcWeather <- new("markovchain", states = weatherStates,
byrow = TRUE, transitionMatrix = weatherMatrix,
name = "Weather")

#using "quick" approach on Mathematica's DTMC

mathematicaMatr <- matrix(c(1/2, 1/2, 0, 0, 1/2, 1/2,
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0, 0, 1/4, 1/4, 1/4, 1/4, 0, 0, 0, 1),byrow=TRUE, nrow=4)
mathematicaMc<-as(mathematicaMatr, "markovchain")

#both are markovchain objects
is(mcWeather,"markovchain")
[1] TRUE
is(mathematicaMc,"markovchain")
[1] TRUE

Commenting on the code snippet, the first part shows the “standard” approach to create a
markovchain, by calling the new S4 method, while the second part shows the “quick” method, by
coercing a matrix object into a markovchain one.

Specific methods allow to print and plot markovchain objects:

plot(mcWeather, main="Weather Markov Chain")

Weather Markov Chain

0.5

0.25

0.25

0.5

0.5

0.25

0.25

rainy

nice

sunny

Figure 1: Plotting a markovchain object.

In particular, the plot method makes use of igraph package to draw the TM by default. It is
possible to modify the plot either by passing further parameters via ... or by choosing another
plotting devices, as further specified in the package vignette.

Algebraic operations have been defined in "markovchain" classes, as of the following example:

initialState <- c(0, 1, 0)

#multiplication

after2Days <- initialState * (mcWeather * mcWeather)
after2Days
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rainy nice sunny
[1,] 0.375 0.25 0.375

in which multiplications by vectors and exponentiation are intuitively performed, making easy to
find the distribution of states at the n-th step.

A power operator also exists, ^, and it is based on the expm package (Goulet et al., 2015), providing
efficient matrix exponentiation.

#after two days (by square power)

mcWeather^2

Weather^2
A 3 - dimensional discrete MC defined by the following states:
rainy, nice, sunny
The transition matrix (by rows) is defined as follows:

rainy nice sunny
rainy 0.4375 0.1875 0.3750
nice 0.3750 0.2500 0.3750
sunny 0.3750 0.1875 0.437

Finally, logical operators have been defined as well.

#logical equality and inequality
mcWeather==mcWeather
[1] TRUE
mcWeather!=mathematicaMc
[1] TRUE

Both the algebraic and logical operators have been defined by overriding standard R operators,
providing a more concise and "natural" code, which can bring the advantage of being more appealing
to a novice user, by executing certain operations on TM in an efficient way. Such approach has been
stressed in both the class help file and the package vignette code to make the final user fully aware of
any potential drawbacks of such choice.

Various convenience S4 methods have been defined to easily manipulate and manage markovchain
objects. In the following examples, some of the implemented methods in the "markovchain" class are
presented, allowing to: get and set names, return the MC dimension, transpose the transition matrix,
and directly access the transition probabilities.

#some markovchain specific methods

#naming
name(mcWeather)
[1] "Weather"

name(mathematicaMc) <- "Mathematica Markov Chain"
#list of defined states
states(mcWeather)
[1] "rainy" "nice" "sunny"

#the dimension
dim(mcWeather)
[1] 3

#transpose operator
t(mcWeather)

Unnamed Markov chain
A 3 - dimensional discrete Markov Chain defined by the following states:
rainy, nice, sunny
The transition matrix (by cols) is defined as follows:

rainy nice sunny
rainy 0.50 0.5 0.25
nice 0.25 0.0 0.25
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sunny 0.25 0.5 0.50

#two ways to get transition probabilities
transitionProbability(mcWeather, "nice", "sunny")
[1] 0.5
mcWeather[2,3]
[1] 0.5

Finally, coerce methods allow to both import and export markovchain classes. Following, a brief
example on how to transform a markovchain object into a data.frame one.

#exporting to data.frame and matrix

as(mcWeather, "data.frame")
t0 t1 prob

1 rainy rainy 0.50
2 rainy nice 0.25
3 rainy sunny 0.25
4 nice rainy 0.50
5 nice nice 0.00
6 nice sunny 0.50
7 sunny rainy 0.25
8 sunny nice 0.25
9 sunny sunny 0.50

Structural properties of finite Markov chains

The markovchain package embeds functions to analyse the structural proprieties of DTMC. For exam-
ple, it is possible to find the stationary distribution, as well as classify the states. Feres, Renaldo (2007)
and Montgomery, James (2009) provide a full description of the algorithms underlying these functions,
whilst a more theoretical perspective can be found in Brémaud, Pierre (1999). The Mathematica MC
will be used to illustrate such features.

The summary method provides an overview of the structural properties of the DTMC process
underlying the markovchain object.

#plotting and summarizing
plot(mathematicaMc)

summary(mathematicaMc)
Mathematica Markov Chain Markov chain that is composed by:
Closed classes:
s1 s2
s4
Recurrent classes:
{s1,s2},{s4}
Transient classes:
{s3}
The Markov chain is not irreducible
The absorbing states are: s4

In the above example, closed and transient classes are identified, irreducibility checks are executed,
and a list of absorbing states is returned. Further, it is known that a finite MC has at least one
steady-state distribution, and the steadyStates method can be used to obtain it. To illustrate, for the
mcWeather matrix there exist a one - dimensional solution, since the underlying TM is irreducible. A
higher dimensional solution is given when the irreducibility property does not hold, as of the second
example.

#probability with DTMC: stationary distribution
## when the TM is irreducibile
steadyStates(mcWeather)

rainy nice sunny
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Figure 2: Plot of the Mathematica MC DTMC process.

[1,] 0.4 0.2 0.4
## when reducibility applies
steadyStates(mathematicaMc)

s1 s2 s3 s4
[1,] 0.5 0.5 0 0
[2,] 0.0 0.0 0 1

Specific methods and functions return transient and absorbing states, and check whether any state
is accessible from another. Recurrent and communicating classes can be easily identified as well.

#probability with DTMC: classifying states

transientStates(mathematicaMc)
[1] "s3"

absorbingStates(mathematicaMc)
[1] "s4"

is.accessible(mathematicaMc, from = "s1",to="s4")
[1] FALSE

#identifying recurrent and transient classes

recurrentClasses(mathematicaMc)
[[1]]
[1] "s1" "s2"

[[2]]
[1] "s4"

communicatingClasses(mathematicaMc)
[[1]]
[1] "s1" "s2"

[[2]]
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[1] "s3"

[[3]]
[1] "s4"

The communicating classes are the strongly connected components of the graph underlying the
DTMC. It is possible to convert a markovchain object into an igraph one, in order to use igraph’s
package clustering function to identify the strongly connected components as the following example
displays:

library(igraph)
#converting to igraph

mathematica.igraph<-as(mathematicaMc,"igraph")

#finding and formatting the clusters
SCC <- clusters(mathematica.igraph, mode="strong")
V(mathematica.igraph)$color <- rainbow(SCC$no)[SCC$membership]

#plotting
plot(mathematica.igraph, mark.groups = split(1:vcount(mathematica.igraph), SCC$membership),
main="Communicating classes - strongly connected components")

Communicating classes − strongly connected components

s1

s2

s3

s4

Figure 3: The communicating classes are the strongly connected components of the graph underlying
the DTMC.

The three distinct clusters identified with different colors by the igraph package match with
the partition of the transition matrix into communicating classes given by markovchain package’s
communicatingClasses function.

We now illustrate the Canonical Form and the Fundamental Matrix concepts using another
example taken from classical theory: The Flipping Coin problem. Specifically, consider repeatedly
flipping a fair coin until the sequence (heads, tails, heads) appears; it is possible to model such process
using a DTMC with four states: “E” empty initial sequence, “H” head, “HT” head followed by tail,
“HTH” head followed by tail and head.

# Flipping Coin Problem
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## defining the matrix

flippingMatr <- matrix(0, nrow=4, ncol=4)
flippingMatr[1,1:2] <- 0.5
flippingMatr[2,2:3] <- 0.5
flippingMatr[3,c(1,4)] <- 0.5
flippingMatr[4,4] <- 1
rownames(flippingMatr) <-
colnames(flippingMatr) <- c("E","H","HT","HTH")

## creating the corresponding DTMC
flippingMc <- as(flippingMatr,"markovchain")

The following function returns the Q, R, and I matrices by properly combining functions and
methods from the markovchain package.

#function to extract matrices

extractMatrices <- function(mcObj) {

require(matlab)
mcObj <- canonicForm(object = mcObj)

#get the indices of transient and absorbing

transIdx <- which(states(mcObj) %in% transientStates(mcObj))
absIdx <- which(states(mcObj) %in% absorbingStates(mcObj))

#get the Q, R and I matrices

Q <- as.matrix(mcObj@transitionMatrix[transIdx,transIdx])
R <- as.matrix(mcObj@transitionMatrix[transIdx,absIdx])
I <- as.matrix(mcObj@transitionMatrix[absIdx, absIdx])

#get the fundamental matrix

N <- solve(eye(size(Q)) - Q)

#computing final absorbion probabilities

NR <- N %*% R

#return
out <- list(
canonicalForm = mcObj,
Q = Q,
R = R,
I = I,
N=N,
NR=NR

)
return(out)

}

The expected number of visits to transient state j starting from state i can be found in the corre-
sponding entries of the fundamental matrix N = (It −Q)−1. Therefore, the fundamental matrix for
the above DTMC is:

#decompose the matrix

flipping.Dec <- extractMatrices(mcObj = flippingMc)
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flipping.Fund <- flipping.Dec$N

#showing the fundamental matrix

flipping.Fund

E H HT
E 4 4 2
H 2 4 2
HT 2 2 2

#expected number of steps before being absorbed

flipping.Fund%*%c(1,1,1)

[,1]
E 10
H 8
HT 6

#calculating B matrix
#the probability to being absorbed in HTH state as a function of the starting transient state

flipping.B <- flipping.Fund%*%flipping.Dec$R
flipping.B

[,1]
E 1
H 1
HT 1

#calculating H, probability of visiting transient state j starting in transient state i

flipping.H <- (flipping.Fund - matlab::eye(ncol(flipping.Fund))) * solve(diag(diag(flipping.Fund)))
flipping.H

E H HT
E 0.75 0.00 0.0
H 0.00 0.75 0.0
HT 0.00 0.00 0.5

The calculated fundamental matrix shows that the number of times the chain is in state HT, starting
from state H is two. Also, the N ∗ 1̄ vector indicates that if the chains starts in HT, the expected number
of steps before being absorbed is eight. Since there is only one absorbing state, HTH, the probability
to be absorbed in HTH is one, whichever the starting transient state is. Also, matrix H shows that the
probability that a chain in state H will eventually visit again state H is 0.75.

It is possible to compute the distribution of first passage time, as the code that follows shows:

#first passage time

fptMc <- new("markovchain", transitionMatrix=matrix(c(0, 1/2, 1/2,1/2,0, 1/2,
1/2, 1/2, 0), byrow = TRUE,ncol=3), name="FistPassageTimeExample", states=c("a" ,"b","c"))

firstPassage(fptMc,state = "a",5)
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a b c
1 0.0000 0.50000 0.50000
2 0.5000 0.25000 0.25000
3 0.2500 0.12500 0.12500
4 0.1250 0.06250 0.06250
5 0.0625 0.03125 0.03125

The output of firstPassage function shows that the probability that the first hit of state "b" occurs
at the second step is 0.25.

Periodicity analysis is shown in the following last example, in which the output shows that the
DTMC has a period of 2.

#defining a toy - model matrix for periodicity

periodicMc<-as(matrix(c(0,1,1,0),nrow=2),"markovchain")
periodicMc

Unnamed Markov chain
A 2 - dimensional discrete Markov Chain defined by the following states:
s1, s2
The transition matrix (by rows) is defined as follows:

s1 s2
s1 0 1
s2 1 0

#computing periodicity

period(periodicMc)

[1] 2

Statistical inference using markovchain package

Statistical analysis functions allow to estimate a DTMC from data and to simulate a DTMC, and can
be done through the rmarkovchain function:

weathersOfDays <- rmarkovchain(n = 30, object = mcWeather, t0 = "sunny")
weathersOfDays

[1] "sunny" "sunny" "rainy" "rainy" "rainy" "nice" "rainy" "rainy"
[9] "rainy" "rainy" "nice" "rainy" "rainy" "nice" "sunny" "nice"

[17] "rainy" "rainy" "sunny" "rainy" "rainy" "rainy" "sunny" "rainy"
[25] "sunny" "sunny" "sunny" "sunny" "sunny" "rainy"

The code shown above simulates 30 observations from the weather DTMC previously introduced.

Next, the function createSequenceMatrix is used to obtain the sequence matrix , that is the empiri-
cal transition matrix between the preceding and subsequent state, for a given sequence, whilst the
function markovchainFit fits DTMCs. We will exemplify the use of such functions on the rain data
set (recorded daily rainfall volume in Alofi island) bundled within the package.

#loading the Alofi's rain data set

data(rain)
rain$rain[1:10]
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[1] "6+" "1-5" "1-5" "1-5" "1-5" "1-5" "1-5" "6+" "6+" "6+"

#obtaining the empirical transition matrix

createSequenceMatrix(stringchar = rain$rain)

0 1-5 6+
0 362 126 60
1-5 136 90 68
6+ 50 79 124

#fitting the DTMC by MLE

alofiMcFitMle <- markovchainFit(data = rain$rain, method = "mle", name = "Alofi")
alofiMcFitMle

$estimate
Alofi
A 3 - dimensional discrete Markov Chain defined by the following states:
0, 1-5, 6+
The transition matrix (by rows) is defined as follows:

0 1-5 6+
0 0.6605839 0.2299270 0.1094891
1-5 0.4625850 0.3061224 0.2312925
6+ 0.1976285 0.3122530 0.4901186

$standardError
0 1-5 6+

0 0.03471952 0.02048353 0.01413498
1-5 0.03966634 0.03226814 0.02804834
6+ 0.02794888 0.03513120 0.04401395

$confidenceInterval
$confidenceInterval$confidenceLevel
[1] 0.95

$confidenceInterval$lowerEndpointMatrix
0 1-5 6+

0 0.6034754 0.1962346 0.08623909
1-5 0.3973397 0.2530461 0.18515711
6+ 0.1516566 0.2544673 0.41772208

$confidenceInterval$upperEndpointMatrix
0 1-5 6+

0 0.7176925 0.2636194 0.1327390
1-5 0.5278304 0.3591988 0.2774279
6+ 0.2436003 0.3700387 0.5625151

$logLikelihood
[1] -1040.419

Clearly, the markovchainFit function returns not only the pointwise estimate of the transition
matrix, but also its standard error and confidence intervals. MLE estimates are provided by default,
but a bootstrap one Efron, B. (1979) can also be obtained as the following code shows.
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#estimating Alofi TM

alofiMcFitBoot <- markovchainFit(data = rain$rain, method = "bootstrap",
name = "Alofi",nboot=100)

#point estimate of the TM

alofiMcFitBoot$estimate

Alofi
A 3 - dimensional discrete Markov Chain defined by the following states:
0, 1-5, 6+
The transition matrix (by rows) is defined as follows:

0 1-5 6+
0 0.6605457 0.2314278 0.1080264
1-5 0.4646651 0.3071925 0.2281424
6+ 0.1976978 0.3115299 0.4907723

#95 CIs

alofiMcFitBoot$standardError

0 1-5 6+
0 0.001957644 0.001793261 0.001318923
1-5 0.002733252 0.002712275 0.002273845
6+ 0.002647255 0.002949244 0.003075143

Subsequently, the three-days forward predictions from alofiMcFitMle object are generated, as-
suming that the last two days were "1-5" and "6+" respectively. Clearly only the last state matters for a
MC stochastic process.

#obtain a prediction

predict(object = alofiMcFitMle$estimate, newdata = c("1-5", "6+"),n.ahead = 3)

[1] "6+" "6+" "6+"

#obtain a prediction changing t-2 state

predict(object = alofiMcFitMle$estimate, newdata = c("0", "6+"),n.ahead = 3)

[1] "6+" "6+" "6+"

Non homogeneous Markov chains

Non homogeneous DTMCs (NHDTMCs) can be handled using the "markovchainList" S4 class, which
consists in a list of markovchain objects.

#define three DTMC
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matr1<-matrix(c(0.2,.8,.4,.6),byrow=TRUE,ncol=2);mc1<-as(matr1, "markovchain")
matr2<-matrix(c(0.1,.9,.2,.8),byrow=TRUE,ncol=2);mc2<-as(matr2, "markovchain")
matr3<-matrix(c(0.5,.5,.2,.8),byrow=TRUE,ncol=2);mc3<-as(matr2, "markovchain")

#create the markovchainList to store NHDTMCs

mcList<-new("markovchainList", markovchains=list(mc1,mc2,mc3), name="My McList")
mcList

My McList list of Markov chain(s)
Markovchain 1
Unnamed Markov chain
A 2 - dimensional discrete Markov Chain defined by the following states:
s1, s2
The transition matrix (by rows) is defined as follows:

s1 s2
s1 0.2 0.8
s2 0.4 0.6

Markovchain 2
Unnamed Markov chain
A 2 - dimensional discrete Markov Chain defined by the following states:
s1, s2
The transition matrix (by rows) is defined as follows:

s1 s2
s1 0.1 0.9
s2 0.2 0.8

Markovchain 3
Unnamed Markov chain
A 2 - dimensional discrete Markov Chain defined by the following states:
s1, s2
The transition matrix (by rows) is defined as follows:

s1 s2
s1 0.1 0.9
s2 0.2 0.8

The example above shows that creating a markovchainList S4 object is very simple. Moreover, the
rmarkovchain function also works on objects from the "markovchainList" class.

#simulating a NHDTMC

mysim<-rmarkovchain(n=100, object=mcList,include.t0=TRUE,what="matrix")
head(mysim,n = 10)

[,1] [,2] [,3] [,4]
[1,] "s2" "s2" "s2" "s2"
[2,] "s2" "s1" "s2" "s2"
[3,] "s2" "s1" "s2" "s2"
[4,] "s2" "s1" "s2" "s2"
[5,] "s2" "s2" "s1" "s2"
[6,] "s1" "s2" "s2" "s1"
[7,] "s1" "s2" "s2" "s2"
[8,] "s1" "s2" "s2" "s2"
[9,] "s2" "s2" "s2" "s1"

[10,] "s1" "s1" "s2" "s2"

Finally, it is possible to infer a non - homogeneous sequence of DTMC, that is a markovchainList
object from a given matrix, where each row represents a single trajectory and each column stands for a
different period.
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#using holson data set

data(holson)
head(holson,n = 3)

id time1 time2 time3 time4 time5 time6 time7 time8 time9 time10 time11
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1 1 1 1
3 3 1 1 1 1 1 1 1 1 1 1 1

#fitting a NHDTMCs on holson data set

nhmcFit<-markovchainListFit(holson[,2:12])

#showing estimated DTMC for time 1 -> time 2 transitions

nhmcFit$estimate[[1]]

time1
A 3 - dimensional discrete Markov Chain defined by the following states:
1, 2, 3
The transition matrix (by rows) is defined as follows:

1 2 3
1 0.94609164 0.05390836 0.0000000
2 0.26356589 0.62790698 0.1085271
3 0.02325581 0.18604651 0.7906977

#showing estimated DTMC for time 2 -> time 3 transitions

nhmcFit$estimate[[2]]

time2
A 3 - dimensional discrete Markov Chain defined by the following states:
1, 2, 3
The transition matrix (by rows) is defined as follows:

1 2 3
1 0.9323410 0.0676590 0.0000000
2 0.2551724 0.5103448 0.2344828
3 0.0000000 0.0862069 0.9137931

Numerical reliability and computational performance

Numerical reliability

Finding the stationary distribution is a computational - intensive task that could raise numerical issues.
The markovchain package relies on the R linear algebra facilities (built on LAPACK routines) when
the eigen function is called to find the stationary distribution. An initial analysis of the numerical
stability of the markovchain matrix computation has been performed estimating the error rate when
calculating the stationary distribution on a large sample of simulated DTMC of a given size k (range
set between 2 and 32). Initially, dense matrices were simulated. The following algorithm was used for
a given k:

1. generate N random k-sized DTMCs, where each row r̄ has been independently sampled from a
Dirichlet distribution, r̄ ∼ Dir(ᾱ). The Dirichlet parameters’ vector, ᾱ is itself assumed to follow
an Uniform distribution (sampled independently for each row).

2. try to compute the steady - state distribution for the simulated DTMC.
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3. calculate the success rate as the relative frequency of previous step non - failures at size k .
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Figure 4: Steady state computation success rate.

The figure shown above displays the success rate observed by TM size. The success rate is higher
than 95% for matrices no greater than 10 unit, then it decreases markedly and becomes lower than 50%
for matrices bigger then 22. A deeper analysis allowed to identify that the failure reason was due to
inaccuracy in the Dirichlet sampling function (row sums numerically different from zero). The TM
simulation process was therefore revised normalizing the sum of each row to be numerically equal to
one. The experiment was repeated at 23, 24, . . . , 28 TM sizes (wider matrices were not tested due to
computational timing issues). The observed success rate was always 100% for the sampled TM sizes.

The first example deserves few more words, even if it does not demonstrate any shortcomings
in the computational part of the package. Instead, it shows how easy it is to analyze numerically -
incorrect TMs as the size of the problems dealt with increases. Various posts have been raised on this
topic on the package Github address since the package was published on CRAN.
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Figure 5: Steady state computation success rate, sparse matrices.

A final test has been performed using TMs with a sparsity factor of 75%. The observed success rate
is 100% for matrices wider than 25, inexplicably lower (around 90%) for smaller matrices matrices.

The previous examples are clearly far to exhaustively assess the numerical reliability of the
implemented algorithms that would require an much deeper analysis and beyond the scope of

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 101

the paper. In fact, the numerical reliability is likely to be significantly affected by particular TM
structures. Nevertheless they can provide an initial insight about the dimension of the problems
that the markovchain R package can "safely" handle. The R code used to generate the numerical
reliability assessment herewith discussed is available in the "reliability.R" file within the demo folder
of markovchain R package.

Computational performance

The computation time needed to estimate the TM from input data sequence depends by the size of
input data, as the following example displays:

#using the rain data sequence
data(rain)
rainSequence<-rain$rain

#choosing different sample size
sizes<-c(10,50,100,250,500,1096)

#timing assessiment
microseconds<-numeric(length(sizes))

for(i in 1:length(sizes)) {

mydim<-sizes[i]
mysequence<-rainSequence[1:mydim]
out<-microbenchmark(
myFit<-markovchainFit(data=mysequence)

)
microseconds[i]<-mean(out$time)

}

plot(sizes, microseconds,type="o",col="steelblue",
xlab="character sequence size",ylab="microseconds",
main="Computational time vs size")
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Figure 6: Computation time by size of input data sequence.

The plot shows that the computation time increases linearly with the size of input data sequence,
as expected.
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The last numeric example presented in the section discussing NHDTMCs shows the computational
advantages of rewriting the kernel of core functions using Rcpp and RcppParallel snippets generated
by (Allaire et al., 2016). The rmarkovchain function allows the final user to choose whether to use the
C++ implementation and a parallel backend, by setting the boolean parameters useRcpp and parallel
respectively.

microbenchmark(
rmarkovchain(n=100,object=nhmcFit$estimate,what = "matrix",useRCpp = F),
rmarkovchain(n=100,object=nhmcFit$estimate,what = "matrix",useRCpp = T,parallel = F),
rmarkovchain(n=100,object=nhmcFit$estimate,what = "matrix",useRCpp = T,parallel = T)
)

The omitted output of the code snippet shown above demonstrates that the joint use of Rcpp and
RcppParallel fastens the simulations around 10x with respect to the pure R sequential implementation.

Conclusions, discussion and acknowledgements

The markovchain package has been designed in order to make common operations on DTMCs as
easy as possible for statisticians. The package allows to create, manipulate, import and export DTMCs.
Further, the author believes that the current version of the package fully satisfies standard needs such
as inference of underlying TM from empirical data, and states classification of a given DTMC.

The author believes that no other R package provides a set of classes, methods, and functions as
wide as the one provided in markovchain, as of May 2017.

The package’s main vignette gives a complete descriptions of its capabilities, including bayesian
estimation, statistical tests, classes and methods for continuous time MCs. Also, a separate vignette
describes the functions designed to deal with higher order and multivariate MCs, and should still be
considered experimental. In fact, such techniques are generally less used than standard DTMCs, and
consequently much less literature, applied examples, and coded algorithms are available.

Clearly, an expanded version of the package’s capabilities in that area is expected to be re-
leased in the future. Current development efforts target optimizing computation speed and reli-
ability, and increasing the analysis capabilities regarding statistical inference. Rewriting core func-
tions using Rcpp gave a major boost in terms of computing speed, as exemplified in previous sec-
tions. Moreover, the rewriting of the internal core parts of the code affected many functions, such
as markovchainFit and markovchainFitList. Feedbacks provided by the users of the package at
https://github.com/spedygiorgio/markovchain/issues have been extremely useful for improving
the package. To illustrate, bugs due to numerical issues have been found when analyzing relatively
big MCs and have led to revising the steadyStates function to be computationally more robust. A
known limitation of the package is the lack of a deep assessment of the performance of the package’s
routines for a relatively large TM. In fact, improving the numerical reliability of the package for large
DTMCs is an area on which efforts will be certainly allocated in the near future. At this regard, the
implementation of numerical methods methods shown in Stewart (1994) will be explored.

Finally, the package has been available on CRAN since Summer 2013. Notably, it has been granted
a funding slot in both 2015, 2016 and 2017 Google Summer of Code (GSOC) editions. In particular,
during 2015 GSOC a material part of R code has been ported in Rcpp coding, yielding considerable
fastening in computational time. The author is extremely grateful to Tae Seung Kang, Sai Bhargav
Yalamanchi and Deepak Yadav for their contribution in improving the package. A special thank
should be given to the RJournal referees for their constructive comments.

Giorgio Alfredo Spedicato
UnipolSai Assicurazioni
Piazza della Costituzione 2
Bologna 40128, Italy
spedicato_giorgio@yahoo.it
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