CONTRIBUTED RESEARCH ARTICLE

72

fourierin: An R package to compute
Fourier integrals

by Guillermo Basulto-Elias, Alicia Carriquiry, Kris De Brabanter and Daniel]. Nordman

Abstract We present the R package fourierin (Basulto-Elias, 2017) for evaluating functions defined as
Fourier-type integrals over a collection of argument values. The integrals are finitely supported with
integrands involving continuous functions of one or two variables. As an important application, such
Fourier integrals arise in so-called “inversion formulas”, where one seeks to evaluate a probability
density at a series of points from a given characteristic function (or vice versa) through Fourier
transforms. This paper intends to fill a gap in current R software, where tools for repeated evaluation
of functions as Fourier integrals are not directly available. We implement two approaches for such
computations with numerical integration. In particular, if the argument collection for evaluation
corresponds to a regular grid, then an algorithm from Inverarity (2002) may be employed based
on a fast Fourier transform, which creates significant improvements in the speed over a second
approach to numerical Fourier integration (where the latter also applies to cases where the points for
evaluation are not on a grid). We illustrate the package with the computation of probability densities
and characteristic functions through Fourier integrals/transforms, for both univariate and bivariate
examples.

Introduction

Continuous Fourier transforms commonly appear in several subject areas, such as physics and statis-
tics. In probability theory, for example, continuous Fourier transforms are related to the characteristic
function of a distribution and play an important role in evaluating probability densities from charac-
teristic functions (and vice versa) through inversion formulas (cf. Athreya and Lahiri (2006)). Similar
Fourier-type integrations are also commonly required in statistical methods for density estimation,
such as kernel deconvolution (cf. Meister (2009)).

At issue, the Fourier integrals of interest often cannot be solved in elementary terms and typically
require numerical approximations. As a compounding issue, the oscillating nature of the integrands
involved can cause numerical integration recipes to fail without careful consideration. However, Bailey
and Swarztrauber (1994) present a mid-point integration rule in terms of appropriate discrete Fourier
transforms, which can be efficiently computed using the Fast Fourier Transform (FFT). Inverarity
(2002) extended this characterization to the multivariate integral case. These works consequently offer
targeted approaches for numerically approximating types of Fourier integrals of interest (e.g., in the
context of characteristic or density functions).

Because R is one of the most popular programming languages among statisticians, it seems
worthwhile to have general tools available for computing such Fourier integrals in this software
platform. However, we have not found any R package that specifically performs this type of integral
in general, though this integration does intrinsically occur in some statistical procedures. See ? for
an application in kernel deconvolution where univariate Fourier integrals are required. Furthermore,
beyond the integral form, the capacity to handle repeated calls for such integrals is another important
consideration. This need arises when computing a function, that is itself defined by a Fourier integral,
over a series of points. Note that this exact aspect occurs when determining a density function from
characteristic function (or vice versa), so that the ability to efficiently compute Fourier integrals over a
collection of arguments is crucial.

The intent of the package fourierin explained here is to help in computing such Fourier-type
integrals within R. The main function of the package serves to calculate Fourier integrals over a range of
potential arguments for evaluation and is also easily adaptable to several definitions of the continuous
Fourier transform and its inverse (cf. Inverarity (2002)). (That is, the definition of a continuous Fourier
transform may change slightly from one context to another, often up to normalizing constants, so
that it becomes reasonable to provide a function that can accommodate any given definition through
scaling adjustments.) If the points for evaluating Fourier integrals are specified on regular grid, then
the package allows use of the FFT for particularly fast numerical integration. However, the package
also allow the user to evaluate such integrals at arbitrary collections of points that need not constitute a
regular grid (though, in this case, the FFT cannot be used and computations naturally become slower).
The latter can be handy in some situations; for example, evaluations at zero can provide moments
of a random variable when computing derivatives of a characteristic function from the probability
density. The heavy computations in fourierin are performed in C++ via the ReppArmadillo package
(cf. Eddelbuettel and Sanderson (2014)).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=fourierin
https://CRAN.R-project.org/package=RcppArmadillo

CONTRIBUTED RESEARCH ARTICLE

73

The rest of the paper has four sections. We first describe the Fourier integral for evaluation and its
numerical approximation in “Fourier Integrals and Fast Fourier Transform (FFT).” We then illustrate
how package fourierin may be used in univariate and bivariate cases of Fourier integration. In “Speed
Comparison,” we demonstrate the two approaches (FFT-based or not) for computing Fourier integrals,
both in one and two dimensions and at several grid sizes. We provide evidence that substantial
time savings occur when using the FFT-based method for evaluation at points on a grid. Finally, in
“Summary,” we present conclusions and upcoming extensions to the R package.

Fourier integrals and fast Fourier transform

Forw = (wy,...,wn), t = (t1,...,tn) € R", define the vector dot product (w, t) = wyt; + -+ - + wyty
and recall the complex exponential function exp{ix} = cos(x) + 1sin(x), x € R, where1 = /—1.

This package aims to compute Fourier integrals at several points simultaneously, which namely
involves computation of the integral

27)1-r

e "L L L esen

at more than one potential argument w € R", where f is a generic continuous n-variate function
that takes real or complex values, for n € {1,2}, and the above limits of integration are defined by
real values aj < b]- forj =1,...,n. Note that s and r in (1) denote real-valued constants, which are
separately included to permit some flexibility in the definition of continuous Fourier transforms to
be used (e.g., s = 1, 7 = 1). Hence, (1) represents a function of w € R", defined by a Fourier integral,
where the intention is to evaluate (1) over a discrete collection of w-values, often defined by a grid
in R". For example, if [c1,d1) X - -+ X [cy,dp) C R" denotes a rectangular region specified by some
real constants ¢j < dj, j=1,...,n,one may consider evaluating (1) at points w lying on a regular grid
of size my X my X - - - X my, within [c1,d1) X - -+ X [cy, dy), say, at points wlirdn) = (wjl, . ..,wjn) for
wj, = cx + ji(dy — cx) /my with ji € {0,1,...,m — 1}, k= 1,...,n (where m denotes the number of
grid points in each coordinate dimension). Argument points on a grid are especially effective for fast
approximations of integrals (as in 1), as we discuss in the following.

At given argument w € R"”, we numerically approximate the integral (1) with a discrete sum
using the mid-point rule, whereby the approximation of the j-th slice of the multiple integral involves
I; partitioning rectangles (or equi-spaced subintervals) for j = 1,...,n and n € {1,2}; that is, for
Iy, ..., 1, representing a selection of the numbers of approximating nodes to be used in the coordinates
of integration (i.e., a resolution size), the integral (1) is approximated as

r/z L-1L-1 I,—1

n b — . ‘ o
[[(zf)'m Y o X (i) exp {is(w, i), @
j=1] 11=01,=0 i, =0

with nodes ¢(i-in) = (ti,, ..., ti,) defined by coordinate midpoints t; = aj + (2ix +1)/2- (b — ar) /I
foriy € {0,1,...,lx —1} and k = 1,...,n. Note that a large grid size l; X - - - X I, results in higher
resolution for the integral approximation (2), but at a cost of increased computational effort. On the
other hand, observe that when a regular grid is used, the upper evaluation limits, d1, . .., d, are not
included in such grid, however, the higher the resolution, the closer we get to these bounds.

To reiterate, the goal is then to evaluate the Fourier integral (1) over some set of argument points
w € R" by employing the midpoint approximation (2), where the latter involves a Iy x --- X I
resolution grid (of midpoint nodes) for n € {1,2}. It turns out that when the argument points w fall
onamy X --- X my-sized regular grid and this grid size matches the size of the approximating node
grid from (2), namely [i = m; for each dimension j = 1,..., 1, then the sum (2) may be written in
terms of certain discrete Fourier transforms and inverses of discrete Fourier transforms that can be
conveniently computed with a FFT operation. Details of this derivation can be found in Inverarity
(2002). It is well known that using FFT greatly reduces the computational complexity of discrete
Fourier transforms from O(m?) to O(mlogm) in the univariate case, where m is the resolution or grid
size. The complexity of computing the multivariate discrete Fourier transform of an n-dimensional
array using the FFT is O(Mlog M), where M = my - - - m,, and m; is the grid /resolution size in the j-th
coordinate direction, j =1, ..., n.

The R package fourierin can take advantage of such FFT representations for the fast computation
of Fourier integrals evaluated on a regular grid. The package can also be used to evaluate Fourier
integrals at arbitrary discrete sets of points. The latter becomes important when one wishes to evaluate
the a continuous Fourier transform at only a few specific points (that may not necessarily constitute a
regular grid). We later compare evaluation time of Fourier integrals on a regular grid, both using the

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

74

FFT and without using it in fourierin.

Examples

In this section we present examples to illustrate use of the fourierin package. We begin with a
univariate example which considers how to compute continuous Fourier transforms evaluated on
a regular grid (therefore using the FFT operation) as well as how the computations proceed at three
specified points not on a regular grid (where the FFT is not be used). The second example considers a
two dimensional, or bivariate, case of Fourier integration.

The code that follows shows how the package can be used in univariate cases. The example we
consider is to recover a x> density f with five degrees of freedom from its characteristic function ¢,
where the underlying functions are given by

S — (1 —)52
()= 2/ (3) e and p(t) = (1—2u1) 772, 3)

forall x > 0 and t € R. We also show how to use the package on non-regular grids. Specifically, we
generate sample of three points from a x> distribution with five degrees of freedom and evaluate the
density in Formula 3 at these three points where the density has been computed using the Fourier
inversion formula approximated at four different resolutions. Results are presented in Table 1.

For illustration, the limits of integration are set from —10 to 10 and we compare several resolutions
(64, 256 or 512) or grid node sizes for numerically performing integration (cf. (2)), recalling that the
higher the resolution, the better the integral approximation. To evaluate the integrals at argument
points on a regular grid, we choose [—3,20] as an interval for specifying a collection of equi-spaced
points, where the number of such points equals the resolution specified (as needed when using FFT).

B m oo
Univariate example
HHE m o

Load packages
library(fourierin)
library(dplyr)
library(purrr)
library(ggplot2)

Set functions

df <- 5

cf <= function(t) (1 - 2ixt)*(-df/2)
dens <- function(x) dchisq(x, df)

Set resolutions
resolutions <- 2*(6:8)

Compute integral given the resoltion
recover_f <- function(resol){
Get grid and density values
out <- fourierin(f = cf, lower_int = -10, upper_int = 10,
lower_eval = -3, upper_eval = 20,
const_adj = -1, freq_adj = -1,
resolution = resol)
Return in dataframe format
out %>%
as_data_frame() %>%
transmute(
X = W,
values = Re(values),
resolution = resol)

3

Density approximations
vals <- map_df(resolutions, recover_f)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

75

True values
true <- data_frame(x = seq(min(vals$x), max(vals$x), length = 150),
values = dens(x))

univ_plot <-
vals %>%
mutate(resolution = as.character(resolution),
resolution = gsub("64", "064", resolution)) %>%
ggplot(aes(x, values)) +
geom_line(aes(color = resolution)) +
geom_line(data = true, aes(color = "true values"))

univ_plot

Evaluate in a nonregular grid
set.seed(666)

new_grid <- rchisq(n = 3, df = df)
resolutions <- 2%(6:9)

fourierin(f = cf, lower_int = -10, upper_int = 10,
eval_grid = new_grid,
const_adj = -1, freq_adj = -1,
resolution = 128) %>%
c () %% Re() %>%
data_frame(x = new_grid, fx = .)

Function that evaluates the log-density on new_grid at different
resolutions (i.e., number of points to approximate the integral in
the Fourier inversion formula).
approximated_fx <- function (resol) {
fourierin(f = cf, lower_int = -10, upper_int = 12,
eval_grid = new_grid,
const_adj = -1, freq_adj = -1,
resolution = resol) %>%
c() %% Re() %>%
{data_frame(x = new_grid,
fx = dens(new_grid),
diffs = abs(. - fx),
resolution = resol)}

}

Generate table
tab <-
map_df (resolutions, approximated_fx) %>%
arrange(x) %>%
mutate(diffs = round(diffs, 7)) %>%
rename('f(x)' = fx,
'absolute difference' = diffs)

tab

Observe that the first call of the fourierin function above has the default argument use_fft =
TRUE. Therefore, this computation uses the the FFT representation described in Inverarity (2002) for
regular grids, which is substantially fast (Figure 5, as described later, provides timing comparisons
without the FFT for contrast). Also note that, when a regular evaluation grid is used, fourierin returns
a list with both the Fourier integral values and the evaluation grid. Figure 1 shows the resulting plot
generated. A low resolution (64) for numerical integration has been included in order to observe
differences between the true density and its recovered version using Fourier integrals.

At the bottom of the code above, we also show how fourierin() works when a non-regular
“evaluation grid” is provided. Observe that, in this case, one directly specifies separate points for
evaluation of the integral in addition to separately specifying a resolution level for integration. This
aspect is unlike the evaluation case on a regular grid. Consequently, only the Fourier integral values

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

76

x f(x) absolute difference resolution
3.0585883 0.1541368 0.0002072 64
0.0000476 128

0.0000472 256

0.0000471 512

6.4144242 0.0874281 0.0000780 64
0.0000155 128

0.0000148 256

0.0000147 512

11.7262677 0.0151776 0.0000097 64
0.0000025 128

0.0000022 256

0.0000022 512

Table 1: Absolute differences of true density values at three random points and density values at these
same three points obtained using the Fourier inversion formula approximated at different resolutions.

0.10- .
resolution

064
— 128

values

— 256

true values

Figure 1: Example of fourierin() function for univariate function at resolution 64. Recovering a)(2
density from its characteristic function. See Equation 3.

are returned, which is also unlike the regular grid case (where the evaluation grid is returned with
corresponding integrals in a list). Note that the function f from (1), when having a real-valued
argument, should be able to be evaluated at vectors in R.

In a second example, to illustrate how the fourierin() function works for bivariate functions, we
use a bivariate normal density f and find its characteristic function ¢. In particular, we have these
underlying functions as

1

) =

forallt,x € R?, with y = [_11} and X = {_31 _31}

exp |3z | and g0 = e (wa- 33, @

Below is the code for this bivariate case using a regular evaluation grid, where the output is a
complex matrix whose components are Fourier integrals corresponding to the gridded set of bivariate
arguments. As illustration, the limits of integration are set from (—8, —6) to (6, 8) (a square) and we
consider a resolution 128, where the range [—4,4] x [—4,4] is also chosen to define a collection of
evaluation points on a grid, where the number of such points again equals the resolution specified
(i.e., for applying FFT).

B —m
Bivariate example
B —m e

Load packages

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

77

library(fourierin)
library(tidyr)
library(dplyr)
library(purrr)
library(lattice)
library(ggplot2)

Set functions to be tested with their corresponding parameters.
mu <- c(-1, 1)
sig <- matrix(c(3, -1, -1, 2), 2, 2)

Multivariate normal density, x is n x d
f <= function(x) {
Auxiliar values
d <- ncol(x)
z <- sweep(x, 2, mu,
Get numerator and denominator of normal density
num <- exp(-0.5xrowSums(z * (z %*% solve(sig))))
denom <- sqrt((2xpi)~*d*det(sig))
return(num/denom)

n_n

3

Characteristic function, s is n x d
phi <- function (s) {
complex(modulus = exp(-0.5*xrowSums(s*x(s %*% sig))),
argument = s %*% mu)

3

Evaluate characteristic function for a given resolution.
eval <- fourierin(f,
lower_int = c(-8, -6), upper_int = c(6, 8),
lower_eval = c(-4, -4), upper_eval = c(4, 4),
const_adj = 1, freq_adj =1,
resolution = 2xc(64, 64),
use_fft = T)

Evaluate true and approximated values of Fourier integral
dat <- eval %>%
with(crossing(y = w2, x = wl) %>%
mutate(approximated = c(values))) %>%
mutate(true = phi(matrix(c(x, y), ncol = 2)),
difference = approximated - true) %>%
gather(value, z, -x, -y) %>%
mutate(real = Re(z), imaginary = Im(z)) %>%
select(-z) %>%
gather(part, z, -x, -y, -value)

Surface plot
wireframe(z ~ x*y | valuexpart, data = dat,
scales =
list(arrows=FALSE, cex= 0.45,
col = "black”, font = 3, tck = 1),
screen = list(z = 90, x = -74),
colorkey = FALSE,
shade=TRUE,
light.source= c(0,10,10),
shade.colors = function(irr, ref,
height, w = 0.4)
grey(wxirr + (1 - w)*(1 - (1 - ref)*0.4)),
aspect = c(1, 0.65))

Contours of values
biv_examplel <-

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

78

dat %>%

filter(value != "difference") %>%
ggplot(aes(x, y, z = z)) +
geom_tile(aes(fill = z)) +
facet_grid(part ~ value) +
scale_fill_distiller(palette = "Reds")

biv_examplel

Contour of differences

biv_example2 <-
dat %>%
filter(value == "difference") %>%
ggplot(aes(x, y, z = z)) +
geom_tile(aes(fill = z)) +
facet_grid(part ~ value) +
scale_fill_distiller(palette = "Spectral”)

biv_example2

The result of fourierin() was stored above in eval, which is a list with three elements: two
vectors with the corresponding evaluation grid values in each coordinate direction and a complex
matrix containing the Fourier integral values. If we do not wish to evaluate the Fourier integrals on a
regular grid and instead wish to evaluate these at, say I bivariate points, then we must passa l x 2
matrix in the argument w and the function will return a vector of size | with the Fourier integrals,
rather than a list. In the bivariate situation here, the function f must be able to receive a two-column
matrix with m rows, where m is the number of points where the Fourier integral will be evaluated.

Corresponding to this bivariate example, we have generated three plots to compare the approx-
imation from Fourier integrals to the underlying truth (i.e., compare the approximated and true
characteristic functions of the bivariate normal distribution). In Figure 2, we present the surface plots
of the approximated and the true values, as well as their differences for both the real and imaginary
parts. One observes that differences are small, indicating the adequacy of the numerical integration.

For a different perspective of the resulting Fourier integration, Figure 3 presents a contour plot
showing the approximated and true values of the bivariate normal characteristic function, for both
real and imaginary parts. We show a tile plot of the differences in Figure 4. Observe that the range of
differences in Figure 4 is relatively much smaller than the values in Figure 3.

Speed comparison

Through a small numerical study, here we compare the differences in execution times using fourierin()
for integration at points on a regular grid, both with or without FFT steps, considering univariate
and bivariate Fourier integrals. Figure 5 shows timing results for a univariate example of the integral
in (1) evaluated on a grid, while Figure ¢ presents timing results for a bivariate example. Note that
the reported time units differ between these figures, as the bivariate case naturally requires more
time. These figures provide evidence that, for evaluating integrals on a regular grid, the FFT option in
fourierin() creates large advantages in time.

The code that was used to generate Figure 5 and 6 is below.

B m o
Univariate speed test
B =

library(fourierin)
library(dplyr)
library(purrr)
library(ggplot2)
library(microbenchmark)

Test speed at several resolutions
resolution <- 27(3:8)

Function to be tested

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

79

rea

real

approximated

difference

2 X U -2 X
- H H 5 el
y
imaginary imaginary imaginary
approximated difference true
10 : 10 1 10 T
= o J M| j
z N W z N\) z L N
0.0 I' 0.0 I' 0.0 I'
! 2 X ! 2 X ! -2 X
T T _‘—4 T T T T

Figure 2: Example of fourierin function for univariate function at resolution 128 x 128: Obtaining
the characteristic function of a bivariate normal distribution from its density. See Equation 4. This
panel contains every combination of approximation-true-difference with real-imaginary parts.

myfnc <- function(t) exp(-t*2/2)

Aux. function
compute_times <- function(resol){
out <-
microbenchmark

fourierin_1d(f = myfnc, -5, 5, -3
fourierin_1d(f = myfnc, -5, 5, -3,

’ 3?
3

’

use_fft = FALSE),

times = 5) %>%
as.data.frame()
Rename levels
levels(out$expr) <- c("yes",
Obtain median of time.
out %>%
group_by(expr) %>%
summarize(time =
resolution =
rename(FFT = expr)

}

speedl <- resolution %>%
map_df (compute_times) %>%
mutate(resolution =

"

nou)

median(timex1e-6),
resol) %>%

as.factor(resolution)) %>%

-1,

-1, resol),

-1, -1, resol,

ggplot(aes(resolution, log(time), color = FFT)) +

geom_point(size =

2, aes(shape

= FFT)) +

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

approximated true

Areuibew

1.0

[eal

Figure 3: Example of fourierin function for univariate function at resolution 128 x 128: Obtaining
the characteristic function of a bivariate normal distribution from its density. See Equation 4. Each
combination the approximated and true values are shown for both the real and imaginary parts.

geom_line(aes(linetype = FFT, group = FFT)) +
ylab("time (in log-milliseconds)")

speed1

o
Bivariate test
#H —m o

Load packages
library(fourierin)
library(dplyr)
library(purrr)
library(ggplot2)
library(microbenchmark)

Test speed at several resolutions
resolution <- 2%(3:7)

Bivariate function to be tested
myfnc <- function(x) dnorm(x[, 1])*dnorm(x[, 2])

Aux. function
compute_times <- function(resol){
resol <- rep(resol, 2)
out <-
microbenchmark(
fourierin(myfnc,
lower_int = c(-8, -6), upper_int = c(6, 8),
lower_eval = c(-4, -4), upper_eval = c(4, 4),
const_adj = 1, freq_adj =1,

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

81

difference
4-
2-
F = g.
0 F F g %
" 4 = o
3
-
z
[]
_4- 2.5e-05
> 0.0e+00
4-
-2.5e-05
B —5.0e-05
2.
0- 8
o
_4-
-4 -2 0 2 4

X

Figure 4: Example of fourierin function for univariate function at resolution 128 x 128: Obtaining
the characteristic function of a bivariate normal distribution from its density. See Equation 4. This plot
show the difference between the approximated and true values for the real and imaginary parts.

resolution = resol),

fourierin(myfnc,
lower_int = c(-8, -6), upper_int = c(6, 8),
lower_eval = c(-4, -4), upper_eval = c(4, 4),
const_adj = 1, freqg_adj =1,
resolution = resol, use_fft = FALSE),

times = 3) %>%

as.data.frame()

Rename levels
levels(out$expr) <- c("yes"”,
Obtain median of time.
out %>%
group_by(expr) %>%
summarize(time = median(timex1e-9),
resolution = resol[1]) %>%
rename(FFT = expr)

]

nO")

3

Values

comparison <-
resolution %>%
map_df (compute_times)

fctr_order <-
unique(comparison$resolution) %>%

paste(., ., sep = "x")
Plot
speed2 <- comparison %>%
mutate(resolution = paste(resolution, resolution, sep = "x"),

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

82

1 A
0-
P A
(%) L,
°
=4
S
o
[
9 FFT
‘E yes
S A -4 no
c
o
E —2-

8 16 32 64 128 256
resolution
Figure 5: Example of a univariate Fourier integral over grids of several (power of two) sizes. Specifi-
cally, the standard normal density is being recovered using the Fourier inversion formula. Time is in
log-milliseconds. The Fourier integral has been applied five times for every resolution and each dot
represents the mean for the corresponding grid size and method. Observe that both, x and y axis are
in logarithmic scale.

resolution = ordered(resolution, levels = fctr_order)) %>%
ggplot(aes(resolution, log(time), color = FFT)) +
geom_point(size = 2, aes(shape = FFT)) +
geom_line(aes(linetype = FFT, group = FFT)) +
ylab("time (in log-seconds)")

speed2

Summary

Continuous Fourier integrals/transforms are useful in statistics for computation of probability densi-
ties from characteristic functions, as well as the reverse, when describing probability structure; see
the “Examples” section for some demonstrations. The usefulness and potential application of Fourier
integrals, however, also extends to other contexts of physics and mathematics, as well as to statistical
inference (e.g., types of density estimation). For this reason, we have developed the fourierin package
as a tool for computing Fourier integrals over collections of evaluation points, where repeat evaluation
steps and often complicated numerical integrations are involved. When evaluation points fall on a
regular grid, fourierin allows use of a Fast Fourier Transform as a key ingredient for rapid numerical
approximation of Fourier-type integrals.

In “Speed Comparison,” we presented evidence of the gain in time when using this fast imple-
mentation of fourierin() on regular grids, while we also illustrated the versatility of fourierin in
“Examples” section. At present (version 0.2.1), the fourierin package performs univariate and bivariate
Fourier integration. An extension of the package to address higher dimensional integration will be
included in future versions.

Bibliography
K. B. Athreya and S. N. Lahiri. Measure theory and probability theory. Springer Science & Business Media,
2006. [p72]

D. H. Bailey and P. N. Swarztrauber. A fast method for the numerical evaluation of continuous Fourier
and Laplace transforms. SIAM Journal on Scientific Computing, 15(5):1105-1110, 1994. [p72]

G. Basulto-Elias. fourierin: Computes Numeric Fourier Integrals, 2017. URL https://CRAN.R-project.
org/package=fourierin. R package version 0.2.2. [p72]

D. Eddelbuettel and C. Sanderson. Rcpparmadillo: Accelerating R with high-performance C++
linear algebra. Computational Statistics and Data Analysis, 71:1054-1063, March 2014. URL http:
//dx.doi.org/10.1016/j.csda.2013.02.005. [p72]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=fourierin
https://CRAN.R-project.org/package=fourierin
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005

CONTRIBUTED RESEARCH ARTICLE

83

time (in log-seconds)

8x8 16x16 32x32 64x64 128x128

resolution

Figure 6: Example of a bivariate Fourier integral over grids of several (power of two) sizes. Both axis
have the same resolution. Specifically, the characteristic function of a bivariate normal distribution is
being computed. Time is in log-seconds (unlike 5). The Fourier integral has been applied five times
for every resolution and each dot represents the mean for the corresponding grid size and method.
Observe that both, x and y axis are in logarithmic scale.

G. Inverarity. Fast computation of multidimensional Fourier integrals. SIAM Journal on Scientific
Computing, 24(2):645-651, 2002. [p72,73,75]

A. Meister. Deconvolution problems in nonparametric statistics, volume 193. Springer, 2009. [p72]

Guillermo Basulto-Elias
Iowa State University
Ames, IA

United States
basulto@iastate.edu

Alicia Carriquiry
Towa State University
Ames, IA

United States
alicia@iastate.edu

Kris De Brabanter

Iowa State University
Ames, IA

United States
kbrabant@iastate.edu

Daniel]. Nordman

Towa State University
Ames, IA

United States
dnordman@iastate.edu

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

mailto:basulto@iastate.edu
mailto:alicia@iastate.edu
mailto:kbrabant@iastate.edu
mailto:dnordman@iastate.edu

	fourierin: An R package to compute Fourier integrals
	Introduction
	Fourier integrals and fast Fourier transform
	Examples
	Speed comparison
	Summary

