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Simulating Probabilistic Long-Term
Effects in Models with Temporal

Dependence
by Christopher Gandrud, Laron K. Williams

Abstract The R package pltesim calculates and depicts probabilistic long-term effects in binary models
with temporal dependence variables. The package performs two tasks. First, it calculates the change in
the probability of the event occurring given a change in a theoretical variable. Second, it calculates the
rolling difference in the future probability of the event for two scenarios: one where the event occurred
at a given time and one where the event does not occur. The package is consistent with the recent
movement to depict meaningful and easy-to-interpret quantities of interest with the requisite measures
of uncertainty. It is the first to make it easy for researchers to interpret short- and long-term effects of
explanatory variables in binary autoregressive models, which can have important implications for the
correct interpretation of these models.

Introduction

Scholars from a wide variety of academic disciplines study phenomena with binary outcomes. This
includes the study of war or peace (Beck et al., 1998), civil war or stability (Collier et al., 2003), wildlife
habitat selection (Keating and Cherry, 2004), automobile accident severity (Al-Ghamdi, 2002), banking
decisions (Maddala and Trost, 1982), labor force participation (Mroz, 1987), individual decisions about
drinking water sources (Gelman et al., 2004), conflicts over water resources (Gleditsch et al., 2006), and
education policy (Bailey et al., 2016), just to name a diverse few.

The desire to generalize produces the incentive for scholars to incorporate information both
over time and across units, which results in time-series cross-sectional data. While helpful from an
inferential standpoint, modeling processes that vary across time and space increase the number of
potential estimation and interpretation problems facing scholars.

One problem that is unique to scholars examining binary time-series cross-sectional (BTSCS) data
is the role of temporal dependence, or the notion that the probability of the occurrence of the event (i.e.,
the dependent variable) depends in part on how much time has passed since the previous occurrence.
Whenever scholars estimate BTSCS models where there are omitted (or potentially unobservable)
variables that are also correlated with time, there is a substantial risk of incorrect standard errors and
highly misleading results (Beck et al., 1998).

Beck et al. (1998, 1261) offered a ground-breaking solution to this inferential obstacle by noting
that “BTSCS data are grouped duration data”, which implies that one can borrow techniques from
duration analysis to properly model the influence of time since the previous event at some time ¢.
This discovery led to a drastic increase in the number of scholars, political scientists in particular,
employing duration modeling techniques with BTSCS data. Notable alternatives include dummy
variables representing each value of ¢, splines, and cubic polynomials (Beck et al., 1998; Carter and
Signorino, 2010). Put simply, these approaches assume that, for possibly un-modeled reasons, the
probability of the event occurring at time ¢ is a function of how much time has elapsed since the event
previously occurred.

At the same time, another movement has produced meaningful improvements in the interpretation
of dynamic models in the social sciences. Over the last decade or so, scholars have improved our
understanding of the various short- and long-term effects that arise from dynamic models. These long-
term effects can take the form of long-range multipliers in autoregressive distributed lag models (De
Boef and Keele, 2008) or dynamic simulations in models with lagged dependent variables (Williams
and Whitten, 2012). In addition to providing a more complete picture of the inferences of key theoretical
variables, one reason for the explosion in scholarly attention is the emphasis on providing appropriate
measures of uncertainty with easy-to-implement software packages (e.g. Williams and Whitten, 2011;
Gandrud et al., 2016; Choirat et al., 2017).

To this end, this article introduces the R (R Core Team, 2017) package pltesim, which utilizes simu-
lation methods to depict probabilistic long-term effects in binary models with temporal dependence
(PLTE). The package is available from the Comprehensive R Archive Network (CRAN). The package
follows the methodology introduced in Williams (2016). In the remainder of the paper, we will first
discuss the methodological principles at work, then the process pltesim uses to calculate probabilistic
long-term effects, and finally an example with various visualization approaches.
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Long-term effects in models with temporal dependence

Probabilistic long-term effects are the product of the intersection of two methodological trends:
controlling for unmodeled duration dependence by including temporal dependence variables and
interpreting short- and long-term effects of explanatory variables in autoregressive models. For
example, if one is interested in the effects of X on the probability of Y at time ¢, and one controls
for temporal dependence in any of the ways stated above, then X will have both a short-term effect
(interpreted in the traditional manner based on the link function) and a long-term effect. However,
contrary to the calculation of long-term effects in dynamic models of continuous dependent variables
(De Boef and Keele, 2008), the long-term effects in BTSCS models are probabilistic. As Williams (2016,
247) notes, “modifying the values of any of the independent variables at time t potentially influences
the predicted probabilities of the outcome in future time periods by forcing time since previous event to
revert back to 0, which itself affects the probability of observing the event”.

Calculating probabilistic long-term effects involves a two-step process. The first step finds the
change in the predicted probability of the outcome, given a change in the independent variable (Xg),
and a particular configuration of values of the other independent variables (or simulation scenario,
Xc). More formally, APr(§ = 1|X¢, AXk). A long-term effect occurs (by changing the values of the
temporal dependence variables at future observations) if the observed outcome, § = 1|X¢ changes as
a result of the change in Xg. The problem is that since this is a counterfactual, we never observe the
actual outcome (just its probability). The change in the predicted probability of the event is typically
the quantity of interest, and often is the point of emphasis when researchers interpret their results. In
the calculation of PLTE, this quantity has a secondary interpretation as the likelihood of a variable
having a PLTE. This is the change in the probability that 7 = 1|X¢, which also reflects the change in
the probability that the time since previous event variables are reset to 0 at time ¢ + 1.!

The second step is to calculate the long-term effect (LTE). Assume that we have modeled temporal
dependence in a simple fashion, with time representing a counter based on how many time periods
have elapsed since the last event. The long-term effect, then, is the difference in the probability of
the event occurring at time t 41 to t + k, given that an event occurred at time f, compared to the
probability, given that the event did not occur at time f. Put another way, the LTE is a sequence of
moving differences in the probability for two points along the hazard rate: one that assumes the event
occurred at time t and one that does not. If we use the notation that we establish above, we first set up
a simulation scenario (X¢) containing the values of the independent variables (typically this would be
the mean or median values) including time (f). We then compare the probabilities of the event for this
scenario—assuming that the time variable increases at each time period—to the scenario where the
event occurred at time ¢ and the value of time resets to 0 at time ¢ + 1. The long-term effect at time
t 4 1 is the following (L. K. Williams 2016, 248):

LTEY! = Pr() = 1|Xc, time = 0) — Pr(9 = 1X¢, time = F).

Then the LTE is calculated at time t 4+ 2 by updating the values of time in both scenarios:

LTE{? = Pr(9 = 1|Xc, time = 1) — Pr(9 = 1|Xc, time = F+1).

And so on, up to a value of k, which represents the maximum or some other intuitive value of time.
It is important to note that time—in addition to all the other temporal dependence variables derived
from time such as splines or cubic polynomials—must be updated at each time period.

These probabilistic long-term effects can be modified so that they reflect a wide variety of quantities
of interest. For example, scholars can easily depict the PLTE of a short-term change in Xk (such as a
one-unit change) or more lasting or permanent shocks in Xx. Figures can also depict the possibility
of compounded effects, or the fact that having an event occur in one counterfactual increases the
probability of future events. Finally, PLTE can provide interesting illustrations of the lasting effects of
Xg in models that explicitly model non-proportional hazards, such as when time is interacted with
Xk. In the next section we provide an overview of the process of estimating PLTE using pltesim.

pltesim Process

pltesim is the only tool we know of that makes it easy to calculate and visualize probabilistic long-term
effects in binary models with temporal dependence. pltesim has four steps:

ITwo other considerations are important here. First, since these quantities are all based on estimates, then
scholars interested in hypothesis testing must use the appropriate measures of uncertainty. Second, the quality of
these quantities depends on the model’s fit, so the interests of transparency requires that scholars provide measures
of model fit.
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1. Find the parameter estimates. Currently pltesim works with binary outcome models, e.g. logit.
So use a binary response with the glm function included with the default R installation.

2. Create a counterfactual scenario in a data. frame class object. This should have a row with the
fitted counterfactual values and columns with names matching variables in your fitted model.
All variables without values will be treated as having values of 0 in the counterfactual.

3. Simulate the long-term effects with pltesim’s plte_builder function.
4. Plot the results with pltesim’s plte_plot function.

In the next section we use simulated data from Williams (2016) to illustrate these steps.

Examples

The following examples replicate panels from Figure 1 in Williams (2016, 249). We start by loading the
necessary packages:

library(pltesim)
library(ggplot2)

Notice that ggplot2 is loaded. It will be used later in this section to customize the plots created by
pltesim.

The simulated data we will use in these examples is packaged with pltesim. Itis called negative_year.
The name refers to the simulated data having negative duration dependence. It has the following
form:

data("negative_year”, package = "pltesim")

head(negative_year)

#> group year y X
#> 1 1 1991 0 -1.04320703
#> 2 11992 0 ©.56581828
#> 3 11993 0 -1.21016176
#> 4 11994 0 0.07632362
#> 5 1 1995 0 -0.40669992
#> 6 11996 1 0.44269959

where y is the binary response, x is the non-time independent variable, year is the time variable, and
group identifies each section of the panel.

Before finding the parameter estimates from this data, we need to create a standardized time
variable that is in terms of time periods from the last spell (or the beginning of the observation period
if left-censored), rather than years. pltesim includes the btscs function to accomplish this:?

non

neg_set <- pltesim::btscs(df = negative_year, event = "y", t_var = "year",
cs_unit = "group")

where df specifies the data frame. event is the binary response variable where 1 indicates an event, @
otherwise. t_var specifies the time variable, cs_unit specifies the cross-sectional unit. The resulting
data frame has the form:

head(neg_set, n = 10)

#> group year y x spell_time
#> 1 11991 @ -1.04320703 1
#> 2 11992 0 ©.56581828 2
#> 3 11993 @0 -1.21016176 3
#> 4 11994 @ 0.07632362 4
#> 5 1 1995 0 -0.40669992 5
#> 6 11996 1 0.44269959 6
#> 7 2 1991 @ -1.25522659 1
#> 8 2 1992 0 0.29738988 2
#> 9 2 1993 0 1.00741250 3
#> 10 2 1994 0 -0.42211204 4

Zbtscs is based on a function by the same name from the R package DAMisc which itself is based on the Stata
(StataCorp, 2009) command implementing the procedure in Beck et al. (1998). btscs was included in pltesim to
(a) allow improvements for handling single period spells, (b) match pltesim’s syntax for ease of use within one
workflow, and (c) to reduce pltesim’s dependencies. It also starts the spell time counter at 1 rather than 0.
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This is the same data frame as before with the addition of a spel1l_time column containing a counter
of time periods within each spell.

Now estimate the parameters:

ml <- glm(y ~ x + spell_time + I(spell_time”2) + I(spell_time*3),
family = binomial(link = "logit"), data = neg_set)

Note the inclusion of the I interpretation function to create the squared and cubed versions of
spell_time.” Additionally, the bs function from the splines package, included with R, allows similar
inclusion of polynomial splines for time using the B-spline basis.

The change in x is specified with:
x_change <- data.frame(x = 0.5)

which can be passed to plte_builder along with the fitted model object (m1). The counterfactual must
be in the form of a data frame with column names matching each variable in the model and one row of
fitted values. Variables from the model not included in the fitted value data frame will be treated as 0.

The counterfactual is passed to plte_builder with the cf argument. The fitted model object is
specified with obj. The time variable is identified with obj_tvar. Information about how long the
change in x persists in the simulation is given with cf_duration. It is permanent by default. The time
period from the last spell over which to simulate the effects is given with the t_points argument.

The first simulation example finds the estimated impact of the counterfactual lasting for one time
period. To do this, the plte_builder function’s cf_duration argument is set to "one-time".

siml <- plte_builder(obj = m1, obj_tvar = "spell_time",
cf_duration = "one-time",
cf = x_change, t_points = c(13, 25))

Running this code simulates a one period increase in x by 0.5 that occurs at 13 time points from
the last spell. By default the central 95 percent interval of 1,000 simulations is returned. The extent of
the returned central interval can be specified with plte_builder’s ci argument and the number of
simulations can be adjusted with the nsim argument.

We can now plot the results with the plte_plot function:

plte_plot(siml) +
scale_y_continuous(limits = c(0, 0.4))

The first dot from the left in Figure 1 (and vertical dashed line) represents the median simulated
baseline probability (and central 95 percent simulation interval) of the event occurring given the
simulation scenario Pr(7 = 1|X¢). The second dot from the left represents the updated probability of
the event occurring given a one-time change in the variable of interest (or Pr( = 1|X¢, AXk)). In this
case, the probability of the event occurring at time  given x = 0.5 is about 0.09. The number labels
next to the dots represent the values of ¢ in both scenarios.

One can assess whether the change in Xg produces a statistically significant change in the proba-
bility of an LTE by determining whether the confidence intervals overlap. In this case, the increase
in Xk does not produce a statistically significant change in the probability for that time period. The
remainder of Figure 1, however, reveals that the change in Xg has a meaningful impact on the proba-
bility in future periods by changing the probability that the t variable resets to 0. The dashed lines
from t 4+ 1 onwards are the 95 percent central simulation intervals for the probability of the event,
given that the event did not occur at time t: Pr(§) = 1|Xc, time = 14...25). The solid lines represent
the counterfactual where ij; = 1. The two vertical lines at time t + 1 illustrate how the value of t
either resets to 0 (if Y; = 1) or continues beyond its current value (if Y; = 0). Of the two scenarios, the
counterfactual where the event does not occur (Y; = 0) is much more likely given its small probability
(0.09). The difference between these two vertical lines is the visual representation of the LTE from
equation 1. The intervals show that there is a statistically significant LTE from ¢ + 1 until ¢ + 9, at which
point the central intervals overlap and there is no statistical difference between the two probabilities.

Note that because the output of plte_plot is a gg class ggplot2 object, we can modify it using the
full set of ggplot2 functions, including in this case, the plot’s y-axis limits with scale_y_continuous.
This modification makes the plot more easily comparable with the ones that follow in this section.

To examine the effects of changes to Xy that last for the entire simulation period, we set cf_duration
= "permanent”. The results are show in Figure 2.

3This will allow plte_builder to identify the polynomials given just the base spell_time variable name.
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Figure 1: Simulated LTE with a one-period change in x by 0.5.

sim2 <- plte_builder(obj = m1, obj_tvar = "spell_time",
cf = x_change,
cf_duration = "permanent”,
t_points = c(13, 25))

plte_plot(sim2) +
scale_y_continuous(limits = c(@, 0.4))

Users can also specify changes that last for periods shorter than the entire simulation period, but
longer than one-period by supplying a numeric value to cf_duration. For example, to have the 0.5
increase in x last for 4 time periods use:

sim3 <- plte_builder(obj = m1, obj_tvar = "spell_time",
cf_duration = 4,
cf = x_change,
t_points = c(13, 25))

plte_plot(sim3) +
scale_y_continuous(limits = c(0, 0.4))

The results are shown in Figure 3.

Finally, we can use pltesim to examine not only the effects of changes in x, but also the compound
effect of experiencing multiple events. To specify multiple events, supply an additional value to
t_points. For example, to simulate and visualize the compound effect of an event at simulated time
20 use:

sim4 <- plte_builder(obj = m1, obj_tvar = "spell_time",
cf = x_change,
t_points = c(13, 20, 25))
plte_plot(sim4) +
scale_y_continuous(limits = c(0, 0.4))

We can see in Figure 4 that in addition to the LTE given the event at time ¢ (with probability 0.09),
there is a compounding effect that results in an even larger LTE because of the event at time ¢ + 6 (with
probability of approximately 0.20).

Conclusion

The goal of pltesim is to allow researchers to easily explore and present the short- and long-term effects
of models estimated with temporal dependence. These variables can have a massive influence on the
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Figure 2: Simulated LTE with a permanent change in x to 0.5.
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Figure 3: Simulated LTE with a four period increases of x by 0.5.
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Figure 4: Simulated LTE with multiple events and a permanent increases of x by 0.5.

outcome of interest and can change the substantive effects of key theoretical variables. Prominent
theories (such as the conflict trap; see Collier et al., 2003) often have expectations that their variables
have long-lasting effects, or that a variable’s influence grows with each recurring event. Yet, up
until the introduction of pltesim, scholars have been unable to estimate and graphically depict these
theoretically interesting long-run dynamics from BTSCS models.
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