CONTRIBUTED RESEARCH ARTICLE 440

riskRegression: Predicting the Risk of an
Event using Cox Regression Models

by Brice Ozenne, Anne Lyngholm Serensen, Thomas Scheike, Christian Torp-Pedersen, Thomas
Alexander Gerds

Abstract In the presence of competing risks a prediction of the time-dynamic absolute risk of an event
can be based on cause-specific Cox regression models for the event and the competing risks (Benichou
and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R inter-
face for predicting the covariate specific absolute risks, their confidence intervals, and their confidence
bands based on right censored time to event data. We provide explicit formulas for our implementation
of the estimator of the (stratified) baseline hazard function in the presence of tied event times. As
a by-product we obtain fast access to the baseline hazards (compared to survival: :basehaz()) and
predictions of survival probabilities, their confidence intervals and confidence bands. Confidence
intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding
statistical functionals. The software presented here is implemented in the riskRegression package.

Introduction

Predictions of hazards and risks based on a Cox regression analysis need to be fast and memory
efficient, especially in large data, in simulation studies, and for cross-validation or bootstrap loops.
The CRAN task view Survival lists many R packages implementing the Cox regression model and
extensions thereof. Among the most popular routines are the function coxph() from the survival
package (Therneau, 2017) and the function cph() from the rms package (Harrell Jr, 2017). We present
a fast and memory efficient algorithm to extract baseline hazards and predicted risks with confidence
intervals from an object obtained with either of these functions.

In the presence of competing risks one needs to combine at least two Cox regression models
to predict the absolute risk of an event (cumulative incidence) conditional on covariates (Benichou
and Gail, 1990). We present the CSC()-function of the R package riskRegression which fits the Cox
regression models using either coxph() or cph(). We also present a concomitant predict() S3 method
which computes the absolute risks of the event of interest for given combinations of covariate values
and time points. Optionally, the predict() method computes asymptotic confidence intervals and
confidence bands for the predicted absolute risks. We review the formula behind the estimators
implemented and illustrate the R interface.

It is possible to obtain the predictions of absolute risks based on cause-specific Cox regression
also with the survival package or with the mstate package (Putter et al., 2016). However, both require
more work from the user. Finally, it should be noted that there are alternative regression methods for
absolute risks in the presence of competing risks such as Fine-Gray regression (Fine and Gray, 1999) or
direct binomial regression (Gerds et al., 2012; Scheike et al., 2008).

Data used for examples

For the sole purpose of illustration we use the ‘Melanoma’ data set which is included in the riskRegres-
sion package. It contains data from 205 malignant melanoma patients. Among the risk factors for
cancer specific death were patient age and sex and the histological variables tumor thickness, invasion
(levels 0,1,2), and epithelioid cells (no present vs. present). Within the limitation of the follow-up
periods, it was observed that 57 patients had died from cancer (“status” equals 1) and 14 had died
from other causes (“status” equals 2). The remaining patients were right censored (“status” equals 0).

library(riskRegression, verbose = FALSE, quietly = TRUE)
library(survival)

data(Melanoma)

str(Melanoma)

'data.frame': 205 obs. of 7 variables:

$ time :int 10 30 35 99 185 204 210 232 232 279 ...

$ status cint 3323111311

$ sex cint 11170111010 ...

$ age . int 76 56 41 71 52 28 77 60 49 68 ...

$ year :int 1972 1968 1977 1968 1965 1971 1972 1974 1968 1971

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/view=Survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=riskRegression
https://CRAN.R-project.org/package=mstate

CONTRIBUTED RESEARCH ARTICLE 441

$ thickness: num 6.76 ©0.65 1.34 2.9 12.08 ...
$ ulcer cint 1000111111

Predicting absolute risks based on cause-specific Cox regression

We denote by T the time between a baseline date and the date of an event and by D € {1,...,, K}
the cause of the event. We assume that {D = 1} is the event of interest. Let X = (X?,...,X?) bea
p-dimensional vector of baseline covariates with arbitrary distribution, and Z = (Zl, ..., Z1) be the
strata variables, i.e. a set of categorical baseline covariates with finitely many possible values. Without
loss of generality and to ease the notation we set 4 = 1. We use {1, ..., L} for the categories of Z.

We consider a setting in which the event time T is right censored at a random time C. We
assume that C is conditionally independent of T given (X, Z) and fix a time 7 such that almost surely
P(C > 1|X,Z) > 0. We denote T = min(T,C), D = AD,and A = 1{T < C}.

Cause-specific Cox regression

Given covariates (X, Z), let So(t|x,z) = P(T > t|X = x, Z = z) denote the event-free survival function
and Fj(t|x,z) = P(T < t,D = j|X = x,Z = z) the cumulative incidence function for event j. The
cause-specific hazard rates are defined as A, (t|x) = dFj(t|x,z)/So(t|x,z) (Andersen et al., 1993). We
also denote the cumulative hazard rates by A; (t[x) = fot Ajz(s|x)ds. The stratified Cox regression
model (Cox, 1972) for cause j is given by

Ajz(Hx) = Agjz (£) exp(xp)), ©)

where §; = (/3]1.,. cey ﬁf)" is a p-dimensional vector of regression coefficients (the log-hazard ratios),
and {Agj;(t) :z=1,...,L} aset of unspecified baseline hazard functions.

Predicting the absolute risk of an event

The cause-specific Cox regression models can be combined into a prediction of the absolute risk of an
event of type 1 until time ¢ conditional on the covariates x, z. For the case where K = 2 the absolute
risk formula of Benichou and Gail (1990) is given by:

ot
Fi(tv,2) = [5(s = |, 2) Ay (slx)ds. @

where s— denotes the right sided limit, e.g. Aj,(s — |x) = liny—sv<s/A1,z(v]x). The absolute risk
accumulates over time the product between the event-free survival and the hazard of experiencing the
event of interest, both conditional to the baseline covariates and to the strata variable. The event free
survival can be estimated from the cause-specific hazards using the product integral estimator:

S(tlx,z) = T[(1= dAy - (H]x) — dAg . (1]%)

s<t

or the exponential approximation:
S(1h2) = exp | - Raslil) ~ Ras(iho)|. ©)

which is asymptotically equivalent to the product-limit estimator if the distribution of the event times
is continuous. Using the product integral estimator ensures that S(¢|x, z) + F; (t|x, z) + F»(f|x, z) equals
exactly 1. This is a desirable property since the sum of the transition probabilities over all possible
transitions should sum to one.

Formula (2) generalizes to situations with more than 2 competing risks, i.e., K > 2. However, in
applications with many competing risks there will sometimes be few events of specific causes, and it
may be hard to fit a Cox regression model for each cause separately. One possibility when K > 2 is to
combine all causes where D > 1 into a single competing risk for the cause of interest D = 1. While
the riskRegression package allows the use of more than 2 competing risks, we will illustrate its use
considering only 2 competing risks . The package implements formula (2) in two steps.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 442

Step 1: estimation of the cause-specific hazards

The first step is to fit the Cox regression models with the CSC() function in order to estimate A; ; and
/\2,z:

cfit@ <- CSC(formula = Hist(time,status) ~ age + logthick + epicel + strata(sex),
data = Melanoma)
coef(cfit@)

$*Cause 1°

age logthick epicelpresent
0.01548722 0.68178505 -0.73848649
##

$*Cause 2°

#t age logthick epicelpresent

#it 0.07680909 0.04750975 0.31497177

In the call of CSC() the argument formula is used to define the outcome variables with the help of
the function prodlim: :Hist (). The variable “time” in the data set contains the values of the observed
event time T and the variable “status” the cause of the event D. Objects generated with the function
prodlim: :Hist() have a print method:

h <- with(Melanoma, prodlim::Hist(time,status))

h

Right-censored response of a competing.risks model
#H#

No.Observations: 205

##

Pattern:

##

Cause event right.censored
#H# 1 57 0
2 14 Q
unknown 0 134

and a plot method:

plot(h, arrowLabelStyle = "count”,
statelLabels = c("Radical\noperation”, "Cancer\nrelated death”, "Death\nother causes"”))

Cancer
related death

Radical
operation

Death
other causes

Figure 1: Box-arrow diagram showing the three states of the competing risk model and the number
of observed transitions in the Melanoma data set.

A nice complement to the regression models is the marginal Aalen-Johansen estimate of the
absolute risk of cancer related death (Figure 2):

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

443

library(prodlim)

plot(prodlim(Hist(time,status) ~1, data = Melanoma),
atrisk.at = seq(®0,3652.5,365.25), xlim = c(0,3652.5),
axisl.at = seq(0,3652.5,365.25), axisl.lab = 0:10,
xlab = "Years", ylab = "Absolute risk”, cause = 1)

Absolute risk
50 % 75 % 100 %
|

25%

0%

Years

Subjects: 205 193 183 167 160 122 83 64 55 38 23

Figure 2: Non-parametric estimation of the absolute risk of cancer related death over time obtained
using the Aalen-Johansen estimator.

The right hand side of the formula in the call of the CSC() function:
Hist(time,status) ~ age + logthick + epicel + strata(sex)

defines the covariate(s) X which enter into the linear predictor xf in formula (1), and the strata
variable(s) Z which define the baseline hazard functions Ag;.. Strata variables are specified by
wrapping the variable names into the special function strata(), as one would do when using the
coxph() function. If only one formula is provided, the CSC() function will use the same baseline
covariates and strata variables for all cause-specific Cox regression models. Instead one may feed a list
of formulas into the argument formula, one for each cause:

cfitl <- CSC(formula = list(Hist(time,status) ~ age + logthick + epicel + strata(sex),
Hist(time,status) ~ age + strata(sex)),
data = Melanoma)

coef(cfitl)

$*Cause 1°

age logthick epicelpresent
0.01548722 0.68178505 -0.73848649
#H#

$*Cause 2°

age

0.07919648

Note that the choice of the baseline covariates relative to each cause made here is not based
on clinical or statistical criteria; it was done to illustrate the software possibilities. The causes are
internally ordered with respect to the levels of the variable “status”, if this variable is a factor, and
otherwise with respect to sort(as.character(unique(status))). The order of the causes is saved as
cfit1[["causes"]]. Accordingly, the first formula is used to fit a Cox regression model to the first

cause and the second formula is used to fit a Cox regression model to the second cause and so on.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

444

Internally, CSC() constructs dummy variables, one for each cause, and then calls the function defined
by the argument fitter on a suitably constructed Surv() formula. By default the cause-specific
Cox models are fitted with the function survival: : coxph(). Alternatively, one can set the argument
fitter to the name of a different routine, e.g., cph.

Step 2: computation of the absolute risk

The object obtained with CSC() has class "CauseSpecificCox”. The second step is to call the cor-
responding predict() method. In addition to the object obtained with CSC() this requires three
additional arguments: newdata, times, cause. The argument newdata should be a "data.frame"
which contains the covariates X and Z in the same format as the data used to fit CSC(). The argument
cause defines the cause of interest D and the argument times defines a vector of prediction horizon(s)
whose values are used as the upper integration limit ¢ in formula (2). The predict () method computes
the absolute risks (formula (2)) for each row in newdata and each value of times:

newdata <- data.frame(age = c(45,67), logthick = c(0.1,0.2),
epicel = c("present”,"not present”),
sex = c("Female”,"Male"))

pfitl <- predict(cfitl, newdata = newdata, cause = 1, times = c(867,3500))

By default, the product integral estimator is used to estimate the event-free survival function.
Setting the argument productLimit to FALSE when calling the predict function enables to use the
exponential approximation. The predict function returns a structured list of class "predictCSC".
The corresponding print() method calls as.data. table.predictCSC() to display the predictions as
follows:

print(pfit1)

observation age logthick epicel sex times strata absRisk
1: 1 45 0.1 present Female 867 sex=Female 0.021
#H# 2: 2 67 0.2 not present Male 867 sex=Male 0.149
3: 1 45 0.1 present Female 3500 sex=Female 0.117
#i# 4: 2 67 0.2 not present Male 3500 sex=Male 0.428

For each row in newdata (values are repeated for each prediction horizon) and each prediction
horizon (column times) the column “absRisk” contains the absolute risk of cancer specific mortality
(cause 1). Standard errors and confidence intervals for the absolute risk can be obtained setting the
argument se to TRUE:

pfitlise <- predict(cfitl, newdata = newdata, cause = 1, times = c(867,3500),
se = TRUE, keep.newdata = FALSE)

print(pfitise)

observation times strata absRisk absRisk.se absRisk.lower absRisk.upper
1: 1 867 sex=Female 0.021 0.122 0.00738 0.0478
2: 2 867 sex=Male 0.149 0.161 0.07356 0.2502
3: 1 3500 sex=Female ©0.117 0.151 0.05552 0.2025
4. 2 3500 sex=Male 0.428 0.320 0.20416 0.6355

Here we have set the argument keep.newdata to FALSE to not export the value of the covariates.
The structure of the "predictCSC" object is as follows.

str(pfitise)

List of 11

$ absRisk :num [1:2, 1:2] 0.021 0.149 0.117 0.428

$ absRisk.se :num [1:2, 1:2] 0.122 0.161 0.151 0.32

$ absRisk.lower :num [1:2, 1:2] 0.00738 0.07356 0.05552 0.20416
$ absRisk.upper :num [1:2, 1:2] 0.0478 0.2502 0.2025 0.6355

$ times : num [1:2] 867 3500

$ strata : Factor w/ 2 levels "sex=Female”,"sex=Male": 1 2
$ conf.level : num @.95

$ se : logi TRUE

$ band : logi FALSE

$ nsim.band : num 10000

$ transformation.absRisk:function (x)

- attr(x, "class")= chr "predictCSC”

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 445

The elements $absRisk, $absRisk.se, $absRisk.lower and $absRisk.upper are matrices where
each row corresponds to a row in newdata and each column to a value of the times vector. All
these matrices are sorted according to the original orders of the arguments newdata and times. To
conveniently extract a subset of the results, one should first call as.data.table.predictCSC() to
combine these results into a "data. table” object. Here is an example:

ptablel <- as.data.table(pfitise)
ptablel[times == 3500 & observation == 1,
. (times, absRisk,absRisk.lower,absRisk.upper)]

times absRisk absRisk.lower absRisk.upper
1: 3500 0.1166383 0.05551508 0.2025222

In the same way confidence bands can be obtained by setting the argument band to TRUE:

vec.times <- cfitl1$eventTimes
pfitlband <- predict(cfitl, newdata = newdata[1], cause = 1,
times = vec.times, se = TRUE, band = TRUE)

newdatal[1]

age logthick epicel sex
1. 45 0.1 present Female

By default 10,000 simulations will be used to estimate the appropriate quantile for the confidence
bands (see explanations in section Construction of the confidence bands). This default behavior can be
changed by setting the argument nsim.band to another value. The autoplot() function can then be
used to compare confidence bands and the confidence intervals:

figure3 <- autoplot(pfitiband, band = TRUE, ci = TRUE)$plot
figure3 <- figure3 + xlab("Time (days)") + ylab("Absolute risk”)
print(figure3)

0.25-

0.20-
x i
.9(115
o _ _ 95% confidence
= interval
8 0.10- 95% confidence
_2: . band

0.05-

0.00-

0 1000 2000 3000
Time (days)

Figure 3: Absolute risk over time for a 45 years old female patient with a tumor thickness of 0.1 mm
and epithelioid cells (blue line). The continuous black lines represent the confidence bands while the
dashed black lines represent the range of the confidence intervals.

Note that the resulting object is a "ggplot” graphic. This can be useful to personalize the graph,
e.g. change the font size of the text.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

446

Construction of the confidence intervals

In this section we describe the asymptotic formula behind the confidence intervals for the predicted
absolute risks and the empirical counterpart which is implemented in riskRegression. We assume
asample (X});c(y,. ny of n independent and identically distributed replications of X' = (T,D,X,Z).
The estimator F; of Fj is obtained by substituting the Cox partial likelihood estimate j3 j for B; and the
baseline hazard estimate)A\Ojlz for Agj,, in equations (1) and (2).

The asymptotic confidence intervals for the covariate specific absolute risks of event 1 before time
t are based on the following von Mises expansion (van der Vaart, 1998):

ViR (H,2) = Fy(t]x,2) = <=) on (X, %,2) +op(1) @
i=1

where the exponential approximation is used for defining the event free survival in F; (f|x, z). Given
(4), for fixed values t, x, z the central limit theorem implies that £} (x, z) has an asymptotic normal
distribution with asymptotic variance Vg, (t,x,z) = E(¢F, (X;;t,x,2)?). Based on the estimate ¢, of
the influence function ¢r, (both defined in subsequent subsections) our variance estimate is given by

=

V(t, X,z) = 435 (X;;t, x,z)z. (5)
1

1
n:
1

We then construct Wald confidence intervals for Fy (f|x,z) in the usual way:

F(15,2) + 0072y P52 Fa) + 102y 70,2)|

where g, is the a-quantile of the normal distribution. Since the absolute risk is bounded below by 0
and above by 1, the confidence interval is automatically restricted to this interval. Alternatively the
confidence interval can be computed using a log-log transformation: first the confidence interval is
computed on the log-log scale:

log(—log(Fi(t|x,2))) + qas2 ‘//\log—log(tr x,z));log(—log(Fi(t|x,2))) — q1-a/2 ﬁog—log(tr X,Z):|

where Vjoe_o¢ is the variance of the influence function on the log-log scale. Then the confidence inter-
val is back transformed using the link function: x — exp(— exp(x)). This ensures that the confidence
interval is bounded below by 0 and above by 1. By default, the confidence intervals are computed
using the log-log transformation. To compute them without using the log-log transformation, the
argument log. transform needs to be set to FALSE when calling predict.CauseSpecificCox():

pfit2se <- predict(cfitl, newdata = newdata, cause = 1, times = c(867,3500),
se = TRUE, log.transform = FALSE, keep.newdata = FALSE)

print(pfit2se)

#i# observation times strata absRisk absRisk.se absRisk.lower absRisk.upper
1: 1 867 sex=Female 0.021 0.00992 0.00157 0.0404
#it 2: 2 867 sex=Male 0.149 0.04586 0.05945 0.2392
3: 1 3500 sex=Female 0.117 0.03795 0.04226 0.1910
4. 2 3500 sex=Male 0.428 0.11620 0.20021 0.6557

Here the column “absRisk.se” contains Vi, (log-log scale) while the columns “absRisk”,
“absRisk.Jower”, and “absRisk.upper” are on the original scale. The benefit of using a log-log transfor-
mation is studied in the section Coverage of the confidence interval and the confidence bands.

Asymptotic formula

The influence function ¢, can be expressed as a function of the influence functions ¢, and ¢,, of the
cause-specific hazard rates:

t
0 (X,t,%,2) = [exp(=A(s]) = Mg (s13)) g, (X5,)

=)y Ma(sl0) exp(=A1z(s]x) = Az (s1%) (. (X78, %) + P, (X5, %)) ds. (6)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

447

We use the shorthand notations v®9 = 0, v®! = v, v®2 = voT and

o K L
/f(s,d,v,w)dP(s,d,v,w) :/0 dz: /Rp Z:lf(s,d,v,w)dl’(s,d,v,w).
=0" z=

We also suppress the dependence on T when we in the following adapt the usual notation for Cox
model asymptotic theory to the cause-specific and stratified case:

S(r)(t,/%j,z) = /1{t <s < t,w =z} exp(vp;)v*"dP(s,d, v, w)
SW(t, Bj,z2)
SOt Bj,z)

@
Z(pj) = / Hd =j} (m —E(s, ﬁj,w)@) dP(s,d,v,w).

E(t, Bj z) =

For fixed cause j, time ¢ and strata z the expansions \/ﬁ(ﬁ] -Bj) = ﬁ g ¢p, (X)) +op(1)
and /n(Agj. () — Agj(t)) = ﬁ Y1 Ay (Xist) +op(1) are then characterized by the influence

functions

05,2 = () (1D =}, T <7} (X - E(T,5;,2))
X —E(s,,,Z)

—exp(Xp) [1d =js < T) g =

dP(s,d, v,w)) @)

Pron(it) = 05, (X) [E(s, By, 2)A0j(5)ds

min(t) Agj4(s) T <t,D= j})
ds — = :
NO) (s, ﬁsz) S(O)(T,,B]', Z)

-HZ =1z} (exp(X,Bj) /0 8)

In absence of strata, formula (7) is equal to formula 2 of (Reid, 1981) and formula (8) equals the
one given in Gerds and Schumacher (2001, top of page 576; note however that there is a sign mistake
in their first term). To connect these formulas with formula (6) it remains to note that under the Cox
regression model the influence function of the cause-specific hazard rate can be written as:

9. (X3t x) = exp(xB;) (P, (X;t) + Moj (1) x g (X)T). ©)

Empirical estimates

The following formulas are obtained with the plug-in principle substituting the Cox partial likelihood
estimates 8; for ; and the baseline hazard estimates A, , for Ag;, into formulas (6) - (9). We denote

by N]:Z(t) =Y!",{T; < t,D; = j,Z; = z} the strata and cause specific counting process, and by
YA(t) = i H{T; > t,Z; = z} the strata specific “at-risk” process (Andersen et al., 1993). The
empirical estimate of the influence function of the partial likelihood estimate is given by

e (o (B0 82 ety [BB
¢p;(Xi) = Z(B;) (A1<Xz E(TI/:B]/ZI)) eXP(Xzﬁj)/O WdN]S>

where

SO)(t, Bjz) = /0 exp(Xifj) X;”"dNF (t).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 448

The influence functions for the cumulative baseline hazard and its first differential are estimated by:

~ ~ t A ~
P () =~ (%) | E(s, By 2)Aojz(6)ds

. min(t,T;) A iz(s 1 T, <t Di =j
—1{z; =z} (exp(X,-,B]-) / Y (A) ds — {/_~ —]}) (10)
b Sepa" SOz

dpp,,. (Xist) = —p, (X)E(t, Bj, 2) Aoj2 (1)
;\Oj,z(t) YT, =tD;=j

—1{Z; = 2} [exp(X;B)1{t < Ti} —— B & iy 11
(=2} (ew i1 TRy)

These estimates lead to the following estimates of the influence functions of the covariate specific
cumulative hazard and its derivative relative to the time:

P, (X t,x) = exp(xpy) (P (Xist) + Ao (t) x B, (X)) (12)
dgu,. (Xit,x) = exp(xfy) (4, (Xiit) + Aoy (1) x B, (X)) - (13)

Finally, we obtain our estimate of the influence function of the absolute risk:
o~ t A~ A~ o~
e, (%, t,3,2) = [exp(=Av2(61x) = Aaa(slx)da,. (X,) (1)

t ~ A ~ o~ o~
_ /0 A1z (s]x) exp(—Aq z(s]x) — Aoz (s]x)) (qﬁAlrz(X,-;s,x) + 4>A2’Z(Xi;s,x))ds. (15)

Construction of the confidence bands

A confidence band with confidence level 1 — a for the absolute risk Fj(.|x, z) restricted to the time
interval 7 = [11; 1] is a region Ry (x,z) = [lxz(t); Uxz(t)],c7 satisfying:
P(Fi(tx,z) € [Lez(t); ux ()] VEET) =1 —a.

In figure Figure 3, Ty = 0 and 1, = 3458, the time at which the last event occurred. Using the
martingale central limit theorem, (Cheng et al., 1998) have shown that Fy (t|x,z) — F; (t|x, z) converges
weakly to a zero-mean Gaussian process on 7. The asymptotic variance of this process is V (¢, x, z).
However the 1 — & quantile achieving simultaneous coverage is larger than the 1 — a quantile of a
standard normal distribution. Since the dependence between the increments of the process F; (|x,z) —

F; (t|x, z) makes the derivation of an explicit expression for the quantile difficult, we used instead a
resampling technique (Scheike and Zhang, 2008). Consider over t € 7 the normalized process:

Yr (Xt x,2) = ¢F, (X t,x,2) /A V (L, x,2).

Denote by c1_, /> the 1 — a/2 quantile of the sample:
sup |¢F1 (Xi; t,x, Z)'
teT

and using the symmetry of the Gaussian distribution, i.e. ¢, /5 = —¢1_4/2, 2 1 — & confidence band
over T is constructed as follows:

Fi(tx,2) — c1—ay2\/ V(£ %,2)); Fi (Hx,2) + ¢1_g /2 ?(t,x,z)} .

Like for the confidence intervals, the confidence bands will be restricted to the interval [0;1] when they
are not computed using a log-log transformation.

Implementation details

The function predict.CauseSpecificCox() calls two important functions, predictCox() that com-
putes the hazard and cumulative hazard for a fitted Cox model, and iidCox() that computes the
influence function for the baseline hazard and regression coefficients. In this section we first explain

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 449

how predictCox() deals with ties in the event times. We then show that the function predictCox()
can also be used to obtain confidence intervals and bands for covariate specific survival probabilities
in the situation without competing risks. Implementation details about the function iidCox() are
postponed to appendix B. These details may be useful for programmers who need to care about
memory usage.

Handling of tied event times

We speak of ties when two or more observations have the same value of the time variable T. Ties occur
for example when time is recorded on a discrete scale such as months. The survival package imple-
ments three different methods to deal with ties (“efron”, “breslow”, and “exact”, see help(coxph)) for
the partial likelihood estimator of the log hazard ratios f; (Therneau and Grambsch, 2000). We have
implemented the “efron” and the “breslow” method but not the “exact” method. For a comparison of
these methods and yet another method see Scheike and Sun (2007). We now state the formula for the
baseline hazard function under Breslow’s (Breslow, 1974) and Efron’s method (Efron, 1977) for the
handling of ties. The baseline hazard estimate in strata z given by the Breslow method is:

dNE (1)
 Liev:r exp(BXy)’

With the Efron method for handling ties the formula is given by:

dAgj,z (t)

dAE, (t) = P aNE () .
k=1 Zz’eYZ(t) exp(B'X;) — dN?(t) 21:1} exp(B'X;)

Both estimators are implemented in the function predictCox() which provides estimates of the
baseline hazard, the cumulative baseline hazard and baseline survival. The predictCox() function
does not have an argument to specify whether Breslow method or Efron method should be used;
instead it uses the same method that has been used to estimate the regression coefficients. In the case
of the coxph() function, the default method is Efron:

f1 <- coxph(Surv(time,status != @) ~ age + logthick + epicel + strata(sex),
data = Melanoma, x = TRUE, y = TRUE)
f1$method

[1] "efron”

Therefore the baseline hazard will be estimated using the Efron method when calling predictCox():

baseH1 <- predictCox(f1)
as.data.table(baseH1[c("time", "cumhazard”,"strata”,"survival”)])

time cumhazard strata survival
1: 99 0.00623279 Female 0.9937866
2: 232 0.01256406 Female 0.9875145
3: 279 0.01897728 Female 0.9812017
4: 295 0.02555481 Female 0.9747690
5: 355 0.03221850 Female 0.9682950
##H --—-

199: 3909 0.69673810 Male 0.4982078
200: 4119 0.69673810 Male 0.4982078
201: 4207 0.69673810 Male 0.4982078
202: 4310 0.69673810 Male 0.4982078
203: 4492 0.69673810 Male 0.4982078

The cumulative baseline hazard and baseline survival are displayed in the columns “cumHazard”,
and “survival” of the output. This corresponds, respectively, to Ag;(t) and exp(—Ag;(t)) where j is
1, z can be found in the column “strata” and ¢ in “time”. The covariate specific cumulative hazard
Aj(t[x) and survival exp(—A;(t[x)) can be estimated using the same function:

predictCox(f1, newdata = Melanomal[c(17,101,123),1],
times = c(7,3,5)*365.25)

observation times strata cumhazard survival
1: 1 2557 Male 0.884 0.413

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 450

2: 2 2557 Female 0.555 0.574
3: 3 2557 Female 0.949 0.387
4: 1 1096 Male 0.453 0.635
5: 2 1096 Female 0.202 0.817
6: 3 1096 Female 0.346 0.708
7: 1 1826 Male 0.670 0.512
8: 2 1826 Female 0.366 0.693
9: 3 1826 Female 0.626 0.535

Confidence intervals and confidence bands for survival probabilities

In absence of competing risks, the influence function of a Cox model can be used to estimate confidence
intervals for the survival. This can be done by setting the argument se to TRUE when calling the
predictCox () function:

pl <- predictCox(f1, newdata = Melanoma[3:5,],
times = c(Melanoma$time[5:7],1000),
se = TRUE, type="survival")

The predictCox() function output an object of class "predictCox”. The print() method can be
used to display the confidence intervals for the survival computed at different times:

print(p1)

#H# observation times strata survival survival.se survival.lower survival.upper
1 1 185 Male 0.980 0.616 0.935 0.994
##H 2 185 Female 0.985 1.014 0.893 9.998
3 3 185 Male 0.947 0.652 0.823 0.985
4 1 204 Male 0.973 0.567 0.921 0.991
5: 2 204 Female 0.985 1.014 0.893 9.998
6: 3 204 Male 0.929 0.594 0.791 0.977
7 1 210 Male 0.967 0.503 0.913 0.987
8: 2 210 Female 0.985 1.014 0.893 9.998
9: 3 210 Male 0.912 0.552 0.762 0.969
10: 1 1000 Male 0.864 0.321 0.760 0.925
11: 2 1000 Female 0.769 0.286 0.631 0.860
12: 3 1000 Male 0.673 0.391 0.426 0.832

Here the confidence intervals were computed using a log-log transformation. The argument
log. transform can be set to FALSE to compute them without using the log-log transformation. Confi-
dence bands can also be obtained using predictCox() by setting the argument band to TRUE. As for the
predict.CauseSpecificCox() function, 10,000 simulations will be used to compute the confidence
bands; this can be changed specifying the argument nsim. band. The function as.data. table.predictCox ()
makes it easy to extract subsets from "predictCox” object:

pl <- as.data.table(pl)
p1ltimes == 185,]

observation times strata survival survival.se survival.lower survival.upper
1 1 185 Male 0.9801395 0.6163925 0.9350597 0.9940246
#H# 2: 2 185 Female 0.9845660 1.0137483 0.8927600 0.9978695
3. 3 185 Male 0.9470887 0.6524116 0.8226132 0.9849795

Coverage of the confidence interval and the confidence bands

To assess the validity of the estimation of the standard error, we performed a simulation study. The
sample size was varied between 50 and 10000. For each sample size, 5000 datasets were simulated
using the SimCompRisk() function from the riskRegression package. The time of first event typically
ranged between 0.001 and 20 with a median around 4. For each dataset, a Cox model specific to cause
1 and a 2 cause-specific Cox model were fitted considering 2 covariates (X1 and X2). The survival,
absolute risk, their confidence intervals were estimated (with or without log-log transformation) at
time1,1.5,2,3,4,5, 6, and 7 conditional on X1 = 0 and X2 = 1. The confidence bands over those 8
times were also computed.

The true absolute risk was defined as the median of the absolute risks over the 5000 datasets. The
coverage of the confidence intervals was computed as the percentage of times that the true absolute

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 451

risk was inside the confidence interval, at a given time. The coverage of the confidence bands was
computed as the percentage of times that the true absolute risk was inside the confidence bands,
simultaneously for all of the 8 times.

As expected, the coverage of the confidence intervals is improving with increasing sample size
and reaches its nominal level of 95% at around sample size 1000 (figure Figure 4, left panel). Using a
log-log transformation leads to better small sample properties and similar large sample properties
(figure Figure 4, right panel). A larger sample size was necessary for the confidence bands to converge
toward the nominal coverage level (n = 5000, figure Figure 5 left panel). Again log-log transformation
leads to better small sample properties. We only displayed here the coverage for the absolute risk but
similar coverage was obtained for the survival function.

log.transform: FALSE log.transform: TRUE

—— =
7

1.0-

0.8-
time

- 1.5
-2
-3
-4

coverage
o
o

0.4-

0 500 1000 1500 2000 0 500 1000 1500 2000
sample size

Figure 4: Coverage of the asymptotic confidence interval of the absolute risk plotted against the
sample size. Each color corresponds to a prediction time. The figure is only shown for samples size
below 2000 since for larger sample sizes the coverage is always approximately equal to 0.95. Left
panel: confidence intervals are computed on the original scale. Right panel: confidence intervals are
computed on the log-log scale and back-transformed.

Runtime and memory usage

Baseline hazard

We compare the performance of predictCox () regarding the estimate of the baseline hazard function
with that of the function survival: :basehaz (). For this purpose we simulate data with 10 covariates
including both continuous and discrete type using the sampleData().

In our performance study we vary the sample size ranging from 500 to 1,000,000 observations and
consider both stratified:
Surv(time,event) ~ strata(X1) + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

and non-stratified Cox regression models:
Surv(time,event) ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

The computation times were estimated using the rbenchmark package (Kusnierczyk, 2012) and
averaged across 100 simulated data sets. The memory usage was estimated using the profvis package
(Chang and Luraschi, 2017) and averaged across 10 simulations. When the execution time of the
function was extremely fast (i.e. <0.005s), the memory usage could not be reliably assessed and was
set to NA.

Memory usage and computation time are displayed on figure Figure 6 and Figure 7. Both functions
lead to a reasonable computation time (<1 min) even when considering very large datasets (e.g. >10,000
observations). Nevertheless the predictCox() function outperforms the basehaz () function by a factor

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=rbenchmark
https://CRAN.R-project.org/package=profvis

CONTRIBUTED RESEARCH ARTICLE 452

log.transform: FALSE log.transform: TRUE

0.8-
el
c
®©
2
S
®© 0.6-
[
>
Q
o

0.4-

0 2500 5000 7500 10000 0 2500 5000 7500 10000
sample size

Figure 5: Coverage of the asymptotic confidence band of the absolute risk plotted against the sample
size. Left panel: confidence intervals are computed on the original scale. Right panel: confidence
intervals are computed on the log-log scale and back-transformed.

varying between 3 and 11 in terms of computation time. The gain in speed is especially expressed in
large datasets. Memory usage is also lower for predictCox() and decreases by a factor between 1 and
1.6 as compared to basehaz().

Absolute risk

We now compare two implementations for computing the standard errors of the absolute risk. The
default implementation corresponds to setting the argument store.iid to "full” when calling
predict.CauseSpecificCox() or predictCox() while the second is obtained by setting store.iid
to "minimal”. The two implementations are described in more detail appendix B.

First we compare their computation time and memory consumption when making only one
prediction. As before, we simulated datasets for K = 2 using the SimCompRisk() function with
increasing sample size. Then, the two cause-specific Cox models were fitted to each of the simulated
datasets using riskRegression: :CSC. Then we measured the computation time and memory usage
necessary to estimate the absolute risk with its standard error for the first observation at time 4, when
using the argument store.iid="minimal" or store.iid="full” in predict.CauseSpecificCox().

The results are show on figure Figure 8. While both implementations lead to a similar computation
time, the memory usage for store.iid="minimal" grows linearly while for store.iid="full" it grows
approximately in nl4. However, if instead of estimating the absolute risk with its standard error
for one prediction, we estimate it for all the observations the implementation store.iid="minimal"
becomes slower compared to store.iid="full"” (e.g. 28.5 minutes vs. 6 minutes for n=2000).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 453

no strata strata

“» 30+
£
(0]
S
-— 20,
c
Ke)
©
3
g 10-
(o]
[&]
- /
O,
10° 10* 10° 10° 10° 10* 10° 108
sample size

implementation == basehaz == predictCox

Figure 6: The computation time (in seconds) of predictCox() and basehaz() plotted against the
sample size for a Cox model (left panel) and a stratified Cox model (right panel). The x axis is
displayed using a logarithmic scale but its labels refer to the (untransformed) sample size. The curves
represent the median values over 100 simulations while the shaded areas represent the 95% confidence

intervals.
no strata strata
oo 1500-
=3
(0]
e
& 1000-
o
>
g
@ 500-
£
O,
10° 10* 10° 10° 10° 10* 10° 10°
sample size

implementation = basehaz == predictCox

Figure 7: The memory usage (in megabytes) of predictCox() and basehaz() plotted against the
sample size for a Cox model (left panel) and a stratified Cox model (right panel). The x axis is
displayed using a logarithmic scale but its labels refer to the (untransformed) sample size. The curves
represent the median values over 100 simulations while the shaded areas represent the 95% confidence
intervals.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

454

computation time (s)

memory usage (MB)

7500 10000

3000-
20-

2000-
10-

1000-
0- 0- __.__..—-———/_‘

0 2500 5000 7500 10000 0 2500 5000
sample size
store.iid="full" == store.iid="minimal"

Figure 8: The computation time (left panel) and memory usage (right panel) for computing the
absolute risk with its standard error for one observation plotted against the sample size, setting the
argument store.iid to "full” or "minimal” when calling predict.CauseSpecificCox (). The curves
represent the median values over 100 simulations while the shaded areas represent the 95% confidence

intervals.

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 455

Summary

This paper introduces new features of the riskRegression package for prediction of absolute risks from
cause-specific Cox regression models using computationally efficient functions. Table 1 summarizes
the main functions described in this paper. Confidence intervals and confidence bands for the absolute
risks can be computed using the predict() function and displayed using the print() method. The
predictCox() function can be applied on "coxph” and "cph” objects to predict the survival with
its confidence interval or confidence bands. In both cases, the autoplot() function can display
the predicted risk (or survival) over time. When dealing with small to moderate sample sizes, we
advise to compute confidence intervals or confidence bands using a log-log transformation (argument
log.transform).

Table 1: Functions implemented in the riskRegression package for making prediction from Cox
regression models

CSCcO) Fit cause-specific Cox models

predict() Predict covariate specific absolute risks for given time hori-
zons

iidCox() Compute the influence function of the baseline hazard esti-

mator and of the partial likelihood estimator of the regres-
sion coefficients

predictCox() Compute the (cumulative) baseline hazard function and
predictions of hazards and survival probabilities in new
data

autoplot() Graphical display of the predicted risk across time

Brice Ozenne

Section of Biostatistics, Department of Public Health, University of Copenhagen
Osterfarimagsgade 5, 1014 Copenhagen

Denmark

broz@sund. ku.dk

Anne Lyngholm Serensen

Section of Biostatistics, Department of Public Health, University of Copenhagen
ODsterfarimagsgade 5, 1014 Copenhagen

Denmark

als@sund.ku.dk

Thomas Scheike

Section of Biostatistics, Department of Public Health, University of Copenhagen
Osterfarimagsgade 5, 1014 Copenhagen

Denmark

thsc@sund. ku.dk

Christian Torp-Pedersen

Public Health and Epidemiology Group, Department of Health Science and Technology, Aalborg University
Niels Jernes Vej 12, 9220 Aalborg

Denmark

ctp@hst.aau.dk

Thomas Alexander Gerds

Section of Biostatistics, Department of Public Health, University of Copenhagen
Osterfarimagsgade 5, 1014 Copenhagen

Denmark

tag@biostat.ku.dk

Bibliography

P. K. Andersen, @. Borgan, R. D. Gill, and N. Keiding. Statistical Models Based on Counting Processes.
Springer Series in Statistics. Springer-Verlag, New York, 1993. URL http://dx.doi.org/10.1007/

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

mailto:broz@sund.ku.dk
mailto:als@sund.ku.dk
mailto:thsc@sund.ku.dk
mailto:ctp@hst.aau.dk
mailto:tag@biostat.ku.dk
http://dx.doi.org/10.1007/978-1-4612-4348-9
http://dx.doi.org/10.1007/978-1-4612-4348-9

CONTRIBUTED RESEARCH ARTICLE 456

978-1-4612-4348-9. [p441, 447]

J. Benichou and M. H. Gail. Estimates of absolute cause-specific risk in cohort studies. Biometrics, 46
(3):813-826,1990. URL https://dx.doi.org/10.2307/2532098. [p440, 441]

N. Breslow. Covariance analysis of censored survival data. Biometrics, 30(1):89-99, 1974. URL
https://dx.doi.org/10.2307/2529620. [p449]

W. Chang and J. Luraschi. Profvis: Interactive Visualizations for Profiling R Code, 2017. URL https:
//CRAN.R-project.org/package=profvis. R package version 0.3.3. [p451]

S. Cheng, J. P. Fine, and L. Wei. Prediction of cumulative incidence function under the proportional
hazards model. Biometrics, pages 219-228, 1998. URL https://dx.doi.org/10.2307/2534009.
[p448]

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society B, 34(2):187-220,
1972. URL http://dx.doi.org/10.1007/978-1-4612-4380-9_37. [p441]

B. Efron. The efficiency of Cox’s likelihood function for censored data. Journal of American Statistical
Association, 72(359):557-565, 1977. URL https://dx.doi.org/10.2307/2286217. [p449]

J. P. Fine and R. J. Gray. A proportional hazards model for the subdistribution of a competing risk.
Journal of the American Statistical Association, 94(446):496-509, 1999. URL https://dx.doi.org/10.
1@80/@1621459.1999.1@474144.[p440]

T. Gerds and M. Schumacher. On functional misspecification of covariates in the Cox regression model,
2001. ISSN 0006-3444. URL https://dx.doi.org/10.1093/biomet/88.2.572. [p447]

T. A. Gerds, T. H. Scheike, and P. K. Andersen. Absolute risk regression for competing risks: In-
terpretation, link functions, and prediction. Statistics in Medicine, 31(29):3921-3930, 2012. URL
https://dx.doi.org/10.1002/sim.5459. [p440]

F.E. Harrell Jr. Rms: Regression Modeling Strategies, 2017. URL https://CRAN.R-project.org/package=
rms. R package version 5.1-1. [p440]

K. K. Holst and T. Scheike. Mets: Analysis of Multivariate Event Times, 2017. URL https://CRAN.R-
project.org/package=mets. R package version 1.2.2. [p457]

W. Kusnierczyk. Rbenchmark: Benchmarking Routine for R, 2012. URL https://CRAN.R-project.org/
package=rbenchmark. R package version 1.0.0. [p451]

H. Putter, L. de Wreede, M. Fiocco, and with contributions by Ronald Geskus. Mstate: Data Preparation,
Estimation and Prediction in Multi-State Models, 2016. URL https://CRAN.R-project.org/package=
mstate. R package version 0.2.10. [p440]

N. Reid. Influence functions for censored data. The Annals of Statistics, 9(1):78-92, 1981. URL
http://dx.doi.org/10.1214/a0s/1176345334. [p447]

T. H. Scheike and Y. Sun. Maximum likelihood estimation for tied survival data under Cox regression
model via EM-algorithm. Lifetime Data Analysis, 13:399-420, 2007. URL https://dx.doi.org/10.
1007/510985-007-9043-3. [p449]

T. H. Scheike and M.-]. Zhang. Flexible competing risks regression modeling and goodness-of-fit.
Lifetime data analysis, 14(4):464-483, 2008. URL http://dx.doi.org/10.1007/510985-008-9094-0.
[p448]

T. H. Scheike, M. J. Zhang, and T. A. Gerds. Predicting cumulative incidence probability by direct
binomial regression. Biometrika, 95(1):205-220, 2008. URL https://dx.doi.org/10.1093/biomet/
asmo96. [p440]

T. M. Therneau. Survival: Survival Analysis, 2017. URL https://CRAN.R-project.org/package=
survival. R package version 2.41-3. [p440]

T. M. Therneau and P. M. Grambsch. Modeling Survival Data: Extending the Cox Model. Springer-Verlag,
2000. URL https://dx.doi.org/10.1007/978-1-4757-3294-8. [p449]

A. van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998. URL http://dx.doi.org/
1@.1@17/CBOQ78®5118®2256.[p446]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://dx.doi.org/10.1007/978-1-4612-4348-9
http://dx.doi.org/10.1007/978-1-4612-4348-9
https://dx.doi.org/10.2307/2532098
https://dx.doi.org/10.2307/2529620
https://CRAN.R-project.org/package=profvis
https://CRAN.R-project.org/package=profvis
https://dx.doi.org/10.2307/2534009
http://dx.doi.org/10.1007/978-1-4612-4380-9_37
https://dx.doi.org/10.2307/2286217
https://dx.doi.org/10.1080/01621459.1999.10474144
https://dx.doi.org/10.1080/01621459.1999.10474144
https://dx.doi.org/10.1093/biomet/88.2.572
https://dx.doi.org/10.1002/sim.5459
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=mets
https://CRAN.R-project.org/package=mets
https://CRAN.R-project.org/package=rbenchmark
https://CRAN.R-project.org/package=rbenchmark
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
http://dx.doi.org/10.1214/aos/1176345334
https://dx.doi.org/10.1007/s10985-007-9043-3
https://dx.doi.org/10.1007/s10985-007-9043-3
http://dx.doi.org/10.1007/s10985-008-9094-0
https://dx.doi.org/10.1093/biomet/asm096
https://dx.doi.org/10.1093/biomet/asm096
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://dx.doi.org/10.1007/978-1-4757-3294-8
http://dx.doi.org/10.1017/CBO9780511802256
http://dx.doi.org/10.1017/CBO9780511802256

CONTRIBUTED RESEARCH ARTICLE

457

Appendix A Modularity

The CSC() function requires a routine to estimate the regression coefficients of the Cox model. By
default, CSC() calls the coxph() function from the survival package to do so. This has several reasons:
coxph() has been thoroughly tested, is reasonably fast, widely used and provides flexible modeling
options. However in specific contexts, other routines may be more appropriate, e.g. faster. Also,
developers that have implemented their own routine may be interested in computing the baseline
hazard or the influence function.

To be able to apply the predictCox() and iidCox() functions on new classes, one needs to define
the methods extracting the necessary information from the new class. For instance, the mets package
(Holst and Scheike, 2017) contains an efficient routine for estimating Cox models. However "phreg”
object that are quite different from "coxph"” objects:

library(mets, verbose = FALSE)
Melanoma$entry <- @
f1.phreg <- phreg(Surv(entry, time, status != @) ~ age + logthick + epicel +
strata(sex), data = Melanoma)
list(coxph=names(f1),
phreg=names(f1.phreg))

$coxph

[1] "coefficients” "var" "loglik” "score”

[5] "iter” "linear.predictors” "residuals” "means”

[9]1 "concordance” "method” "n" "nevent”

[13] "terms” "assign” "wald.test” "x"

[17] "strata” "y "formula” "xlevels”

[21] "contrasts” "call”

#H#

$phreg

[1] "coef” "ploglik” "gradient” "hessian” "y "SQ"
[7] "nevent” "ord" "time" "jumps” "jumptimes” "strata"
[13] "entry” "exit" "status” "p" "X "id"
[19] "opt” "call” "model. frame”

Therefore to be able to use the predictCox() and iidCox() functions on "phreg” one needs to
define methods to extract:

The values used to center the covariates (CoxCenter() method). Instead of working on X, many
routines estimating the Cox model parameters works on a centered version X = X — X. The
CoxCenter () method returns X:

riskRegression:::coxCenter.coxph(f1)

i age logthick epicelpresent
52.4634146 0.6181706 0.4341463

The design matrix used to fit the Cox model (CoxDesign() method). The first two columns describe
the beginning and the end of the interval of time when the individual was followed. The third

contains the event type (0 corresponding to censoring and 1 to an observed event, e.g. death).

The remaining columns contain the design matrix corresponding to the coefficients § of the Cox
model and the strata variable (if any):

head(riskRegression:::coxDesign.coxph(f1))

start stop status age logthick epicelpresent strata

1 o 10 1 76 1.9110229 1 2
2 0 30 1 56 -0.4307829 0 2
3 o 35 0 41 0.2926696 0 2
4 o 99 1 71 1.0647107 0 1
5 0 185 1 52 2.4915512 1 2
6 0 204 1 28 1.5769147 0 2

The formula of the Cox model (CoxFormula() method):

riskRegression:::coxFormula.coxph(f1)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=mets

CONTRIBUTED RESEARCH ARTICLE 458

Surv(time, status != @) ~ age + logthick + epicel + strata(sex)

The value of the linear predictor X (CoxLP() method). This function has three arguments: object,
data, and center.

head(riskRegression:::coxLP.coxph(f1, data = NULL, center = FALSE))
[1] 2.433793 1.136828 1.168604 2.332216 2.165533 1.559629

When setting data to NULL, the CoxLP () method will return the linear predictor computed on the
dataset used to fit the Cox model. The center argument indicates whether the covariates should be
centered before computing the linear predictor.

The number of observations used to fit the Cox model (CoxN() method):

riskRegression:: :coxN.coxph(f1)

[1] 205

The character string indicating the strata variable(s) in the formula (CoxSpecialStrata() method):
riskRegression:::coxSpecialStrata.coxph(f1)

[1] "strata”

The variable encoding to which strata belongs each observation (CoxStrata() method). This vari-
able must be univariate, aggregating all the strata variables.

head(riskRegression:::coxStrata.coxph(f1, data = NULL, strata.vars = "strata(sex)"))

[1] Male Male Male Female Male Male
Levels: Female Male

Similarly to CoxLP(), when setting data to NULL, the CoxStrata() method will return the strata
variable computed on the dataset used to fit the Cox model.

The variance-covariance matrix of the regression coefficients (CoxVarCov() method):

riskRegression: ::coxVarCov.coxph(f1)

age logthick epicelpresent
age 6.553939e-05 -0.0002102408 -0.0004363469
logthick -2.102408e-04 0.0206977373 0.0076882093

epicelpresent -4.363469e-04 ©0.0076882093 0.0692047486

Most of the above methods correspond to a very small piece of code that reformats the information
contained in the object, e.g.:

riskRegression:: :coxVarCov.coxph

function (object)

{

Sigma <- object$var

if (!'is.null(Sigma)) {

##t coefName <- names(coef(object))
colnames(Sigma) <- coefName

rownames(Sigma) <- coefName

#H# }

return(Sigma)

#H Y

<environment: namespace:riskRegression>

We refer to the help page of each method for a more precise description of each method arguments
and expected output, as well as examples. Once all of the methods have been defined for a new object
(e.g. "phreg"), predictCox () and iidCox() can be applied on the new object:

all.equal(predictCox(f1), predictCox(f1.phreg))
[1] TRUE
all.equal(iidCox(f1), iidCox(f1.phreg))

[1] TRUE

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 459

Appendix B Saving the influence functions

The function iidCox () computes the estimates of the influence functions Ppir Prgr and ¢ Aoj for a given
set of covariates and time points:

£1.iid <~ iidCox(f1)

The default implementation (store.iid="full") stores the influence function for the baseline
cumulative hazard as a list of matrices, one for each strata. The size of each matrix is the number
of observations n times the number of unique event times n(z) in stratum z. Storing the influence
function can be very memory demanding when considering large datasets. This is why the influence
function is only temporary stored during the execution of the predict() method.

When dealing with very large datasets, e.g. following n = 20000 patients during nt = 365 days,
storing the influence function can be too memory demanding. Instead of computing and storing ¢;,,
an alternative solution is to only store the necessary quantities to compute ¢, :

P . . v) R ;\'zt o ;\.Z
MES DR b a)doge), [B, B 2)ha(s)ds, —2 b _ [= ©) 4. a6
SONT;, Bj, Zi) 0 SO(t,Bj,z) 70 SO)(s,pj,2)

These quantities are lists containing L vectors of length n or n(z). Since in most applications n and
n(z) are large compared to L this approach is much more memory efficient. Setting the argument
store.iidto "minimal” when calling iidCox will return the influence function using this alternative
storage method:

f2.iid <- iidCox(f1, store.iid = "minimal”)
We can compare the memory cost of the default implementation vs. the alternative one:

size.f1.iid <- object.size(f1.iid$IFcumhazard)
size.f2.iid <- object.size(f2.iid$calcIFhazard)
as.numeric(size.f2.iid/size.f1.1iid)

[1] 0.08627399

and see that the memory use for storing the influence function of the cumulative hazard has been
divided by more than 10.

Computing the influence function of the absolute risk with the default implementation only
requires to:

* use (f/\om (X;t) and d(ﬁAO/,z (X;; t) with formula (12) and (13) to obtain qAbA/'Z (X;t,x) and d(ﬁA/.,z (X;;t, x).
* use formula (14) to obain ¢, (X}, t, %, 2).

When using the alternative implementation, ¢ Aoy (Xis 1) and dg Ao (Xi;1) have not been computed.
Therefore an additional step is needed:

* use (16) with formula (10) and (11) to compute ‘13/\0]',2 (X;;t) and d$A0f,z (X;1).

The two implementations will lead to the same influence function and therefore the same confidence
intervals or confidence bands.

The alternative implementation is performed iterating over the set of covariates used to make the
predictions, avoiding to store the influence function of the baseline hazard for all event times and
strata. It will also not compute the influence function at unnecessary times and strata. Thus it should
always be more memory efficient and, when asking for a single prediction, it should also be have a
lower computation time. However, compared to the default implementation where $ Aojz (X;;t) and

d(]A)AU/.’Z (X;; t) are only computed once, the alternative implementation recomputes these quantities for
each prediction.

Therefore when the prediction is to be made for many different sets of covariates (i.e. new patients)
this may lead to a substantial increase in computation time. See the subsection Runtime and memory
usage for more details.

To use the implementation for computing the standard errors, confidence intervals, or confidence
bands one must set the argument store.iid to "minimal”:

pfit3se <- predict(cfitl, newdata = newdata, cause = 1, times = c(867,3500),
se = TRUE, store.iid = "minimal”, keep.newdata = FALSE)
print(pfit3se)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 460

#t observation times strata absRisk absRisk.se absRisk.lower absRisk.upper
1. 1 867 sex=Female 0.021 0.122 0.00738 0.0478
#H# 2. 2 867 sex=Male 0.149 0.161 0.07356 0.2502
3: 1 3500 sex=Female 0.117 0.151 0.05552 0.2025
4. 2 3500 sex=Male 0.428 0.320 0.20416 0.6355

range(pfit3se$absRisk.se-pfitise$absRisk.se)
range(pfit3se$absRisk.upper-pfitise$absRisk.upper)
range(pfit3se$absRisk.lower-pfitise$absRisk.lower)

[1] -2.775558e-17 5.551115e-17
[1] -5.551115e-17 ©.000000e+00
[1] -5.551115e-17 ©.000000e+00

This option also applies when computing standard errors, confidence intervals, or confidence
bands for the survival probabilities:

p2 <- predictCox(f1, newdata = Melanoma[3:5,],

times = c(Melanoma$time[5:7],1000),

se = TRUE, store.iid = "minimal”, type="survival”)
p2 <- as.data.table(p2)
p2[times == 185, survival.lower]-p1[times == 185, survival.lower]
p2[times == 185, survival.upper]-p1[times == 185, survival.upper]

[1] 0.000000e+00 1.110223e-16 -1.110223e-16
#H[11ooo

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

	riskRegression: Predicting the Risk of an Event using Cox Regression Models
	Introduction
	Data used for examples

	Predicting absolute risks based on cause-specific Cox regression
	Cause-specific Cox regression
	Predicting the absolute risk of an event

	Construction of the confidence intervals
	Asymptotic formula
	Empirical estimates

	Construction of the confidence bands
	Implementation details
	Handling of tied event times
	Confidence intervals and confidence bands for survival probabilities

	Coverage of the confidence interval and the confidence bands
	Runtime and memory usage
	Baseline hazard
	Absolute risk

	Summary
	Modularity
	Saving the influence functions

