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carx: an R Package to Estimate Censored
Autoregressive Time Series with
Exogenous Covariates
by Chao Wang and Kung-Sik Chan

Abstract We implement in the R package carx a novel and computationally efficient quasi-likelihood
method for estimating a censored autoregressive model with exogenous covariates. The proposed
quasi-likelihood method reduces to maximum likelihood estimation in absence of censoring. The carx
package contains many useful functions for practical data analysis with censored stochastic regression,
including functions for outlier detection, model diagnostics, and prediction with censored time series
data. We illustrate the capabilities of the carx package with simulations and an elaborate real data
analysis.

Introduction

Censored data are frequently encountered in diverse fields including environmental monitoring,
medicine, economics, and social sciences. Censoring may arise, for example, when a measuring device
is subject to some detection limits beyond which the device cannot yield a reliable measurement.
Censoring can also occur due to regulations on price change, e.g., limits on maximal intra-daily price
change in a stock market.

There exists an extensive literature on regression analysis with censored responses since the
pioneering work of Buckley and James (1979). Considerable efforts have also been spent implementing
existing methods for estimating various models with censored observations, many of which have been
implemented in R. For instance, Henningsen (2010) introduced the censReg package (Henningsen,
2013), which covers standard regression models with censored responses including the standard Tobit
model (Tobin, 1958), maximum likelihood estimation with cross-sectional data, and random-effects
maximum likelihood procedure for panel-data using Gauss-Hermite quadrature. The Tobit model is
also implemented in other packages with possibly different estimation methods, including tobit()
in AER (Kleiber and Zeileis, 2008), cenmle() in NADA (Lee, 2013), tobit() in VGAM (Yee, 2015),
MCMCtobit() in MCMCpack (Martin et al., 2011), etc.

While there exists an extensive literature on estimating regression models with censored responses
and associated software, there are few studies with censored time series response data. More generally,
the problem of stochastic regression with both the response and covariates being possibly censored is
relatively under-explored. Zeger and Brookmeyer (1986) studied maximum likelihood estimation of a
regression model with the errors driven by an autoregressive model of known order p ≥ 0 (AR(p)).
Owing to censoring, the “state" vector is generally of variable dimension which can increase rapidly
with increasing censoring and AR order. Thus, the maximum likelihood estimation becomes quickly
numerically intractable with increasing censoring even for moderately high AR order (Wang and
Chan, 2017a). Zeger and Brookmeyer (1986) also briefly discussed a pseudo-likelihood approach but
did not further develop it. Park et al. (2007) proposed an imputation method to estimate a censored
autoregressive moving average (ARMA) process. Their method imputes each censored value by some
random value simulated from their conditional distribution given the observed data and the censoring
information, and treats the imputed time series as the complete data with which estimation can be
done by any standard method. However, they focused on the AR(1) model and relied on simulation
studies to demonstrate their method, with no derivation of theoretical properties.

In term of publicly available R packages facilitating estimation with censored time series data,
we are aware of only three such packages to date, namely, cents (McLeod et al., 2014), ARCensReg
(Schumacher et al., 2016), and our carx (Wang and Chan, 2017b). The cents package includes the
fitcar1() function, for fitting an AR(1) model in the presence of censored and/or missing data, and
the cenarma() function which, according to the authors, implements a quasi-EM algorithm whose
M-step is carried out by the arima() function and the E-step via the Durbin-Levinson recursions.
However, there is little documentation about these functions, rendering it hard to understand and
use the cents package. The ARCensReg package offers similar functionality as our carx package. But
their estimation is implemented via a stochastic approximation version of the EM (SAEM), which is
different from our approach. In addition, it seems to be developed after the carx, as a dataset in carx is
included in ARCensReg.

Motivated by the need for developing a computationally efficient method for estimating censored
stochastic regression models, Wang and Chan (2017a) have recently introduced such a method for
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censored autoregressions with exogenous covariates (CARX). The basic idea of our new approach
assumes that the score of the complete-data conditional log-likelihood of Y∗t (the uncensored coun-
terpart of Yt) given Y∗t−j, j = 1, . . . , p (and the covariates) has a closed-form expression and so does
its expectation given the possibly censored time series Yt−j, j = 0, . . . , p, evaluated at the same set of
model parameters. Setting the preceding conditional mean score to zero then provides an unbiased
estimating equation for estimating the model. The proposed method reduces to maximum likeli-
hood estimation in the absence of censoring, hence it is referred to as quasi-likelihood estimation.
Furthermore, the consistency and asymptotic normality of the quasi-likelihood estimator have been
established under some mild regularity conditions (Wang and Chan, 2017a).

In this paper we aim to introduce the R package carx, in which quasi-likelihood estimation of
a CARX model is implemented for the important special case of normal innovations. The main
functionality of the package is to provide an intuitive interface with comprehensive documentation to
enable the user to estimate the parameters of a CARX model. In addition, some utility functions for
model summary, model diagnostics, outlier detection, and prediction with censored time series data
are also included in the package.

In addition, we have also implemented a new object class for censored time series, i.e., "cenTS".
The "cenTS" class inherits the extensible time series class "xts" in the R package xts (Ryan and
Ulrich, 2017). Some functionalities, including plotting and summary, for the "cenTS" class have been
implemented. The "cenTS" class is expected to be extended in future and is hoped to be used as a
standard data structure for censored time series data.

In the following sections we first elaborate the CARX model and review the quasi-likelihood esti-
mation method, then present the functionality and main functions of the R package carx and illustrate
the package with data analyses using both simulated and real data examples. Some simulation studies
assessing the empirical performance of model selection by minimizing the AIC and the accuracy of
the proposed forecasting method and real data example are also reported.

The CARX model

In this section we briefly review the quasi-likelihood method for estimating a CARX model, and refer
the reader to Wang and Chan (2017a) for details and some theoretical properties of the estimator. We
first formulate the problem by specifying the model, then outline the estimation method and discuss
some specific topics including model prediction, model diagnostics, and outlier detection.

Model specification

Let {Y∗t }
∞
t=0 denote a real-valued time series of interest with Y∗t being not observable if it falls inside a

censoring region Ct ⊂ R which may be time-varying. The censoring region Ct is generally an interval
of the form (−∞, lt), (ut, ∞), or (lt, ut) corresponding to left, right, and interval censoring, respectively
(Huang and Rossini, 1997; Park et al., 2007). (Left and/or right censoring is allowed by carx but
interval censoring is not yet implemented in carx.) In practice, when an observation is censored, it
is often recorded as the nearest censoring limit, as it is typically known whether it is left or right
censored. The carx package assumes the censoring limits to be independent of the underlying process,
and automatically treats any missing data as resulting from left censoring with their corresponding
censoring limit l = ∞.

In practice, Y∗t is often found to be correlated with some vector covariate, say, Xt. We assume
a linear regression relationship between Y∗t and Xt, with the regression errors following an AR(p)
model, where p is the AR order.

The Censored Auto-Regressive model with eXgenous variables (CARX) specifies that the uncen-
sored response {Y∗t } is an autoregressive (AR) process given by

(
Y∗t − Xᵀ

t β
)
−

p

∑
j=1

ψj

(
Y∗t−j − Xᵀ

t−jβ
)
= εt, (1)

and Y∗t ’s are linked to the observations as follows

Yt =


lt, if Y∗t is left censored,
ut, if Y∗t is right censored,
Y∗t , otherwise,

(2)

where β is the vector of regression coefficients, ψi, i = 1, 2, . . . , p, are the AR parameters, {εt} is an
independent and identically distributed (iid) process with mean 0, variance σ2

ε , and independent of
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{Xt}.
The εt’s are also known as the innovations in the time series literature. Eqn. (1) is equivalent to the

regression model Y∗t = Xᵀ
t β + ηt, where the regression errors ηt are correlated over time and follow

an AR(p) process with the ψ’s being the AR coefficients. In the package, the innovations are assumed
to be normal although it is shown by Wang and Chan (2017a) that the proposed estimation method is
robust to mild departure from the normality assumption.

Parameter estimation

Let ψ = (ψ1, · · · , ψp)ᵀ. Throughout, θ = (βᵀ, ψᵀ, σε)ᵀ denotes a generic parameter vector, while
θ0 denotes the true parameter vector. Let {(Yt, Xt)}n

t=1 be data generated from the CARX model
with parameter θ0. The quasi-likelihood estimation procedure is motivated by maximum like-
lihood estimation and leverages on (i) the availability of the closed-form expression of `t(θ) =

`
(

Y∗t |Y∗t−j, j = 1, . . . , p, Xt−k, k = 0, . . . , p; θ
)

(which holds, for instance, for the case of normal errors

as implemented in carx) and (ii) ∑n
t=p+1 St(θ) = 0 is an unbiased estimating equation, where St(θ)

is the first derivative of `t(θ) with respect to θ. Since Y∗t are unobservable, we replace St(θ) by
Eθ (St(θ)|Yt−k, Xt−k, k = 0, . . . , p) resulting in the following estimating equation:

n

∑
t=p+1

Eθ (St(θ)|Yt−k, Xt−k, k = 0, . . . , p) = 0. (3)

The quasi-likelihood method estimates θ by solving Eq (3). Note that, in the absence of censoring,
solving the preceding estimating equation reduces to maximum likelihood estimation, asymptotically.

The following iterative scheme for solving Eq (3) was proposed by Wang and Chan (2017a).

Step(1) Initialize the parameter estimate by some consistent estimate, denoted by θ(0).

Step(2) For each k = 1, . . . , obtain an update of estimate θ(k) by

θ(k) = argmaxθ Q
(

θ|θ(k−1)
)

, (4)

where

Q
(

θ|θ(k−1)
)
=

n

∑
t=p+1

Qt

(
θ|θ(k−1)

)
, (5)

Qt

(
θ|θ(k−1)

)
= Eθ(k−1) (`t(θ)|Yt−k, Xt−k, k = 0, . . . , p) . (6)

Step(3) Iterate Step (2) until ‖θ(k) − θ(k−1)‖2/‖θ(k−1)‖2 < ε for some positive tolerance ε ≈ 0. Let θ̂ be
the estimate obtained from the last iteration.

The optimization in Step (2) for the case of normal innovations is elaborated in Section 2.4 of Wang
and Chan (2017a). The value Q(θ̂|θ̂) evaluated at the convergence of the algorithm will be referred
to as the maximum (quasi-)log-likelihood. In the absence of censoring, it reduces to the maximum
log-likelihood, hence it will be used to replace the latter in evaluating information criteria such as the
Akaike information criterion (AIC) (Konishi and Kitagawa, 2008).

In the carx package, the initial value for the preceding iterative algorithm is set to the conditional
least squares estimate obtained with the censored data replaced by the corresponding censoring limit,
which appears to work well in simulation examples reported in Wang and Chan (2017a).

Wang and Chan (2017a) proved the consistency and asymptotic normality of the quasi-likelihood
estimator under mild regularity conditions. But the asymptotic covariance matrix of the estimator
involves two intractable matrices. Consequently, Wang and Chan (2017a) proposed to use para-
metric bootstrap for drawing inference, including estimating the asymptotic covariance matrix and
constructing confidence intervals of the unknown parameters.

Model prediction

It is of practical interest to predict the future values Y∗n+h given the observations {(Yt, Xt)}n
t=1, where

h = 1, 2, . . . , H and H is some fixed upper bound, for instance, H = 14 for bi-weekly forecast, assuming
the data are sampled daily. This is generally a non-trivial problem in the presence of censoring, and can
be handled by Monte Carlo simulation for its solution. Since X is an exogenous process, we consider
the simple case of the prediction problem conditioned on the given future covariate values {Xt+h}H

h=1.
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We also assume normality of εt and known parameter θ0, although the following discussion can be
readily extended to non-normal innovations. Relaxation of these assumptions will be discussed at the
end of this subsection. The prediction problem is equivalent to finding the conditional distribution

Dn,h = D
(

Y∗n+h| {Xn+i}h
i=1 , {(Yt, Xt)}n

t=1

)
= D

(
Y∗n+h| {Xn+i}h

i=1 , {(Yt, Xt)}n
t=τ

)
,

where τ = max
(
{1} ∪

{
u : 1 ≤ u ≤ n− p + 1, and none of {Yt}

u+p−1
t=u is censored

})
, due to the

autoregressive nature of the regression errors ηt = Y∗t − Xᵀ
t β (Zeger and Brookmeyer, 1986).

There are two cases. Case 1: τ = n− p + 1, i.e., the most recent p Yt’s are uncensored so that the
prediction problem admits a closed-form solution which is well-known; see, e.g., Cryer and Chan (2008,
Chapter 9). Specifically, for any h = 1, . . . , H, Dn,h is a normal distribution whose mean serves as the
point predictor denoted by Ŷ∗n+h that can be recursively computed as follows: Ŷ∗n+h = Xᵀ

n+hβ + η̂n+h,
with η̂t = ∑

p
l=1 ψl η̂t−l for t > n, and η̂t = Yt − Xᵀ

t β if t ≤ n. The prediction error, denoted by
εn+h = Yn+h − Ŷ∗n+h, can be written as εn+h = εn+h + ∑

p
l=1 ψlεn+h−l = ∑h

i=0 ωh,iεn+h−i, where the
coefficients ωh,i can be recursively calculated by making use of the preceding identity and the initial
condition ωh,0 = 1. The prediction variance is given by var(εn+h) = σε

2 ∑h
i=0 ω2

h,i.

We now consider Case 2: τ < n− p + 1. Then Dn,h is a truncated multivariate normal distribution.
Although the first and second moments of Dn,h admit closed-form solutions (Tallis, 1961; Genz et al.,
2017), they are not useful for constructing predictive intervals as the predictive distributions are
non-normal. Thus, we propose to use a sampling approach to estimate any interesting characteristic
of the predictive distribution of Y∗n+h. First, note that the regression errors

{
ηt = Y∗t − Xᵀ

t β
}n

t=τ
are jointly normal. Let ηc and ηo be the sub-vectors of ητ:n such that the corresponding elements
of Yτ:n are censored and observed, respectively. Then given {(Yt, Xt)}n

t=τ , ηc follows a truncated
multivariate normal distribution, whose realizations can be readily simulated, and hence we can
simulate Y∗t = X

ᵀ

t β + ηt, τ ≤ t ≤ n. Then the realizations of Y∗n+h, h = 1, . . . , H can be drawn from the
multivariate normal predictive distribution stated in Case 1. Predictive intervals of Y∗n+h can then be
approximately constructed from a random sample from the predictive distribution of Y∗n+h, using the
percentile method.

Note that the proposed predictive scheme is conditional on the future covariate values {Xt}H
h=1,

which, in general, are non-deterministic. Extension to the case of stochastic {Xt+h}H
h=1 is straightfor-

ward, provided that its stochastic generating mechanism is known, as drawing a realization from
the predictive distribution of Y∗n+h can be done in two steps. Step 1 consists of drawing a realization

{xt+h}H
h=1, followed by drawing a future realization for Y∗n+h given the data and {xt+h}H

h=1. In prac-
tice, θ0 is unknown and it can be replaced by the quasi-likelihood estimator or a parametric bootstrap
approach which can be readily implemented to incorporate parametric uncertainty in the prediction.

Model diagnostics

A main task in model diagnostics consists of checking whether or not the data are consistent with
the model assumption that the innovations are independent and identically normally distributed
of zero mean and constant variance. In the presence of censoring, how to define the residuals is
unclear. For the simple case when Y∗t is observed, the corresponding residual is universally defined
as Y∗t − Ŷ∗t|t−1, where Ŷ∗t|t−1 is the mean of Dt−1,1, evaluated at the parameter estimate. In the case of
censoring so that some Y∗t s are unobserved, Wang and Chan (2017a) advocated the use of the simulated
residuals (Gourieroux et al., 1987) for model diagnostics. The simulated residuals are constructed
as follows. First, impute each unobserved Y∗t by a realization from the conditional distribution

D
(

Y∗t | {(Ys, Xs)}t
s=1

)
, evaluated at the parameter estimate. Then, refit the model with {(Y∗t , Xt)} so

obtained, via conditional maximum likelihood; the residuals from the latter model are the simulated
residuals ε̂t. Let the corresponding parameter estimate of θ be θ̃. The corresponding (simulated) partial
residuals for the X’s, i.e., X

ᵀ

t β̃ + ε̂t, can be used to assess the relationship between Y and X, after
adjusting for the autoregressive errors.

A simulation study reported in Wang and Chan (2017a) suggests that the asymptotic null distri-
bution of the Ljung-Box test statistic, for checking residual autocorrelations, based on the simulated
residuals is the same as that based on the uncensored data. Thus, standard diagnostic tools for residual
analysis may be applicable with the simulated residuals.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 217

Outlier detection

Real data are often marred by outliers. An outlier in a time series may result from a perturbation
inducing an unknown shift in an observation or an innovation, resulting in the so-called additive or
innovative outlier, respectively ( Cryer and Chan, 2008). An innovative outlier (IO) may mask as a
contiguous block of additive outliers (AO). Since it is harder to detect IOs in censored time series, we
focus on detecting AOs with a new method for doing so in censored time series.

As the number of outliers and their locations are generally unknown, outlier detection is carried
out one by one and iteratively. The procedure begins with an outlier-free CARX model. Then we check
for the presence of additive outliers by a method to be described below. If an outlier is detected at
time to, the covariate X will be augmented with the indicator variable Ito which equals 1 if t = to, and
0 otherwise. The augmented CARX model is then fitted, with which outlier detection is repeated until
no more outliers are found.

More specifically, we describe a method to detect any remaining additive outliers given the data
and a CARX model. For the sake of fast computation, we consider the predictive distribution of Yt

given the information from t− p to t, i.e., D̃t := D
(

Y∗t |Xt,
{(

Yt−j, Xt−j

)
, j = 1, . . . , p

})
. Let PD̃t

(E)

be the probability of the event E evaluated with distribution D̃t and n the sample size, for each
t = p + 1, · · · , n, we calculate the following probability pt.

pt =


PD̃t

(Yt > ut) , if Y∗t is right censored,
PD̃t

(Yt < lt) , if Y∗t is left censored,
min{PD̃t

(Yt > yt) , PD̃t
(Yt < yt)}, otherwise.

Let to = argmint=1,··· ,n pt, and the response at to is declared as an AO if pto < 0.025/n, where the
Bonferroni inequality is used to limit the family error rate to not exceed 5% ( Cryer and Chan, 2008);
otherwise, it is deemed that there are no remaining outliers.

The carx package

In this section we present the R package carx in which the estimation, prediction, and diagnostics
procedures discussed in previous section are implemented, assuming the normality of εt. For more
detail, see the documentation of the package. Examples will be given in the next section.

A class for censored time series

First, let us introduce a class "cenTS" designed to encapsulate a censored time series with its observed
values as well as the left (lower) and right (upper) censoring limits. The "cenTS" inherits the extensible
time series class "xts" in the R package xts. A "cenTS" object can be constructed by the following
function call.

cenTS(value, order.by, lcl = NULL, ucl= NULL, value.name = "value", ...)

Note that the value (whose name can be set in value.name) and order.by denote the observed
values and their corresponding indices respectively, and lcl and ucl denote the left (lower) and right
(upper) censoring limits respectively. Other time series variables to be included as covariates in the
regression can be supplied via additional arguments.

A "cenTS" object can be inspected by the print() and plot() methods. Any covariate time series
can be retrieved by the xreg() method.

The default estimation method

The foremost function is the method for the S3 class "carx", carx(), whose signature is the following.

carx(formula, data = list(), p = 1,
prmtrX = NULL, prmtrAR = NULL, sigma = NULL,
y.na.action = c("skip","as.censored"), addMu = TRUE,
tol = 1e-4, max.iter = 500,
CI.compute = FALSE, CI.level = 0.95,
b = 1000,b.robust = FALSE,b.show.progress = FALSE,
init.method = c("biased","consistent"),
cenTS = NULL, verbose = FALSE,...)
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The carx() method provides a simple-to-use interface for the user to input a formula, a data set, and
other arguments to estimate a CARX model.

The carx() method returns a "carx" object which stores the supplied data, the quasi-likelihood
coefficient estimates, as well as other information. It allows many optional arguments to control the
function behavior. The main arguments are listed below:

• formula is a formula representing the regression part of the model, such as y ~ x1 + x2.

• data denotes a data.frame which includes the following:

– The response variable with variable name identified by the supplied formula.

– Any covariate(s) with variable name(s) identified by the supplied formula.

– A vector with name ci whose components take values from {−1, 0, 1}, where -1 (0,1)
indicates that the corresponding element in the response variable is left-censored (not
censored, right censored).

– lcl representing the vector of left (lower) censoring limits. If not present, indicating no
lower limit.

– ucl representing the vector of right (upper) censoring limits. If not present, indicating no
upper limit.

• p denotes the autoregressive order of the regression errors, default = 1.

The above arguments supply the data structure including the censoring information, and specify
the CARX model to be estimated. Although the function contains many optional arguments for fine-
tuning the fitting algorithm and obtaining more information about the fitted model such as confidence
intervals, we merely discuss the following two arguments:

• prmtrX, prmtrAR, and sigma are used to specify the initial values of the regression coefficients β,
the autoregressive parameters Ψ, and the innovation standard deviation σε, respectively.

• y.na.action is a string indicating how to handle missing (NA) values in y. If it is set to "skip"
(default), cases containing a missing value will be skipped, so that the estimating equation of
future cases will be conditional on the most recent p complete cases after the skipped case. For
"as.censored", the y value will be treated as left-censored with the left (lower) censoring limit
replaced by positive infinity. The user may choose to use skip if there exist few long gaps in the
response. Use "as.censored" in the presence of numerous, non-contiguous missing values in y.
Note that the presence of any missing values in x will automatically hard-code y.na.action to
be "skip".

Other methods

As "carx" is an S3 class, some generic methods have been implemented so that the estimation function
can be easily called for practical use and more information about the model fitting can be easily
extracted.

The function print() simply returns a plain output of the fitted model, while the summary()
function provides a more elaborate summary of the fitted model including the estimates, their standard
errors, 95% confidence limits and p-values, based on parametric bootstrap, for each model parameter,
if CI.compute = TRUE. The model parameters can be conveniently extracted by the function coef(),
which returns all coefficient estimates except that the error (innovation) standard deviation is returned
as the sigma component of the list returned by carx(). logLik() returns the maximum (quasi-
)log-likelihood ∑n

t=p+1 Eθ̂

[
`
(
Y∗t |F ∗t ; θ̂

)
|Gt
]
, which can be used in lieu of the intractable maximum

log-likelihood. For instance, the function AIC() computes the AIC of the model with the maximum
log-likelihood replaced by maximum (quasi-)log-likelihood.

There are some other useful functions in the package. The method plot() draws the time plot of
the censored response time series, superimposed with the fitted values (1-step-ahead predictors) from
the supplied CARX model. The function predict() computes the multi-step-ahead point predictors
and their associated prediction limits, based on a given model and future values of the covariates
supplied by the user. The function fitted() returns the fitted values by calling the predict method.
The function residuals() returns the simulated residuals of the fitted model. The outlier detection
method discussed in Section 2.2.5 is implemented by the method outlier(). Model diagnostics based
on the simulated residuals are visualized by the method tsdiag(), which consists of four subplots:
the time plot of standardized simulated residuals, the residuals versus fitted values plot, the residual
autocorrelation function plot, and the plot of the p-values of the Ljung-Box test statistics, for testing no
residual autocorrelations.
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Using the package

In this section we illustrate the various functions of the package through two examples, the first one is
a simulated data set and the second a real data set. Note that an extensive simulation study about the
performance of the proposed estimation method and some model diagnostics can be found in Wang
and Chan (2017a) which shows the robustness of the proposed estimation method to slight departure
from the normality assumption of the innovations. We first load the carx package by the following
command.

> library(carx)

A function to simulate data

To begin, we introduce the function carxSimCenTS() for simulating data from a CARX model, whose
signature and default values of arguments are shown below.

carxSimCenTS(nObs = 200, prmtrAR = c(-0.28,0.25),
prmtrX = c(0.2,0.4), sigma = 0.60, lcl = -1, ucl = 1, x = NULL,
seed = NULL, value.name = 'y', end.date = Sys.date())

The carxSimCenTS() function generates a simulated "cenTS" time series of length nObs, with the
AR parameters (ψi, i = 1, . . . , p) supplied through the argument prmtrAR, the regression coefficients
through prmtrX, and innovation standard deviation through sigma, the lower and upper censoring
limits through lcl and ucl respectively. The regressors can be supplied via x, which, if is NULL, will be
generated as independent standard normal variables. The user can also specify the seed of the random
number generator by seed for ensuring repeatability. As carxSimCenTS() encapsulates the simulated
data into a "cenTS" object, the construction of which need a time/date-based index. The default treats
the data as daily observations, with the end date specified by end.date. The user can set the name
of the censored time series via value.name but the names of the regressors are hard-coded as X1, X2,
etc. There is another function carxSim(), which returns a data.frame consisting of y, x, lcl, ucl and
ci. We will mainly use the carxSimCenTS() function for simulation as it encapsulates the data as a
"cenTS" object.

A step-by-step illustration with a simulated series

We first simulate a "cenTS" series, using the carxSimCenTS() function with essentially the default
setting, i.e., simulate interval-censored data from a regression model with a 2-dimensional covariate
comprising independent standard normal components whose regression coefficients are 0.2 and 0.4,
and AR(2) regression noise terms with the AR coefficients being ψ1 = −0.28, ψ2 = 0.25; the data are
then censored unless they fall inside the interval (−1, 1).

> datSim <- carxSimCenTS(seed = 0,end.date = as.Date('2015-08-01'))

A glimpse of the last few data cases of the series is instructive.

> tail(datSim)

y lcl ucl ci X1 X2
2015-07-26 1.000 -1 1 1 -0.5466 0.288
2015-07-27 -0.321 -1 1 0 -1.6887 -1.505
2015-07-28 -0.259 -1 1 0 -1.5724 1.519
2015-07-29 0.386 -1 1 0 -0.4050 0.367
2015-07-30 0.282 -1 1 0 0.3193 1.700
2015-07-31 0.181 -1 1 0 0.0404 0.644

Censoring rate: 0.205

The simulated series can be readily visualized using the plot function (see Figure 1).

> plot(datSim)

Then the parameters can be estimated by the carx() method, with the fitted model saved in the
object named modelSim.

> modelSim <- carx(y ~ X1 + X2 - 1,data = datSim, p = 2, CI.compute = TRUE)
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Figure 1: Time plot of the simulated "cenTS" series. The observed responses are connected as a
solid black line, and the lower and upper censoring limits drawn as red dotted and dashed line with
censored observations marked by triangles pointing up and down, respectively.

Note that -1 in the formula specifies no intercept in the regression. Information about the fitted
model can be obtained directly by typing the variable name modelSim.

> modelSim

Call:
carx.formula(formula = y ~ X1 + X2 - 1, data = datSim, p = 2,

CI.compute = T)

Coefficients:
X1 X2 AR1 AR2

0.203 0.460 -0.234 0.279

Residual (innovation) standard deviation:
[1] 0.548

Censoring rate:
[1] 0.205

Sample size:
[1] 200

Number of parameters:
[1] 5

Quasi-log-likelihood:
[1] 20.1

AIC:
[1] -30.1

Confidence interval:
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2.50% 97.50%
X1 0.131 0.2766
X2 0.383 0.5446
AR1 -0.390 -0.0919
AR2 0.123 0.4066
sigma 0.483 0.6122

Variance-covariance matrix:
X1 X2 AR1 AR2 sigma

X1 1.41e-03 1.98e-05 5.86e-05 -1.49e-04 9.95e-05
X2 1.98e-05 1.73e-03 1.28e-04 9.08e-05 2.45e-04
AR1 5.86e-05 1.28e-04 5.76e-03 2.08e-03 1.32e-04
AR2 -1.49e-04 9.08e-05 2.08e-03 5.15e-03 5.88e-05
sigma 9.95e-05 2.45e-04 1.32e-04 5.88e-05 1.05e-03
N.B.: Confidence intervals and variance-covariance matrix
are based on 1000 bootstrap samples.

A summary of the fitted model can be obtained by running the summary() function.

> summary(modelSim)

Call:
carx.formula(formula = y ~ X1 + X2 - 1, data = datSim, p = 2,

CI.compute = T)

Coefficients:
Estimate StdErr lowerCI upperCI p.value

X1 0.2025 0.0375 0.1314 0.28 <2e-16 ***
X2 0.4602 0.0416 0.3826 0.54 <2e-16 ***
AR1 -0.2336 0.0759 -0.3903 -0.09 0.002 **
AR2 0.2792 0.0717 0.1232 0.41 <2e-16 ***
sigma 0.2025 0.0324 0.4834 0.61 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

AIC:
[1] -30.1

Although it can be shown that the quasi-likelihood estimator is asymptotically normal under some
regularity conditions (Wang and Chan, 2017a), the asymptotic variance-covariance matrix is intractable
so it is computed via parametric bootstrap. The summary function prints out the coefficient estimates
and innovation standard deviation estimate, together with their estimated (bootstrap) standard errors,
and lower and upper 95% confidence limits. Note that the bootstrap computation time increases
almost linearly with the bootstrap replicate size; the default is 1000. More specific information can be
easily obtained by invoking various methods. For instance, logLik returns the quasi-log-likelihood of
the data, coef returns the coefficients of the model, and the standard deviation of εt can be obtained
by modelSim$sigma.

> logLik(modelSim)

[1] 20.1
attr(,"class")
[1] "logLik.carx"

> coef(modelSim)

X1 X2 AR1 AR2
0.203 0.460 -0.234 0.279

> modelSim$sigma

[1] 0.548

The plot() function provides a visual check of how the fitted values track the data, with the
censoring limits superimposed on the diagram, see Figure 2.
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> plot(modelSim)
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Figure 2: Time plot of the raw data and fitted values from the CARX model. The observed responses
are connected as a solid black line, and the lower and upper censoring limits drawn as red dotted and
dashed line with censored observations marked by triangles pointing up and down, respectively. The
fitted values are connected as a blue dashed line.

Model diagnostics are facilitated by the tsdiag() function which is similar to the tsdiag() func-
tion in TSA package (Chan and Ripley, 2012). The tsdiag() function generates a plot of 4 sub-figures,
namely, the time plot of the simulated residuals which is useful for visually checking the presence of
residual temporal patterns and/or outliers, the simulated residuals versus fitted values plot which is
useful for checking the adequacy of the linear regression model assumptiom, the residual autocorrela-
tion function (ACF) plot that quantifies the residual correlations, and the plot of the p-values of the
Ljung-Box tests for the presence of residual autocorrelation. The following command generates the
diagnostics plot for the model fitted to the simulated data.

> tsdiag(modelSim)

The uppermost diagram in Figure 3 shows no apparent residual temporal patterns, which is also
confirmed by the fact that none of the examined residual autocorrelations in the second sub-figure
from the bottom are significant and that the bottom sub-figure shows that all p-values of the Ljung-Box
test statistics based on the first k lags of residual autocorrelations are larger than 5% for all allowable
k ≤ 23. Moreover, the second sub-figure from the top shows that the linear regression assumption is
justifiable and so is the constant innovation variance assumption. Hence, we can conclude that the
model is correctly specified, as it should be, and it provides a good fit to the data.

A real data application

In this example we utilize the package to analyze the change of total phosphorus (P) concentrations in
river water. Phosphorus is a major nutrient in river water, of which an excessive amount can result
in environmental problem such as eutrophication. Phosphorus concentration in many rivers in Iowa
has been monitored under the ambient water quality program conducted by the Iowa Department of
Natural Resources (Libra et al., 2004). An analysis of the change of P concentration has been reported
by Wang et al. (2016). Here we illustrate the analysis for a particular data set from an ambient site
located in the West Fork Cedar River at Finchford, with the data available in a "cenTS" object named
pts in the carx package.
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Figure 3: Diagnostic plots based on simulated residuals.
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The P concentrations (in mg/l) were left-censored whenever they fell below certain time-varying
detection limits, resulting in a censoring rate of 12.6%. The data were collected monthly from October
1998 to October 2013, but data collection was suspended between September 2008 to March 2009,
owing to lack of funding. In the data set, there are serveral variables.

> names(pts)

[1] "logP" "lcl" "ci" "tInMonth" "logQ" "season"

The variable logP consists of the logarithmic P, lcl the corresponding censoring limits, ci the
indicator variable of censoring, tInMonth is the time index (in month), logQ is the corresponding
logarithmic water discharge data (Q) measured in cf/s, obtained from the U.S. Geological Survey,
and season indicates to which season the month index belongs (see below for further details). P is
generally correlated with the water discharge (Schilling et al., 2010). We will explore the relationship
between P and Q. See Figure 4 for the time plots of P, Q, and the historical censoring limits.
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Figure 4: Time series plots of P (black line, scale shown on the left vertical axis), Q (blue line, scale
shown on the right vertical axis) and the censor limits lt (red line, in the same scale as that of P).
Censored observations are marked by triangles.

It is also conjectured that the association between the logP and logQ may be seasonal. The variable
season in pts is constructed to denote the quarter of the month with Quarter 1 consists of the first
three months, namely, January, February, and March; Quarter 2 comprises the next three months, and
so on. Figure 5 illustrates the seasonal relationship between logP and logQ. It is of interest whether
there exists a linear trend in the logarithmic P. Preliminary analysis (not reported here) suggests the
presence of significant autocorrelation in the regression errors. Thus, the general model takes the
following form

log (Pt) = β1t + f (log (Qt)) + ηt,

where f is some linear function that may be seasonal in the intercept and/or seasonal in the coefficient
of logQ, and ηt follows an AR process.

Note that we need to determine whether the intercept and/or the regression coefficient are seasonal,
and whether to include in the model a time trend, resulting in 8 combinations. Moreover, the AR order
for the regression errors has to be specified. Assuming the maximal AR order to be m, we have to
select among 8×m models, which can be done by selecting the best model that achieves the smallest
AIC. Model selection by AIC is automated by the function carxSelect(). Here, the maximal AR order
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Figure 5: Scatter plot of logP versus logQ. The data are labeled by different numbers (1 for Quarter 1
and so on) and colors (black, red, green, blue for Quarter 1, 2, 3 and 4, respectively). Least squares
quaterly regression lines (solid, dashed, dotted, and dash dotted) are superimposed with the same
color as the data points.

is 3.

> arOrder <- 3

The list of models, named M1 to M8, is specified in the following code.

> s1 <- logP ~ logQ
> s2 <- logP ~ tInMonth + logQ
> s3 <- logP ~ logQ:as.factor(season)
> s4 <- logP ~ tInMonth + logQ:as.factor(season)
> s5 <- logP ~ as.factor(season) + logQ - 1
> s6 <- logP ~ tInMonth + as.factor(season) + logQ - 1
> s7 <- logP ~ as.factor(season) + logQ:as.factor(season) - 1
> s8 <- logP ~ tInMonth + as.factor(season) + logQ:as.factor(season) - 1
> fmls <- c(s1,s2,s3,s4,s5,s6,s7,s8)
> names(fmls) <- paste0('M',seq(1,8))

The model selection is performed by invoking the function carxSelect() which has two required
arguments: a list of formulas and the maximal AR orders, plus an optional argument detect.outlier,
which by default is TRUE, indicates whether outliers should be detected in the model. The function
carxSelect() returns a "carx" object comprising an additional element selectionInfo which is a list
containing more information about the selection result, including aicMat which is a matrix whose
(i, j)th element is the AIC of the model represented by the ith formula in the list and AR order j.

For the purpose of illustrating the prediction by the predict() method, we use all data up to the
end of 2012 for model selection and fitting, and then check the model prediction against the observed
data in 2013.

> cs <- carxSelect(fmls, arOrder, data = pts['1998/2012'],
+ detect.outlier = TRUE, CI.compute = TRUE)
> print(round(cs$selectionInfo$aicMat,1))

AR1 AR2 AR3
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M1 -41.8 -39.6 -38.2
M2 -39.7 -38.1 -36.8
M3 -51.2 -47.5 -45.1
M4 -49.4 -45.9 -43.6
M5 -53.2 -49.6 -47.1
M6 -51.5 -48.2 -45.8
M7 -53.9 -50.8 -47.6
M8 -52.8 -49.8 -46.8

A summary of the model fit is shown below.

> summary(cs)

Call:
carx.formula(formula = formula(m0), data = m0$data, p = m0$p,

CI.compute = ..1)

Coefficients:
Estimate StdErr lowerCI upperCI p.value

as.factor(season)1 -6.053239 0.633190 -7.325537 -4.9191 <2e-16 ***
as.factor(season)2 -3.455734 0.612764 -4.696565 -2.2607 <2e-16 ***
as.factor(season)3 -4.235837 0.414149 -5.028568 -3.4297 <2e-16 ***
as.factor(season)4 -4.854407 0.476015 -5.764154 -3.9324 <2e-16 ***
as.factor(season)1:logQ 0.633582 0.111002 0.436431 0.8566 <2e-16 ***
as.factor(season)2:logQ 0.248797 0.086893 0.073705 0.4247 0.006 **
as.factor(season)3:logQ 0.373538 0.068555 0.235532 0.5053 <2e-16 ***
as.factor(season)4:logQ 0.389721 0.087467 0.217672 0.5584 <2e-16 ***
AR1 0.075072 0.090671 -0.137839 0.2227 0.596
sigma 0.482897 0.028770 0.412907 0.5265 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

AIC:
[1] -53.85639

The fitted model can be visualized by calling the plot() function, which is shown in Figure 6. The
fitted values appear to track the data well.

> plot(cs)

We examine the goodness-of-fit of the fitted model via the tsdiag() function which generates 4
diagnostic plots in Figure 7. These plots indicate that the fitted model provides good fit to the data.

> tsdiag(cs)

The selected model can be interpreted as follows. The linear trend was not selected, suggesting no
significant long-term change in the P concentrations. The intercept and the regression coefficient of
logQ were seasonal. The regression errors appeared to be mildly auto-correlated and can be modeled
as an order 1 AR process, although the AR coefficient was not significant.

Finally, we compute the prediction of logP via the predict() method and compare the prediction
with the actual data from January to October 2013. Note the prediction makes use of observed
discharge data in 2013. Figure 8 shows the point predictors (blue dashed line) against the actual values
(black solid line) and the 95% prediction bands (red lines), which indicates that the prediction tracks
the actual data well.

A simulation study on model selection

In this section, we report a simulation study on the effectiveness of model selection by minimizing the
AIC. Recall this functionality is implemented by the carxSelect() function which outputs the model
with the smallest AIC from a set of models of various AR orders up to some pre-specified maximum
order.

We restrict the simulation study to the problem of selecting the AR order with the same model
specification, i.e, the same set of regressors, which is conducted as follows. We simulated 1000 series
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Figure 6: Time plot of the raw data and fitted values from the CARX model. The observed responses
are connected as a solid black line, and the lower censoring limits drawn as a red dotted line with
censored observations marked by triangles pointing up. The fitted values are connected as a blue
dashed line. Outliers (if detected) are marked with a dashed red vertical line.

by calling carxSim() with the default setting, hence the true AR order is equal to 2, and for each
simulated series we selected the best model among the models with the AR order from 1 to 6. Since
the uncensored data were available in the simulation, we repeated the model selection with the
uncensored observed data, for comparing with the results using the censored data. This simulation
study can be reproduced by the following code.

> singleTestSelectAROrder <- function(iter)
+ {
+ seed <- 1375911
+ cts <- carxSim(seed = iter*seed)
+ m0 <- carxSelect(list(f1 = as.formula(y~X1+X2-1)), max.ar = 6,
+ data=cts[,c("y","X1","X2")],detect.outlier = FALSE)
+ m1 <- carxSelect(list(f1 = as.formula(y~X1+X2-1)),max.ar = 6,
+ data = cts, detect.outlier = FALSE)
+ c(m0$fitted$p, m1$fitted$p)
+ }
> nRep <- 1000
> orders <- parallel::mclapply( 1:nRep, singleTestSelectAROrder,
+ mc.cores = parallel::detectCores() - 1)
> orders <- do.call(rbind, lapply(orders, matrix, ncol = 2, byrow = TRUE))
> freqComDat = count(orders[1,])
> freqCenDat = count(orders[2,])

The selected orders are reported in Table 1, which shows that the true order can be recovered with
an empirical probability of 52.7%, and the results using censored and complete data are comparable.
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Figure 7: Model diagnostic plots. The plots from top to bottom correspond respectively to the
time series plots of standadized simulated residuals, residuals versus fitted values, the residual
autocorrelation plots, and the Ljung-Box test statistics of the residuals.
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Figure 8: Plot of predictions and observed values. The observed values are drawn by black solid line.
The predicted values, lower and upper bound of confidence intervals are drawn by blue dashed, red
dotted, and red dash dotted lines respectively.

AR order 1 2 3 4 5 6

Frequency (complete data) 17 626 139 97 69 52

Frequency (censored data) 37 527 160 99 101 76

Table 1: Summary of selected orders. The frequency of selected orders with complete data and
censored data are reported.

Performance of model prediction

In this section we report a simulation study about the empirical performance of the model prediction
procedure. A series of 210 data was simulated using the default parameters of carxSim(), with the first
200 data used to estimate the model, and the last 10 observations used to compare with the predicted
values based on the fitted model and the simulated future covariate values. The above procedure
was repeated 500 times. The empirical coverage rates of the 95% `-step ahead prediction intervals,
` = 1, 2, . . . , 10, are summarized in Table 2, which indicates a close match between the empirical and
nominal coverage rates. The simulation exercise can be reproduced by the following code.

> nRep = 500; nObs = 200; n.ahead=10
> runSimPredCR <- function()
+ {
+ set.seed(0)
+ crMat = matrix(nrow = n.ahead, ncol = nRep)
+ for(iRep in 1:nRep)
+ {
+ sdata = carxSim(nObs = nObs + n.ahead)
+ trainingData = sdata[1:nObs,]
+ testData = sdata[-(1:nObs),]
+ mdl = carx(y ~ X1 + X2 - 1, data = trainingData, p = 2)
+ newxreg = testData[,c('X1','X2')]
+ predVal = predict(mdl, newxreg = newxreg, n.ahead = n.ahead)
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+ crInd = (predVal$ci[,1] <= testData$y) & (predVal$ci[,2] >= testData$y)
+ crMat[,iRep] = crInd
+ }
+ crPred = apply(crMat,1,mean)
+ }
> runSimPredCR()

n.ahead 1 2 3 4 5 6 7 8 9 10

Empirical Coverage 0.954 0.932 0.946 0.952 0.946 0.946 0.938 0.946 0.948 0.952

Table 2: Empirical coverage rates of nominally 95% predictive confidence intervals for `-step-ahead
prediction, for ` = 1, 2, . . . , 10.

Conclusion

In summary, we have reviewed the quasi-likelihood method to estimate a censored time series regres-
sion model and introduced the carx package in which quasi-likelihood estimation is implemented,
together with other useful functions for model selection, prediction, diagnostics and outlier detections.
We illustrated the carx package with two major examples, and shed light on the effectiveness of model
selection via minimizing AIC and the prediction accuracy.

Future work includes extending the method for more complex regression noise structure than the
AR model, for instance, the more general ARIMA model, and updating the package according to the
feedback from the public.
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