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rpsftm: An R Package for Rank
Preserving Structural Failure Time
Models
by Annabel Allison, Ian R White and Simon Bond

Abstract

Treatment switching in a randomised controlled trial occurs when participants change from their
randomised treatment to the other trial treatment during the study. Failure to account for treatment
switching in the analysis (i.e. by performing a standard intention-to-treat analysis) can lead to biased
estimates of treatment efficacy. The rank preserving structural failure time model (RPSFTM) is a
method used to adjust for treatment switching in trials with survival outcomes. The RPSFTM is due to
Robins and Tsiatis (1991) and has been developed by White et al. (1997, 1999).

The method is randomisation based and uses only the randomised treatment group, observed
event times, and treatment history in order to estimate a causal treatment effect. The treatment effect,
ψ, is estimated by balancing counter-factual event times (that would be observed if no treatment
were received) between treatment groups. G-estimation is used to find the value of ψ such that a test
statistic Z (ψ) = 0. This is usually the test statistic used in the intention-to-treat analysis, for example,
the log rank test statistic.

We present an R package, rpsftm, that implements the method.

Introduction

In a two-arm randomised controlled trial, participants are randomly allocated to receive one of two
treatments or interventions. Ideally, all participants would fully receive their allocated treatment and
no other treatment. However, in a recent review, 98 of 100 trials published in four high quality general
medical journals reported some form of departure from randomised treatment (Dodd et al., 2012).
When treatment is ‘all-or-nothing’ (for example, a surgical procedure), possible departures include not
receiving the allocated treatment, receiving the other trial treatment, or receiving a non-trial treatment.
When treatment is given over time (for example, a drug for HIV treatment), departures also occur over
time, and often include starting a new treatment in response to a disease-related event.

This paper specifically focuses on the case of treatment switching over time, where participants
may switch to receive the other trial treatment during the trial (Latimer et al., 2014). A common
example is in a trial of active treatment versus placebo where placebo arm participants may start the
active treatment in response to disease progression.

A randomised controlled trial with departures from randomised treatment is commonly analysed
by intention-to-treat, in which departures from randomised treatment are ignored and all randomised
participants are compared in the groups to which they were randomised (Higgins et al., 2011). This
provides an unbiased comparison of two treatment policies, which accept that treatment may be
changed, but does not compare the efficacies of the treatments themselves (White et al., 1999).

In order to compare the efficacies of the treatments, analysts often use per-protocol analysis, which
censors participants when they depart from randomised treatment. However, this loses the advantage
that randomisation produces comparable groups and instead introduces selection bias. Another
possibility is to include treatment as a time-dependent variable in a Cox regression model. The issue
with this method is that the estimate of treatment effect may not have a causal interpretation when
switchers are prognostically different to non-switchers (Robins and Tsiatis, 1991).

There has therefore been strong interest in causal inference methods including marginal structural
models (MSM) (i.e. inverse probability of censoring weighting (IPCW)) (Hernán et al., 2001) and
instrumental-variable-type methods (White, 2005; Watkins et al., 2013).

The IPCW method is an extension of the per-protocol censoring approach, whereby the bias
associated with censoring participants that depart from randomised treatment is removed by weighting
the remaining non-switchers (Latimer et al., 2016). A model is formed for the probability of switching
using baseline and time-dependent covariates. Time-varying weights are then obtained for each
participant based on the inverse probability of not switching until a given time (Watkins et al.,
2013). The method relies on data on prognostic factors for mortality that also affect the probability
of switching being collected at both baseline and over time. This is called the ‘no unmeasured
confounders’ assumption. Since this assumption is untestable, the method relies on good planning
at the study design stage in order to collect information on all possible confounders. The method
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also has two potential issues: a) if many prognostic factors are included in the model to calculate
weights the model may fail to converge, and b) if only a few participants switch then large weights are
assigned to the remaining participants, which may result in biased analyses. The method has already
been implemented in R in the package ipw (van der Wal and Geskus, 2011) and so is not considered
further here.

Instead, this paper focuses on a popular causal method - the rank preserving structural failure
time model (RPSFTM) (Robins and Tsiatis, 1991). In contrast to the IPCW method which requires
potential confounders to be collected over time, the RPSFTM is randomisation based and only requires
information on the randomised treatment group, observed event times, and treatment history in order
to estimate a causal treatment effect. The method has been used, for example, in submissions to the
UK’s National Institute for Health and Clinical Excellence whose Decision Support Unit commissioned
a guidance document (Latimer and Abrams, 2014). The RPSFTM has been implemented in Stata
(White et al., 2002) but not in R.

This paper describes the theory of the RPSFTM and presents a new implementation of the method
with the R package rpsftm (Bond and Allison, 2017), using data based on a trial in HIV infection.

Theory

RPSFTM method and assumptions

The RPSFTM uses a causal model to produce counter-factual event times (the time that would be
observed if no treatment were received) in order to estimate a causal treatment effect. Let Ti =

Toff
i + Ton

i be the observed event time for participant i, where Toff
i and Ton

i represent the time spent
off and on treatment, respectively. The Ti are related to the counter-factual event times, Ui, via the
following causal model:

Ui = Toff
i + Ton

i exp (ψ0) , (1)

where exp (−ψ0) is the acceleration factor associated with treatment and ψ0 is the true causal parame-
ter.

A grid search (g-estimation) procedure is used to estimate the treatment effect that balances the
counter-factual event times across randomised treatment groups. To estimate the causal treatment
effect, ψ, we assume that the Ui are independent of randomised treatment group Ri, i.e. if the groups
are similar with respect to all other characteristics except treatment, the average event times should be
the same in each group if no participant were treated. In general, this assumption is plausible in a
randomised controlled trial.

A g-estimation procedure is used to find the value of ψ such that Ui is independent of Ri. For a
range of ψs, the hypothesis ψ0 = ψ is tested by computing Ui (ψ) , subject to censoring, and calculating
the test statistic Z (ψ) . This is usually the same test statistic as for the intention-to-treat analysis, for
example, the log rank test statistic to compare survival distributions between groups. In the rpsftm()
function, the possible test options are the log rank, and the Wald test from a Cox or Weibull regression
model. For the parametric Weibull test, the point estimate (ψ̂) is the value of ψ for which Z (ψ) = 0.
For the non-parametric tests (log rank, Cox), ψ̂ is the value of ψ for which Z (ψ) crosses 0, since Z (ψ)
is a step function. Confidence intervals are similarly found with the 100 (1− α)% confidence interval
being the set {ψ : |Z (ψ) | < z1−α/2}, where z1−α/2 is the 1− α/2 percentile of the standard normal
distribution.

After finding ψ̂, an adjusted hazard ratio can be calculated. For example, by comparing counter-
factual event times at ψ̂ in the control group to the observed event times in the experimental group we
can estimate the treatment effect that would have been observed in the absence of switching (in the
case where only the control group switch).

As well as assuming that the only difference between randomised groups is the treatment received,
the RPSFTM also assumes a ‘common treatment effect’. The common treatment effect assumption
states that the treatment effect is the same for all participants (with respect to time spent on treatment)
regardless of when treatment is received, which is implicit in equation (1).

Re-censoring

We assume that censoring occurs if participants survive to a specific calendar date (Robins and Tsiatis,
1991). Thus the potential censoring time Ci is known for all participants. The censoring indicators of
the observed event times are initially carried over to the counter-factual event times. However, the
uninformative censoring on the Ti scale may be informative on the Ui scale. Suppose we have two
participants with the same Ui, one of whom receives the superior treatment. The participant receiving
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the superior treatment has their Ui extended so that they are censored whilst the other participant
may observe the event.

In detail, Ci, the censoring times for the Ti, are transformed to Ci (1− Pi + Pi exp (ψ)) when
we work on the Ui scale, where Pi is a random variable, the proportion of time on treatment,

Ton
i /

(
Ton

i + Toff
i

)
. This transformation of censoring times occurs by representing the censoring

status in two equivalent ways: {Ci < Ti}, and re-scaling both sides {Ci (1− Pi + Pi exp (ψ)) <
Ti (1− Pi + Pi exp(ψ)) = Ui}. We cannot assume the variable Pi is independent of Ui. For example,
adherence to a protocolised treatment may depend on the underlying prognosis.

We can overcome this induced dependence by considering the sample space for Pi marginally over
Ui and, optionally, conditioning on Ri. If we replace Pi with a function of its sample space then any
dependency on Ui is thus removed. Any alternative transformed censoring times must be smaller
than the original censoring times, else we may have to impute uncensored Ui values for censored Ti
observations, which would be impossible. Hence taking the minimum value from the sample space
for Pi meets both desiderata. If the sample space differs between arms, say switching is impossible in
one arm, then this can be utilised to potentially observe more events with gains in efficiency.

Operationally, let Ci be the potential censoring time for participant i. A participant is then re-
censored at the minimum possible censoring time:

D∗i (ψ) = min (Ci, Ci exp (ψ)) .

If D∗i (ψ) < Ui (ψ), then Ui is replaced by D∗i and the censoring indicator is replaced by 0. For treatment
arms where switching does not occur, there can be no informative censoring and so re-censoring is not
applied.

Sensitivity analysis

As previously mentioned, the RPSFTM has two assumptions:

1. The only difference between randomised groups is the treatment received.

2. The treatment effect is the same for all participants regardless of when treatment is received.

Whilst the first assumption is plausible in a randomised controlled trial, the latter may be unlikely
to hold. For example, if control group participants can only switch at disease progression then the treat-
ment benefit may be different in these participants compared to those randomised to the experimental
treatment. The rpsftm() function allows for investigation of deviations from the common treatment
effect assumption by featuring a treatment-effect modifier variable which means the treatment effect
can be varied across participants. The assumption that defines the counter-factual treatment-free event
times Ui is thus modified by multiplying ψ by some factor ki > 0:

Ui = Toff
i + Ton

i exp (kiψ) .

The value taken by ki is derived from observed data and is left to the user to assign.

The package assumes that ki is determined at baseline, and re-censoring is undertaken in a similar
way by re-censoring at the minimum possible censoring time:

D∗i (ψ) = min (Ci, Ci exp (kiψ)) .

Again, if D∗i (ψ) < Ui (ψ) , then Ui is replaced by D∗i and the censoring indicator is replaced by 0.
The case where ki is observed post randomisation is equally valid in terms of defining Ui, but more
complicated re-censoring may be required, taking the minimum value of D∗i over the sample space of
ki conditional on arm. This is not implemented in the package.

Using package rpsftm

The main function in the package rpsftm is of the same name, rpsftm(), which returns an object that
has print, summary, and plot methods, and that inherits from the class used to define the test statistic
(survdiff, coxph or survreg) . The arguments to rpsftm() are given in table 1 below.

Example

The rpsftm function will be illustrated using a simulated dataset immdef taken from (White et al.,
2002), based on a randomized controlled trial (Concorde Coordinating Committee, 1994). The trial
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rpsftm() arguments

formula a formula with a minimal structure of Surv(time,status) ∼
rand(arm,rx) where

• arm is the randomised treatment arm

• rx is the proportion of time spent on treatment, taking val-
ues in [0, 1].

Further terms can be added to the right hand side to adjust for
covariates.

data an optional data frame containing the variables
censor_time variable or constant giving the time at which censoring would, or

has occurred. This should be provided for all observations unlike
standard Kaplan-Meier or Cox regression where it is only given
for censored observations. If no value is given then re-censoring
is not applied.

subset an expression indicating which subset of the rows of data should
be used in the fit. This can be a logical vector, a numeric vector
indicating which observation numbers are to be included, or a
character vector of row names to be included. All observations
are included by default.

na.action a missing-data filter function. This is applied to the model.frame
after any subset argument has been used. Default is
options()$na.action.

test one of survdiff, coxph or survreg. Describes the test to be used
in the estimating equation. Default is survdiff.

low_psi the lower limit of the range to search for the causal parameter.
Default is −1.

hi_psi the upper limit of the range to search for the causal parameter.
Default is 1.

alpha the significance level used to calculate the confidence intervals.
Default is 0.05.

treat_modifier an optional variable that ψ is multiplied by on an participant
observation level to give differing impact to treatment. Default is
1.

autoswitch a logical to autodetect cases of no switching. Default is TRUE. If all
observations in an arm have perfect compliance then re-censoring
is not applied in that arm. If FALSE then re-censoring is applied
regardless of perfect compliance.

n_eval_z The number of points between hi_psi and low_psi at which to
evaluate the Z-statistics in the estimating equation. Default is 100.

Table 1: Arguments for the rpsftm() function
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compares two policies (immediate or deferred treatment) of zidovudine treatment in symptom free
participants infected with HIV. The immediate treatment arm received treatment at randomisation
whilst the deferred arm received treatment either at onset of AIDS related complex or AIDS (CDC
group IV disease) or development of persistently low CD4 count. The endpoint considered here was
time from study entry to progression to AIDS, or CDC group IV disease, or death.

Data

The immdef data frame has 1000 rows of 9 variables as described in table 2

immdef variables

id participant ID number
def indicator that the participant was assigned to the Deferred treat-

ment arm
imm indicator that the participant was assigned to the Immediate treat-

ment arm
censyrs censoring time, in years, corresponding to the close of study minus

the time of entry for each participant
xo an indicator that switching occurred
xoyrs the time, in years, from entry to switching, or 0 for participants in

the Immediate arm
prog an indicator of disease progression (1), or censoring (0)
progyrs time, in years, from entry to disease progression or censoring
entry the time of entry into the study, measured in years from the date

of randomisation

Table 2: Description of simulated data set

The first six observations are given below

> library(rpsftm)
> head(immdef)

id def imm censyrs xo xoyrs prog progyrs entry
1 1 0 1 3 0 0.000000 0 3.000000 0
2 2 1 0 3 1 2.652797 0 3.000000 0
3 3 0 1 3 0 0.000000 1 1.737838 0
4 4 0 1 3 0 0.000000 1 2.166291 0
5 5 1 0 3 1 2.122100 1 2.884646 0
6 6 1 0 3 1 0.557392 0 3.000000 0

For example, participant 2 was randomised to the deferred arm, started treatment at 2.65 years and
was censored at 3 years (the end of the study). Subject 3 was randomised to the immediate treatment
arm and progressed (observed the event) at 1.74 years. Subject 5 was randomised to the deferred
treatment arm, started treatment at 2.12 years and progressed at 2.88 years. The trial lasted 3 years
with staggered entry over the first 1.5 years. The variable censyrs gives the time from entry to the end
of the trial.

Intention-to-treat analysis

First, we estimate the effect of giving zidovudine ignoring any treatment changes during the trial. This
is found by fitting an accelerated failure time model using the eha package (Broström, 2017):

> library(eha)
> itt_fit <- aftreg(Surv(progyrs, prog) ~ imm, data = immdef)
> itt_fit
Call:
aftreg(formula = Surv(progyrs, prog) ~ imm, data = immdef)

Covariate W.mean Coef Time-Accn se(Coef) Wald p
imm 0.510 -0.147 0.863 0.077 0.056

Baseline parameters:
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log(scale) 1.404 0.062 0.000
log(shape) 0.392 0.052 0.000
Baseline life expectancy:

Events 312
Total time at risk 1932.5
Max. log. likelihood -855.14
LR test statistic 3.69
Degrees of freedom 1
Overall p-value 0.0548817

The intention-to-treat estimate is−0.147 which means that lifetime is used up exp (−0.147) = 0.863
times as fast when on zidovudine as when off zidovudine (or zidovudine extends lifetime by a factor
of exp (0.147) = 1.16).

Fitting the RPSFTM

We now show how to use rpsftm with the immdef data. First, a variable rx for the proportion of time
spent on treatment must be created:

rx <- with(immdef, 1 - xoyrs / progyrs)

This sets rx to 1 in the immediate treatment arm (since no participants could switch to the deferred
arm, and xoyrs = 0 in such participants), 0 in the deferred arm participants that did not receive
treatment (as xoyrs = progyrs in such participants) and 1 -xoyrs / progyrs in the deferred arm
participants that did receive treatment. Using the default options, the fitted model is

rpsftm_fit_lr <- rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx),
data = immdef,
censor_time = censyrs)

The above formula fits an RPSFTM where progyrs is the observed event time, prog is the indicator
of disease progression, imm is the randomised treatment group indicator, rx is the proportion of time
spent on treatment and censyrs is the censoring time. The log rank test is used in finding the point
estimate of ψ̂. Re-censoring is performed since the censor_time parameter is specified; if not specified
then re-censoring would not be performed. After finding ψ̂, rpsftm refits the model at ψ̂ and produces
a survdiff object of the counter-factual event times to be used in plotting Kaplan-Meier curves. The
list of objects that the function returns is given in table 3.

The point estimate and 95% confidence interval (CI) can be returned using rpsftm_fit_lr$psi
and rpsftm_fit_lr$CI which gives ψ̂ = −0.181 (−0.350, 0.002) , slightly larger than in the intention-
to-treat analysis. This means that lifetime is used up exp (−0.181) = 0.834 times as fast when on
zidovudine as when off zidovudine, i.e. the time to progression to AIDS, or CDC group IV disease,
or death is longer when on zidovudine (treatment is beneficial). However, the confidence interval
contains zero, which suggests the treatment effect is non-significant. The function plot() produces
Kaplan-Meier curves of the counter-factual event times in each group and can be used to check that
the distributions are indeed the same at ψ̂ as shown in figure 1

We now provide examples of using the Cox regression model and the Weibull model in place
of the log rank test. To use the Wald test from a Cox regression model, we specify test = coxph
in the function parameters. Covariates can also be included in the estimation procedure by adding
them to the right hand side of the formula. For example, baseline covariates that are included in the
intention-to-treat analysis may also be incorporated into the estimation procedure of the RPSFTM. In
the following example we add entry time as a covariate and use summary() to find the value of ψ̂ and
its 95% CI.

> rpsftm_fit_cph <- rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx) + entry,
+ data = immdef,
+ censor_time = censyrs,
+ test = coxph)
> summary(rpsftm_fit_cph)

arm rx.Min. rx.1st Qu. rx.Median rx.Mean rx.3rd Qu. rx.Max.
1 0 0.0000000 0.0000000 0.0000000 0.1574062 0.2547779 0.9770941
2 1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
n= 1000, number of events= 286

coef exp(coef) se(coef) z Pr(>|z|)
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rpsftm() outputs

psi the estimated parameter
fit a survdiff object to produce Kaplan-Meier curves of the esti-

mated counter-factual event times in each treatment arm using
plot()

CI a vector of the confidence interval around psi
Sstar the (possibly) re-censored Surv() data using the estimate value of

psi to give counterfactual untreated failure times.
rand the rand() object used to specify the allocated and observed

amount of treatment.
ans the values from uniroot.all used to solve the estimating equa-

tion, but embedded within a list as per uniroot, with an extra
element root_all, a vector of all roots found in the case of mul-
tiple solutions. The first element of root_all is subsequently
used.

eval_z a data frame with the Z-statistics from the estimating equation
evaluated at a sequence of values of psi. Used to plot and check if
the range of values to search for solution and limits of confidence
intervals need to be modified.

Further elements corresponding to either a survdiff, coxph, or
survreg object. This will always include:

call the R call object
formula a formula representing any adjustments, strata or clusters - used

for the update() function
terms a more detailed representation of the model formula

Table 3: Outputs from the rpsftm() function

Figure 1: Output from plot(rpsftm_fit_lr)
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entry 0.1235 1.1315 0.1487 0.831 0.406

exp(coef) exp(-coef) lower .95 upper .95
entry 1.131 0.8838 0.8454 1.514

Concordance= 0.514 (se = 0.018 )
Rsquare= 0.001 (max possible= 0.976 )

psi: -0.1811697
exp(psi): 0.8342938
Confidence Interval, psi -0.3496874 0.003370267
Confidence Interval, exp(psi) 0.7049084 1.003376

For the Weibull model we specify test = survreg in the function parameters. :

> rpsftm_fit_wb <- rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx) + entry,
+ data = immdef,
+ censor_time = censyrs,
+ test = survreg)
> summary(rpsftm_fit_wb)

arm rx.Min. rx.1st Qu. rx.Median rx.Mean rx.3rd Qu. rx.Max.
1 0 0.0000000 0.0000000 0.0000000 0.1574062 0.2547779 0.9770941
2 1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

Call:
rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx) + entry,

data = immdef, censor_time = censyrs, test = survreg)
Value Std. Error z p

(Intercept) 1.3881 0.0857 16.197 5.34e-59
entry -0.0582 0.0906 -0.642 5.21e-01
Log(scale) -0.4176 0.0568 -7.349 2.00e-13

Scale= 0.659

Weibull distribution
Loglik(model)= -759.8 Loglik(intercept only)= -760
Number of Newton-Raphson Iterations: 6
n= 1000

psi: -0.1811851
exp(psi): 0.8342809
Confidence Interval, psi -0.3501459 0.005170935
Confidence Interval, exp(psi) 0.7045852 1.005184

As we can see from the output for the Cox and Weibull models, the estimates of ψ are similar to the
estimate obtained from using the log rank test. Both fitted models could be used as inputs to the
plot() function, which produce figures very similar to figure 1.

As a sensitivity analysis we can investigate what would happen to the estimate of ψ if the treatment
effect in the deferred treatment group was half of that in the immediate treatment group by setting
ki = 1 for participants in the latter group and ki = 0.5 for participants in the former group.

> weight <- with(immdef, ifelse(imm == 1, 1, 0.5))
> rpsftm(Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, censor_time = censyrs,
+ treat_modifier = weight
+ )

arm rx.Min. rx.1st Qu. rx.Median rx.Mean rx.3rd Qu. rx.Max.
1 0 0.0000000 0.0000000 0.0000000 0.1574062 0.2547779 0.9770941
2 1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Call:
rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef,

censor_time = censyrs, treat_modifier = weight)

N Observed Expected (O-E)^2/E (O-E)^2/V
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.arm=0 500 157 157 5.75e-07 1.22e-06

.arm=1 500 143 143 6.31e-07 1.22e-06

Chisq= 0 on 1 degrees of freedom, p= 0.999

psi: -0.1704745
exp(psi): 0.8432646

In this case the estimate of treatment effect is reduced slightly to −0.170 and lifetime is used up 0.843
times as fast when on treatment as when off treatment.

Trouble shooting

There is no guarantee that unique solutions exist to the estimating equations for the estimate and
confidence interval limits, or that we have searched a wide enough interval to find them if they do
exist and are unique.

There are three instances where rpsftm will produce warning messages due to the search interval.
The function first evaluates Z (ψ) at low_psi and hi_psi and will produce a warning message if Z (ψ)
is the same sign at these two points and no root exists within the interval.

Warning messages:
1: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, :

The starting interval (-1, -0.9) to search for a solution for psi
gives values of the same sign (7.53, 6.88).
Try a wider interval. plot(obj$eval_z, type="s"), where obj is the output of rpsftm()
2: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, :
Evaluation of the estimated values of psi failed. It is set to NA

3: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, :
Evaluation of a limit of the Confidence Interval failed. It is set to NA

4: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, :
Evaluation of a limit of the Confidence Interval failed. It is set to NA

This suggests widening the search interval via trial and error until a root for ψ can be found
between low_psi and hi_psi. The second warning message occurs when uniroot.all, the function
used to solve the estimating equation for ψ̂ and its 95% confidence interval limits, fails to find any one
of these. It will set the value to NA and produce the following warning message

> rpsftm_fit <- rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx),
+ data = immdef,
+ censor_time = censyrs,
+ low_psi = -1,
+ hi_psi = -0.1)
Warning message:
In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, :
Evaluation of a limit of the Confidence Interval failed. It is set to NA

Investigation of a plot of Z (ψ) against ψ in figure 2 for a range of values of ψ could show why the
function fails to find a root. The fitted object, rpsftm_fit, returns a data frame rpsftm_fit$eval_z
with values of the Z-statistic evaluated at 100 points between the limits of the search interval. The data
frame can be supplied as the argument to plot() to visualise the estimating equation.

plot(rpsftm_fit$eval_z, type = "s", ylim = c(-2, 6))
abline(h = qnorm(c(0.025, 0.5, 0.975)))
abline(v = rpsftm_fit$psi)
abline(v = rpsftm_fit$CI)

In this case, we see that the search interval used was not wide enough to find the upper confidence
limit. The third warning message occurs when multiple roots are found:

Warning message:
In root(0) : Multiple Roots found

In order to show what happens when multiple roots are found, a subset of the immdef dataset was
created and is stored within the test area of rpsftm. Whilst the function uniroot.all will return
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Figure 2: Plot of Z (ψ) against ψ to detect problems with the choice of search interval

multiple roots, the function rpsftm will only display the first root found by uniroot.all. A plot of
Z (ψ) against ψ can be used to find the other roots.

The limits of the confidence intervals may not exist at all if Z (·) reaches an asymptote before it hits
the required quantile of the standard normal distribution, in which case the limits should be reported
as ±∞. This scenario would be illustrated by a similar plot to figure 2.

Another possibility is for the coxph function to fail to converge. This occurs when the maximum
likelihood estimate of a coefficient is infinity, e.g. if one of the treatment groups has no events. The
coxph documentation states that the Wald statistic should be ignored in this case and therefore the
rpsftm output should be taken with caution.

Limitations

As well as the potential computational issues highlighted in the previous section, the RPSFTM itself
has some limitations. The method relies on the assumption that the treatment effect is the same for all
participants regardless of when treatment is received. We have allowed for investigation of deviations
from this assumption within the rpsftm() function by adding a treatment-effect modifier variable.
Another possible limitation of the model is its requirement for only the total amount of time spent
on/off treatment. In instances where participants can switch back and forth between treatments the
model may be inefficient.

Conclusion

The intention is to fill a void in the methodology available to R users by providing this package and
thus facilitate the adoption of newer methods in application to real data in future. The sensitivity
analyses, which generalise the definition of the counter-factual treatment-free event times, are an
original development.

Further developments to the package may include expanding the functionality to allow multi-
armed studies with three or more arms. Such an extension would have at its core a set of g-estimating
equations to solve, one for each element of the vector of ψ parameters. Defining the syntax to
capture the multi-dimensional metric of time on treatments is challenging, as will be the numerical
computational details when the g-estimating equations are step functions.
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