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Editorial
by John Verzani

On behalf of the Editorial Board, I am pleased to present Volume 10, Issue 1 of the R Journal.
This issue contains 36 contributed articles. The majority of which cover new or newly
enhanced packages on CRAN.

As of writing, CRAN has over 12,500 contributed packages. Including BioConductor
packages, there are over 14,000 packages readily installable for R users. Despite the large
combined size of the repositories, there are still numerous new contributions made each
year, as highlighted in the note “Changes on Cran.” The majority of submissions to the R
Journal cover add-on packages for R. In this issue over a dozen articles are focused on newly
developed packages for applied statistical modeling. As examples, the article by Wurm
and Rathouz describes their gldrm package for semiparametric generalized linear models;
the article by Kim, Zhang, and Zhou describes their MGLM package for multivariate
categorical data; and Garcia-Donato and Forte’s article present their BayesVarSel package.
For hypothesis tests there are articles on the HHG package for non-parametric independence
tests; and an article describing the onewaytests package, which provides an interface to
numerous oneway tests. We have several articles on imputation, including descriptions of
the ImputeRobust, FHDI, and imputeTestbench packages.

Several contributions are related to managing complexity, either in data or computational
time. The article by Happ, Harrar, and Bathke on their HRM package discusses challenges
arising in high-dimensional longitudinal data; Kraemer, Reichstein, and Mahecha write
about their packages dimRed and coRanking which enhance R’s dimension reduction
facilities; and Liu and Quertermous describe their sinib package for precise calculations of
a useful probability distribution.

Though packages on CRAN do come and go, many are constantly improved and updated.
A few articles discuss enhancements to existing packages, for example we have Burkner’s
article on improvements to his brms package. For years, spatial data has been analyzed
by R users with the sp package. One of sp’s authors, Pebesma, describes the important
new package sf in the article “Simple Features for R” for spatial data. This package is more
tightly coupled to standard representations of such data. Spatial data users will also be
interested in the article describing rpostgis about using a data base add on for spatial data
within R.

The Editorial Board has encouraged submissions with comparisons and benchmarking
of available packages on CRAN, as in some instances packages offer overlapping features.
In this edition we have a few contributions providing overviews. As an example, the
“Collections in R” article by Barry reviews several packages providing support, in addition
to base R, for various type of collections.

Finally, as R continues to provide value to more and more disciplines, there are a
large number of field-specific articles. Examples, among many, include the article on
PortfolioOptim and its application to optimizing financial portfolios; the article on the
mopa package and its application to climate data; and the article on the rtip package and its
application to income data.

In addition the News and Notes section contains the usual updates on CRAN, the
Bioconductor project, and several conferences that have highlighted R’s usage.

I’d like to thank Roger Bivand for his excellent leadership as editor in chief for the past
two issues, welcome Olivia Lau to the Editorial Board, and say farewell to Michael Lawrence
from the Editorial Board. Finally, I’d like to thank the enormous number of reviewers who
have helped significantly shape the articles contained herein. Their peer-review is invaluable
and always most appreciated.

John Verzani
John.Verzani@r-project.org
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A System for an Accountable Data
Analysis Process in R
by Jonathan Gelfond, Martin Goros, Brian Hernandez, and Alex Bokov

Abstract Efficiently producing transparent analyses may be difficult for beginners or tedious for the
experienced. This implies a need for computing systems and environments that can efficiently satisfy
reproducibility and accountability standards. To this end, we have developed a system, R package,
and R Shiny application called adapr (Accountable Data Analysis Process in R) that is built on the
principle of accountable units. An accountable unit is a data file (statistic, table or graphic) that
can be associated with a provenance, meaning how it was created, when it was created and who
created it, and this is similar to the ’verifiable computational results’ (VCR) concept proposed by
Gavish and Donoho. Both accountable units and VCRs are version controlled, sharable, and can
be incorporated into a collaborative project. However, accountable units use file hashes and do not
involve watermarking or public repositories like VCRs. Reproducing collaborative work may be highly
complex, requiring repeating computations on multiple systems from multiple authors; however,
determining the provenance of each unit is simpler, requiring only a search using file hashes and
version control systems.

Introduction

Reproducibility, accountability and transparency are increasingly accepted as core principles of science
and statistics. While some of the impetus for the interest in reproducibility has come from high-
profile incidents that reached the sphere of the general public (Carroll, 2017), there is a consensus that
reproducibility is fundamental to scientific communication and to the acceleration of the scientific
process (Wilkinson et al., 2016). Furthermore, transparency and reproducibility are deemed necessary
by the American Statistical Association’s Ethical Guidelines for Statistical Practice (American Statistical
Association, 2016). There have been significant strides in improving the set of available tools for
constructing reproducible analyses such as the concept and implementation of literate computing,
version control systems, and mandates by journals and sponsors that create standards for submitting
data, code, and systems for reproducibility. Also, interest in data science has expanded the number
of researchers and students who are undertaking data analyses, which underlies the need for tools
manageable for a broad range of user expertise. While there is commercial software such as SAS (SAS,
Cary, NC) and Stata (StataCrop, College Station, TX, USA) and open-source tools that have systems for
reproducible computations, these may have significant challenges. Both open-source and commercial
tools could encounter a number of barriers such as 1) the tool is focused on one dimension of the
reproducibility problem rather than offering a complete system, 2) the tool may be hard to identify,
3) they may have subtle differences in capabilities, making it hard for users to select among them,
4) documentation or support are in short supply, and 5) they require degrees of sophistication that
beginners lack.

Before the introduction of R, Becker and Chambers (1988) proposed a framework for auditing
data analyses that could replicate and verify calculations called the AUDIT S-plus (Becker et al., 1988)
system. Their auditing system would not only extract the computing steps required to produce the
analysis, but also would identify the patterns of the creation and use of particular objects within
the directed acyclic graph of computations. Currently, many R packages facilitate reproducible
analyses with literate programing or by tracking computational results. Some of these are listed within
the CRAN Task View: Reproducible Research (Zeileis, 2005). The knitr (Xie, 2015) and rmarkdown
(Allaire et al., 2017; Baumer et al., 2014) packages are widely used and enable literate programing
by weaving R code and results into the same document in many formats. Tracking computational
results with the cacher packgage (Peng, 2008) can be useful for efficient storage and reproducibility,
and the rctrack package (Liu and Pounds, 2014) tracks computations including random seeds in
a read-only format without modifications of existing R code. The package RDataTracker (Lerner
and Boose, 2014) provides a very granular level of tracking R objects within a script with minimal
overhead on the user, and the recordr (Slaughter et al., 2015) package tracks dependencies within
an R script and does not require the modification of the code, but this facility is limited to specific
read/write methods (e.g. read.csv,write.csv,ggsave,readLines,writeLines, etc.). The remake
(Fitzjohn et al., 2015) package proposes a different model for managing the complexity of analyses.
Rather than instrumenting arbitrary or minimally modified R code for tracking, remake provides a
structured approach for projects in which dependencies are documented explicitly. An interesting
addition is the archivist package (Biecek and Kosinski, 2017) that can store R code and R objects,
handle multiple versions thereof, and has many features that enhance sharing and browsing results.
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Besides R, other open source programming languages and computing environments are developing
reproducibility tools such as Python’s Sumatra (Davison et al., 2014) which stores computations for
simulation or analysis as an electronic lab notebook. These notebooks represent a type of dynamic
document (Becker, 2014) that combines data, code, and results within the same object. Dynamic
documents enable a very high level of transparency, and while technically challenging to implement,
are becoming an increasingly prevalent means of producing and sharing results. The tool Jupyter
(Ragan-Kelley et al., 2014), originally developed to be polyglot including languages such as Python,
is a web-based electronic notebook built for literate programming which is extendable to multiple
languages, recently including R. The Jupyter system has many features such as interactivity, ability to
share notebooks, graphical user interfaces, and the potential for high performance computing. Other
systems such as Traverna (Wolstencroft et al., 2013) and Galaxy (Afgan et al., 2016) are geared toward
workflow development and allow multiple programing languages, web-based sharing and integrate
high performance computing. The development of compendia is also important to reproducibility,
Gentleman and Temple Lang (2007) introduced the concept of a compendium that is comprised of data,
code, and the computational results that also allows the distribution of the software tools. This goes
beyond reproducibility by distributing a large set of general tools thereby enabling other researchers
to use and assess these methodologies in different contexts.

We present the adapr (Accountable Data Analysis Process in R) package to facilitate reproducible
and accountable computations. The objective is to use a structured, transparent, and self-contained
system that would allow users to quickly and easily generate reports and manage the complexity
of analyses while minimizing overhead. Unlike other tools such as Jupyter, Traverna and Galaxy,
adapr is built in R for R and is geared toward simplicity for beginning R users with some minimal
alterations to standard R coding. adapr is an R package that uses a R shiny (Chang et al., 2017)
graphical user interface to interact with the directed acyclic graph (DAG) that represents the data
analysis. This structured system would facilitate multiple data analysts in interpreting or collaborating
on projects. Although adapr is capable of literate programming using R Markdown, adapr is designed
for producing files (graphics, tables, etc.) that are distinct from the code that produced them and can
be shared within a scientific collaboration. We call these files accountable units because the system
can provide their providence, meaning the data, code dependencies, date, and authorship. This
functionality is sustained by computing the cryptographic hashes (Rabin and others, 1981) of the
result files and storing these alongside the R code within the version control system Git (Hamano and
Torvalds, 2005). It is important to note that the primary data are not version tracked, but only the
file hashes, this leads to a check of the identity of the data, but does not allow for reproducing data if
modified so that primary data should be stored in another archive. The reasons for this are that 1) the
analysis should not modify the primary data, 2) the primary datasets should be stored in a secured
version system or database, and 3) tracking versions of the primary data is most efficiently done using
a database rather that system such as Git.

The idea of accountable units is similar to that of verifiable computational results (VCRs) proposed
by Gavish and Donoho (2011). These authors recognized the difficulties and of ensuring long-term
re-execution of source code, and argued the only way of ensuring this is to virtualize and store
the full computing platform. They further argued that the source code, the inputs, and output are
most important to evaluating the reasoning behind published results rather than strict computa-
tional reproduction, which can be time-consuming and technically challenging. There is a bright
distinction between collecting a history of computations compared to retaining and sharing the ability
to reproduce the final results. We have emphasized elsewhere (Gelfond et al., 2014) that, beyond
reproducibility, the analytical history is essential to accountable data analyses based upon formal
theories of accountability (Jagadeesan et al., 2009). These theories imply that an evaluator (e.g. peer
reviewer) cannot make a valid assessment of a communication (e.g. scientific analysis) unless the
evaluator is aware of a verifiable context and history. Furthermore, the computational time required to
identify a history is that of text search, which most often can be accomplished much more simply and
quickly than attempting to recompute the analysis. We see adapr as fulfilling and assisting in creating
some of the necessary components of VCRs. While adapr is not intended as a tool for instrumenting
arbitrarily structured R code to track computation input/output, this package is aimed at providing a
transparent organizational structure while establishing provenance and reproducibility assuming the
stability of the computing platform.

Setting up adapr and defining a project

The adapr package is available from CRAN (Comprehensive R Archive network, cran.r-project.org)
with the latest package version available on GitHub (github.com) that can be installed with
adaprUpdate(). In order to initially set up adapr, there is a helper function defaultAdaprSetup()
that will ask a short sequence of questions (default project directories, preferred username, ver-
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sion control preference, etc.) and will create the first project ‘adaprHome’ within the project di-
rectory (e.g. by default the computer’s ‘Document’ directory). This setup function must be exe-
cuted in ordered for adapr to function properly. If RStudio (RStudio Team, 2016) is used, this
setup function can utilize the RStudio environment to locate system resources such as pandoc au-
tomatically. The setup function creates a directory at the top level of the user directories called
‘ProjectPaths’ with two files ‘projectid_2_directory_adapr.csv’ and ‘adapr_options.csv’ that are required
to locate projects and configure adapr, respectively. The location of the ProjectPaths options direc-
tory can be changed from the default by setting an option within the R Profile using the statement
options(adaprHomeDir='myPathToOptions').

An adapr project is a set of analyses based on a given collection of data that is structured as a
directed acyclic graph. The project is contained within a folder (a file directory with the same name
as the project) with all data, R scripts, and results. A new project can be created with the function
initProject that can be invoked as initProject('myProject'). When a new project is initialized, the
project is created as a single folder within a file system (OS X, Linux or Windows) with the following
structure:

/

Data

Programs

Set of R script files operating on /Data

Support

Library Files (list of R packages used by project)

R shiny Apps

Markdown (set of R markdown files)

Dependencies (set of tab-delimited files storing dependency information)

Results (Main)

Set of Results Directories (named corresponding to each R script)

The fundamental unit of the project is an R script that is linked to three corresponding elements.
The first element is a ‘Results’ folder with the same name as the R Script that resides within the
project’s main ‘Results’ directory. The second is an R markdown file with the same name (with
file extension ‘.Rmd’) within the Markdown directory. The third element is a dependency file with
the same name as the script (with the file extension .txt) within the ‘Dependency’ directory. The
dependency file contains the read/write history of the R script. When a project is initialized by
default, a ‘read_data.R’ file is created and executed automatically. This, in turn, creates a results
directory ‘Results/read_data.R’ and an R markdown file ‘Markdown/read_data.Rmd’ and a corresponding
dependency file ‘Dependency/read_data.txt’.

In addition to the main project directory, each project is associated with a ‘Publish’ directory that
can be used to share selected results with collaborators. The Publish directory could be a Dropbox, file
server or web server directory.

Initializing projects and adapr R scripts

The function call projectInit('myProject') in the R console will create a new project that by de-
fault contains a single R script ‘read_data.R’. A side effect of this function is to automatically set
current project to the new project. Lastly, the project’s settings can also be changed with the function
relocateProject by specifying the project and the new settings. It is also possible to import projects
that were already built by a collaborator. For example,

relocateProject('importedProjectID',project.path='parentDirectory')

imports a new project called ‘importedProjectID’ that is within a subdirectory of ‘parentDirectory’.

The adapr package contains a sample project called ‘adaprTest’ that can be loaded into the users
file system with the command loadAdaprTest(). To create another R script within that project, one
can execute the following console commands:

>loadAdaprTest()
>setProject('adaprTest')
>makeScript(r='postProcess.R',description='mixed model analysis',

project.id=getProject())
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The setProject function specifies the project and the getProject function retrieves the project ID
in other functions by default so that the user does not have to respecify the project. The makeScript
function will, by default, automatically open the corresponding script with the default R file browser.
Each script (e.g. ‘postProcess.R’) is given a text string description (e.g. "mixed model analysis"),
and also, every file that is read or written within a project has an associated text string description.
Timely descriptions are an important part of tracking because they facilitate the gradual accumulation of
metadata that promotes efficient transparency rather than an automated code instrumentation, which
may not easily generate precise, correct, or human-interpretable metadata tags. When a program is
created with makeScript, the program is executed, creating a script-specific directory within the parent
‘Results’ directory, R markdown file, and the dependency file. The adapr R scripts have a structured
header that identifies the project and the script, and a footer that writes the read/write dependencies
into a file corresponding to the R script within the ‘Program/Dependency’ directory. The header and
footer that are automatically created by makeScript and are shown below.

rm(list=ls()) #Clears R workspace
set.seed( 2011 ) # Sets random seed

library('adapr')

source.file <-'read_data.R' #Name of file matching filename /Programs directory name
project.id <- 'project_name' # Name of project
source_info <- create_source_file_dir(source.description='reads data')
# Source description will be linked to R script

# Library statements here (e.g.\, Library('ggplot2'))

# Begin program body here

# End Program Body
dependency.out <- finalize_dependency()

Within the adapr script, the key step within the header is the create_source_file_dir function
that creates the source_info object of type ‘list’. The source_info object is stored within the R options
and can be retrieved using getSourceInfo(). This is used to collect the read/write information within
the body of the R script by wrapping the read/write commands within three R commands. The first is
the Read function:

Read(file.name = 'data.csv', description = 'Data file',
read.fcn = guess.read.fcn(file.name), ...)

This command returns the file object read by the function read.fcn and tracks the description and
the file hash with "..." passed as additional arguments to the read function read.fcn. Note that in
the usage example below, it is transparent and parsimonious, especially given that the Read function
defaults to reading from the project’s data directory:

Dataset <- Read('datafile.csv','my first dataset')

The argument read.fcn could be any function that given a file, returns an R object, and so, Read is
not limited to flat files. To facilitate the identification of a project’s data files, the listDatafiles()
function call produces a list of files within the data directory.

The second command is the Write function:

Write(obj = NULL, file.name = 'data.csv', description = 'Result file',
write.fcn = guess.write.fcn(file.name), date = FALSE, ...)

This example writes object ’cars’ into the Results directory as a comma separated value (CSV) file

Write(cars,'cars.csv','speed and distance')

and this example writes object ’cars’ into the Results directory as a R data object.

Write(cars,'cars.rda','speed and distance')

This command writes the R object obj using the function write.fcn and tracks the description and
the file hash with "..." passed as additional arguments to write.fcn. If the file.name argument has
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a .rda extension then the R object is written to the results directory as an R data object. The third
function used by adapr creates graphics files:

Graph(file.name = 'ouput.png', description = 'Result file',
write.fcn = guess.write.fcn(file.name), date = FALSE, ...)

This command opens a graphics device for plotting using the function write.fcn and tracks the
description and the file hash with "..." passed as additional arguments to write.fcn. The function
guess.write.fcn uses the file suffix to determine the type of file to write (e.g. pdf, png, etc). The
date variable is a logical that determines whether a date is added to the filename. This function is
followed by graphics command set and closed by a dev.off() or graphics.off() statement. Below is
an example.

Graph('histogram.png','hist of random normals')
hist(rnorm(100))

graphics.off()

This code snippet creates a file in the results directory of the R script called ‘histogram.png’ with a
histogram of 100 standard normal variables.

Another key function is loadFlex invoked as the following:

LoadedObject <- loadFlex('process_data.R/intermediate_result.rda')

The loadFlex function reads and returns an R data object with the .rda file extension written by
another R script within the project. The loadFlex function could also read any intermediate result
file type if the argument read.fcn is specified. This function is critical because it allows the R scripts
within a project to build on the results of other R scripts in a transparent and structured manner. This
function searches through all results for a file name that matches the argument string to identify the
R object to load, and returns the corresponding R object (assigned to LoadedObject in the example).
This function must follow the call Write(intermediate,'intermediate_result.rda','normalized
data') within another R script (process_data.R in the example) to pass preprocessed data from one R
script to another or to collect key results from multiple R scripts. It is important to note that loadFlex
requires prior use of a Write function because adapr does not, by default, collect the entire workspace
of each R script. The convenience function call listBranches() returns a data frame of all intermediate
results available for loading along with their descriptions.

By transferring and tracking objects from one script to the next, adapr promotes the idea of
modularity. In this manner, the scripts can have a specific function rather than one script being burdened
with all analytical tasks. Modularity promotes transparency by allowing a collaborator or reviewer to
quickly identify which scripts are responsible for which analytic tasks, and allowing a collaborator to
isolate their contribution to a particular task within a script that is linked to scripts created by others.
Lastly, modularizing scripts to perform specific tasks facilitates transforming scripts into functions
themselves. Modularization makes clear what the inputs (arguments to loadFlex) and outputs
(arguments to Write) of a particular script are. R functions that are specific to a project are stored
within the ‘Programs/support_functions’ directory. Any R script within this directory will be sourced
and loaded within the create_source_file_dir function within the adapr script header. A function
can be created within this directory by using the function call makeFunction('mySpecialPlot') in the
R console that will create a file ‘Programs/support_funcionts/mySpecialPlot.R’ and by default will open
the function’s file for editing.

The adapr footer contains the critical function call finalize_dependency() that transforms the
R script’s file input/output (I/O) stored within the object getSourceInfo() and writes this data to
the project’s ‘Dependency’ directory in the form of a tab-delimited file with the same prefix as the
R script. The dependency data within the file includes the R script name, R script description, R
script hash, R script file modification time, R script run time, the project ID, the target file that is
read/written, the direction of dependency (read or write), the target file description, target file hash,
and the target file modification time. The script header function create_source_file_dir and footer
function finalize_dependency execute many side effects that are necessary for tracking and these are
listed in Table 1.

For some critical analyses or data objects, it may be useful to store a version history. This means
storing more than one version of the object itself, not just the code to reproduce the object. This can be
done using the archivist package that has been incorporated into adapr by creating an archivist archive
for each adapr script in the R script’s ‘Result’ directory. Using the function call arcWrite(myRobj,"my
object description") in the R script file stores the object within an archivist archive. If the R script
that wrote the object was ‘myRscript.R’, this may be loaded into another R Script by using the statement
myObject <-arcRead('myRscript.R','my object description') that assigns the value of that object
to myObject.
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Table 1: Side effects of header and footer functions

Function Side effects

create_source_file_dir Create directories for Project and Results
Set project id for R session
Initialize the file tracking object source_info
Gather file information on all project files
Initialize Git for project (if using Git)
Add dependencies files to Git
Initialize archivist repo for script
Run all R scripts in ‘support_function’ directory
Run all R scripts in script specific

‘support_function/myRscript.R’ directory
Create R markdown file with same

file prefix (if not already done)
Create publication file (if not already done)

finalize_dependency Pass workspace to R markdown file and render
Store file modification time and hash for all dependencies
Write dependency information to ‘Dependency’ directory
Add dependency file and R session information to Git

Literate programing using R Markdown

An R Markdown file is created automatically within the ‘Programs/Markdown’ directory when an adapr
R script is first created and executed. This file has the ‘.Rmd’ suffix and is rendered when the R script
is executed as a side-effect of the footer finalize_dependency() function within the corresponding R
script. Additional R markdown files can be created using the createMarkdown function and rendered
within the ‘Results’ directory with the ‘renderRmd’ function. Executing the R script will pass its
workspace to the markdown file R commands and render these markdown files. By pairing each R
script with a markdown file, adapr allows the R script to perform transformations and analytical tasks
that can be more easily summarized, formatted, and displayed within the R markdown file.

The ‘.Rmd’ file can also be executed by using the "knit" button in RStudio if the file header has
the header line scriptLoader(project.id,R Script) executed (this is commented out by default).
Additionally, file input/output can be tracked using the line if(checkRmdMode())){dependency.out
<-finalize_dependency() } as the final line in the markdown file. These lines are automatically
included in the R markdown files, but are commented out. The RStudio "knit" button can facilitate
exploring and debugging; however, it does not direct the rendered markdown into the results directory,
and the rendered markdown file would go to the ‘Markdown’ directory.

Managing R packages

By default, projects share a common R library that is specified at setup. Sometimes users may pre-
fer that project has a project-specific library, instead of the default R library. This may be useful
for improving consistency in computations, although the larger libraries can use substantial drive
storage. The user may specify library preferences at initialization by setting the following argu-
ment within the projectInit function: initProject('myProject',project.libraryTF=libOption).
The project.libraryTF parameter libOption may be set to one of 3 values ("TRUE","FALSE", or
"packrat"). The default value FALSE implies the use of the default library. The value TRUE will use the
project specific library located in the Programs/Support/Library directory, and the value "packrat"
will imply the packrat (Ushey et al., 2016) to manage R packages. The packrat package allows the
isolation of the package dependencies for R projects and has many features including isolation of the
computing environment, cross-platform compatibility and cleaning out unused packages. adapr does
not set up or operate packrat, and this responsibility is left to the user. We have found that the RStudio
IDE is helpful for the initialization of packrat rather than R console commands.

adapr facilitates loading and tracking R packages using the Library function and by tracking
the loaded libraries within the R session information. R packages needed for each R script can
be loaded with the Library function within the R script header. This function will install and/or
load the package if it is not installed or loaded. A use case would be Library('ggplot2','cran')
or Library('limma','bioc'). At the end of the program body, the finalize_dependency function
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writes the R session information to a file. The getLibrary() statement will read all of these session
information files for a project and collect all of the packages and their versions. This information
can be useful for reproducibility, and these packages can be installed using the installLibrary()
function call. The installLibrary function has an argument to install the specific versions, and
the packages are installed from CRAN, MRAN (Microsoft R Application Network, https://mran.
microsoft.com), Bioconductor (Huber et al., 2015), or GitHub. Currently, only the latest compatible
version of Biocondunctor packages will be installed. If the packrat package is used for a project, then
it is recommended to use packrat functions and the RStudio IDE for managing package versions. An
example of how to use these functions is shown below: The following series of console commands
loads the example project stored within the adapr R package.

>loadAdaprTest()

This sets the project.

>setProject('adaprTest')

This returns the directory containing the project library.

>getProjectLibrary()

This returns the project library’s package information.

>getLibrary()

This installs project library.

>installLibrary()

There are many technical intricacies of tracking R package use within a project, and there has been
significant effort build stable solutions for package reproducibility such as packrat and switchr (Becker
et al., 2017). These difficulties are not currently completely handled by adapr and is an area of active
development.

Summarizing and visualizing projects

The reportProject function and the app can summarize all programs and results within a single
HTML document with descriptions, dependency information, and links to programs and results. The
app can be launched with within the R console with the function adaprApp(). The report information
can be obtained within the Report tab of the app in Figure 1. After clicking the "Report" button, the
HTML project summary is written to the ‘Results/Tree_controller’.R/ directory. The Report tab shown
in figure also is capable of launching project R Shiny apps that access project data or Results.

Synchronizing and version control

Two critical parts of accountability and reproducibility are addressed by the syncProject and
commitProject functions as well as within the Synchronize tab of the app. The syncProject function
can be called in the R console with syncProject() after a setProject('myProject') call. It will
synchronize data, scripts, and results for a project. The project is synchronized if two criteria are
met: 1) the file modification times stored within the R scripts dependency files are the same as the
modification times within the file system, and 2) if the cryptographic hash (data fingerprint) of the
file hash of each file within the project is consistent with all of the dependency files. The syncProject
function called by syncProject() detects lack of synchrony and can execute the corresponding R
scripts that are needed to achieve synchrony. It is possible that the DAG has structures ("forks") that
allow the R scripts to be run in parallel because they are not dependent on one another. We have added
experimental functions parallelSync and monitorParallelSync that allow parallel execution of the
DAG by different cores. Note that monitorParallelSync should be executed in a separate R session
and will indicate which cores are working on which part of the project DAG. For larger projects, an
alternative to synchronizing the whole project is to only synchronize the results of a particular R script.
This involves only synchronizing the parts of the DAG that that R script depends upon. This can be
done with the syncTrunk('myscript.R','myProject') function call. This is illustrated in the code
snippet below, and Figure 2 shows the results of the last graphProject() statement.

>loadAdaprTest() # Loads the project stored within the adapr R package
>setProject('adaprTest') # Sets the project
>syncProject() # Synchronizes the project
>openScript('read_data.R') # Open R script
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Figure 1: Run report tab. 1. The Create Report button will create an html report listing all R script
input/outputs. 2. RunApp selects and launches App within the project App directory. 3. The Identify
file button initiates a file select dialogue, and the version control history based upon the file hash is
given.

We could make some minor change in ‘read_data.R’ and then execute the following to synchronize the
project.

>graphProject() # Shows project DAG with synchronization status
>runScript('read_data.R') # Executes the script in a clean R environment
>syncTrunk('graph_cardata.R') # Executes scripts needed to synchronize

results from 'graph_cardata.R'
>graphProject() # Shows project DAG with synchronization status

adapr optionally uses the Git version control system, which can be operated with the
commitProject() function and the Synchonize tab. The Synchronize tab is shown in Figure 3. Git must
be installed for this feature to work. There are platform independent and free Git clients available for
download (https://git-scm.com/downloads/guis). While adapr handles Git tracking and snapshots,
it does not currently revert the current version of the project back to a previous snapshot. We
recommend that reversions be performed using Git directly or through a Git client, which have more
features and visualization capabilities. The function commitProject() and button within the app takes
a project snapshot of all R scripts and adds the synchronization status (synchronized or not) to the
commit message. Because the file names and file hashes/fingerprints are stored within dependency files
that are tracked by the version control system, any data, R script, or result file can be matched by its
hash/fingerprint within the version control history to determine its provenance. The adapr function
Digest is a wrapper for functions in the digest (Eddelbuettel et al., 2017) package and is used the
compute the cryptographic hash (not serialized) of a file, and this file hash can be identified by a Git
history search to determine its provenance within a project. adapr uses Git operating functions that
were adapted from those within the devtools (Wickham and Chang, 2015) and git2r (Widgren and
others, 2017) . If Git is used, adapr will automatically perform a commit after syncProject. This allows
the user to capture all result file hashes and to identify which results were obtained in a synchronized
state. It is important to note that adapr automatically adds all R script files into the project’s Git
repository, but it does not automatically use formal version control for data or results files because
these files may be too large for the version control system to efficiently track the changes. If the user
would like to store multiple versions of a result, then we recommend using the arcWrite function.
However, by default, the file hash is computed and stored within the ‘Dependency’ directory for all
files that are read or written within the project so that all relevant files and their provenances can be
identified if a commit was made when the file was read/written. File histories can be identified within
the "Run Report" tab that executes a file hash search and returns the Git commit associated with the
file including the date, author, and file description. The Git history of a file is also obtained with the
gitProvenance function with arguments project.id and filepath that opens a file selection window
and runs a Git search for the hash of the file within the project.

There is an interactive project map feature within the "Synchronize" tab. The "Examine Program
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Figure 2: Resulting graph from graphProject() in code snippet. The R Script Graph shows
dependencies of R scripts in the "adaprTest" project with their synchronization status after
syncTrunk(’graph_cardata.R’), which synchronizes results from the R script ‘graph_cardata.R’.

Graph" button displays the DAG of all the project’s R scripts colored by their synchronization states.
These scripts can be executed by clicking on the colored point, and their file I/O can be examined
by selecting or "brushing" over the colored point. This reveals the file I/O graphic in an adjacent
panel. These files are labeled by their descriptions and can be opened by clicking on the file or their
file directories may be browsed by selecting or "brushing" over the colored file labels. The graph may
alternatively be displayed using the graphProject() function. A limitation is that very large DAGs or
very large input/output lists for an R script can overwhelm the visual space of these graphics. Future
versions will address this issue.

Sharing results

Specified result files from the project can be copied to a shared ‘Publish’ directory using the
publishProject('myProject') function. This allows users to share or update a list a selected results
with one command. The publishProject function reads a file within the ‘ Programs/Support_functions’
directory that contains a list of files that are selected for publication (i.e. copied to the project
publication directory, which may be a shared server folder, a web server, or cloud server such as
Dropbox). Publishing can be automated by including the publishProject function within an adapr R
script. The file that contains paths to the results that will be published can be opened for editing with
the browsePubFiles('myProject') function.

Configuration

The adapr package can be updated and configured within the setAdaprOptions and getAdaprOptions
functions. An option can be set with the syntax setAdaprOptions("optionName","optionValue").
The key options are summarized in Table 2. For example, the use of Git can be activated by
setAdaprOptions('git','TRUE'). Git itself can be configured using Git commands or within R using
the adapr function call gitConfigure(username,email).

Convenience functions

We have found that certain project oriented functionality can save time and effort, and we have
compiled a list of functions that we have found useful in Table 3. These can be used without specifying
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Figure 3: Synchronize Tab. 1. Examine program graph creates or updates two interactive plots.
2. Check the synchronization status and synchronize project by running necessary R scripts. 3.
Syncronize project. A pop-up progress bar will open. 4. Commit message with Git version control
snapshot of project. Commit Project button operates Git. 5. R Script Graph shows dependencies of R
scripts. Clicking on button runs the R scripts. Selecting or brushing button opens panel 6. 6. Displays
the inputs and output of the selected R script. Clicking on the file label opens the file or selecting
opens the file folder.

Table 2: List of adapr options

Purpose Option Name Value

Path to system resources PATH Paths separated by system delimiter
Specify use of Git git TRUE or FALSE
Default project path project.path File path
Default publication path publish.path File path
Default R library library File path to default library
Specify use of adapr beta version adaprBeta TRUE or FALSE
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Table 3: Convenience functions

Purpose Function example

Browse main function cheat sheet for adapr adaprSheet()
Show file usage information for all projects fileInfoProjects()
Open project directory in file browser showProject()
Open project or source results directory in file browser showResults()
Open project’s R script or R markdown file openScript()

lists R scripts if not specified
List intermediate result objects listBranches()
Plot synchronization status of project scripts graphProject()
Execute R script within a project runScript('read_data.R',

optionally create a markdown log 'adaprTest',logRmd=TRUE)
Search R scripts for string searchScripts('lmer')
Copy data file to project data directory importData()
Return results directory within R script resultsDir()
Return data directory within R script dataDir()
Track file reads without using Read ReadTrack('arraydata.idat',

'read by limma package')
Track file writes without using Write WriteTrack('myFile.docx',

'From ReporteRs package')

the project argument after the setProject('myProject') function. The two pages of the function
summary "cheat sheet" that is opened with the adaprSheet() function call is shown in Figures 4 and 5.

First Steps

>defaultAdaprSetup() Initializes necessary files & creates first project adaprHome
>updateAdaprConfig() Need to run to update to adapr v2.0
>adaprSheet() Opens cheat sheet
>loadAdaprTest() Installs test project
>adaprApp() Launches App that interactively runs and probes project
>adparUpdate() Update adapr from github beta versions

>listProjects() List all projects and main directories
>openProjectList()	 Open project list for editing

>initProject(“NewProjectID”) Create new project and set to project
>relocateProject(“NewProjectID”,newpath)	 Import new project
>removeProject(“OldProjectID”) Remove project form list

>setProject(”projectID”)	 Set to current working project
>getProject()	 Returns current working project

>importData() Opens file dialogue to copy data into project directory

>syncTestProject)(“projectID”)	 Get Project synchronization status
>syncProject(“projectID”) Synchronize or update project results
>getDepSubgraph(“final_report.R”) Produces subgraph of dependencies of R script
>syncTrunk(“plot.R”,“projectID”) Update results for specific script
>parallelSync(“projectID”)	 Synchronize project in parallel. Experimental
>monitorParallelSync projectID”)	 Shows Parallel Synchronization status graph

>graphProject() Create a graphic of R Script dependencies and synchronization status
>reportProject()	 Create HTML report of project scripts and I/O dependencies

Project Level – Console commands

R Script Level– Console commands
>makeScript(“read.R”,	“reads”) Creates new program
>runProgram(“read.R”,logRmd=TRUE)	 Executes program
>removeScript(“read.R”) Removes program
>makeFunction(“myFunction”,”functions”) Makes function file

Read(“data.csv”,”study x data”) Reads any file from data directory
Write(myobject,”obj.Rda”,”description”) Writes R object into Results 

directory

loadFlex(“mydata.rda”)	 Returns saved object from another 
R Script

WriteTrack(“myfile.csv”,”description”)		 Tracks writes by other R functions
ReadTrack(“myfile.csv”,”description”)			 Tracks	reads	by	other	R	functions
arcWrite(myObject,”xyplot”) Saves	myObject to	archivist	repo
arcRead(“process.R”,”xyplot”) Returns	object	from	archivist	repo
#Create	a	graph	in	results	directory:
Graph(“hist.pdf”,”Gaussian”)	 resultsDir()	and	dataDir()
rnorm(100); Return	the	results	and	data
dev.off() directories.

File Input/Output within program body

>showProject()	 Opens	project	folder
>showResults()	 Opens	project	results	folder
>openScript(“myRscript.R”)		 Opens	project	R	script
>searchScript(“demographics”) Searches	all	scripts	for	string
>listScripts()	 Lists	files	in	data	directory
>listBranches()	 Lists	available	objects	for	loading
>listDatafiles() List	files	in	data	directories

Browsing functions-Console commands

adapr Cheat Sheet

Figure 4: Cheat sheet snapshot. This figure shows first out of two pages of the function summary
cheat sheet. This is opened from the R console using the function call adaprSheet().

Conclusion

Becker and Chambers (1988) have written that "the complexity of the structure that represents a
realistically large analysis makes a thorough interactive investigation very challenging. New statistical,
computational, and graphical techniques will be needed." Since then, there have been many strides
towards that goal. The adapr package is a demonstration of how scientific reproducibility and
accountability can be accelerated by automatically structuring, tracking, and implementing analyses.
Beginning R programmers may benefit from this approach by not having to create their own system,
and while more experienced analysts have likely created their own methods for structuring analyses,
it is possible that there are certain features of adapr that they could integrate into their systems. These
features include adding a standard structure to project directories, checking the synchronization status
of the project, selectively synchronizing part of the DAG, linking short text descriptions to data and
results files, creating a HTML summary of the full project, interactive project maps, and version control
integration with file hash search capability for results and programs. This integrated version control
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publishResults() Copy preselected files to publication directory
>browsePubFiles()  Open csv file with list of files to publish
>getPubResults()  Returns dataframe of publication files

Publication

Library(“ggplot2”) Load/installs R package 
>getLibrary(“projectID”) Returns library information for a project
>installLibrary(“newprojectID”) Installs project’s library 

Package Tracking – Console commands

Options– Console commands
>getAdaprOptions() Get default directory, user info, git activity 

status, paths for git and pandoc
>setAdaprOptions(“git”,”TRUE”) Set adapr options

>commitProject(“commit message”,project.id) Commits project
>gitConfigure(“username”,”email@univ.edu”) Set user name
>gitConfigureTest() Check user name 

settings
>gitProvenance(“project.id”,filepath) Identify file 

provenance within a 
project.

Version control

adapr Cheat Sheet

Figure 5: Cheat sheet snapshot. This figure shows second out of two pages of the function summary
cheat sheet. This is opened from the R console using the function call adaprSheet().

feature tracks file hashes of data, programs, and results and can capture the evolution of the analysis,
not just the final results. This points to an important challenge: the analyses in many scientific articles
are extremely intricate and necessarily become more complex as the data are inevitably explored. This
makes version control system indispensable for unraveling the history of analysis.

Limitations

The limitations of adapr include the inability to directly track changes in external databases, file hash
computation can be slow for files that are multiple gigabytes, the requirements for the user to use
adapr read/write functions for tracking, and the package management system is less capable than
packages such as packrat and switchr. Currently, adapr can be used with external database input
functions, but these would not be tracked as inputs with the Read function because they are not within
the file system. We are considering options for tracking external database input for future adapr
versions. One workaround for this is to have an R script within the project that downloads the relevant
database queries and writes these objects to the file system with a Write function, and these query
results can be read into another R script and tracked as a dependency using the loadFlex function.
The adapr package is also limited by its dependency on other R packages and by the fact that running
the Shiny app while programming would require two R sessions. We have found that using project
oriented functions (makeScript,syncProject,commitProject,initProject,setProject, etc.) within
the console makes for a more fluid experience, but this requires that the user have an idea of which
functions to utilize, which is why we created the adaprSheet() function to give a quick overview. Also,
beginning R users may be just learning the art of programming, which could make using a structured
programming system like adapr difficult if that structure is violated. There are some safeguards built
into adapr, but violating the header/footer structure can result in errors. We have used adapr in a
class with first-time programmers, and this has greatly informed our development. For example, the
function makeScript originally only created the script within the file system, but now, it also opens
the script with the default R program so that the students do not have to search for it. The students
use a single function Library function instead of two functions install.packages and library. Also,
we have found that the runScript function is very useful for teaching reproducibility as it lets the
students run the script in a clean environment. Students can also be introduced to R through the R
scripts, and after a few classes, can be introduced to R markdown. This allows time to get familiar with
R, before adding the additional complexity of R markdown syntax. Because each adapr script is paired
with and passes its environment to an R markdown file, the students can see how R markdown can
nicely format the objects that they have previously created. While a limitation of this work is that the
adapr user base is small, one of the key aspects of the system is that it has been tested on a variety of
projects. The adapr package and earlier versions have been tested in over 160 projects. These projects
were conducted by five statisticians in an academic health center (AHC). The projects included clinical
trials, genomic analyses, experimental data from basic sciences, as well as projects created specifically
to test adapr. Figure 6 represents the directed acyclic graphs with structures related to the complexity
of the projects.
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Other potential benefits

Additional goals of adapr include efficiency and transparency. The AHC environment creates a high
demand for statistical analyses as well as significant pressure to reduce the time-to-completion. We
have studied process of statistical consulting in some detail (Schmidt et al., 2016), and the use of the
system has not led to any significant increase in lead times, but it has subjectively improved the ease
of collaboration among analysts. The use of any structured system like adapr can be highly beneficial
when a long dormant project becomes active again or a project is passed from one analyst to another.
Another advantage of the system is that reports and interactive maps allow users who are not familiar
with R the opportunity to browse the analysis, which promotes transparency. These maps also help
the users, regardless of experience level, to orient themselves to large or complex analyses. Structuring
projects in directories that are systematically scanned for activity (e.g. every 30 minutes) allows
automated tracking of the work patterns within projects (e.g. file modification times of R scripts or
markdown files within the projects directory). This facilitates the objective estimation of work-hours
that are useful for reporting, billing, or resource allocation.

Lastly, given that accountability has been recently added as a requirement for authorship by the
International Committee of Medical Journal Editors (Resnik et al., 2015; International Committee of
Medical Journal Editors, 2016), scientific reviewers or readers may benefit from knowing that an adapr
data analysis had a high degree of accountability or reproducibility. Hence, we suggest adding the
statement "The data analysis was conducted using an accountable process." to the ’Statistical methods’
or ’Data analysis’ section of an article that used adapr. This designates that: 1) a documented system
was used for the version-controlled analytic history, 2) the provenance of results can be checked, and 3)
that the analyses and results have descriptions, a documented structure, and a means of reproduction.
Note that version control systems such as Git store the author’s name and email associated with
commits so that these naturally document contributions.

Figure 6: The directed acyclic graphs of 160 projects that used the adapr package. Each panel is a
project, and points are files (data files, R scripts, and output files) organized by their dependencies
(flowing from top to bottom) within that project.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 19

Acknowledgement

The authors thank Emily Burnett for her contribution to early versions of the user interface. The authors
would like to thank the editor and two anonymous reviewers for substantial improvement of this
work. The project described was supported by the National Cancer Institute and the National Center
for Advancing Translational Sciences, National Institutes of Health, through the grants GM070335,
NIA Shock Center P30AG013319, NIA Pepper Center P30AG044271, CTRC P30 Cancer Center Support
Grant CA054174 and the Clinical and Translational Science Award (CTSA) UL1 TR001120. The content
is solely the responsibility of the authors and does not necessarily represent the official views of the
NIH.

Bibliography

E. Afgan, D. Baker, M. van den Beek, D. Blankenberg, D. Bouvier, M. Čech, J. Chilton, D. Clements,
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RealVAMS: An R Package for Fitting a
Multivariate Value-added Model (VAM)
by Jennifer Broatch, Jennifer Green, and Andrew Karl

Abstract We present RealVAMS, an R package for fitting a generalized linear mixed model to
multimembership data with partially crossed and partially nested random effects. RealVAMS utilizes
a multivariate generalized linear mixed model with pseudo-likelihood approximation for fitting
normally distributed continuous response(s) jointly with a binary outcome. In an educational context,
the model is referred to as a multidimensional value-added model, which extends previous theory to
estimate the relationships between potential teacher contributions toward different student outcomes
and to allow the consideration of a binary, real-world outcome such as graduation. The simultaneous
joint modeling of continuous and binary outcomes was not available prior to RealVAMS due to
computational difficulties. In this paper, we discuss the multidimensional model, describe RealVAMS,
and demonstrate the use of this package and its modeling options with an educational data set.

Introduction

Originally developed in Broatch and Lohr (2012), the RealVAMS model is a multivariate generalized
linear mixed model (GLMM) that extends previous theory by allowing the simultaneous joint modeling
of continuous and binary outcomes within a value-added framework. Although the model may be
used in a variety of contexts (e.g., sports, medicine, etc.), it is particularly useful in education for
studying relationships between teachers and students. For example, the RealVAMS model can estimate
potential teacher contributions toward a variety of student outcomes, including quantitative scores
from different subjects and different assessments, as well as categorical success outcomes such as
graduation status. In addition, the RealVAMS model estimates the relationships between the predicted
teacher effects for these various measures of student success.

The RealVAMS package employs the RealVAMS model to analyze multimembership data. Mul-
timembership data (Browne et al., 2001) poses unique modeling and estimation issues. Bates et al.
(2015) describes the random effects that result from this type of data structure as “partially crossed”
and “partially nested” because subjects are not perfectly nested under one higher level effect and may
be nested under multiple, different higher level effects. The newly released lme4 (Bates et al., 2015)
adequately analyzes this type of effect, but cannot model a continuous outcome and a binary outcome
at the same time. Specifically, glmer cannot utilize both a normal and binary link in a single function
call.

Modeling both types of responses is essential for capturing a broader picture of the latent effects. If
a relationship between the latent effects on the outcome variables exists, this simultaneous estimation
improves prediction of outcomes. In an application of the RealVAMS model to the context of sports,
Broatch and Karl (2018) found that the joint model benefits from significantly improved median
log-loss and absolute residuals of cross-validation predictions if the estimated “team-level” random
effects are correlated. However if the team-level random effects are not correlated, the joint model
does not show improved predictive power. These “team effects” are analogous to the “teacher effects”
in an education setting such that if different educational outcomes are somewhat correlated, the joint
model will likely lead to improved predictions of academic achievement and more accurate estimates
of teacher effectiveness. However, if the effects are not correlated, the joint model will likely not be an
improvement over separate models that can be run in lme4.

Similar to other value-added models (VAMs) used within an educational context, the RealVAMS
model aims to estimate the effects of educational factors such as teachers, schools, and districts on stu-
dent learning while controlling for prior student achievement and other covariates, if available. These
statistical models typically measure the correlation between different educational factors and student
achievement, and do not directly measure causation (American Statistical Association, 2014). Conse-
quently, “teacher effect” estimates represent unexplained classroom-level heterogeneity (Lockwood
et al., 2007) and should be “viewed within the context of quality improvement” (American Statisti-
cal Association, 2014, p. 2) rather than used for high-stakes evaluation purposes. Although most VAMs
are based on standardized test scores alone (American Statistical Association, 2014), the RealVAMS
model enables users to explore the potential contributions of educational factors and programs to
other types of student outcomes, providing a more nuanced characterization of student success to
help enhance the quality and fidelity of educational programs and instruction.

The combination of different types of responses allows measurement of educational effectiveness
using additional indicators of student success, not just standard test scores. RealVAMS also estimates
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the relationships among the multidimensional random effects on all continuous and binary outcomes.
Therefore, in addition to obtaining multidimensional real-world estimates of value added by teachers
or programs, education researchers can simultaneously explore the relationships among the effects on
typical continuous measures of student achievement and real-world outcomes, which are frequently
binary. In this paper, we present the RealVAMS model and discuss the technical challenges overcome
by RealVAMS when using multimembership data. We also demonstrate the use of RealVAMS (Karl
et al., 2015) with an educational data set.

RealVAMS model

This section discusses the unique features of the multidimensional RealVAMS model and how the
model extends current theory.

Normal multimembership model

For simplicity, we begin by introducing the RealVAMS model for the case where all responses for
subject i are continuous, then extend this model to include a binary outcome. To begin, the RealVAMS
model presented in a traditional mixed model framework is

yi = Xiβ + Siγ + εi. (1)

The vector of responses for subject i consists of t potentially different continuous responses that do
not require time ordering or scaling. The [t× (p + 1)] matrix Xi gives the p covariates for subject
i. In an educational context, these covariates may include time-invariant covariates such as gender
and ethnicity, as well as time-varying covariates such as participation in free lunch programs. The
latent effect j = 1, . . . , m for responses k = 1, . . . , t is represented by the vector γ. For latent effect
j, γj = (γj1, . . . , γjt)

′ is the t-vector of effects, where γjk represents the latent effect of j on response
k. Thus, the vector γ = [γ

′
1, . . . , γ

′
m]
′

is the concatenation of the individual m vectors. The (t× tm)
matrix Si is the multimembership design matrix. In an educational context, this matrix indicates which
teacher instructs student i for each of the t responses since the continuous response is often measured
in multiple years. In the model, S can be expanded to allow for fractional membership. The error term
εi is assumed to follow a normal distribution with mean 0 and variance Ri, where Ri is unrestricted
and allows the subject responses to be correlated over the t responses. Additionally, all γj and εi are
assumed to be uncorrelated. The model also assumes that γ is normally distributed with mean 0 and
variance G = blockdiag(G1, . . . , Gm) where

Gj =

g11 g12 . . . g1t
...

...
g1t g2t . . . gtt


and all Gj are initially assumed to be equal.

The multimembership structure precludes a factorization of the design and covariance matrices
across subjects, which makes the non-sparse estimation routines inefficient and non-scalable for
both linear and nonlinear mixed models. Thus, RealVAMS uses sparse matrix routines provided
by Matrix (Bates and Maechler, 2015). Broatch and Lohr (2012) use the pseudo-likelihood approach
to obtain approximations to the maximum likelihood estimators; they then adopt the penalized
quasi-likelihood approach in SAS PROC GLIMMIX (SAS Institute Inc., 2008) to approximate maximum
likelihood estimates (Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993). However, the SAS
estimation in presented in Broatch and Lohr (2012) is limited to less than 30 random effects, which is
not feasible or efficient for a large scale model.

Normal-binary multimembership model

The model executed by RealVAMS simultaneously analyzes normal-binary responses with correlated
random effects. To illustrate, model (1) can be extended to a GLMM that also includes a binary
response. In this case, the continuous response model (1) is adapted by defining the binary response
as an unobservable latent trait ỹ. The binary response is defined as rij = 1 if the latent variable ỹij > 0.
For example, if college entry was the binary response of interest, then the response would equal 1 if
the student entered college and 0 otherwise. A response rij = 1 is therefore equivalent to the subject’s
underlying latent trait exceeding some threshold, ỹij > 0. Thus,

ỹi = Xiβ + Siγ + ε̃i. (2)
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where γ ∼ N(0, G) and ε̃ ∼ N(0, R). To maintain the identifiability in the parameter space, we take
Ri to be a correlation matrix fixed at 1. This requirement is only necessary for the variance of the
latent process for the binary response; the variance components for the continuous responses are
unrestricted. The other terms in the model are defined as in model (1). The GLMM contains the linear
mixed model inside the inverse link function:

E[yi | γ] = g−1(Xiβ + Siγ) (3)

where g(·) is a multivariate probit link function for a binary response, following the recommendation
of McCulloch (1994) and Rabe-Hesketh and Skrondal (2001).

The computational difficulty in estimating the random effects and correlations between those
effects increases with the inclusion of different distributional outcomes. Simultaneously modeling a
binary response requires the inclusion of a nonlinear link function in the integrand of the expression
for the log-likelihood. No closed-form solutions are available for these integrals. Due to the multi-
membership structure, the dimension of the intractable integral is equal to the number of random
effects, with at least one random effect for each effect/response combination. Thus, RealVAMS uses
the pseudo-likelihood (PL) method of Wolfinger and O’Connell (1993) to linearize the likelihood
function. We use an EM algorithm to maximize the likelihood function, iteratively calculate the
pseudo-response, and then re-run EM to maximize. PL is the estimation routine used to handle the
probit link, and EM is used within each iteration for maximization instead of Newton-Raphson. This
approach differs from the Bayesian estimation techniques used in Zhang et al. (2016). Specifically, we
use a doubly-iterative pseudolikelihood routine: the outer pseudolikelihood procedure is given in
Wolfinger and O’Connell (1993) and the inner loop follows Karl et al. (2013). For convenience, the
comments within the RealVAMS source code identify specific equation numbers in Karl et al. (2013)
and Wolfinger and O’Connell (1993) .

The random effects in the RealVAMS model are correlated such that the off-diagonal elements of
Gj are not assumed to be 0, and there is a potential for high correlation among the random effects.
The covariance matrix of the random teacher effects, G, may be near (or on) the boundary of the
parameter space. The Newton-Raphson (NR) methods are known to fail to converge in these situations
(Demidenko, 2004). The Cholesky factorization is not an option for the RealVAMS model due to the
structure imposed on G. RealVAMS presents an efficient alternative: an EM algorithm to maximize
the pseudo-likelihood function. Karl et al. (2013) document how the EM algorithm leads to a more
stable maxima in the presence of near-singular covariance matrices. These highly efficient estimation
routines have already been demonstrated to be effective on this type of multimembership model.
Consequently, the resulting RealVAMS package is capable of handling models with tens of thousands
of random effects.

Application of the RealVAMS package

Although the RealVAMS model may be used in a variety of contexts in which multimembership
data occur (Karl, 2012), we choose to present it within an educational context. In this context, the
model is generally referred to as a multidimensional value-added model (VAM). VAMs are popular
accountability methods for estimating the potential effects of educational factors such as teachers and
schools on student achievement. VAMs typically estimate the potential contributions of these various
factors on test scores. Through unexplained classroom-level heterogeneity, existing VAMs measure
potential teacher contributions toward the concepts, skills, and abilities directly measured by student
exams (Koretz, 2008; McCaffrey et al., 2003) and provide a limited view of how classrooms may more
broadly contribute to student success. The addition of a binary response in the RealVAMS model helps
to address this issue.

The remainder of this section discusses the three main aspects to utilizing the RealVAMS package:
data requirements, model specification, and output. To illustrate its features, we present an analysis of
an educational data set.

Data requirements

The RealVAMS model extends previous theory to estimate the relationships between potential teacher
contributions toward different student outcomes, often exams, and to allow the consideration of a
real-world binary outcome such as graduation. Therefore, RealVAMS requires that data include
at least one year of a continuous response (e.g., standardized test scores) and one binary outcome
coded as 0 or 1 (e.g., college entry) to create the response vector. These required responses must be
specified as separate data frames. At minimum, the continuous response data frame score.data must
contain four different columns: “y” containing numeric student scores, “student” containing unique
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student identification numbers, “teacher” containing unique teacher identification numbers linking
students to their respective teachers, and “year” containing the numeric year or numeric time period
indicator. Optionally, additional covariates may exist for modeling purposes and can be included in
the score.data. Similarly, the binary response data frame outcome.data must contain: “r” containing
the binary response coded as a 0 or 1, “student,” “teacher,” and “year” containing the numeric year or
numeric time period indicator.

To demonstrate the use of the RealVAMS package, we apply the model to examine the effect
of teacher effectiveness on college entry and standardized test scores. Student and classroom data
were obtained for a single cohort of 11th grade students in a large public school district. Available
outcome data included standardized test scores and whether or not each student entered college
after graduation. For simplicity, students missing either test scores or college enrollment status were
excluded from the analysis. The final data set included 803 students whose records were linked to 71
different teachers. Just as in traditional models, student background and baseline performance scores
were included in the model specification. Student information regarding their gender (SEX), ethnicity
(ETH), gifted classification (GIF), special needs classification (SPE), and/or English-Language learner
classification (ESL) were included. The data set also contained students’ math (PLM) and reading
(PLR) sub-scale scores from the PLAN assessment, a national assessment administered to 10th grade
students. The PLM and PLR scores were included as a baseline measure of student achievement.

The 11th grade state test scores (y) and college entry status (r) served as the continuous and binary
outcome responses, respectively. The original data were separated into two different data frames for
input to the RealVAMS function: “score” data for the state test scores and “outcome” data for college
entry status. The two data frames are linked by teacher ID and student ID.

student year SEX ETH SPE ESL GIF PLM PLR resp.type teacher y

148438 1 F 5 0 0 0 15 15 score 6 76
162376 1 F 1 0 0 0 15 17 score 15 36
162952 1 F 1 0 0 0 14 18 score 57 84
163593 1 F 3 0 0 0 16 19 score 69 96
164282 1 M 1 1 0 0 15 12 score 63 99
164460 1 M 1 0 0 0 27 24 score 64 115

Table 1: First six observations of score data. Note the required columns student, year, resp.type, and y.

student year SEX ETH SPE ESL GIF PLM PLR resp.type teacher r

148438 1 F 5 0 0 0 15 15 outcome 6 0
162376 1 F 1 0 0 0 15 17 outcome 15 0
162952 1 F 1 0 0 0 14 18 outcome 57 1
163593 1 F 3 0 0 0 16 19 outcome 69 0
164282 1 M 1 1 0 0 15 12 outcome 63 1
164460 1 M 1 0 0 0 27 24 outcome 64 1

Table 2: First six observations of binary outcome data. Note the required columns student, year,
resp.type, and r.

To further illustrate the package requirements for multi-year data, the RealVAMS help file includes
a simple simulated example. The example score data frame example.score.data includes 1875
observations on 625 students over 3 years, with 25 different teachers in each year. The example score
data frame includes the four required variables:

• student represents the unique students,

• teacher represents the unique teacher identification,

• year is a numeric vector containing the years 1, 2 and 3, and

• y represents the student score.

The data frame also contains an optional continuous covariate cont_var. Correspondingly, the example
binary outcome data frame example.outcome.data includes 625 observations and the required two
variables: r is composed of 0s and 1s representing a simulated binary outcome measured on students,
and student represents the unique student identification that corresponds to the student identification
used in outcome.data.
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Model specification

The RealVAMS function accommodates different value-added modeling specifications for analyzing
multimembership data, including the RealVAMS models (1) and (2). The following syntax illustrates
how to analyze the joint continuous and binary outcomes using the RealVAMS function.

> res=RealVAMS(score.data,outcome.data, persistence = "CP"
score.fixed.effects = formula(~as.factor(SEX)+as.factor(ETH)+as.factor(SPE)

+as.factor(ESL)+as.factor(GIF)+PLM+PLR),
outcome.fixed.effects =formula(~as.factor(SEX)+as.factor(ETH)+as.factor(SPE)

+as.factor(ESL)+as.factor(GIF)+PLM+PLR),
school.effects = FALSE, REML = TRUE,
max.iter.EM = 10,
outcome.family = binomial(link = "probit"),
tol1 = 1e-07, max.PQL.it = 30,
pconv = .Machine$double.eps*1e9,
var.parm.hessian = TRUE,
verbose = TRUE)

Within the RealVAMS function, the persistence option designates the type of persistence coeffi-
cients that are modeled for teacher score effects. Users may choose between complete persistence “CP,”
as illustrated here, or variable persistence “VP” of teacher score effects. The CP model assumes that
teacher effects persist undiminished into the future, whereas the VP model assumes that teacher effects
in future years are multiples of the effect in the current year (Lockwood et al., 2007). The multipliers α
in the VP model are called persistence parameters and are estimated in the model. In contrast, the CP
model fixes the persistence parameters at 1 (Lockwood et al., 2007). The teacher binary outcome effects
are modeled with complete persistence, regardless of the selection for the continuous score effects.

The RealVAMS function allows users to account for school effects using the school.effects option
(not used in the example above). If school.effects=TRUE, correlated random school-level effects are
fit in the continuous and binary response models with zero-persistence (e.g., a student’s score in each
year is associated with the current school attended, and their binary outcome is associated with the
last school the student attended). To use the school effects option, the school ID should be included as
a column labeled “schoolID” in both the score.data and the outcome.data data frames.

By default, the RealVAMS function fits the pseudo-response using restricted maximum likelihood
(REML) estimation. If REML=FALSE, maximum likelihood estimation is used instead. In addition, users
may specify the link function used for the binary outcome response by using the outcome.family
option.

Fixed effects are included in the score.data and outcome.data data frames and specified in the
model using score.fixed.effects and outcome.fixed.effects. Each of these options utilize the
functionality of R’s formula class such that categorical variables should be wrapped in an as.factor
statement. For example, the RealVAMS syntax includes fixed effects for the factors (SEX, ETH, SPE,
ESL, and GIF), continuous covariates (PLM, PLR), and separate intercepts for the continuous score
outcome and the binary outcome. To fit a no-intercept model, +0 may be be specified in the formula.
To fit an intercept-only model, formula(∼ 1) may be used. In addition, an interaction between any
two covariates may be specified using the * operator: as.factor(SEX) * PLM, or equivalently,
as.factor(SEX) + PLM + as.factor(SEX):PLM.

Other options allow users to specify the efficiency of the estimation process. The model is
linearized using a pseudo-likelihood approach (Wolfinger and O’Connell, 1993), and the resulting
multiple membership linear mixed model is estimated via an EM algorithm (Karl et al., 2013). The
argument max.iter.EM controls the maximum number of EM iterations during each pseudo-likelihood
iteration, with tol1 representing the convergence tolerance for the EM algorithm during each interior
pseudo-likelihood iteration. By default, convergence is declared for each interior iteration when
(lk − lk−1) /lk < tol1, where lk is the log-likelihood at iteration k, max.PQL.it specifies the maximum
number of outer pseudo-likelihood iterations, and pconv represents the convergence criterion for
these outer iterations, similar to the PCOV option in SAS PROC GLIMMIX. By default, the Hessian
is used to generate covariance matrices, providing standard errors for the estimated parameters.
However, setting the var.parm.hessian to FALSE reduces the run time. When verbose is TRUE,
model information is printed at each iteration.

Output

There are many output options available in RealVAMS. All parameters of the RealVAMS models (1)
and (2) are available for output, including covariance and persistence estimates where appropriate.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 27

Fixed effects

As with a standard mixed model, the function RealVAMS returns the fixed effect estimates β̂ for the
given formulae. The fixed effect estimates and standard errors can be obtained by using summary or
parameters. To return all parameter estimates including the fixed effects, use

> summary(res)

Covariate State Test SE P-Value College Entry SE P-Value

Intercept -0.702 6.123 0.912 -0.791 0.3 0.008
Male 0.872 1.842 0.638 -0.134 0.102 0.187
Native American -17.307 13.625 0.204 -1.161 0.728 0.11
African American -3.496 3.859 0.363 -0.046 0.2 0.818
Asian American 11.05 4.602 0.016 0.566 0.304 0.063
Hispanic American -9.849 3.789 0.009 -0.433 0.192 0.024
Two or More -1.629 4.619 0.726 0.021 0.248 0.928
White (Reference) — — — —
Special Needs Status -15 4.103 <.0001 -0.303 0.204 0.139
ELL-YES -19.513 13.084 0.136 -0.026 0.664 0.968
Gifted-YES 6.78 2.473 0.006 -0.188 0.139 0.177
PLAN-Math 4.972 0.279 <.0001 0.045 0.015 0.003
PLAN- Reading 0.777 0.26 0.003 0.03 0.014 0.035

Table 3: Fixed effects estimates from a RealVAMS model for state test scores (continuous outcome)
and probability of college entry (binary outcome). Note: Fixed effects estimates for the probability of
college entry are reported on the probit scale.

These effects are reported in a manner similar to a standard VAM or lme4. The RealVAMS model
estimates teacher effects on multiple outcomes which results in a separate fixed effect for each of the
two response variables: the continuous standardized state test scores and the binary indicator for
college entry. For example, when all other variables are held constant, Hispanic American students
are estimated to score on average 9.849 points lower on the state standardized test than white students
(95% confidence interval [−17.274,−2.423]) and are 16.7% less likely than white students to enter
college (95% confidence interval [−29%,−2%]). Note that the point estimate of −0.4333 presented in
the table has been transformed from the probit scale.

These separate estimates for the fixed effects allow one to isolate the marginal effects of a covariate
on each of the responses. For some covariates, the fixed effect estimates that are statistically significant
for one response are also statistically significant for the other response. However, this need not be the
case and may help to illuminate useful information about how a covariate’s estimated conditional
relationship with one response may differ from its estimated conditional relationship with another
response. For example, when all other variables are held constant, students who are classified as gifted
are estimated to score on average 6.78 points higher on the state standardized test than those who are
not (95% confidence interval [1.93, 11.627]), but there is no statistically distinguishable difference in
their probability for entering college (95% confidence interval [−17%, 3%]). In other words, holding
everything else constant, a student classified as gifted is likely to perform better on the exam, but is
not more likely to attend college than another student who is not classified as gifted.

Random effects

Although other value-added methods may consider the teacher effects as fixed effects, the goal of the
RealVAMS model is to estimate the “teacher effects” using random effects γ̂ and the relationship be-
tween these effects Ĝj. The presented example assumes that each teacher teaches only one year. If there
is more than one year of data, the function appends “(year z)” to each teacher identification number
to keep these effects separate where z is the year in which the teacher taught. Similarly, the program
appends _outcome to indicate the random effect estimate for the binary outcome. The estimated
random “teacher” effects (EBLUP) and their standard errors can be obtained using teach.effects:

> res$teach.effects[1:4,]
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Figure 1: Estimated effects on continuous score and binary outcome responses with 90% confidence
intervals.

EBLUP std_error year
1(year1) -19.909 8.697 1
1(year1)_outcome -0.278 0.188 1
10(year1) 3.710 10.760 1
10(year1)_outcome 0.0801 0.208 1

These estimates show that teacher 1 in year 1 had an estimated random effect on students’ standardized
test scores of −19.909 (standard error = 8.697), and an estimated effect of −0.278 on the probit scale
(standard error = 0.188) on the probability of students’ college entry. These random effects are
estimated relative to other teachers in the sample so that the teacher effects are centered on the
distributional mean of zero. In this example, we assume complete persistence with persistence
= "CP", but changing this argument to persistence = "VP" will give the estimated persistence
parameter α̂ in the res$persistence_parameters function output.

Figure 1a and 1b display the caterpillar plots for the estimated teacher effects for the continuous
and the binary responses with 90% confidence intervals given by

> plot(res)

The plot function also displays the conditional residuals and predicted probability of a positive
response by response level (omitted here).

Covariance matrices

A key feature of RealVAMS is that it estimates the relationship between the teacher effects for the
two types of responses by calculating the covariance matrix for teacher j, Ĝj. In general, Ĝj is a
blockdiagonal matrix with blocks estimated for each year. The blockdiagonal components of Gj for
the one year of data presented in the example are estimated as:

> res$teach.cov

Teachers: Ĝj =

(
264.75 3.3765
3.3765 0.0691

)
.

In the example, the off-diagonal or [1, 2] component of each of the block matrices gives the
covariance between the continuous response in [1, 1] and the binary response in [2, 2]. The matrix
above indicates that higher teacher effect estimates on the standardized assessment tend to associate
with relatively higher teacher effect estimates on the probability of college entry (rG = 0.79). The off-
diagonal, ĝ12 = 3.3765, is significantly different from zero (p = 0.007), showing that there is a significant
positive relationship between the teacher effects for the probability of college entry and performance
on the state standardized test. The high correlation justifies the need for the multidimensional model
as opposed to two separate models.
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The RealVAMS function can also provide an estimate of the intra-student relationship between the
continuous response and the binary response. Let R̂i denote the estimated error covariance matrix for
student i for the continuous and binary responses.

> res$R_i

Students: R̂i =

(
602.00 3.62

3.62 1.00

)
.

The estimated relationship between the multidimensional teacher effects can also be compared to other
variance component estimates, allowing investigation of the relative contributions of each random
effect. For example, the estimated student covariance matrix, Ri, has larger variance component
estimates than Gj. Fitting separate models for the responses assumes that they are independent and
the correlation in both G and R is 0. One can compare the RealVAMS model to standard separate
models in lme4 or SAS PROC GLIMMIX since the RealVAMS function includes an independent.responses
option. Setting independent.responses=TRUE fixes the correlations in both R and G to 0 and should
lead to results that are identical to those from running separate models, allowing for comparison of
the two estimation procedures.

Conclusion

RealVAMS is an R package for fitting a multivariate value-added model with a binary outcome and a
normally distributed, continuous outcome. This package overcomes computational difficulties that
arise when simultaneously modeling joint binary and continuous outcomes, and may be used in a
variety of contexts. In particular, RealVAMS is useful in education to estimate the relationship between
the potential teacher contributions and to allow the mixture of binary and continuous outcomes in the
same model. By using models that provide a broader picture of student success, these results may
help enhance the quality of educational programs.
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InfoTrad: An R package for estimating the
probability of informed trading
by Duygu Çelik and Murat Tiniç

Abstract The purpose of this paper is to introduce the R package InfoTrad for estimating the proba-
bility of informed trading (PIN) initially proposed by Easley et al. (1996). PIN is a popular information
asymmetry measure that proxies the proportion of informed traders in the market. This study provides
a short survey on alternative estimation techniques for the PIN. There are many problems documented
in the existing literature in estimating PIN. InfoTrad package aims to address two problems. First,
the sequential trading structure proposed by Easley et al. (1996) and later extended by Easley et al.
(2002) is prone to sample selection bias for stocks with large trading volumes, due to floating point
exception. This problem is solved by different factorizations provided by Easley et al. (2010) (EHO
factorization) and Lin and Ke (2011) (LK factorization). Second, the estimates are prone to bias due to
boundary solutions. A grid-search algorithm (YZ algorithm) is proposed by Yan and Zhang (2012) to
overcome the bias introduced due to boundary estimates. In recent years, clustering algorithms have
become popular due to their flexibility in quickly handling large data sets. Gan et al. (2015) propose
an algorithm (GAN algorithm) to estimate PIN using hierarchical agglomerative clustering which is
later extended by Ersan and Alici (2016) (EA algorithm). The package InfoTrad offers LK and EHO
factorizations given an input matrix and initial parameter vector. In addition, these factorizations can
be used to estimate PIN through YZ algorithm, GAN algorithm and EA algorithm.

Introduction

The main aim of this paper is to present the InfoTrad package that estimates the probability of
informed trading (PIN) initially proposed by Easley et al. (1996). PIN is one of the primary measures of
proxy information asymmetry in the market. The structural model is driven from maximum likelihood
estimation (MLE). Wide range of studies use PIN to answer questions in different fields of finance1.

Although it is a heavily used measure in the finance literature, the development of applications that
calculate PIN are quite slow. An initial attempt for R community is made by Zagaglia (2012). FinAsym
package of Zagaglia (2012) and the PIN package of Zagaglia (2013) provide the trade classification
algorithm of Lee and Ready (1991) which is an important tool for studies that use the TAQ database.
Both packages also provide PIN estimates through pin_likelihood() functions. However, those
estimates are prone to bias due to misspecification and other limitations. InfoTrad package aims to
overcome such limitations and provide users with a wide range of options when estimating PIN.

Due to the popularity of the measure, problems in estimating PIN recently gained attention in the
finance literature. Easley et al. (2010) indicate that for stocks with a large trading volume, it is not
possible to estimate PIN due to floating-point-exception (FPE). Two different numerical factorizations
are provided by Easley et al. (2010) and Lin and Ke (2011) to overcome the bias created due to FPE.

In addition, boundary solutions in estimating PIN are also shown to create bias in empirical studies.
Yan and Zhang (2012) show that, independent of the type of factorization, the likelihood function can
stuck at local optimum and provide biased PIN estimates. They propose an algorithm (YZ algorithm)
that spans the parameter space by using 125 different initial values for the MLE problem and obtain
the PIN estimate that gives the highest likelihood value with non-boundary solutions. Although YZ
algorithm provides estimates with higher likelihood and guarantees obtain non-boundary solutions,
the iterative structure makes this algorithm time-consuming especially for studies that use large
datasets.

Considering the fact that recent studies that estimate PIN use large datasets, the effectiveness of the
YZ algorithm is questioned. In recent years, clustering algorithms have become popular due to their
efficiency in processing large sets of data. Gan et al. (2015) propose an algorithm that use hierarchical
agglomerative clustering to estimate PIN. Ersan and Alici (2016) later extends this framework.

FPE and boundary solutions are not the only problems of PIN model. Duarte and Young (2009)
indicate that the structural model of Easley et al. (1996) enforces a negative contemporaneous covari-
ance between intraday buy and sell orders, which is contrary to the empirical evidence for symmetric
order shocks. In addition,they show that the PIN model fails to capture the volatility of buy and sell
orders,through simulations. Moreover, Duarte and Young (2009) adjust PIN to take into account the
liquidity impact and show that liquidity is more prominent on stock returns compared to information

1For instance, analyst coverage (Easley et al., 1998), stock splits (Easley et al., 2001), initial public offerings (Ellul
and Pagano, 2006), credit ratings (Odders-White and Ready, 2006), M&A announcements (Aktas et al., 2007) and
asset returns [(Easley et al., 2002),(Easley et al., 2010)] among others.
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asymmetry. Finally, it is important to note that PIN does not consider any strategic behaviour of
investors such as order splitting. Order splitting can be more evident when a stock is jointly trading
on multiple venues (Menkveld, 2008). Even for a stock that is traded on a single market, an informed
investor may want to split her order in order avoid revealing her private information too quickly
(Foucault et al., 2013). PIN model, by construction, fails to attach multiple small orders to a single
informed investor.

This paper introduces and discusses the R (R Core Team, 2016) InfoTrad package for estimating
PIN. InfoTrad provides users with the necessary methods to solely adress the problems of FPE and
boundary solutions. The package contains the likelihood factorizations of EHO and LK as separate
functions (EHO() and LK(), respectively) which provide likelihood specifications to avoid FPE. In
addition, through YZ(), GAN() and EA() functions, PIN estimates can be obtained using the grid-search
algorithm of Yan and Zhang (2012) and clustering algorithms of Gan et al. (2015) and Ersan and Alici
(2016). For all of the algorithms, likelihood specification can be set to EHO or LK.

The paper is organized as follows; Section 8.2 provides a brief description of PIN. Specifically,
section 8.2.1 discusses the problem of FPE and the alternative factorizations EHO and LK. Section 8.2.2
reviews the problem of boundary solutions and the YZ algorithm. Section 8.2.3 describes the clustering
algorithms of Gan et al. (2015) and Ersan and Alici (2016). Section 8.3 introduces the package InfoTrad
along with examples. Section 8.4 evaluates the performance of each method through simulations.
Section 8.5 provides concluding remarks.

PIN Model

The structural model of Easley et al. (1996) and Easley et al. (2002) consists of three types of agents;
informed traders, uninformed traders and market makers. On a trading day t, one risky asset is
continuously traded. Market maker sets the price for a given stock by observing the buy orders (Bt)
and sell orders (St). For that stock, an information event is assumed to follow a Bernoulli distribution
with success probability α. This event reveals either a high or a low signal for the stock value. The
event is assumed to provide a low signal with probability δ. When informed traders observe a high
(low) signal, they are assumed to place buy (sell) orders at a rate of µ. Uninformed traders are assumed
to place orders, independent of the information event and the signal. They arrive to market to place a
buy (sell) order at a rate of εb (εs). Orders of both informed and uninformed investors are assumed to
follow independent Poisson processes.

The joint probability distribution with respect to the parameter vector Θ ≡ {α, δ, µ, εb, εs} and the
number of buys and sells (Bt, St), is specified by

f (Bt, St|Θ) ≡ αδexp(−εb)
εBt

b
Bt!

exp[−(εs + µ)]
(εs + µ)St

St!

+α(1− δ)exp[−(εb + µ)]
(εb + µ)Bt

Bt!
exp(−εs)

εSt
s

St!

+(1− α)exp(−εb)
εBt

b
Bt!

exp(−εs)
εSt

s
St!

(1)

The estimates of arrival rates (µ̂, ε̂s and ε̂b), along with estimates of the probabilities (α̂ and δ̂) can
be obtained by maximizing the joint log-likelihood function given the order input matrix (Bt, St) over
T trading days. The non-linear objective function of this problem can be written as;

L(Θ|T) ≡
T

∑
t=1

L(Θ|(Bt, St)) =
T

∑
t=1

log[ f (Bt, St|Θ)] (2)

The maximization problem is subject to the boundary constraints α, δ ∈ [0, 1] and µ, εb, εs ∈ [0, ∞)2.
The PIN estimate is then given by;

P̂IN =
α̂µ̂

α̂µ̂ + ε̂b + ε̂s
(3)

2Both PIN package of Zagaglia (2013) and FinAsym package of Zagaglia (2012) fail to acknowledge the
boundary constraints on arrival rates µ, εb, εs. Similar to event probabilities, they restrict these parameters to [0, 1]
which forces the estimates for the arrival of informed and uninformed traders on a given day to take values at most
one. This creates significant bias in PIN estimates.
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Floating-Point Exception

PIN estimates are prone to selection bias, especially for stocks for which the number of buy and sell
orders are large3. Lin and Ke (2011) show that the increase in the number of buy and sell orders for a
given stock, significantly shrinks the feasible solution set for the maximization of the log likelihood
function in equation (2). To maximize the non-linear function (1), the optimization software introduces
initial values for the parameters in Θ. The numerical optimization method is applied after those initial
parameters are introduced. Therefore, for large enough Bt and St whose factorials cannot be calculated
by mainstream computers (i.e. FPE), the optimal value for equation (2) becomes undefined. The FPE
problem is therefore, more pronounced in active stocks.

To avoid the bias created due to FPE, one factorization of the equation (2) is provided by Easley
et al. (2010) as LEHO(Θ|T) ≡ ∑T

t=1 LEHO(Θ|Bt, St) where

LEHO(Θ|Bt, St) = log[αδexp(−µ)xBt−Mt
b x−Mt

s + α(1− δ)exp(−µ)x−Mt
b xSt−Mt

s + (1− α)xBt−Mt
b xSt−Mt

s ]

+Btlog(εb + µ) + Stlog(εs + µ)− (εb + εs) + Mt[log(xb) + log(xs)]− log(St!Bt!),
(4)

where Mt = min(Bt, St) + max(Bt, St)/2, xb = εb/(µ + εb) and xs = εs/(µ + εs).

Lin and Ke (2011) introduce another algebraically equivalent factorization of the equation (2),
LLK(Θ|T) ≡ ∑T

t=1 LLK(Θ|Bt, St) where

LLK(Θ|Bt, St) = log[αδexp(e1t − emaxt) + α(1− δ)exp(e2t − emaxt) + (1− α)exp(e3t − emaxt)]

+Btlog(εb + µ) + Stlog(εs + µ)− (εb + εs) + emaxt − log(St!Bt!),
(5)

where e1t = −µ− Btlog(1 + µ/εb), e2t = −µ− Stlog(1 + µ/εs), e3t = −Btlog(1 + µ/εb)− Stlog(1 +
µ/εs) and emaxt = max(e1t, e2t, e3t). The last term log(St!Bt!) is constant with respect to the parameter
vector Θ, and is, therefore, dropped in the MLE for both factorizations.

Boundary Solutions

Another source of bias in estimating PIN arises from boundary solutions. Yan and Zhang (2012)
indicate that in calculating PIN, parameter estimates α̂ and δ̂ usually fall onto the boundaries of the
parameter space, that is, they are equal to zero or one. PIN estimate presented in equation (3) is directly
related to the estimate of α̂. Letting α̂ equal to zero will make sure that PIN is zero as well. This can
create a sample selection bias in portfolio formation, especially for quarterly estimations4. Yan and
Zhang (2012) show that;

E(B) = α(1− δ)µ + εb (6)

E(S) = αδµ + εs (7)

Then, they propose the following algorithm to overcome the bias created due to boundary solutions.
Let (α0, δ0, ε0

b , ε0
s , µ0) be the initial parameter function to be placed in the non-linear program presented

in equation (4). In addition, let B̄ and S̄ be the average number of buy and sell orders.

α0 = αi, δ0 = δj, ε0
b = γk B̄, µ0 =

B̄− ε0
b

α0(1− δ0)
and ε0

s = S̄− α0δ0µ0 (8)

where αi, δj, γk ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. This will yield 125 different PIN estimates along with their
likelihood values. In line with Yan and Zhang (2012), we drop any initial parameter vector having
negative values for ε0

s . In addition, following Ersan and Alici (2016), we also drop any initial parameter
vector with µ0 > max(Bt, St). Yan and Zhang (2012) then select the estimate with non-boundary
parameters yielding highest likelihood value. This method, by construction, spans the parameter
space and tries to avoid local optima and provides non-boundary estimates for α.

3For example, Zagaglia (2012) provides a sample data to calculate PIN. In sample data the maximum trade
number is 19. If you multiply each observation in the sample data by 10, the pin_likelihood() function of
FinAsym package fails to provide results with the sample initial parameter vector.

4For quarterly estimations of PIN, one can be sure that there is at least one information event, earnings
announcement. Therefore α̂ cannot be equal to zero.
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Clustering Approach

In recent years, clustering algorithms are increasingly becoming popular in estimating the probability
of informed trading due to efficiency concerns. Gan et al. (2015) and Ersan and Alici (2016) use
clustering algorithms to estimate PIN. Gan et al. (2015) introduce a method that clusters the data
into three groups (good news, bad news, no news) based on the mean absolute difference in order
imbalance. Let Xt = Bt − St be the order imbalance on day t computed as the difference between
buy orders and sell orders. The clustering is then based on the distance function defined as D(I, J) =
|Xi − Xj|, 1 ≤ i, j ≤ T where i 6= j. They use hierarchical agglomerative clustering (HAC) to group
the data elements based on the distance matrix. Specifically, they use hclust() function of Müllner
(2013) in R5. The algorithm sequentially clusters, in a bottom-up fashion, each observation into groups
based on Xt and stops when it reaches three clusters. The theoretical framework of Easley et al. (1996)
indicates that a stock has high (low) Xt on good (bad) days. Therefore, the cluster which has the
highest (lowest) mean Xt is labelled as good (bad) news. The remaining cluster is then labelled as no
news. Once each observation is grouped into their respective clusters (good news, bad news, no news),
c ∈ {G, B, N}, the parameter estimates for Θ ≡ {α, δ, µ, εb, εs} are calculated simply by counting.
Let ωc be the proportion of cluster c occupying the total number of days T, such that ∑3

c=1 ωc = 1.
Similarly, let B̄c and S̄c be the average number of buys and sells on cluster c, respectively.

Then, the probability of an information event is given by α̂ = ωB + ωG. Moreover, the estimate
for the probability of information event releasing bad news is given by δ̂ = ωB/α̂. The estimate
for the arrival rate of buy orders of uninformed traders represented by ε̂b = ωB

ωB+ωN
B̄B + ωN

ωB+ωN
B̄N .

Similarly, the estimate for the arrival rate of sell orders of uninformed traders represented by ε̂s =
ωG

ωG+ωN
S̄G + ωN

ωG+ωN
B̄N . Finally, the arrival rate for the informed investors is calculated as µ̂ =

ωG
ωB+ωG

(B̄G − ε̂b) +
ωB

ωB+ωG
(S̄B − ε̂s) where (B̄G − ε̂b) corresponds to the buy rate of informed investors

µ̂b and (S̄B − ε̂s) corresponds to the sell rate of informed investors µ̂s
6.

Through simulations, Gan et al. (2015) show that estimates calculated as above are proper can-
didates for the initial parameter values to be used in MLE process. Ersan and Alici (2016) argue
that the estimates for the informed arrival rate, µ, contains a downward bias with GAN algorithm7.
This is what we observe in this study as well. In addition, they state that GAN algorithm provides
inaccurate estimates for δ. In order to overcome these issues, instead of using Xt, Ersan and Alici use
absolute daily order imbalance, |Xt|, to cluster the data. They initially cluster, |Xt| into two, again
by using hclust(). The cluster with the lower mean daily absolute order imbalance is labelled as "no
event" cluster and the remaining as "event" cluster. Then, the formation of "good" and "bad" event
day clusters are obtained through separating the days in the "event" cluster into two with respect to
the sign of the daily order imbalances. The parameter estimates are then computed with the same
procedure presented above8.

The InfoTrad Package

The R package InfoTrad provides five different functions EHO(),LK(),YZ(),GAN() and EA(). The first
two functions provide likelihood specifications whereas the last three functions can be used to obtain
parameter estimates for Θ to calculate PIN in equation (3). All five functions require a data frame that
contains Bt in the first column, and St in the second column. We create Bt and St for ten hypothetical
trading days9. EHO() and LK() read (Bt, St) and return the related functional form of the negative log
likelihood. These objects can be used in any optimization procedure such as optim() to obtain the
parameter estimates Θ̂ ≡ {α̂, δ̂, µ̂, ε̂b, ε̂s}, the likelihood value and other specifications, in one iteration
with a pre-specified initial value vector, Θ0, for parameters. We define EHO() and LK() as simple
likelihood specifications rather than functions that execute the MLE procedure. This is due to the
fact that MLE estimators vary depending on the optimization procedure. Users who wish to develop
alternative estimation techniques, based on the proposed likelihood factorization, can use EHO() and
LK(). This is the underlying reason why those functions do not have built-in optimization procedures.

5hclust() function is used at its default setting in line with Gan et al. (2015).
6Both Gan et al. (2015) and Ersan and Alici (2016) do not mention the case where µ̂b < 0 or µ̂s < 0. It is fair to

assume that in such cases, informed investors are not present on the buy (sell) side. Therefore, we set µb and µs
equal to zero when we obtain a negative estimate.

7We also show that estimates for µ contains a significant downward bias due to poor choice of initial parameter
value µ0 when GAN algorithm is used.

8Ersan and Alici (2016) also provide an iterative process in which they systematically update the clusters. We
plan to introduce this methodology in the future versions of our package.

9The numbers are randomly selected. We set numbers to be high enough so that the original likelihood
framework presented in equation (1) cannot be used due to FPE. Easley et al. (1996) indicate that at least 60 days
worth of data is required in order to obtain proper convergence for P̂IN. We use ten days for demonstration
purposes.
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By specifying EHO() and LK() as simple likelihood functions, we give developers the flexibility to
select the most suitable optimization procedure for their application.

For researchers who want to calculate an estimate of PIN, YZ(), GAN() and EA() functions have
built-in optimization procedures. Those functions read a likelihood specification value along with
data. Likelihood specification can be set either to “LK" or to “EHO" with “LK" being the default. All
estimation functions use neldermead() function of nloptr package to conduct MLE with the specified
factorization. GAN and EA functions also use hclust() function of Müllner (2013) to conduct
clustering. The output of these three functions is an object that provides {α̂, δ̂, µ̂, ε̂b, ε̂s, f (Θ̂), P̂IN},
where f (Θ̂) represents the optimal likelihood value given the parameter estimates Θ̂.

EHO() function

An example is provided below for EHO() with a sample data and initial parameter values. Notice that
the first column of sample data is for Bt and second column is for St. Similarly, the initial parameter
values are constructed as; Θ0 = {α, δ, µ, εb, εs}. We use optim() with ‘Nelder-Mead’ method to execute
MLE, however developer is flexible to use other methods as well.

library(InfoTrad)
# Sample Data
# Buy Sell
#1 350 382
#2 250 500
#3 500 463
#4 552 550
#5 163 200
#6 345 323
#7 847 456
#8 923 342
#9 123 578
#10 349 455

Buy<-c(350,250,500,552,163,345,847,923,123,349)
Sell<-c(382,500,463,550,200,323,456,342,578,455)
data=cbind(Buy,Sell)

# Initial parameter values
# par0 = (alpha, delta, mu, epsilon_b, epsilon_s)
par0 = c(0.5,0.5,300,400,500)

# Call EHO function
EHO_out = EHO(data)
model = optim(par0, EHO_out, gr = NULL, method = c("Nelder-Mead"), hessian = FALSE)

## Parameter Estimates
model$par[1] # Estimate for alpha
# [1] 0.9111102
model$par[2] # Estimate for delta
#[1] 0.0001231429
model$par[3] # Estimate for mu
# [1] 417.1497
model$par[4] # Estimate for eb
# [1] 336.075
model$par[5] # Estimate for es
# [1] 466.2539

## Estimate for PIN
(model$par[1]*model$par[3])/((model$par[1]*model$par[3])+model$par[4]+model$par[5])
# [1] 0.3214394
####

In this example, Bt and St vectors are selected so that the likelihood function cannot be represented as
in equation (1). We set the initial parameters to be Θ0=(0.5,0.5,300,400,500). For the given Bt, St and
Θ0 vectors, PIN measure is calculated as 0.32 with EHO factorization.
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LK() function

An example is provided below for LK() function with a sample data and initial parameter values.
Notice that the first column of sample data is for Bt and second column is for St. Similarly, the initial
parameter values are constructed as; Θ0 = {α, δ, µ, εb, εs}. We use optim() with ‘Nelder-Mead’ method
to execute MLE, however developer is flexible to use other methods as well.

library(InfoTrad)
# Sample Data
# Buy Sell
#1 350 382
#2 250 500
#3 500 463
#4 552 550
#5 163 200
#6 345 323
#7 847 456
#8 923 342
#9 123 578
#10 349 455

Buy<-c(350,250,500,552,163,345,847,923,123,349)
Sell<-c(382,500,463,550,200,323,456,342,578,455)
data=cbind(Buy,Sell)

# Initial parameter values
# par0 = (alpha, delta, mu, epsilon_b, epsilon_s)
par0 = c(0.5,0.5,300,400,500)

# Call LK function
LK_out = LK(data)
model = optim(par0, LK_out, gr = NULL, method = c("Nelder-Mead"), hessian = FALSE)

## The structure of the model output ##
model

#$par
#[1] 0.480277 0.830850 315.259805 296.862318 400.490830

#$value
#[1] -44343.21

#$counts
#function gradient
# 502 NA

#$convergence
#[1] 1

#$message
#NULL

## Parameter Estimates
model$par[1] # Estimate for alpha
# [1] 0.480277
model$par[2] # Estimate for delta
# [1] 0.830850
model$par[3] # Estimate for mu
# [1] 315.259805
model$par[4] # Estimate for eb
# [1] 296.862318
model$par[5] # Estimate for es
# [1] 400.4908

## Estimate for PIN
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(model$par[1]*model$par[3])/((model$par[1]*model$par[3])+model$par[4]+model$par[5])
# [1] 0.178391
####

For the given Bt, St and Θ0 vectors, PIN measure is calculated as 0.18 with LK factorization.

YZ() function

An example is provided below for YZ() function with a sample data. Notice that the first column
of sample data is for Bt and second column is for St. In addition, the first example is with default
likelihood specification LK and the second one is with EHO. Notice that YZ() function do not require
any initial parameter vector Θ0.

library(InfoTrad)
# Sample Data
# Buy Sell
#1 350 382
#2 250 500
#3 500 463
#4 552 550
#5 163 200
#6 345 323
#7 847 456
#8 923 342
#9 123 578
#10 349 455

Buy<-c(350,250,500,552,163,345,847,923,123,349)
Sell<-c(382,500,463,550,200,323,456,342,578,455)
data<-cbind(Buy,Sell)

# Parameter estimates using the LK factorization of Lin and Ke (2011)
# with the algorithm of Yan and Zhang (2012).
# Default factorization is set to be "LK"

result=YZ(data)
print(result)

# Alpha: 0.3999999
# Delta: 0
# Mu: 442.1667
# Epsilon_b: 263.3333
# Epsilon_s: 424.9
# Likelihood Value: 44371.84
# PIN: 0.2004457

# Parameter estimates using the EHO factorization of Easley et. al. (2010)
# with the algorithm of Yan and Zhang (2012).

result=YZ(data,likelihood="EHO")
print(result)

# Alpha: 0.9000001
# Delta: 0.9000001
# Mu: 489.1111
# Epsilon_b: 396.1803
# Epsilon_s: 28.72002
# Likelihood Value: Inf
# PIN: 0.3321033

For the given Bt and St vectors, PIN measure is calculated as 0.20 with YZ algorithm along with
LK factorization. Moreover, PIN measure is calculated as 0.33 with YZ algorithm along with EHO
factorization.
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GAN() function

An example is provided below for GAN() function with a sample data. Notice that the first column
of sample data is for Bt and second column is for St. In addition, the first example is with default
likelihood specification LK and the second one is with EHO. Notice that GAN() function do not require
any initial parameter vector Θ0.

library(InfoTrad)
# Sample Data
# Buy Sell
#1 350 382
#2 250 500
#3 500 463
#4 552 550
#5 163 200
#6 345 323
#7 847 456
#8 923 342
#9 123 578
#10 349 455

Buy<-c(350,250,500,552,163,345,847,923,123,349)
Sell<-c(382,500,463,550,200,323,456,342,578,455)
data<-cbind(Buy,Sell)

# Parameter estimates using the LK factorization of Lin and Ke (2011)
# with the algorithm of Gan et. al. (2015).
# Default factorization is set to be "LK"

result=GAN(data)
print(result)

# Alpha: 0.3999998
# Delta: 0
# Mu: 442.1667
# Epsilon_b: 263.3333
# Epsilon_s: 424.9
# Likelihood Value: 44371.84
# PIN: 0.2044464

# Parameter estimates using the EHO factorization of Easley et. al. (2010)
# with the algorithm of Gan et. al. (2015)

result=GAN(data, likelihood="EHO")
print(result)

# Alpha: 0.3230001
# Delta: 0.4780001
# Mu: 481.3526
# Epsilon_b: 356.6359
# Epsilon_s: 313.136
# Likelihood Value: Inf
# PIN: 0.1884001

For the given Bt and St vectors, PIN measure is calculated as 0.20 with GAN algorithm along with
LK factorization. Moreover, PIN measure is calculated as 0.19 with GAN algorithm along with EHO
factorization.

EA() function

An example is provided below for EA() function with a sample data. Notice that the first column
of sample data is for Bt and second column is for St. In addition, the first example is with default
likelihood specification LK and the second one is with EHO. Notice that EA() function do not require
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any initial parameter vector Θ0.

library(InfoTrad)
# Sample Data
# Buy Sell
#1 350 382
#2 250 500
#3 500 463
#4 552 550
#5 163 200
#6 345 323
#7 847 456
#8 923 342
#9 123 578
#10 349 455

Buy=c(350,250,500,552,163,345,847,923,123,349)
Sell=c(382,500,463,550,200,323,456,342,578,455)
data=cbind(Buy,Sell)

# Parameter estimates using the LK factorization of Lin and Ke (2011)
# with the modified clustering algorithm of Ersan and Alici (2016).
# Default factorization is set to be "LK"

result=EA(data)
print(result)

# Alpha: 0.9511418
# Delta: 0.2694005
# Mu: 76.7224
# Epsilon_b: 493.7045
# Epsilon_s: 377.4877
# Likelihood Value: 43973.71
# PIN: 0.07728924

# Parameter estimates using the EHO factorization of Easley et. al. (2010)
# with the modified clustering algorithm of Ersan and Alici (2016).

result=EA(data,likelihood="EHO")
print(result)

# Alpha: 0.9511418
# Delta: 0.2694005
# Mu: 76.7224
# Epsilon_b: 493.7045
# Epsilon_s: 377.4877
# Likelihood Value: 43973.71
# PIN: 0.07728924

For the given Bt and St vectors, PIN measure is calculated as 0.08 with EA algorithm along with
LK factorization. Moreover, PIN measure is calculated, again, as 0.08 with EA algorithm along with
EHO factorization.

Simulations and Performance Evaluation

In this section, we investigate the performance of the estimates obtained for Θ and PIN using the
existing methods. We evaluate the methods based on their accuracy proxied by mean absolute errors
(MAE)10. We first examine how the estimates vary in different trade intensity levels. To this end, we
follow the methodology in Gan et al. (2015). Let I be the the set of trade intensity levels ranging
from 50 to 5000 at step size of 50, that is, I={50, 100, 150, . . . , 5000}. We first set our parameters as

10All estimations are conducted on a 2.6 Intel i7-6700HQ CPU.We do not consider speed as a performance
measure since the average processing time for each method is less than 10 seconds.
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Θ = {α = 0.5, δ = 0.5, µ = 0.2i, εb = 0.4i, εs = 0.4i}, where i ∈ I. For each trade intensity level, we
generate N=50 random samples of α̃ and δ̃ that are binomially distributed with parameters α and
δ respectively. α̃ and δ̃ proxy the content of the information event. For each pair of α̃, δ̃ values, we
generate buy and sell values (Bt, St) for hypothetical T=60 days in the following manner;

• if α̃ = 0, then there is no information event, therefore, generate Bt ∼ Pois(εb) and St ∼ Pois(εs).

• if α̃ = 1, and δ̃ =1, then there is bad news, therefore generate Bt ∼ Pois(εb) and St ∼ Pois(εs + µ)

• if α̃ = 1, and δ̃ =0, then there is good news, therefore generate Bt ∼ Pois(εb +µ) and St ∼ Pois(εs)

We then form the joint likelihood function represented by equation (4) in EHO form or by equation
(5) in LK form and obtain the estimates using YZ(), GAN() or EA() methods.

The results are presented in Table 1 which indicates that YZ() method with LK() factorization
provides the PIN estimates with lowest MAE. Although the clustering algorithms, especially GAN()
method, provide powerful estimates of α̂, δ̂, ε̂b, ε̂s, they fail to estimate the arrival rate of informed
investors µ̂,accurately. This is in line with Ersan and Alici (2016). On the contrary, YZ() method with
EHO() factorization provides the best estimates for µ̂, but fails to provide good estimates for other
parameters.

Method Factorization P̂IN α̂ δ̂ µ̂ ε̂b ε̂s

YZ LK 0.075 0.199 0.059 415.2 104.3 109.0
YZ EHO 0.134 0.428 0.310 154.6 288.3 247.4

GAN EHO 0.101 0.087 0.083 479.4 124.1 117.3
GAN LK 0.101 0.087 0.083 479.5 123.8 118.1

EA LK 0.102 0.268 0.274 484.6 128.7 119.3
EA EHO 0.102 0.270 0.275 483.1 128.5 107.8

Table 1: This table represents the mean absolute errors (MAE) of the parameter estimates obtained
by a given method for a given factorization. Each row represents a different method with a different
factorization. First two column represent the specification of method and factorization respectively.
The last six columns represents the power of estimates of PIN along with the parameter space

Θ ≡ {α, δ, µ, εb, εs}. MAE measures for the estimates calculated as ∑N
i=1

|Θ̂i−ΘTR
i |

N where Θ̂ represent
the estimates and ΘTR represents the true value.

A more general way of examining the accuracy of PIN estimates is proposed in several studies
(e.g, Lin and Ke (2011), Gan et al. (2015), Ersan and Alici (2016)). In this setting, we fix the trade
intensity, I=2500. The total trade intensity represents the overall presence of informed and uninformed
traders, that is, I=(µ, εb, εs). We then generate three probability terms p1, p2, p3 with N=5000 random
observations that are distributed uniformly between 0 and 1. p1 represents the fraction of informed
investors in total trade intensity, that is, µ=p1 ∗ I. The rest of the trade intensity is distributed equally
to buy and sell orders of uninformed investors, that is, eb = es = (1− p1) ∗ I/2. p2 represents the
true parameter for the probability of news arrival, α, and p3 is the true parameter for the content of
the news, δ. We generate observations for α̃ and δ̃, as described earlier. For each pair of α̃ and δ̃, we
generate buy and sell values (Bt, St) for hypothetical T=60 days, again, in the manner presented above;
form the likelihood and obtain the parameter estimates.

The results are presented in Table 2. Similar to first simulation, GAN() captures the true nature of α̂
and δ̂ better than any other method with both factorizations. YZ() method with EHO() factorization
performs best when estimating the arrival of informed traders, µ̂. The importance of estimating
µ̂ becomes quite evident in Table 2. Although other methods outperform YZ() method with EHO()
factorization in estimating α, εb and εs, it provides the best estimate for PIN due to it’s performance on
estimating µ̂.

Summary

This paper provides a short survey on five most widely used estimation techniques for the probability
of informed trading (PIN) measure. In this paper, we introduce the R package InfoTrad, covering
estimation procedures for PIN using EHO, LK factorizations along with YZ, GAN and EA algorithms
(EHO(),LK(), YZ(), GAN() EA()). The functions EHO() and LK() read a (Tx2) matrix where the rows
of the first column contains total number of buy orders on a given trading day t, Bt, and the rows
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Method Factorization P̂IN α̂ δ̂ µ̂ ε̂b ε̂s

YZ LK 0.323 0.428 0.432 1,212.0 303.4 325.0
YZ EHO 0.237 0.437 0.357 942.9 386.0 470.2

GAN LK 0.348 0.380 0.410 1,218.7 314.5 323.3
GAN EHO 0.347 0.357 0.397 1,216.2 328.5 339.5

EA LK 0.348 0.437 0.421 1,224.0 325.1 336.3
EA EHO 0.347 0.428 0.413 1,222.0 331.3 345.9

Table 2: This table represents the mean absolute errors (MAE) of the parameter estimates obtained
by a given method for a given factorization. Each row represents a different method with a different
factorization. First two column represent the specification of method and factorization respectively.
The last six columns represents the power of estimates of PIN along with the parameter space

Θ ≡ {α, δ, µ, εb, εs}. MAE measures for the estimates calculated as ∑N
i=1

|Θ̂i−ΘTR
i |

N where Θ̂ represent
the estimates and ΘTR represents the true value.

of the second column contains the total number of sell orders on a given trading day t, St, where
t ∈ {1, 2, . . . , T}. In addition, they also require an initial parameter vector in the form of, Θ0 =
{α, δ, µ, εb, εs}. Both functions produce the respective log-likelihood functions.

The functions YZ(), GAN() and EA() read (Bt, St) as an input along with a likelihood specification
that is set to ‘LK’ by default. These functions do not require initial parameter matrix to obtain the
parameter estimates when calculating PIN. All three functions use neldermead() method of nloptr
as built-in optimization procedure for MLE. YZ() GAN() and EA() produce an object that gives the
parameter estimates Θ̂ along with likelihood value and P̂IN.
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RatingScaleReduction package: stepwise
rating scale item reduction without
predictability loss
by Waldemar W. Koczkodaj, Feng Li, and Alicja Wolny–Dominiak

Abstract This study presents an innovative method for reducing the number of rating scale items
without predictability loss. The “area under the receiver operator curve” method (AUC ROC) is used
for the stepwise method of reducing items of a rating scale. RatingScaleReduction R package contains
the presented implementation. Differential evolution (a metaheuristic for optimization) was applied
to one of the analyzed datasets to illustrate that the presented stepwise method can be used with other
classifiers to reduce the number of rating scale items (variables). The targeted areas of application are
decision making, data mining, machine learning, and psychometrics.

Keywords: rating scale, receiver operator characteristic, ROC, AUC, scale reduction.

Introduction

Rating scales are designed to gather data and rate an entity (objects of concepts). Rating scales are also
called assessment scales. In our study, we use ”the scale” when no ambiguity takes place. Probably,
the most significant and frequently used rating scales are exams or tests (e.g., Ontario Driver’s test
with 40 multiple-choice questions). Some rating scales use values “1 to 10” but five "stars" are gaining
popularity for the online reviewing of goods or services. Yes/no answers may also be used for answers
in rating scales. Number of questions (called items in the rating scale terminology) may also drastically
differ from scale to scale. Numerous rating scales have over 100 items to rate but one item rating scale
is also useful for rating the customer’s satisfaction with goods or services. An example of a popular
rating scale is the intelligence quotient (IQ). It is a total score derived from several standardized tests
designed to assess human intelligence.

Sometimes, the scale is called a survey or a questionnaire. A questionnaire is a tool for data gathering
and may not be used for a rating. A survey may not necessarily be conducted by questionnaires
and usually does not rate anything. Its goal is to gather data. Some surveys may be conducted by
interviews or extracted by Internet agents with or without our consent or knowledge. The important
distinction of rating scales from questionnaires and surveys, is that the rating scales are used for
assessments. It means that rating scales are expected to have an outcome making them classifiers (in
the terminology of statistics and machine learning). The scale term in the rating scale has the meaning
as in “the scale of disaster” hence this study assumes that:

[ratingscale] = [data f rame] + [assessment] = [classi f ier]

The “assessment" procedure must be in place for a questionnaire or survey to become a rating scale.
The assessment procedure may be as complex as the imagination of their authors but most psychiatric
rating scales use a simple summation. The simple summation has been used in the first examples. The
simple summation can be replaced by, for example, the assignment of weights. In our example 2, we
computed weights by the differential evolution (using R packagbe DEval). As expected, it has not
influenced the reduction, but it has improved the predictability rate.

“A picture is worth a thousand words” hence Fig. 1 has been used to illustrate ratings scales which
are used in many examinations and ratings of various products.

Figure 1: Rating scale example

The recent popularity of rating scales is due to various “Customer Reviews” on the Internet where
five stars are often used instead of ordinal numbers. Rating scales are predominantly used to express
our subjective assessments such as “on the scale 1 to 5, express your preference” by one selection of:
“strongly agree to strongly disagree” with 3 as “neutral” preference. Using a slider implementation (as
in Fig. 1) gives us the flexibility. It is known as a graphic or continuous rating scale.
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Terminology issue

In our study, we decided to use the data mining (DM) terminology having in mind that regardless
of the scientific discipline, the ultimate goal is to predict the outcome of future examples to make a
decision. Statistical observations are called examples in DM terminology and items in the rating scale
terminology. Statistics uses variables. R project uses attributes and the data frame with all attributes
in columns and examples in rows creates an attribute matrix. The additional validation variable is
called the decision vector or simply, the decision. In psychiatry, the decision may be “is the patient
sick with depression or not.” In case of Ontario Driver’s test, it is: “do we give a passing grade or not?”
The list of application is endless as decision making is of considerable importance for everyone. We
also have introduced a new term: “gray examples” for two examples having identical values on all
attributes but belonging to two different classes. Evidently, such situation should not occur in the
ideal situation but uncertainty in data or imperfect data need to be handled in practice. The gray
color is intermediate between black and white and our two examples belong to both classes. One
example may be replicated m times. Replication of examples would deviate computations and should
be detected and removed.

Rating scale reduction

Large rating scales discourage respondents from completing them. It is not unusual to have most
answers as random numbers at the end of a long rating scale. It seems that the first successful rating
scale reduction took place in Velden M. & Clark (1979) by the psychophysical model by means of
signal detection theory (SDT). However, the last paragraph which served as the optional Conclusions
at that time:

It may be concluded that due to the psychophysical difference between the SOT discrimi-
nation and the common rating situation, signal detection type reduction of such rating
data does not allow interpretation of resulting values as unbiased psychological distances.
To avoid misinterpretations, it might be worthwhile not to use the SDT notation for
indices derived from psychological rating data.

may be perceived as a risky proposition. For many rating scales (e.g., written academic exams),
arbitrary (rarely, computed) weights are applied for some or all items (questions) to improve the
overall rating. The proposed method respects it and takes into account only the final "total" (obtained
by whatever method or procedure it is established). Formally speaking, the "total" is a metric. The
rating scale with metric can be regarded as a classifier for classifying subjects by the rating scale (e.g.,
sick or not in case of medicine). In Koczkodaj et al. (2017), the stepwise algorithm is proposed for the
reduction of the rating scale items by using a metric computed from the confusion matrix by AUC
of ROC. The proposed algorithm is restricted to the dichotomous (binary) decision making by the
supervised learning approach. Our heuristic algorithm is addressed in Section 10.2. In practice, it is
the most needed type of decision (e.g., go/stop, left/right, alive/dead, passed/failed, etc.). There are
many ways of transforming general data into dichotomous data to be useful.

A dichotomous (binary) rating scale groups observations (examples) into two categories based
on the knowledge about the classified subject. The knowledge is the external assessment since it is
the case of supervised learning. If, for example, the division into two groups is "sick/not sick", it is
necessary to know if the patient was indeed sick or not by the opinion of an MD to be able to screen
(classify) future patients, unnecessarily taking time of usually busy MDs.

Heuristic algorithm and rating scale stepwise reduction procedure

ROC method and corresponding AUC is a well known technique to asses the classifier performance.
Both ROC and AUC concepts are well addressed by Fawcett (2004). They are implemented by many
R packages including: pROC (Robin et al., 2011) and ROCR (Sing et al., 2005). There is also one
interesting web application easyROC (Goksuluk et al., 2016) giving possibility to compute the confusion
matrix and plot the curve on-line. The RatingScaleReduction package expands this analysis to carry
out the procedure of rating scale reduction. The main function of the package is based on the procedure
described in Koczkodaj et al. (2017).

In computer science and mathematical optimization, a heuristic is a technique (or method) de-
signed for solving a problem by finding an approximate solution when classic methods fail to find
the exact solution. Often, finding such a method is achieved by trading completeness, accuracy, or
optimality, for the speed. However, most heuristics are designed to find an approximate solution of
NP-complete problems (NP stands for "nondeterministic polynomial time"). In layman’s terms, an
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infinite computing time is needed to find an exact solution for an NP-complete problem hence a simpler
(and usually approximated) solution needs to be accepted.

Evidently, heuristic algorithms produce “good enough”solutions. They are usually not the optimal
solution but “good enough” is nearly always better than none. For example, the traveling salesman
problem (TSP), often formulated as find the shortest possible route to visit each city once only and return to
the origin city. It cannot be computed even for 50 cities by verifying all possible combinations since
the total number of such permutations is estimated to O(n22n) although a little bit more optimistic
estimations are suspected to exist. By using heuristics, we can solve TSP for millions of cities with the
accuracy of a small fraction of 1%.

Heuristic algorithm is a frequently used misnomer. If it is "heuristic", it is not an algorithm and
if it is algorithm, it is not a heuristic. However, many heuristics are expressed (written) the same
way as algorithms but such "algorithms" do not have well established scientific foundations. Instead,
they are based on observations, experience, or even intuition. Some heuristic algorithms may become
algorithms. As time passes, we gather more and more evidence and such evidence may lead to finding
a theory.

In rating scale reduction problem, the number of possible combinations for a rating scale with 100
items is a “cosmic number” hence the complete search must be ruled out. Certainly, the results need to
be verified and used only if the item reduction is substantial. Computing the AUC of ROC for all items
is the basis for our heuristic. Common sense dictates that the contribution of the individual items to
the overall value of AUC of ROC needs to be somehow utilized. In the RatingScaleReduction, the
implemented algorithm (when reduced to its minimum) uses a loop for all attributes (with the class
excluded) to compute AUC. Subsequently, attributes are sorted in the ascending order by AUC. The
attribute with the largest AUC is added to a subset of all attributes (evidently, it cannot be empty since
it is supposed to be the minimum subset S of all attributes with the maximum AUC). We continue
adding the next in line (according to AUC) attribute to the subset S checking AUC. If it decreases, we
stop the procedure. There is a lot of checking (e.g., if the dataset is not empty or full of replications)
involved. In a more formal way, the RSR procedure implemented in RatingScaleReduction has the
general steps:

1. input: attM[i, j] - attribute matrix, i = 1, ..., n, j = 1, ..., m,
where n - the number of examples, m - the number of columns,
D[i] - decision vector i = 1, ..., n

2. iterate in the loop:

for (j in 1:m){
calculate AUC[j]
}

3. sort the vector AUC[1], ..., AUC[m] in the descending order receiving a new vector

AUCs[1], ..., AUCs[m]

4. create a new attribute matrix attMs[i, j] with columns sorted in the descending order according
to the vector:

AUCs[1], ..., AUCs[m]

5. iterate in the loop:

attMs[ ,1] = attM[ ,1]
for (j in 2:m){

D.predict[j] = sum(attMs[ ,1],...,attMs[ ,j])
calculate AUCtotal[j] = auc(D[j], D_predict[j])
}

6. iterate in the loop:

k = 1
while (AUCtotal[k+1] > AUCtotal[k]){

attMreduced = cbind(attMs[ ,1],...,attMs[ ,k])
k = k+1
}

7. output: the reduced attribute matrix attMreduced generating the reduced rating scale.

First part of RSR procedure is implemented by R functions startAuc, totalAuc while the second part is
the main function of the package called rsr.
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RatingScaleReduction: overview of the package functions

and shown by Fig.

The RatingScaleReduction package implements the above-stated stepwise procedure using two
functions of the pROC package: roc and roc.test. The data can be the matrix or data.frame.
Columns represent attributes and one column is the class with two categories: 0 or 1 (or any other two
different integer or real values). The rows in data.frame represents examples. For our package, all
attributes and the class must be numeric (preferably 0 or 1) hence some preprocessing may be needed.

There are two groups of functions available in the package. The first group is for implementing
the core of the RSR algorithm:

1. startAuc(attribute,D) – compute the AUC values of every single attribute in the rating scale.

2. totalAuc(attribute,D,plotT=FALSE) – sort AUC values in the ascending order and compute
AUCs of running total of first k attributes, k = 1, ..., n, where n is the number of attributes.
Setting the argument plotT as TRUE the plot of new AUC values is created. The horizontal line
marks the max new AUC.

3. rsr(attribute,D,plotRSR=FALSE) – the main function of the package reducing the rating scale.
Setting the argument plotRSR as TRUE the plot of ROC curve of the sum of attributes in reduced
rating scale is created.

4. CheckAttr4Inclusion(attribute,D) – subsequently, we check the next attribute for the possible
inclusion in the reduced set of attribute. It is done by maximizing AUC of all already included
attributes and the attribute we have just checked. In some cases, all attributes will be included
in the new set of attributes. The reduced set of one attribute may be created if there is an
identifying attribute. The function CheckAttr4Inclusion tests the inclusion. It carried out a
statistical test for a difference in AUC of two correlated ROC curves: ROC1 of the sum of
attributes from reduced rating scale and ROC2 of this sum plus the next ordered attribute. The
function roc.test from the pROC is used and all implemented tests are available, in particular
delong and bootstrap.

The package RatingScaleReduction also contains the second group of functions to support the re-
duction procedure. Before running the PROC1, the dataset should be analyzed to detect replicated
examples (gray examples). This analysis of a dataset can be done by using functions: diffExamples
and grayExamples.

1. diffExamples(attribute) – search replicated examples in the data and return the number of
different examples and the number of duplicates.

2. grayExamples(attribute,D) – produce the list of pairs of examples having identical values on
all attributes. The decision value and attributes are produced for every pair in the dataset, so
the list clearly shows all gray examples.

In the examples presenting the capabilities of the RatingScaleReduction package, we have used
the following two datasets:

1. Wine quality demonstrates how most of our package functions are used,

2. Somerville Happiness Survey for the use of differential evolution (DE) classifier.

Subsequently, we utilized our examples to demonstrate the capabilities of the RatingScaleReduction
package. The full R code is available for download from https://github.com/woali/RatingScaleReduction/
blob/master/example_Rj.r.

The first demonstration example: wine quality

Wine quality dataset taken from http://archive.ics.uci.edu/ml/index.php and available in the
object wineData from the RatingScaleReduction package is used in this example. It has 6497 examples
and 11 attributes. The reduction is achieved by three core functions of the package. The data.frame
we work on contains 11 columns with attributes and one additional column as a decision (reality).

We begin the analysis by computing AUC for all 11 individual attributes by the use of function
totalAuc. Setting the argument plotT as TRUE produced a plot.

> tauc.wine <-totalAuc(attribute, D, plotT=TRUE)

> tauc.wine$summary
AUC one variable AUC running total

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://github.com/woali/RatingScaleReduction/blob/master/example_Rj.r
https://github.com/woali/RatingScaleReduction/blob/master/example_Rj.r
http://archive.ics.uci.edu/ml/index.php


CONTRIBUTED RESEARCH ARTICLES 47

alcohol 0.6098691 0.6098691
volatile.acidity 0.6047200 0.6397657
fixed.acidity 0.5656387 0.6415913
citric.acid 0.5550811 0.6294707
total.sulfur.dioxide 0.5536676 0.5971653
sulphates 0.5394024 0.5824898
density 0.5218842 0.5109257
chlorides 0.5215313 0.5227466
pH 0.5134569 0.5229943
free.sulfur.dioxide 0.5052413 0.5237751
residual.sugar 0.4957781 0.5286474

The R output shows the tauc.wine$summary AUC of every single attribute in the second column,
sorted in the ascending order. The running total of AUCs is in the third column. The initially selected
variable (alcohol) for the first row is the attribute with the largest AUC. Subsequently, we add to it
the variable with the largest AUC of the remaining attributes. The process continues while the last
attribute of the scale is added.

Figure 2: A stepwise AUC reduction method (example)
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Printing the value tauc.wine$item we receive the attribute labels in an ascending order.

> tauc.wine$item

[1] "alcohol" "volatile.acidity" "fixed.acidity"
[4] "citric.acid" "total.sulfur.dioxide" "sulphates"
[7] "density" "chlorides" "pH"
[10] "free.sulfur.dioxide" "residual.sugar"

As illustrated by Fig. 2, the value of AUC of the selected subset of attributes is increasing by adding
the first three attributes labeled alcohol, volatile.acidity and fixed.acidity. For this reason, the reduction
procedure is terminated after the first six attributes are added. The function rsr reduces the scale
automatically assuming the truncation point as the attribute that first reaches the maximum AUC.
AUC is a real value between 0 and 1. It is 0.5 for random data but hardly ever reaches 1 since , in
reality, there are always “gray examples” in sizable data.

> rsr.wine <-rsr(attribute, D, plotRSR=TRUE)
The criteria: Stop first MAX AUC
> rsr.wine$rsr.auc

[1] 0.6098691 0.6397657 0.6415913

> rsr.wine$rsr.label
[1] "alcohol" "volatile.acidity" "fixed.acidity"

> rsr.wine$summary
AUC one variable AUC running total
alcohol 0.6098691 0.6098691
volatile.acidity 0.6047200 0.6397657
fixed.acidity 0.5656387 0.6415913

Setting the rsr parameter plotRSR as TRUE the function generates the plot illustrated by Fig. 3.

Figure 3: AUC of alcohol + volatile.acidity + f ixed.acidity for Wine dataset

We assume that by selecting the “best” attribute in a loop, we are able to reduce the number of
attributes for the best preventiveness. In our case, having the largest AUC is the “best” criterion.
Adding the next “best” attribute to the selected attribute from the subset of the remaining attributes
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until AUC of all selected attributes decreases is the main idea of our heuristic. So far, each and every
rating scale has been reduced.

The second demonstration example: DEvol classifiers

Somerville Happiness Survey (SHS) dataset has been used as the second example to demonstrate the
use of Differential Evolution (DE) as a classifier to enhance the data be preprocessing. The use “survey”
is warranted since it gathers “other data” but it has subscale (a part of it) for the happiness rating. This
survey has been given sent out to a random sample of Somerville residents asking them to rate their
personal happiness and their satisfaction with city services every second year since 2011. Every year,
the survey is refined. We used data of year 2015 since this survey is the most mature. SHS dataset
uses what is called a subscale. The processed survey data are available in the object SHSData in the
RatingScaleReduction. It is a subscale marked s block "6" and shown by Fig. 4. The decision (class)
attribute is the SHS survey question "3":
How satisfied are you with Somerville as a place to live?
mapped into 0-1 (0 for values less than 8 otherwise 1).

Figure 4: Survey for collecting SHS scale

For this subscale, we used Differential Evolution (DE) classifier by using DEoptim from DEoptim R
package. DEoptim computes optimal weights (as a vector w) for a given data. Given data are modified
by the scalar vector multiplication.

It is worth noticing that all rating scales can be improved by DEoptim. In the worse case scenario,
the initial vector [1, 1, . . . , 1] will remain unchanged. In our case, DEval improved the predictability
measured by AUC from 0.678 to 0.789.
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> D.predict <- rowSums(attribute)
> roc(D, D.predict, plotROC = FALSE)$auc
Area under the curve: 0.6794

The RSR procedure gives the following reduction:

> rsrSum <- rsr(attribute, D, plotRSR = TRUE)
> rsrSum
$rsr.auc
[1] 0.6664868 0.6934700 0.7330005

$rsr.label
[1] "X6" "X1" "X4"

$summary
AUC one variable AUC running total

X6 0.6664868 0.6664868
X1 0.6542094 0.6934700
X4 0.6083378 0.7330005

The results are illustrated by plots (see Fig. 5 and 6).

Figure 5: Somerville happiness survey dataset

Differential evolution (DE) as a classifier In RSR procedure, we change the classifier from the simple
to the weighted total. The optimal weights are received using DE.
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Figure 6: Somerville happiness survey dataset

The goal function is:

nsi<-function(x){
D.predict <- rowSums(x*attribute)
-1*roc(D, D.predict, plotROC = FALSE)$auc

}

where x = x[j], j = 1, ..., 6 are weights of items.

The initial lower and upper bounds, required by DE, are set to:

lower_nsi <- c(0.1,0.1, 0.1, 0.1, 0.1,0.1)
upper_nsi <- c(3,3,3,3,3,3)

DE optimization:

output <- DEoptim(nsi, lower_nsi, upper_nsi,
DEoptim.control(itermax=10))

#ouput the optimize result of weights
> (weight.item.all <- output.all$optim$bestmem)

par1 par2 par3 par4 par5 par6
1.405835 1.882602 1.758763 2.356450 1.123748 2.085982

#all items
> (aucResult <- -1*output$optim$bestval)
[1] 0.766055

In order to reduce the scale using DE, we have modified RSR procedure by changing D.predict
formula to:

D.predict[j] = sum(x[1]*attMs[ ,1],...,x[1]*attMs[ ,j])
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The sorted attribute matrix attMs[i, j] we use in the loop:

results <- matrix(nrow = ncol(attMs), ncol = 2)
for (i in 2:ncol(attMs)) {
mydata_new <- attMs[ ,1:i]

lower_nsi <- rep(0.1,i)
upper_nsi <- rep(3,i)

output <- DEoptim(nsi, lower_nsi, upper_nsi, DEoptim.control(itermax=10))
results[i, ] <- cbind(i, -1*output$optim$bestval)

}

We have obtained the reduction:

> results
number of items AUCtotalDE

[1,] 1 0.5226659
[2,] 2 0.6991365
[3,] 3 0.7621425
[4,] 4 0.7664598
[5,] 5 0.7251754
[6,] 6 0.7232866

> names(attMs)
[1] "X6" "X1" "X4" "X3" "X5" "X2"

Plots are illustrated by Fig. 7 and 8

Figure 7: Enhanced (by DE) SHS dataset

The potential application targets

Rating scales are by far more important contributors to practically all branches of applied science and
engineering than we can address by this study. Most examinations for granting scientific degrees
are rating scales in various shapes and forms. Simplifying them (or reducing in size) is needed if the
predictability is preserved or increased.
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Figure 8: Enhanced (by DE) SHS dataset dataset

In bioinformatics, reporting trade-off in sensitivity and specificity, by using a Receiver Operating
Characteristic (ROC) curve, is becoming a common practice. ROC plot has the sensitivity on the y axis,
against the false discovery rate (1- specificity) on the x axis. ROC curve plot provides a visual tool
to determine the boundary limit (or the separation threshold) of a subset (or a combination) of scale
items for the potentially optimal combination of sensitivity and specificity. The area under the curve
(AUC) of the ROC curve indicates the overall accuracy and the separation performance of the rating
scale. It can be readily used to compare different item subsets. As a rule of thumb, the fewer scale
items used to maximize the AUC of the ROC curve, the better.

World Health Organization estimates are included behind selected rating scales for mental disorder.
Rating scales are of considerable importance for psychiatry where they are predominately used for
screening patients for mental disorders such as:

• depression (see Koczkodaj et al. (2017)) which affects 60 million people worldwide according to
WHO (2016),

• bipolar affective disorder (60 million people),
• dementia and cognitive impairment (47.5 million people)
• schizophrenia (21 million people),
• autism and autism spectrum disorders (e.g., Kakiashvili et al. (2012))
• addiction,
• personality and personality disorders,
• anxiety,
• ADHD;

and many other disorders.

Usually, there are many scales for each mental disorder. The most important for screening are
global scales. Reducing these global rating scales makes them more usable as indicated in Koczkodaj
et al. (2017). World Health Organization Media Centre reports that depression and anxiety disorders
cost the global economy US $1 trillion each year” and it is no longer a local problem.

Conclusions

The presented method has reduced the number of the rating scale items (variables) to 28.57% from the
original number of items (from 21 to 6). It means that over 70% of collected data was unnecessary. It is
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not only an essential budgetary saving, as the data collection is usually expensive and may easily go
into hundreds of thousands of dollars, but excessive data collection may contribute to data collection
error increase. The more data are collected, the more errors may occur since a lack of concentration
and boredom are realistic factors.

By using the proposed AUC ROC reduction method, the predictability has increased by ap-
proximately 0.5%. It may seem insignificant. However, for a large population, it is of considerable
importance. In fact, WHO (2016) states that: “Taken together, mental, neurological and substance use
disorders exact a high toll, accounting for 13% of the total global burden.”

As pointed out, rating scales are used for mental disorders. According to WHO (2016), mental
disorders are becoming a global problem.

The proposed use of AUC for reducing the number of rating scale items, as a criterion, is innovative
and applicable to practically all rating scales. In the worse case scenario, no reduction takes place (the
number of reduced attributes is 0). System R code is posted on the Internet (RatingScaleReduction) for
the general use as a R package. Certainly, more validation cases would be helpful and the assistance
will be provided to anyone who wishes to try this method using his/her data.

Future plans include using the presented method for measuring the harmful use of the Internet
and for the improvement of numerous psychiatric scales. The reduced scales can be further enhanced
by the method described in Kakiashvili et al. (2012) and Koczkodaj (1996).
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W. W. Koczkodaj, T. Kakiashvili, A. Szymańska, J. Montero-Marin, R. Araya, and J. Garcia-Campayo,
K. Rutkowski, and D. Strzałka. How to reduce the number of rating scale items without predictability
loss? Scientometrics, 111:581–593, 2017. [p44, 53]

X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller. pROC: An
open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12:77,
2011. [p44]

T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. ROCR: Visualizing classifier performance in R.
Bioinformatics, 21(20):3940–3941, 2005. [p44]

W. Velden M. & Clark. Reduction of rating scale data by means of signal detection theory. Psychophysics,
25(6):517–518, 1979. doi:10.3758/BF03213831. [p44]

WHO. Mental disorders fact sheet. “www.who.int/mediacentre/factsheets/fs396/en/”, April, 2016. [p53, 54]

Waldemar W. Koczkodaj
Computer Science
Ramsey Lk Rd.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1016/j.cmpb.2011.09.011


CONTRIBUTED RESEARCH ARTICLES 55

Laurentian University
Sudbury, Ontario P3E 2C6
Canada
wkoczkodaj@cs.laurentian.ca
http://cs.laurentian.ca/wkoczkodaj/info

Feng Li
Computer Science
Ramsey Lk Rd.
Laurentian University
Sudbury, Ontario P3E 2C6
Canada
spacejohn@live.cn

Alicja Wolny–Dominiak
Department of Statistical and Mathematical Methods in Economics
University of Economics in Katowice
ul. 1 Maja 50
40–287 Katowice
Poland
alicja.wolny-dominiak@uekat.pl
https://woali.github.io/rphdstatistics

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

mailto:wkoczkodaj@cs.laurentian.ca
http://cs.laurentian.ca/wkoczkodaj/info
mailto:spacejohn@live.cn
mailto:alicja.wolny-dominiak@uekat.pl
https://woali.github.io/rphdstatistics


CONTRIBUTED RESEARCH ARTICLES 56

mmpf: Monte-Carlo Methods for
Prediction Functions
by Zachary M. Jones

Abstract Machine learning methods can often learn high-dimensional functions which generalize
well but are not human interpretable. The mmpf package marginalizes prediction functions using
Monte-Carlo methods, allowing users to investigate the behavior of these learned functions, as on a
lower dimensional subset of input features: partial dependence and variations thereof. This makes
machine learning methods more useful in situations where accurate prediction is not the only goal,
such as in the social sciences where linear models are commonly used because of their interpretability.

Many methods for estimating prediction functions produce estimated functions which are not
directly human-interpretable because of their complexity: for example, they may include high-
dimensional interactions and/or complex nonlinearities. While a learning method’s capacity to
automatically learn interactions and nonlinearities is attractive when the goal is prediction, there
are many cases where users want good predictions and the ability to understand how predictions
depend on the features. mmpf implements general methods for interpreting prediction functions
using Monte-Carlo methods. These methods allow any function which generates predictions to be be
interpreted. mmpf is currently used in other packages for machine learning like edarf and mlr (Jones
and Linder, 2016; Bischl et al., 2016).

Marginalizing Prediction Functions

The core function of mmpf, marginalPrediction, allows marginalization of a prediction function so
that it depends on a subset of the features. Say the matrix of features X is partitioned into two subsets,
Xu and X−u, where the former is of primary interest. A prediction function f (which in the regression
case maps X→ y) where y is a real-valued vector might not be additive or linear in the columns of
Xu, making f difficult to interpret directly. To obtain the marginal relationship between Xu and f we
could marginalize the joint distribution so that we obtain a function fu which only depends on the
relevant subset of the features:

fu(Xu) =
∫

f (Xu, X−u)P(Xu|X−u)P(X−u)dX−u.

This however, can distort the relationship between Xu and f because of the inclusion of dependence
between Xu and X−u (specifically Xu|X−u), which is unrelated to f . An alternative is to instead integrate
against the marginal distribution of X−u as in 12.1, as suggested by (Friedman, 2001):

f̃u(Xu) =
∫

f (Xu, X−u)P(X−u)dX−u.

To illustrate this point, suppose data are generated from an additive model, f (·) = x1 + x2 and
(x1, x2) ∼ MVN(0, Σ) where the diagonal entries of Σ are 1 and the off-diagonals are 0.5. That is,
(x1, x2) are correlated by construction. Now if we want to understand how f depends on x1 we could
integrate against the true joint distribution, as in 12.1. However, this distorts the relationship between
x1 and f , because the conditional probability of x1 given x2 is higher at values of (x1, x2) which are
more extreme (due to their correlation). Since x2 is related to f , this has the effect of distorting the
relationship between x1 and f , and, in this case, makes the relationship appear more extreme than it is,
as can be seen in the left panel of Figure 1. This distortion of the relationship between x1 and f can be
made more misleading if x2 interacts with x1 to produce f , or if x2 has a nonlinear relationship with f ,
as can be seen in the right panel of Figure 1.

Integrating against the marginal distribution of x1 recovers the true additive effect (left panel) and
the average marginal effect (x1 + 0.5x1x̄2, in the right panel) respectively.

Using mmpf

In practical settings we do not know P(X) or f . We can use f̂ , estimated from (X, y) as a plug-in
estimator for f and can estimate P(X−u) from the training data, allowing us to estimate the partial
dependence of Xu on f̂ Friedman (2001).
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Figure 1: The marginal relationship between x1 and f as estimated by integrating against the marginal
distribution of x2 (the blue line) or the joint distribution of (x1, x2) (the red line). The true relationship
is shown by the dashed line. In the left panel f is an additive function of x1 and x2 and in the right
panel x1 and x2 interact via multiplication to produce f .

f̂u(Xu) =
N

∑
i=1

f̂ (Xu, X(i)
−u)

This the behavior of the prediction function at a vector or matrix of values for Xu, averaged over
the empirical marginal distribution of X−u.

The function marginalPrediction allows users to compute easily partial dependence and many
variations thereof. The key arguments of marginalPrediction are the prediction function (predict.fun),
the training data (data), the names of the columns of the training data which are of interest (vars), the
number of points to use in the grid for Xu, and the number of points to sample from X−u (n, an integer
vector of length 2). Additional arguments control how the grid is constructed (e.g., uniform sampling,
user chosen values, non-uniform sampling), indicate the use of weights, and instruct how aggregation
is done (e.g., deviations from partial dependence). Below is an example using the Iris data (Anderson,
1936):

library(mmpf)
library(randomForest)

data(iris)
iris.features = iris[, -ncol(iris)] # exclude the species column
fit = randomForest(iris.features, iris$Species)

mp = marginalPrediction(data = iris.features,
vars = "Petal.Width",
n = c(10, nrow(iris)), model = fit, uniform = TRUE,
predict.fun = function(object, newdata) predict(object, newdata, type = "prob"))

print(mp)
## Petal.Width setosa versicolor virginica
## 1: 0.1000000 0.6374133 0.2337733 0.1288133
## 2: 0.3666667 0.6374133 0.2337733 0.1288133
## 3: 0.6333333 0.6356267 0.2350533 0.1293200
## 4: 0.9000000 0.1707200 0.5997333 0.2295467
## 5: 1.1666667 0.1688267 0.6016267 0.2295467
## 6: 1.4333333 0.1688133 0.5880800 0.2431067
## 7: 1.7000000 0.1640400 0.4242800 0.4116800
## 8: 1.9666667 0.1619867 0.2066667 0.6313467
## 9: 2.2333333 0.1619867 0.2047867 0.6332267
## 10: 2.5000000 0.1619867 0.2047867 0.6332267

In this case, f̂ returns a probability of membership in each class for each value of the variable
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Figure 2: The expected value of f̂ estimated by a random forest and then marginalized by Monte-Carlo
integration to depend only on “Petal.Width.”

“Petal.Width.” This is computed based on the average prediction for each value of “Petal.Width”
shown and all the observed values of the other variables in the training data. As can be readily
observed, partial dependence can be easily visualized, as in Figure 2.

In fact, any function of the marginalized function f̂u can be computed, including vector-valued
functions. For example the expectation and variance of f̂u can be simultaneously computed, the
results of which are shown in Figures 3 and 4. Computing the variance of f̂u can be used for detecting
interactions between Xu and X−u (Goldstein et al., 2015). If the variance of f̂u(Xu) is constant then
this indicates that X−u does not interact with Xu, since, if it did, this would make f̂ more variable in
regions of the joint distribution wherein there is interaction between Xu and X−u.

mp.int = marginalPrediction(data = iris.features,
vars = c("Petal.Width", "Petal.Length"),
n = c(10, nrow(iris)), model = fit, uniform = TRUE,
predict.fun = function(object, newdata) predict(object, newdata, type = "prob"),
aggregate.fun = function(x) list("mean" = mean(x), "variance" = var(x)))

head(mp.int)
## Petal.Width Petal.Length setosa.mean setosa.variance versicolor.mean
## 1: 0.1 1.000000 0.9549867 0.0011619193 0.04448000
## 2: 0.1 1.655556 0.9549867 0.0011619193 0.04448000
## 3: 0.1 2.311111 0.9530933 0.0011317899 0.04637333
## 4: 0.1 2.966667 0.4574667 0.0003524653 0.52818667
## 5: 0.1 3.622222 0.4550400 0.0002619447 0.53061333
## 6: 0.1 4.277778 0.4550400 0.0002619447 0.52472000
## versicolor.variance virginica.mean virginica.variance
## 1: 0.001141889 0.0005333333 0.00000239821
## 2: 0.001141889 0.0005333333 0.00000239821
## 3: 0.001112236 0.0005333333 0.00000239821
## 4: 0.001154918 0.0143466667 0.00054076492
## 5: 0.001016158 0.0143466667 0.00054076492
## 6: 0.001556364 0.0202400000 0.00093196886
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Figure 3: The expected value of f̂ estimated by a random forest and then marginalized by Monte-Carlo
integration to depend only on “Petal.Width” and “Petal.Length.”

Figure 4: The variance of f̂ estimated by a random forest and marginalized by Monte-Carlo integration
to depend only on “Petal.Width” and “Petal.Length.” Non-constant variance indicates interaction
between these variables and those marginalized out of f̂ .
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Generalized Additive Model Multiple
Imputation by Chained Equations With
Package ImputeRobust
by Daniel Salfran, Martin Spiess

Abstract Data analysis, common to all empirical sciences, often requires complete data sets. Unfortu-
nately, real world data collection will usually result in data values not being observed. We present a
package for robust multiple imputation (the ImputeRobust package) that allows the use of generalized
additive models for location, scale, and shape in the context of chained equations. The paper describes
the basics of the imputation technique which builds on a semi-parametric regression model (GAMLSS)
and the algorithms and functions provided with the corresponding package. Furthermore, some
illustrative examples are provided.

Introduction

A common approach to allow valid inferences in the presence of missing data is “Multiple Imputation”
(MI) introduced by Rubin (1987). Application of MI can be summarized in three steps. The first
step is to create m > 1 sets of completed data sets by replacing each missing value with m values
drawn from an appropriate posterior predictive distribution (“imputations”). In the second step, the
required statistical analysis technique is applied to each of the completed data sets as if it were a
completely observed data set. The third step is the pooling step, where the results from the m analyses
are combined to form the final results, and allows statistical inferences in the usual way.

Basically, there are two ways of specifying imputation models: Joint modelling and fully condi-
tional specification. The joint modelling approach requires specification of a multivariate distribution
for the variables whose values are not observed and drawing imputations from their predictive poste-
rior distribution using Markov Chain Monte Carlo (MCMC) techniques. Within this framework, the
most common assumption is that the data is multivariate normally distributed (Schafer, 1997). Other
alternatives for categorical data are based on the latent normal model (Albert and Chib, 1993) or the
general location model (Little and Rubin, 2002).

This methodology is attractive if the assumed multivariate distribution is an appropriate model for
the data but may lack the flexibility needed to deal with complex data sets encountered in applications.
In such cases, the joint modelling approach may be too restrictive because the typical specification
of a multivariate distribution is not sufficiently flexible to allow different continuous and discrete
distributions (He and Raghunathan, 2009). For example, most of the existing model-based methods
and software implementations assume that the data originate from a multivariate normal distribution
(e.g. Honaker et al., 2011; Templ et al., 2011; van Buuren, 2007). However, the assumption of normality
is inappropriate as soon as there are outliers in the data, or in the case of skewed, heavy-tailed or multi-
modal distributions, potentially leading to deficient results (van Buuren, 2012; He and Raghunathan,
2012).

With the fully conditional specification, also known as multivariate imputation by chained equa-
tions (van Buuren and Groothuis-Oudshoorn, 2011), a univariate imputation model is specified for
each variable with missing values conditional on other variables of the data set. Starting from ini-
tially bootstrapped imputations, subsequent imputations are drawn by iterating over conditional
densities (van Buuren and Groothuis-Oudshoorn, 2011; van Buuren, 2007). This framework splits
high-dimensional imputation models into multiple one-dimensional problems and is appealing as an
alternative to joint modelling in cases where a proper multivariate distribution can not be found. The
choice of imputation models in this setting can vary depending on the type of variable to be imputed,
for example, parametric models like the Bayesian linear regression or logistic regression. Liu et al.
(2013) studied the asymptotic properties of this iterative imputation procedure and provided sufficient
conditions under which the imputation distribution converges to the posterior distribution of a joint
model when the conditional models are compatible.

De Jong (2012) and de Jong et al. (2014) proposed a new imputation technique based on generalized
additive models for location, scale, and shape, GAMLSS, (Rigby and Stasinopoulos, 2005), which is
a class of univariate regression models, where the assumption of an exponential family is relaxed
and replaced by a general distribution family. This allows a more flexible modelling than standard
parametric imputation models, not only based on the location (e.g. the mean), but also the scale
(e.g. variance), and the shape (e.g., skewness and kurtosis) of the conditional distribution of the
dependent variable to be imputed given all other variables. The R package ImputeRobust, described
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in the next section, provides the functions necessary to apply the GAMLSS imputation technique to
missing data problems. It can be used as standalone tool or in combination with mice (van Buuren
and Groothuis-Oudshoorn, 2011). Salfran (2018) provides an extensive comparison study of the new
package and other Multiple Imputation techniques.

Robust imputation with gamlss and mice

The imputation method realized by the package ImputeRobust is based on a generalized additive
model for location, scale and shape of the variable to be imputed. Specifically, we adopt the semi-
parametric additive formulation of GAMLSS described in Stasinopoulos and Rigby (2007).

Let Y = (Yij), i = 1, . . . , n and j = 1, . . . , p be a matrix with n independent observations on p
variables and let yij be the realization of variable Yj with probability function f (yij|θij) conditional on
parameters θij = (θk

ij), k = 1, . . . , 4. Assume that gk are known monotonic link functions relating the

distribution parameters θk
ij to explanatory variables by the following equation:

gk(θ
k
ij) = ηk = Xkβk +

Lk

∑
l=1

hlk(xlk), (1)

where θk
ij for k = 1, 2, 3, 4 are the location, scale and shape parameters of the distribution, Xk is a fixed

known design matrix, βT
k a vector of linear predictors, and hlk(xlk) are unknown smoothing functions

of the explanatory variables.

Not all four parameters may be needed, depending on the conditional distribution f (yij|θij) which
will be denoted as D. The package gamlss (Rigby and Stasinopoulos, 2005) provides a wide range
of possible continuous and discrete conditional distributions with varying number of parameters,
although not all of these distributions have been adopted yet to create imputations (see Table 1 on
section “Main functions”).

The proposed imputation method selects the conditional distribution D for each of the variables to
be imputed with the MICE algorithm (van Buuren and Groothuis-Oudshoorn, 2011). This distribution
defaults to normal for continuous data, but other alternatives may be chosen. Users can take advan-
tage of this option to restrict imputations to a certain range, e.g., by specifying a truncated normal
distribution. Alternatives already included are Logit and Poisson models to handle binary and count
data.

The chosen distribution D defines the type and number of parameters to be modelled, e.g., for the
default normal distribution the mean and variance are estimated (individually for each point), but
other distributions may require the estimation of the skewness and kurtosis in addition. Adopting
models with more parameters increases their flexibility and thus may increase the chance that the
imputation procedure is proper in the sense of Rubin (1987). On the other hand, larger sample sizes
may be needed to identify the larger number of parameters.

Implementation

The implementation of the imputation method for our simulations uses the gamlss package (see Rigby
and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007) in R to fit model (1) based on (penalized)
maximum likelihood estimation and adopting the default link functions. Rigby and Stasinopoulos
(2005) and Stasinopoulos and Rigby (2007) provide a description of the fitting algorithms used by
this package. As smoothing functions hjk, we use P-splines with 20 knots, a piecewise polynomial of
degree three, a second order penalty and automatic selection of the smoothing parameter using the
Local Maximum Likelihood criterion (see Eilers and Marx, 1996). To prevent abnormal termination
of the algorithm, for example if samples are too small, the degree of the polynomial, the order of the
penalty, or the stopping time of the fitting algorithm are reduced as a fallback strategies.

Let Yj be one incompletely observed column of Y. The observed and missing parts of Yj are denoted
by Yobs

j and Ymis
j , respectively. Let Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp) denote the collection of variables

in Y except Yj. The package gamlss does not support Bayesian inference, hence it is not possible to
obtain multiple imputations by drawing from the posterior predictive distribution. However, draws
from the predictive posterior distribution are approximated by the bootstrap predictive distribution
(Harris, 1989):

f ?(Ymis
j |Yobs

j , Y−j) =
∫

f (Ymis
j |η̃, Ymis

−j ) f (η̃|η̂(Yobs
j , Yobs

−j ))dη̃ , (2)

where η̃ denotes the possible values of the imputation model parameters, η̂(Yobs
j , Yobs

−j ) is an estimator
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of such parameters, and f (η̃|η̂(Yobs
j , Yobs

−j )) is the sampling distribution of the imputation parameters
evaluated at the estimated values. The sampling distribution is simulated with a parametric bootstrap
acting as a replacement for the posterior distribution of the imputation parameters. Algorithm 1
describes the imputation process. For a clear presentation, we drop the index i.

Algorithm 1 GAMLSS imputation

1. Fit model Yj ∼ D(µ̂j, σ̂j, η̂j, τ̂j) using the observed data {Yobs
j , Yobs

−j }

2. Resample Yobs
j as follows:

Yobs
j? ∼ D(µ̂j, σ̂j, η̂j, τ̂j) .

Define a bootstrap sample B = {Yobs
j? , Yobs

−j }

3. Refit the above model using B. This leads to adapted estimators µ̇j, σ̇j, η̇j and τ̇j. Draw
nmis imputations for Ymis

j as follows:

Ỹmis
j ∼ D(µ̇j, σ̇j, η̇j, τ̇j) .

4. Repeat m times steps 2 and 3 to generate m imputed data sets.

Main functions

The two main functions included in the ImputeRobust package are the imputing and fitting functions
mice.impute.gamlss() and ImpGamlssFit(), respectively.

The function ImpGamlssFit() is internal and its job is to read in the data and model parameters
and create a bootstrap predictive sampling function, i.e., it will work through steps 1 to 3 of Algorithm
1. The fitting step depends on the gamlss package, and the same control options described in
Stasinopoulos and Rigby (2007) can be passed to ImpGamlssFit() when calling the mice() function.
By default, ImpGamlssFit() uses P-splines as the smoothers in model (1), which are considered to be
stable in the gamlss package, but sometimes the fitting algorithm may diverge. The implemented
imputation method will catch this event and will try to correct it by automatically cutting down the
complexity of the model.

The necessary formula objects for the model are automatically created by the function during
execution time. The type of imputation model and its parameters, like the degree of the P-splines, can
be controlled with the argument gam.mod. Another way of controlling the complexity of the fitting and
imputation steps is the lin.terms argument. This argument can be used to specify variables by their
name, that should enter model (1) linearly.

The default response distribution family used by the fitting and imputation methods is the normal
distribution, but it can be modified with the argument family. The selected family determines how
many parameters are to be modelled. To improve the stability of the imputation method, distributional
parameters can be restricted to be the same for all units. The maximum number of parameters to be
fitted is controlled by n.ind.par, that is, the value of k in equation (1). For example, if the Johnson’ SU
family (a four parameter continuous distribution) is selected and n.ind.par = 2, then the mean and
the variance are modelled individually with p-splines, but the shape parameters are restricted to be
the same for all units and are modelled as contant values.

The function mice.impute.gamlss() has the same structure as the imputation methods included
in the mice package, meaning that the named method "gamlss" can be directly passed as an argument
to the mice() function. This function also passes all modified default arguments to the fitting function.

Additional functions are included in the package to set the family and n.ind.par arguments to
non-default values. This allows users to mix different gamlss imputation methods within one call to
the function mice(). The functions are variantes of mice.impute.gamlss() where "gamlss" is replaced
with a method from Table 1 with the syntax mice.impute.method(). The name of the function is a
reference to the corresponding family from gamlss.family (see Stasinopoulos and Rigby, 2007)
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Method Model distribution

gamlssNO Normal
gamlssBI Binomial
gamlssGA Gamma
gamlssJSU Johnson’s SU
gamlssPO Poisson
gamlssTF Student’s t
gamlssZIBI Zero inflated Binomial
gamlssZIP Zero inflated Poisson

Table 1: Included univariate gamlss imputation models.

Usage

The imputation methods provided by ImputeRobust add a new semiparametric method to the already
included methods in mice. This means that it can be used directly with the function mice().

Simple example

As an illustration let us consider an example using the proposed method to estimate the parameters in
a linear regression model with multiple imputation. To do this we created a data set with n = 500
units composed of four independent variables and one dependent variable with the following code:

> set.seed(19394)
> n <- 500
> mu <- rep(0, 4)
> Sigma <- diag(4)
> Sigma[1,2] <- 0.15; Sigma[1,3] <- 0.1; Sigma[1,4] <- -0.1
> Sigma[2,3] <- 0.25; Sigma[2,4] <- 0.05
> Sigma[lower.tri(Sigma)] = t(Sigma)[lower.tri(Sigma)]
> require("MASS")
> rawvars <- mvrnorm(n, mu = mu, Sigma = Sigma)
> pvars <- pnorm(rawvars)
> X.1 <- rawvars[,1]
> X.2 <- qchisq(pvars, 3)[,3]
> X.3 <- qpois(pvars, 2.5)[,2]
> X.4 <- qbinom(pvars, 1, .4)[,4]
> data <- cbind(X.1, X.2, X.3, X.4)
> beta <- c(1.8, 1.3, 1, -1)
> sigma <- 4.2
> y <- data %*% beta + rnorm(n, 0, sigma)
> data <- data.frame(y, data)

Thus, we obtain correlated covariates X.1, . . . , X.4 which are random draws from specific distri-
butions, that is, values for X.1 are drawn from a standard normal random distribution, values for
X.2 are drawn from a χ2 distribution with three degrees of freedom, values for X.3 are drawn from a
Poisson distribution with parameter λ = 2.5, and values for X.4 come from a Bernoulli distribution
with parameter π = 0.4. The dependent variable, y, is created according to the linear regression model:

yi = β0 + X.1β1 + X.2β2 + X.3β3 + X.4β4 + ε, ε ∼ N(0, σ2). (3)

The vector of linear predictors, β, and the error variance, σ2, are chosen so that the coefficient of
determination, R2, is 0.5.

In this first example, we create missing values in X.2 to X.4 with a monotone MAR mechanism
dependent on y and X.1 as shown:

> r.s <- cbind(y, X.1) %*% c(2,1)
> r.s <- scale(r.s)
> pos <- cut(r.s, quantile(r.s, c(0, .5, 1)), include.lowest=TRUE)
> p.r <- as.numeric(c(.9, .2))
> p.r <- as.vector(p.r[pos])
> R2 <- as.logical(rbinom(length(p.r),1,p.r))
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> r.s <- cbind(y[!R2], X.1[!R2]) %*% c(2,1)
> r.s <- scale(r.s)
> pos <- cut(r.s, quantile(r.s, c(0, .4, 1)), include.lowest=TRUE)
> p.r <- as.numeric(c(.32, .27))
> p.r <- as.vector(p.r[pos])
> R3 <- as.logical(rbinom(length(p.r),1,p.r))
> R4 <- runif(nrow(data[!R2,][!R3,]), 0, 1) >= .25
> data$X.2[!R2] <- NA
> data$X.3[!R2][!R3] <- NA
> data$X.4[!R2][!R3][!R4] <- NA

More precisely, to generate missing values in X.2 and X.3, we first generate variables r∗ = 2y+ X.1.
Let Ri be a response indicator, where Ri = 1 if X.i is observed and Ri = 0 if X.i is not observed. Then
missing values in X.2 and X.3 are generated according to

Pr(R2 = 1|r∗) =
{

0.9 if r∗ ≤ r∗0.5
0.2 else,

, Pr(R3 = 1|r∗, R2 = 0) =

{
0.32 if r∗ ≤ r∗0.4
0.27 else,

and Pr(R3 = 1|R2 = 1) = Pr(R3 = 1|r∗, R2 = 1) = 1. Finally, under both conditions, missing values
in X.4 are generated independently from y and X.1 with probability 0.25 for those units for which
X.3 is not observed. The frequency of missing values and the pattern can be visualized with the mice
function md.pattern():

> library(ImputeRobust)
> md.pattern(data)

y X.1 X.4 X.3 X.2
276 1 1 1 1 1 0
66 1 1 1 1 0 1
127 1 1 1 0 0 2
31 1 1 0 0 0 3

0 0 31 158 224 413

The output is generated by the mice package, for details see van Buuren and Groothuis-Oudshoorn
(2011). It can be seen that only 276 out of the 500 units are fully observed and that the missing pattern
is monotone with the smallest amount of missing values in X.4 followed by X.2. X.3 has the highest
amount of missing values.

The imputation task can be performed with a simple call of the mice() function:

> predictorMatrix <- matrix(c(rep(c(0,0,1,1,1),2), rep(0,5), c(0,0,1,0,0),
+ c(0,0,1,1,0)), nrow = 5)
> imps <- mice(data, method = "gamlss", predictorMatrix = predictorMatrix,
+ visitSequence = "monotone", maxit = 1, seed = 8913)
iter imp variable
1 1 X.4 X.3 X.2
1 2 X.4 X.3 X.2
1 3 X.4 X.3 X.2
1 4 X.4 X.3 X.2
1 5 X.4 X.3 X.2

In this example with a monotone missing pattern, the missing values are imputed in accordance
with Rubin (1987, p. 171). The variables are ranked according to the amount of missing values and
imputations are drawn starting with the most frequently observed incomplete variable. In the next step,
the most frequently observed variable of the remaining incompletely observed variables is imputed.
This procedure continues until all variables with missing values are completed, using completely
observed but also completed variables to impute the next. In mice() the arguments visitSequence
and predictorMatrix control the column order in which incomplete variables are imputed and which
variables serve as predictors in each imputation model, respectively. By setting these arguments to
non-default values the required order of imputing values is achieved.

The result is an object of class Multiply Imputed Data Set (mids) with contents:

> print(imps)
Multiply imputed data set
Call:
mice(data = data, method = "gamlss", predictorMatrix = predictorMatrix,

visitSequence = "monotone", maxit = 1, seed = 8913)
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Number of multiple imputations: 5
Missing cells per column:
y X.1 X.2 X.3 X.4
0 0 224 158 31

Imputation methods:
y X.1 X.2 X.3 X.4

"gamlss" "gamlss" "gamlss" "gamlss" "gamlss"
VisitSequence:
X.4 X.3 X.2
5 4 3

PredictorMatrix:
y X.1 X.2 X.3 X.4

y 0 0 0 0 0
X.1 0 0 0 0 0
X.2 1 1 0 1 1
X.3 1 1 0 0 1
X.4 1 1 0 0 0
Random generator seed value: 8913

The argument method = "gamlss" in the mice function call implies by default, that imputations
are drawn assuming a normal distribution for the response variable in the imputation model given all
covariables. This has been shown to lead to acceptable results in situations in which even non-plausible
values are imputed (de Jong et al., 2014). A useful way of inspecting the distribution of the original
and an imputed data is the stripplot() function as shown in figure 1.

> library(lattice)
> stripplot(imps)

Imputation number

−
10

0
10

20

0 1 2 3 4 5

y

−
3

−
2

−
1

0
1

2

0 1 2 3 4 5

X.1

0
5

10

0 1 2 3 4 5

X.2

0
2

4
6

8

0 1 2 3 4 5

X.3

−
0.

5
0.

0
0.

5
1.

0
1.

5

0 1 2 3 4 5

X.4

Figure 1: Stripplot of the five variables in the original and the five imputed data sets. Observed data
values are blue and imputed data values are red.
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The model of interest, as per equation (3), is the linear regression of y on X.1, X.2, X.3, and X.4
that created the original data set. The true value of the regression coefficient is c(1.8,1.3,1,-1). The
imputed data sets can be analysed as follows:

> fit <- with(imps, lm(y ~ X.1 + X.2 + X.3 + X.4))
> print(pool(fit))
Call: pool(object = fit)

Pooled coefficients:
(Intercept) X.1 X.2 X.3 X.4
1.0729769 1.7565698 1.1600009 0.6262502 -0.4023920

Fraction of information about the coefficients missing due to nonresponse:
(Intercept) X.1 X.2 X.3 X.4
0.4477033 0.5111319 0.9276184 0.7934569 0.2925600

> round(summary(pool(fit)), 2)
est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda

(Intercept) 1.07 0.57 1.87 22.89 0.07 -0.11 2.26 NA 0.45 0.40
X.1 1.76 0.26 6.79 17.73 0.00 1.21 2.30 0 0.51 0.46
X.2 1.16 0.29 4.00 4.47 0.01 0.39 1.93 224 0.93 0.90
X.3 0.63 0.27 2.33 6.89 0.05 -0.01 1.26 158 0.79 0.74
X.4 -0.40 0.46 -0.87 49.39 0.39 -1.33 0.52 31 0.29 0.26

Modifying the imputation model

The default behaviour of the "gamlss" method of using a normal distribution can be overridden by
setting the argument family to any distribution contained in the gamlss.dist package (Stasinopoulos
et al., 2017). This will define globally the new response distribution for all imputation methods that call
the "gamlss" method. If the user wants to set different distribution families, to suit the particularities
of the variables to be imputed, several functions fully compatible with mice() are already included.

In the previous example, variables X.3 and X.4 were treated as continuous variables in the
imputation step, and it was possible for X.2 to take on negative values, even though is a strictly positive
variable. We will show now how the GAMLSS imputation model can be adjusted to accommodate
different types of distributions simultaneously. For the new imputation task, we use a Gamma
distribution for X.2, a Poisson distribution for the imputation of X.3, and a Binomial distribution for
X.4. The incomplete data set is the same as before, where X.1 and y need not to be imputed.

> imps <- mice(data, method = c("", "", "gamlssGA", "gamlssPO", "gamlssBI"),
+ seed = 8913)
iter imp variable
1 1 X.2 X.3 X.4
1 2 X.2 X.3 X.4
1 3 X.2 X.3 X.4
1 4 X.2 X.3 X.4
1 5 X.2 X.3 X.4
2 1 X.2 X.3 X.4
2 2 X.2 X.3 X.4
...

Figure 2 shows the effect of the changes in the response distribution for the imputation model.
Choosing the Gamma distribution for X.2, the Poisson distribution for X.3 and the Binomial distribu-
tion for X.4 imputes realistic values as compared to, e.g., choosing the normal distribution. Whether to
favor the imputation of realistic values or not, is a different problem. Since the final goal is statistical
validity of MI based estimation (Rubin, 1996), in some applications it may be better to allow for the
imputation of “unrealistic” while using a flexible model, for example, impute continuous values when
the variable to be imputed is a count variable (see de Jong, 2012; Salfran, 2018).

> stripplot(imps)

The model of interest in this example is the same as in section 14.4.1. The results of running the
analysis are slightly different due to choosing different imputation models.

> fit <- with(imps, lm(y ~ X.1 + X.2 + X.3 + X.4))
> round(summary(pool(fit)), 2)
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Figure 2: Stripplot of the five variables in the original data and the five imputed data sets. Observed
data values are blue and imputed data values are red.

est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
(Intercept) 0.78 0.48 1.61 40.46 0.11 -0.20 1.76 NA 0.33 0.30
X.1 1.78 0.25 7.27 18.00 0.00 1.27 2.30 0 0.51 0.46
X.2 1.19 0.13 8.89 10.43 0.00 0.90 1.49 224 0.66 0.60
X.3 0.70 0.21 3.37 8.90 0.01 0.23 1.18 158 0.71 0.65
X.4 -0.32 0.40 -0.80 127.39 0.43 -1.12 0.48 31 0.16 0.15

Chronic kidney disease data

A real world example data set was retrieved from the Machine Learning Database Repository at the
University of California, Irvine (Lichman, 2013). The dataset contains 400 observations from which
some variables were selected. The data already contained 149 rows where some values were missing.
This example illustrates some of the specific extra arguments that can be passed to the imputation
method, mainly with the objective of controlling the speed of the gamlss() function.

> library(RWeka)
> data <- read.arff("data/chronic_kidney_disease_full.arff")
> data <- data[,c("age", "bp", "bgr", "bu", "sc", "sod", "pot", "hemo",
+ "class")]
> data$class <- ifelse(data$class == "ckd", 1, 0)

The missing data pattern is non-monotone. The fully conditional specification approach behind
mice will handle this case. Running mice with the default fitting arguments of gamlss in complex data
sets like this would take a long time. There are several ways in which the speed of the imputation can
be adjusted. One alternative is by changing the values controlling the GAMLSS fitting algorithm. The
arguments n.cyc, bf.cyc, cyc control respectively the number of cycles of the outer, backfitting, and
inner algorithms of gamlss (Rigby and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007). Other
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arguments that can be changed are the convergence criterions of the outer and inner algorithms with
the c.crit or cc arguments, respectively.

The choice of imputation model can also be modified by the user. The relevant argument is
gam.mod. The default imputation model is a P-spline with two degrees of freedom and second order
differences, this amounts to gam.mod = list(type = "pb",par = list(degree = 2,order = 2). The
degrees and order can be changed. Also, the model can be set to be linear using type = "linear".

The following code shows the result of imputing missing values of the chronic kidney disease data
set. With the current parameters and without any other optimization this took 10 minutes computing
time with a Core i7-3520M CPU.

> meth <- c("gamlssJSU", "gamlssJSU", "gamlssJSU", "gamlssJSU", "gamlssJSU",
+ "gamlssJSU", "gamlssJSU", "gamlssJSU", "gamlss")
> imps <- mice(data, method = meth, n.cyc = 3, bf.cyc = 2, cyc = 2,
+ maxit = 5, m = 5, seed = 8901,
+ gam.mod = list(type = "linear"))
iter imp variable
1 1 age bp bgr bu sc sod pot hemo
1 2 age bp bgr bu sc sod pot hemo
1 3 age bp bgr bu sc sod pot hemo
1 4 age bp bgr bu sc sod pot hemo
1 5 age bp bgr bu sc sod pot hemo
2 1 age bp bgr bu sc sod pot hemo
2 2 age bp bgr bu sc sod pot hemo
...

Figure 3 shows that even with an extreme simplification of the fitting algorithm of gamlss. The
imputation method still manages to produce acceptable values.

> stripplot(imps)

We used the imputed data set to fit a logistic regression in which we modelled the probability of
having chronic kidney disease as a function of age and some other blood related information.

> fit <- with(imps, glm(class ~ age + bp + bgr + sc + sod + pot + hemo,
+ family=binomial(link='logit')))
> round(summary(pool(fit)), 2)

est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
(Intercept) 33.04 12.85 2.57 79.40 0.01 7.47 58.61 NA 0.21 0.19
age -0.03 0.02 -1.16 33.22 0.25 -0.07 0.02 9 0.36 0.32
bp 0.09 0.04 2.45 134.55 0.02 0.02 0.16 12 0.15 0.13
bgr 0.03 0.01 2.29 12.24 0.04 0.00 0.07 44 0.61 0.55
sc 4.27 1.59 2.69 14.12 0.02 0.87 7.67 17 0.57 0.51
sod -0.15 0.09 -1.62 45.86 0.11 -0.34 0.04 87 0.30 0.27
pot -0.68 0.38 -1.82 45.99 0.08 -1.44 0.07 88 0.30 0.27
hemo -1.72 0.37 -4.65 30.81 0.00 -2.48 -0.97 52 0.38 0.34

Conclusion

The imputation method based on gamlss is a fairly new imputation technique which is provided to
properly handle situations in which fully parametric assumptions with respect to the conditional
distribution of the variable to be imputed is questionable. The technique is based on the idea of
attaining imputations avoiding possibly misspecified imputation models. Salfran (2018), de Jong et al.
(2014) and de Jong (2012) showed that this technique outperforms standard imputation techniques in
several scenarios. The ImputeRobust package is a step forward in the development of an imputation
method that requires weak distributional assumptions, but still allows valid inference. It extends the
set of applications of the existing GAMLSS package by allowing it to interact with the mice package.

By building on the popular mice package, the advantages of standard and robust imputation pro-
cedures are available in a user friendly way. Further research will focus on improving the efficiency of
this semi-parametric imputation technique, requiring only weak assumptions for generating multiple
imputations but still allowing valid inferences.
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Figure 3: Stripplot of the chronic kidney data set variables with missings and five imputed data sets.
Observed data is in blue and imputed data in red.
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MGLM: An R Package for Multivariate
Categorical Data Analysis
by Juhyun Kim, Yiwen Zhang, Joshua Day, Hua Zhou

Abstract Data with multiple responses is ubiquitous in modern applications. However, few tools are
available for regression analysis of multivariate counts. The most popular multinomial-logit model
has a very restrictive mean-variance structure, limiting its applicability to many data sets. This article
introduces an R package MGLM, short for multivariate response generalized linear models, that
expands the current tools for regression analysis of polytomous data. Distribution fitting, random
number generation, regression, and sparse regression are treated in a unifying framework. The
algorithm, usage, and implementation details are discussed.

Introduction

Multivariate categorical data arises in many fields, including genomics, image analysis, text mining,
and sports statistics. The multinomial-logit model (Agresti, 2002, Chapter 7) has been the most popular
tool for analyzing such data. However, it is limiting due to its specific mean-variance structure and
the strong assumption that the counts are negatively correlated. Models that address over-dispersion
relative to a multinomial distribution and incorporate positive and/or negative correlation structures
would offer greater flexibility for analysis of polytomous data.

In this article, we introduce an R package MGLM, short for multivariate response generalized
linear models. The MGLM package provides a unified framework for random number generation,
distribution fitting, regression, hypothesis testing, and variable selection for multivariate response
generalized linear models, particularly four models listed in Table 1. These models considerably
broaden the class of generalized linear models (GLM) for analysis of multivariate categorical data.

MGLM overlaps little with existing packages in R and other softwares. The standard multinomial-
logit model is implemented in several R packages (Venables and Ripley, 2002) with VGAM (Yee, 2010,
2015, 2017) being the most comprehensive. We include the classical multinomial-logit regression model
in MGLM not only for completeness, but also to complement it with various penalty methods for vari-
able selection and regularization. If invoked by the group penalty, MGLM is able to perform variable
selection at the predictor level for easier interpretation. This is different from the elastic net penalized
multinomial-logit model implemented in glmnet (Friedman et al., 2010), which does selection at the
matrix entry level. Although MGLM focuses on regression, it also provides distribution fitting and
random number generation for the models listed in Table 1. VGAM and dirmult (Tvedebrink, 2010)
packages can estimate the parameters of the Dirichlet-multinomial (DM) distribution using Fisher’s
scoring and Newton’s method respectively. As indicated in the manual (Yee, 2017), the convergence
of Fisher’s scoring method may be slow due to the difficulty in evaluating the expected information
matrix. Further the Newton’s method is unstable as the log-likelihood function may be non-concave.
As explained later, MGLM achieves both stability and efficiency via a careful algorithmic design. In
SAS, PROC LOGISTIC can fit multinomial-logit model. In Matlab, the mnrfit function fits multinomial-
logit regression. Alternative link functions (probit, loglog, complementary loglog) are implemented
only for ordinal responses. Other regression models in Table 1 are not implemented in either SAS or
Matlab.

There are some limitations to the MGLM. First, MGLM only handles nominal responses; ordinal
responses are not incorporated in current implementation. MGLM also does not allow covariates to
take a different value for each category, which can be useful in applications such as modeling consumer
choice among a discrete number of products (Yee, 2015, Chapter 14). Lastly, current implementation of
MGLM does not permit parameter constraints.

MGLM provides standard errors for all estimates, reports significance of regression covariates
based on the Wald test (default) or the likelihood ratio test (LRT), and outputs the AIC (Akaike
information criterion) and BIC (Bayesian information criterion) of the fitted model to aid model choice
by users. Model selection via regularization is automated by computing the solution path on a grid of
tuning parameter values and then reporting the regularized estimate with minimal BIC. With large
data sets in mind, we pay particular attention to computational efficiency. For numerical examples in
this article, we report the run times whenever possible. The results are obtained on a laptop with Intel
Core i7 CPU @ 2.9GHz and 16G memory using MGLM 0.1.0 under R 3.4.3.
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Model No. regress. param. Correlation MGLM code

Multinomial p(d− 1) Negative dist='MN'
Dirichlet-multinomial pd Negative dist='DM'
Negative multinomial p(d + 1) or pd + 1 Positive dist='NegMN'
Gen. Dirichlet-multinomial 2p(d− 1) Negative and positive dist='GDM'

Table 1: Multivariate generalized linear model implemented in the MGLM package. d is the number
of categories and p is the number of predictors in the regression model.

Multivariate generalized linear models (MGLM)

This section details the models implemented in MGLM. Table 1 summarizes the multivariate models
implemented in the R package. They are multivariate analogs of binomial, beta-binomial, and negative
binomial models. For each model, we specify the probability mass function of the response vector y,
the link function that relates distribution parameters to covariates, and the log-likelihood function of a
finite sample. We start from the classical multinomial-logit model.

Multinomial (MN) model

The probability mass function of a d dimensional multinomial sample y = (y1, . . . , yd)
T with batch

size m = ∑d
j=1 yj and parameter p = (p1, . . . , pd) is

f (y|p) =
(

m
y

) d

∏
j=1

p
yj

j .

The parameter p is linked to the covariate vector x ∈ Rp via the multinomial-Poisson transformation
(Baker, 1994; Lang, 1996)

pj =
exT β j

∑j′ e
xT β j′

, j = 1, . . . , d,

where β1, . . . , βd ∈ Rp are the regression coefficients. For identifiability, we constrain βd = 0 and only
estimate β1, . . . , βd−1, which are collected in the regression coefficient matrix B ∈ Rp×(d−1). Given
independent observations (yi, xi), i = 1, . . . , n, the log-likelihood is

`(B) =
n

∑
i=1

d

∑
j=1

yij

xT
i β j − ln

d

∑
j′=1

exT
i β j′

+
n

∑
i=1

ln
(

mi
yi

)
.

Because the log-sum-exponential mapping (η1, . . . , ηd)
T 7→ ln ∑j eηj is convex (Boyd and Vanden-

berghe, 2004, p72), the log-likelihood function is concave. This nice feature makes maximum likelihood
estimation relatively easy for multinomial-logit model. Unfortunately, convexity is lost in other models
listed in Table 1.

Dirichlet-multinomial (DM) model

The mean-variance structure of the MN model does not allow over-dispersion, which is common
in real data. DM distribution models the probability parameter p in the MN model by a Dirichlet
distribution. The probability mass of a d-category count vector y over m = ∑j yj trials under DM with
parameter α = (α1, . . . , αd), αj > 0 and proportion vector p ∈ ∆d = {(p1, . . . , pd) : pj ≥ 0, ∑j pj = 1}
is
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f (y|α) =
∫

∆d

(
m
y

)
∏

j
p

yj

j

Γ(∑j αj)

∏j Γ(αj)
∏

j
p

αj−1
j dp

=

(
m
y

) d

∏
j=1

Γ(αj + yj)

Γ(αj)

Γ(∑j αj)

Γ(∑j αj + ∑j yj)

=

(
m
y

)∏d
j=1(αj)yj

(∑j αj)m
,

where (a)k = a(a + 1) · · · (a + k− 1) for nonnegative integer k denotes the rising factorial. The last
equality is due to the identity Γ(a + k)/Γ(a) = (a)k (Graham et al., 1994). Because the data yj and
parameter αj are intertwined in the gamma (or rising factorial) terms and do not factorize, the DM
distribution does not belong to the exponential family. To incorporate covariates, the inverse link
function

αj = exT β j , j = 1, . . . , d

relates the parameter α = (α1, . . . , αd) of the DM distribution to the covariates x. The log-likelihood
for independent data points (yi, xi), i = 1, . . . , n, takes the form

`(B) =
n

∑
i=1

d

∑
j=1

yij−1

∑
k=0

ln
(

exT
i β j + k

)
−

n

∑
i=1

mi−1

∑
k=0

ln

 d

∑
j=1

exT
i β j + k

+
n

∑
i=1

ln
(

mi
yi

)

with B = (β1, . . . , βd) ∈ Rp×d collecting all regression coefficients. The log-likelihood, as a difference
of two convex terms, is not concave in general.

Negative multinomial (NegMN) model

The counts Yj in both MN and DM models are negatively correlated, restricting their use for counts
with positive correlation. The NegMN distribution provides a natural model for positively correlated
count data. The probability mass of a count vector y under a NegMN distribution with parameter
(p1, . . . , pd+1, φ), ∑d+1

j=1 pj = 1, pj, φ > 0, is

f (y|p, φ) =

(
φ + m− 1

m

)(
m
y

) d

∏
j=1

p
yj

j pφ
d+1 =

(φ)m

m!

(
m
y

) d

∏
j=1

p
yj

j pφ
d+1,

where (φ+m−1
m ) =

(φ)m
m! is the general binomial coefficient. The parameter φ and the data m do not

factorize. Therefore, NegMN does not belong to the exponential family when φ is unknown. We use
the inverse link functions

pj =
exT αj

1 + ∑d
j=1 exT αj

, 1 ≤ j ≤ d, pd+1 =
1

1 + ∑d
j=1 exT αj

, φ = exT β

to relate the covariates x to distribution parameter (p1, . . . , pd+1, φ). Let B = (α1, . . . , αd, β) ∈ Rp×(d+1)

collect all the regression coefficients. Given n independent data points (yi, xi), i = 1, . . . , n, the log-
likelihood is

`(B) =
n

∑
i=1

mi−1

∑
k=0

ln
(

exT
i β + k

)
−

n

∑
i=1

(
exT

i β + mi

)
ln

 d

∑
j=1

exT
i αj + 1


+

n

∑
i=1

d

∑
j=1

yijx
T
i αj −

n

∑
i=1

d

∑
j=1

ln yij!,

which in general is not concave in αj and β.

In some applications the over-dispersion parameter φ may not depend on the covariates x. MGLM
offers the option to model the responses yi to share a common dispersion parameter φ, without linking
it to the covariates. In this case, the log-likelihood is
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`(α1, . . . , αd, φ) =
n

∑
i=1

mi−1

∑
k=0

ln(φ + k)−
n

∑
i=1

(φ + mi) ln

 d

∑
j=1

exT
i αj + 1


+

n

∑
i=1

d

∑
j=1

yijx
T
i αj −

n

∑
i=1

d

∑
j=1

ln yij!.

The model size is pd + 1 and MGLM outputs the estimates (α̂1, . . . , α̂d, φ̂) and their standard errors.

Generalized Dirichlet-multinomial (GDM) model

In the previous three models, the multivariate counts have either pairwise negative correlation
(MN and DM) or pairwise positive correlation (NegMN). It is possible to relax these restrictions by
choosing a more flexible mixing distribution for the probability vector p in MN model. Connor and
Mosimann (1969) suggest a generalization of the Dirichlet distribution that meets this challenge. The
resulting admixed distribution, called the GDM distribution, provides a flexible model for multivariate
categorical data with a general correlation structure (Bouguila, 2008; Zhou and Lange, 2010).

The probability mass of a count vector y over m = ∑j yj trials under GDM with parameter
(α, β) = (α1, . . . , αd−1, β1, . . . , βd−1), αj, β j > 0, is

f (y|α, β) =

(
m
y

) d−1

∏
j=1

Γ(αj + yj)

Γ(αj)

Γ(β j + zj+1)

Γ(β j)

Γ(αj + β j)

Γ(αj + β j + zj)

=

(
m
y

) d−1

∏
j=1

(αj)yj (β j)zj+1

(αj + β j)zj

, (1)

where zj = ∑d
k=j yk. Again it is clear that the GDM distribution does not belong to the exponential

family, since the parameter αj, β j and data yj, zj do not factorize.

We propose the inverse link functions

αj = exT αj , β j = exT β j , 1 ≤ j ≤ d− 1,

to relate the covariates x and parameter (α1, . . . , αd−1, β1, . . . , βd−1) of the GDM distribution (1).
Let B = (α1, . . . , αd−1, β1, . . . , βd−1) ∈ Rp×2(d−1) collect all the regression coefficients. Given n
independent data points (yi, xi), the log-likelihood is

`(B) =
n

∑
i=1

d−1

∑
j=1

yij−1

∑
k=0

ln
(

exT
i αj + k

)
+

zi,j+1−1

∑
k=0

ln
(

exT
i β j + k

)

−
zij−1

∑
k=0

ln
(

exT
i αj + exT

i β j + k
)+

n

∑
i=1

ln
(

mi
yi

)
.

Again the log-likelihood is not concave in general.

Which model to use?

When there are no covariates, multinomial model is a special case of the DM models, which in turn
is a sub-model of the GDM model. That is, MN ⊂ DM ⊂ GDM. The distribution fitting function
MGLMfit reports the p-value of the LRT for comparing the fitted model with the most commonly
used multinomial model. NegMN model does not have such a relationship with any of the other
three models. Therefore, no LRT is performed when dist="NegMN" in the distribution fitting function
MGLMfit.

For regression, there is no nesting structure among the models in Table 1. The regression function
MGLMreg outputs AIC and BIC of the fitted model to aid users in choosing an appropriate regression
model for their data.
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Standard errors and testing

Standard errors for both distribution fitting (MGLMfit) and regression estimates (MGLMreg) are calculated
based on the observed information matrix, as it provides a reasonable approximation to the expected
information matrix and is even preferred as argued by Efron and Hinkley (1978).

Unlike regression for univariate responses, the MGLM regression parameter is a matrix B =
(β1, . . . , βde ) ∈ Rp×de with each row Bk,· corresponding to the effects of one predictor. Here de = d− 1
(MN), d (DM), d+ 1 (NegMN), or 2(d− 1) (GDM). Therefore, the hypotheses for testing the significance
of the k-th covariate are:

H0 : ‖BT
k,·‖2 = 0 vs Ha : ‖BT

k,·‖ 6= 0.

By default, MGLMreg assesses the significance of each predictor by the Wald test. Let

Σ̂ = I−1
obs(B̂) = [−∇2`(B̂)]−1 ∈ Rpde×pde

be the inverse of the observed information matrix at the maximum likelihood estimate (MLE) B̂. Then
the Wald statistic is computed as

Wk = B̂k,·Σ̂k,k B̂T
k,·,

where Σ̂k,k is the sub-matrix of Σ̂ obtained by selecting rows and columns corresponding to the entries
of Bk,·. Wk is asymptotically distributed as a chi-square distribution with de degrees of freedom under
the null distribution, yielding the p-values reported by MGLMreg. Users can also easily invoke the LRT
by calling MGLMreg with option LRT=TRUE. LRT requires more computation than Wald test as it needs
to perform MLE on p sub-models.

Regularization

The number of parameters, pde, in the multivariate response models can be unwieldy with a moderate
to large number of predictors. When the sample size n is limited or even smaller than pde, regulariza-
tion is necessary for variable selection, model interpretation, and improving the risk property of the
estimate. In general, the MGLMsparsereg function solves the regularized problem

min
B
−`(B) + J(B),

where ` is the log-likelihood function and J is a penalty term. The choice of J depends on specific
applications. We implemented three classes of penalties. Below, S is an index set for the set of
predictors subject to regularization, which can be selectively specified by the users.

In elementwise regularization (penalty='sweep'),

J(B) = ∑
k∈S

de

∑
j=1

Pη(|βkj|, λ),

where P is a scalar penalty function, λ is the penalty tuning constant, and η is a parameter indexing
member of a penalty family. Choices of the penalty families include: power family (Frank and Fried-
man, 1993), where Pη(|x|, λ) = λ|x|η , η ∈ (0, 2], and in particular lasso (Tibshirani, 1996) (η = 1) and
ridge (η = 2); elastic net (Zou and Hastie, 2005), where Pη(|x|, λ) = λ[(η − 1)x2/2 + (2− η)|x|], η ∈
[1, 2]; SCAD (Fan and Li, 2001), where ∂/∂|x|Pη(|x|, λ) = λ

{
1{|x|≤λ} + (ηλ− |x|)+/(η − 1)λ1{|x|>λ}

}
,

η > 2; and MC+ penalty (Zhang, 2010), where Pη(|x|, λ) =
{

λ|x| − x2/(2η)
}

1{|x|<ηλ}+ 0.5λ2η1{|x|≥ηλ}.
The special case of elastic net for the multinomial-logit model is also implemented in the popular
glmnet package by Friedman et al. (2010) using coordinate descent algorithm. MGLM implements a
generic accelerated proximal gradient method that applies to the following two penalties too.

In groupwise regularization (penalty='group'),

J(B) = λ ∑
k∈S
‖Bk,·‖2 = λ ∑

k∈S

 de

∑
j=1

β2
kj

1/2

.

The group penalty (Yuan and Lin, 2006; Meier et al., 2008) achieves variable selection at the predictor
level and leads to a more interpretable model.
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Shrinkage and sparsity in terms of the rank of B is achieved by the nuclear norm regularization
(penalty='nuclear')

J(B) = ||B||∗ = λ ∑
i

σi(B),

where σi(B)’s are the singular values of the matrix B. The nuclear norm ||B||∗ is a suitable convex
relaxation of the rank of a matrix parameter. It encourages low rank of the parameter matrix estimate
and has been successfully employed in the matrix completion problem (Mazumder et al., 2010),
regression with matrix covariates (Zhou and Li, 2014) and predicting at-bat results in baseball (Powers
et al.).

The wrapper function MGLMtune facilitates the tuning procedure by performing the regularized
estimation over a grid of 30 (default) tuning parameter values using warm start and reports the
optimal tuning parameter according to BIC. Users can also supply their own grid points.

Optimization algorithms and implementation

As the DM, NegMN, and GDM distributions do not belong to the exponential family, the usual
iteratively reweighted least squares method for maximum likelihood estimation of GLM does not
apply. The main issue lies in the difficulty of calculating the expected information matrix, which
involves evaluating numerous tail probabilities of the marginal distribution (Paul et al., 2005; Zhou
and Lange, 2010; Zhou and Zhang, 2012). On the other hand, Newton’s method suffers from instability
since the log-likelihood functions are non-concave in general.

For distribution fitting, Zhou and Lange (2010) derive stable algorithms based on the minorization-
maximization (MM) principle (Lange et al., 2000). Similar to the classical expectation-maximization
algorithm, MM algorithm increases the objective value at each iteration and converges to a stationarity
point of objective function under mild regularity conditions.

For regression models, Zhang et al. (2017) propose an iteratively reweighted Poisson regression
(IRPR) method for maximum likelihood estimation. Their derivation again hinges upon the MM
principle, resulting in the much desirable stability of the IRPR algorithm which is critical as the number
of parameters is potentially large.

In practice, MM algorithm may suffer from slow convergence especially in the proximity of the
optimum. MGLM organically combines the MM algorithm and the Newton’s method. At each
iteration, it computes both MM and Newton updates and chooses the one that results in a higher
log-likelihood. Thus, stability is ensured as the log-likelihood always increases. When sufficiently
close to the optimum, Newton’s method takes over and quickly converges to the MLE in just a few
iterations.

An added advantage of the MM algorithm is that it separates parameters and embraces parallel
computing (Zhou et al., 2010). Each iteration of the IRPR algorithm involves solving de independent
Poisson regressions (Zhang et al., 2017) that can be carried out in parallel. Building upon the parallel
package in R, the MGLMreg regression function supports multi-threading on a multi-core machine.

For sparse regression in the MGLMsparsereg function, we implemented the accelerated proximal
gradient (Nesterov) method (Zhang et al., 2017). Each iteration only involves evaluation of the gradient
of the negative log-likelihood, followed by the elementwise, groupwise, or singular value thresholding
according to the regularization being used, and thus scales well with the problem size.

The R package aspect

Three main functions of the MGLM package are MGLMfit for fitting multivariate distributions, MGLMreg
for fitting multivariate response regressions, and MGLMsparsereg for fitting sparse regressions. The
package adopts S4 object system. In this section, we demonstrate their basic usage using a simulated
RNA-seq data set. The R vignette included in the package provides more extensive examples.

The rnaseq data that comes with the package is simulated from the isoform package (Sun, 2014;
Sun et al., 2015) and mimics the real counts generated by the RNA-seq platforms. The simulation
mechanism follows the biological process and has nothing to do with the models in Table 1.

In this example, 6 exons are expressed in a gene. Each observation consists of the expression levels
(represented by counts) of each exon along with covariates totalReads, treatment, gender, and age
of an individual. 200 observations are simulated. In the generative model, exon expression levels
are affected by intercept, number of total reads (on log scale), and treatment. Age and gender are
unrelated to the exon counts.
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R> library("MGLM")
R> data("rnaseq")
R> data <- rnaseq[, 1:6]
R> head(rnaseq, n = 3)

X1 X2 X3 X4 X5 X6 totalReads treatment gender age
1 295 65 19 114 54 20 28317494 0 0 57
2 213 126 12 96 50 4 20015549 0 0 67
3 322 147 23 245 42 19 35318251 0 1 37

R> dim(rnaseq)

[1] 200 10

Distribution fitting

We first ignore covariates and demonstrate distribution fitting and model selection with BIC and LRT.
The multi-categorical distribution fitting is performed by the function MGLMfit.

The primary inputs of the function are the multi-categorical count data in the format of data frame
or matrix and the distribution intended to fit. The user can also use the weight argument to specify
the weight of each observation. Initial values of the iterative algorithm can also be determined by
the user using init argument. The function also has epsilon, maxiters, and display to control the
convergence threshold, maximum number of iterations to run, and whether to display the result from
each iteration, respectively.

The outputs are returned in a list of class “MGLMfit”, including parameter estimates, their standard
errors, log-likelihood, AIC, BIC, number of iterations to converge. The inversed information matrices
and gradients are also returned, but are not printed, in order to keep the printed output concise. When
fitting DM and GDM distribution, we also perform LRT, testing against the null hypothesis of using
multinomial model. p-values of the LRTs are returned.

The following snippets fit the DM

R> system.time (
+ dmFit <- MGLMfit(data, dist = "DM")
+ )

user system elapsed
0.255 0.007 0.263

R> dmFit

estimate SE
alpha_X1 6.128117 0.327888
alpha_X2 2.413647 0.139676
alpha_X3 1.625627 0.099424
alpha_X4 6.822929 0.362568
alpha_X5 2.214236 0.129233
alpha_X6 0.784028 0.051369

Distribution: Dirichlet Multinomial
Log-likelihood: -4968.666
BIC: 9969.121
AIC: 9949.331
LRT test p value: <0.0001
Iterations: 6

and the GDM model

R> system.time(
+ gdmFit <- MGLMfit(data, dist = "GDM")
+ )

user system elapsed
0.380 0.019 0.399

R> gdmFit
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estimate SE
alpha_X1 3.741846 0.367088
alpha_X2 2.400909 0.815431
alpha_X3 1.558396 0.233136
alpha_X4 6.988354 1.164764
alpha_X5 20.689398 0.149279
beta_X1 8.026379 0.966502
beta_X2 11.038376 0.725978
beta_X3 8.961428 0.264520
beta_X4 2.702723 2.871718
beta_X5 4.854816 0.648271

Distribution: Generalized Dirichlet Multinomial
Log-likelihood: -4841.231
BIC: 9735.446
AIC: 9702.463
LRT test p value: <0.0001
Iterations: 59

Both dmFit and gdmFit give the LRT p-value for comparing the fitted model with the MN model.
In this example, both are significantly better than MN, with p-values� 0.05. To compare DM and
GDM, we can either compare their BICs or perform a formal LRT.

R> LRT <- -2 * (logLik(dmFit) - logLik(gdmFit))
R> pchisq(LRT, ncol(data) - 2, lower.tail = FALSE)

[1] 5.817352e-54

Both suggest that GDM provides a significantly better fit than DM.

The NegMN model

R> system.time(
+ negmnFit <- MGLMfit(data, dist = "NegMN")
+ )

user system elapsed
0.006 0.002 0.009

R> print(negmnFit)

estimate SE
p_X1 0.311486 0.001362
p_X2 0.106491 0.000850
p_X3 0.098373 0.000819
p_X4 0.350496 0.001425
p_X5 0.094263 0.000803
p_X6 0.021220 0.000389
phi 12.232569 1.229253

Distribution: Negative Multinomial
Log-likelihood: -20673.71
BIC: 41384.52
AIC: 41361.43
LRT test p value:
Iterations: 3

yields a much larger BIC than those of DM and GDM. LRT does not apply here, since NegMN is not a
sub-model of the other three.

Regression

The more interesting question is whether the covariates have a significant relationship to the responses.
Regressions are performed using function MGLMreg. First, the regression formula is required by the
MGLMreg function. When specifying the regression formula, the response matrix is on the left hand
side and the covariates on the right, following the convention in lm and glm. The model is specified
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using the dist argument. The input argument data is optional. When specified, the formula is built
based on the supplied data frame; otherwise, the function searches through the global environment
for the data elements. Similar to the distribution fitting function, weights of the observations can be
specified by the weight argument, and initial values can be supplied using init arguments. Parallel
computing is also implemented in the package. Setting parallel=TRUE and giving the number of cores
using the argument core invokes multi-threading. The other arguments used to control the algorithm
convergence and display include epsilon, maxiters, display, and LRT.

The output of MGLMreg is a list of class “MGLMreg”, containing the estimated regression coefficients,
their standard errors, Wald test statistics and their corresponding p-values for each predictor, log-
likelihood, AIC, BIC, gradient and Hessian matrix at the estimate, number of iterations, and fitted
values.

We fit the four regression models in Table 1 with all 5 covariates: intercept, number of total reads
(on log scale), treatment, age, and gender.

A few observations can be made from the following output. BIC indicates the GDM model as the
best fit, followed by the DM model. This is consistent with the distribution fitting results. Note that
the hypothesis testing results in the four models are different. In the MN model, all covariates are
significant; however, this is not true because age and gender have no effects in the generative model.
DM also wrongly identifies age as a significant predictor. Only the GDM model correctly identifies
true significant predictors.

MN regression

R> system.time(
+ mnreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
+ treatment + age + gender, data = rnaseq, dist = "MN")
+ )

user system elapsed
0.142 0.006 0.149

R> print(mnreg)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
treatment + age + gender, data = rnaseq, dist = "MN")

Coefficients:
X1 X2 X3 X4 X5

[1,] 4.942732 5.009649 -3.792216 4.435434 4.027689
[2,] -0.112845 -0.170222 0.219277 -0.107260 -0.120928
[3,] -0.022655 -0.043099 2.745277 1.405742 0.092246
[4,] -0.006187 -0.009709 -0.005907 -0.010945 -0.009599
[5,] 0.032676 0.100389 0.020663 0.103859 0.009514

Hypothesis test:
wald value Pr(>wald)

(Intercept) 144.88789 1.634268e-29
log(totalReads) 69.92572 1.061922e-13
treatment 18364.13260 0.000000e+00
age 79.91023 8.762650e-16
gender 52.33670 4.601575e-10

Distribution: Multinomial
Log-likelihood: -7506.393
BIC: 15145.24
AIC: 15062.79
Iterations: 6

DM regression

R> system.time(
+ dmreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
+ treatment + age + gender, data = rnaseq, dist = "DM")
+ )
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user system elapsed
0.182 0.004 0.187

R> print(dmreg)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
treatment + age + gender, data = rnaseq, dist = "DM")

Coefficients:
X1 X2 X3 X4 X5 X6

[1,] -0.895850 -1.096921 -8.997414 -1.736871 -1.774227 -5.646822
[2,] 0.221988 0.186919 0.536572 0.252679 0.216672 0.347271
[3,] -0.679291 -0.686881 1.835585 0.707954 -0.546469 -0.543134
[4,] 0.010245 0.005227 0.009134 0.004252 0.006090 0.011642
[5,] -0.026177 0.040244 -0.052842 0.023178 -0.058339 -0.039139

Hypothesis test:
wald value Pr(>wald)

(Intercept) 14.579069 0.023796
log(totalReads) 8.502549 0.203547
treatment 1851.437449 0.000000
age 13.131512 0.040994
gender 4.133364 0.658634

Distribution: Dirichlet Multinomial
Log-likelihood: -4386.941
BIC: 8932.831
AIC: 8833.882
Iterations: 9

GDM regression

R> system.time(
+ gdmreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
+ treatment + age + gender, data = rnaseq, dist = "GDM")
+ )

user system elapsed
0.219 0.003 0.224

R> print(gdmreg)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
treatment + age + gender, data = rnaseq, dist = "GDM")

Coefficients:
alpha_X4 alpha_X1 alpha_X2 alpha_X3 alpha_X5 beta_X4

[1,] 5.987993 -7.056673 0.456088 -10.120738 2.639396 4.661089
[2,] -0.215099 0.555973 0.039553 0.720358 -0.016121 -0.140896
[3,] -0.047691 -0.329320 0.979359 0.099958 0.063393 0.628878
[4,] 0.006661 -0.004343 0.019361 0.008173 0.012397 0.003224
[5,] 0.233006 0.374838 -0.186420 -0.202417 0.144289 0.212071

beta_X1 beta_X2 beta_X3 beta_X5
[1,] -9.789127 7.095061 -9.530008 -1.687615
[2,] 0.713819 -0.222984 0.743146 0.133985
[3,] 0.746198 -1.591630 -0.923712 -0.042441
[4,] 0.000453 0.015945 0.012541 0.019188
[5,] 0.273256 -0.233121 -0.270428 0.122062

Hypothesis test:
wald value Pr(>wald)

(Intercept) 15.40109 0.118109
log(totalReads) 11.04187 0.354265
treatment 2549.23829 0.000000
age 16.42846 0.088007

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 83

gender 10.72122 0.379646

Distribution: Generalized Dirichlet Multinomial
Log-likelihood: -4289.281
BIC: 8843.479
AIC: 8678.563
Iterations: 46

NegMN regression

There are two variants of NegMN regression, depending on whether to link over-dispersion parameter
to covariates. The default setting regBeta=FALSE instructs MGLMreg to fit the NegMN regression with
all observations sharing the same over-dispersion parameter value. There are pd + 1 parameters.

R> system.time(
+ negmnreg2 <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~
+ log(totalReads) + treatment + age + gender,
+ data = rnaseq, dist = "NegMN", regBeta = FALSE)
+ )

user system elapsed
0.196 0.004 0.201

R> print(negmnreg2)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
treatment + age + gender, data = rnaseq, dist = "NegMN",
regBeta = FALSE)

Coefficients:
$alpha

X1 X2 X3 X4
(Intercept) -13.587385 -13.521818 -22.380101 -14.131348
log(totalReads) 0.907716 0.850412 1.242922 0.915258
treatment -0.753113 -0.773507 2.014641 0.675195
age 0.002583 -0.000938 0.002916 -0.002141
gender -0.060696 0.007022 -0.069502 0.012499

X5 X6
(Intercept) -14.507698 -18.526425
log(totalReads) 0.899918 1.020360
treatment -0.638296 -0.730410
age -0.000824 0.008766
gender -0.083681 -0.093397

$phi
phi

31.6062

Hypothesis test:
wald value Pr(>wald)

(Intercept) 385.75540 3.223413e-80
log(totalReads) 368.08485 2.017976e-76
treatment 18377.52958 0.000000e+00
age 79.70906 4.103065e-15
gender 54.84662 4.978098e-10

Distribution: Negative Multinomial
Log-likelihood: -8746.689
BIC: 17657.63
AIC: 17555.38
Iterations: 35

regBeta=TRUE instructs MGLMreg to link over-dispersion parameter to covariates and there are p(d + 1)
regression coefficients. Small likelihood, larger AIC/BIC and slow convergence reflects the lack of fit
of this model.
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R> system.time(
+ negmnreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~
+ log(totalReads) + treatment + age + gender,
+ data = rnaseq, dist = "NegMN", regBeta = TRUE)
+ )

user system elapsed
9.866 0.023 9.898

R> print(negmnreg)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
treatment + age + gender, data = rnaseq, dist = "NegMN",
regBeta = TRUE)

Coefficients:
X1 X2 X3 X4

(Intercept) -17.648355 -17.582555 -26.462109 -18.204282
log(totalReads) 1.192057 1.134742 1.528500 1.200309
treatment -0.877324 -0.897715 1.890375 0.550944
age -0.013397 -0.016918 -0.013072 -0.018127
gender -0.101456 -0.033730 -0.110253 -0.028252

X5 X6 phi
(Intercept) -18.569609 -22.587821 7.543157
log(totalReads) 1.184315 1.304725 -0.285737
treatment -0.762503 -0.854624 0.125412
age -0.016804 -0.007213 0.015871
gender -0.124433 -0.134173 0.041254

Hypothesis test:
wald value Pr(>wald)

(Intercept) 291.48017 3.987668e-59
log(totalReads) 371.39226 3.232075e-76
treatment 18377.18774 0.000000e+00
age 81.70350 6.187095e-15
gender 54.79955 1.633654e-09

Distribution: Negative Multinomial
Log-likelihood: -8745.162
BIC: 17675.77
AIC: 17560.32
Iterations: 140

Sparse regression

The function MGLMsparsereg performs regularized estimation. Similar to MGLMreg, the inputs of the
sparse regression function include formula, data, dist, and the convergence controlling arguments.
The function also requires the tuning parameter lambda, and the penalty type argument penalty. The
outputs include the coefficient estimates, log-likelihood, AIC, BIC, degrees of freedom, and the number
of iterations.

We simulate 100 data points from a 5-variate DM model using 10 covariates. Only three of them (1,
3, and 5) have non-zero effects. For each 5-variate data point, batch size, or the total number of objects
that are put into 5 categories, is drawn from Bin(200, 0.8).

R> dist <- "DM"
R> n <- 100
R> p <- 10
R> d <- 5
R> set.seed(118)
R> m <- rbinom(n, 200, 0.8)
R> X <- matrix(rnorm(n * p), n, p)
R> alpha <- matrix(0, p, d)
R> alpha[c(1, 3, 5), ] <- 1
R> Alpha <- exp(X %*% alpha)
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R> Y <- rdirmn(size = m, alpha = Alpha)
R> length(m)

[1] 100

R> head(m)

[1] 167 160 162 159 156 157

R> head(Y)

[,1] [,2] [,3] [,4] [,5]
[1,] 24 7 112 15 9
[2,] 34 33 31 38 24
[3,] 0 0 0 0 162
[4,] 7 17 84 29 22
[5,] 0 33 0 123 0
[6,] 0 0 3 154 0

R> head(rowSums(Y))

[1] 167 160 162 159 156 157

We demonstrate the regularized estimation by group, nuclear norm, and element-wise penalization.

Variable selection by group penalty

With input lambda=Inf, MGLMsparsereg returns λmax, the maximum value the tuning parameter can
take such that not all regression coefficient estimates are 0.

R> pen <- "group"
R> ngridpt <- 30
R> spmodelfit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,
+ lambda = Inf, penalty = pen)
R> maxlambda <- maxlambda(spmodelfit)
R> lambdas <- exp(seq(from = log(maxlambda), to = log(maxlambda / nrow(Y)),
+ length.out = ngridpt))

Tuning is performed on 30 grid points. The left panel of Figure 1 displays the BIC trace along the
solution path.

R> BICs <- rep(0, ngridpt)
R> AICs <- rep(0, ngridpt)
R> LogLs <- rep(0, ngridpt)
R> Dofs <- rep(0, ngridpt)
R> ptm <- proc.time()
R> for (j in 1:ngridpt) {
+ if (j == 1) {
+ B0 <- matrix(0, p, ncol(coef(spmodelfit)))
+ }
+ else B0 <- B_hat
+ select.fit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,
+ lambda = lambdas[j], penalty = pen, init = B0)
+ B_hat <- coef(select.fit)
+ BICs[j] <- BIC(select.fit)
+ LogLs[j] <- logLik(select.fit)
+ AICs[j] <- AIC(select.fit)
+ Dofs[j] <- dof(select.fit)
+ }
R> proc.time() - ptm

user system elapsed
4.469 0.026 4.500

R> pen <- "group"
R> ngridpt <- 30
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Figure 1: Variable selection by the group penalty. Left: BIC trace. Right: Regularized estimate B̂(λ) at
the optimal λ displayed in gray scale.

R> spmodelfit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,
+ lambda = Inf, penalty = pen)
R> maxlambda <- maxlambda(spmodelfit)
R> lambdas <- exp(seq(from = log(maxlambda), to = log(maxlambda / nrow(Y)),
+ length.out = ngridpt))

The right panel of Figure 1 displays the regularized estimate B̂(λ) at the tuning parameter value
with minimal BIC.

R> chosen.lambda <- lambdas[which.min(BICs)]
R> select <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,
+ lambda = chosen.lambda, penalty = pen)

Alternatively, the function MGLMtune automates the tuning procedure and reports the regularized
estimate at the optimal tuning parameter value according to BIC.

R> selectTune <- MGLMtune(Y ~ 0 + X, dist = dist, penalty = pen, ngridpt = 30,
+ display = FALSE)

The option ngridpt sets the number of grid points ngrid and the sequence of tuning parameters is
equally spaced on the log scale within the interval [λmax/ngrid, λmax].

Low rank regression by nuclear norm regularization

Nuclear norm regularization is invoked by setting penalty="nuclear".

R> system.time (
+ select <- MGLMtune(Y ~ 0 + X, dist = "DM", penalty = "nuclear",
+ ngridpt = 30, display = FALSE))

user system elapsed
4.475 0.037 4.528

Figure 2 displays the BIC trace plot and the regularized estimate at optimal λ from the same data by
the nuclear norm penalty.

Select by entries

R> system.time (
+ select <- MGLMtune(Y ~ 0 + X, dist = "DM", penalty = "sweep", ngridpt = 30,
+ display = FALSE))
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Figure 2: Low rank regression by the nuclear norm penalty. Left: BIC trace. Right: Regularized
estimate B̂(λ) at the optimal λ displayed in gray scale.
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Figure 3: Select by parameter matrix entries with L1 norm penalty. Left: BIC trace. Right: Regularized
estimate B̂(λ) at the optimal λ displayed in gray scale.

user system elapsed
4.448 0.038 4.504

Figure 3 displays the BIC trace plot and the regularized estimate at optimal λ from the same data by
the element-wise lasso penalty.

Discussion

This article introduces the MGLM package for analysis of multivariate categorical data. Distribution
fitting, regression, sparse regression, and random number generation are implemented in a simple
and unified framework. It timely responds to the current challenge of multivariate categorical data
analysis arising from modern technology such as RNA-seq. The R package is available on CRAN.

There are several possible extensions that would be useful to the package. Some of them include:

1. Alternative parameterization. Some models in Table 1 admits alternative parameterization. For
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instance, the DM distribution can be re-parameterized as

θ =
1

∑j αj
, pj =

αj

∑j′ αj′
, j = 1, . . . , d.

in terms of the proportion vector p = (p1, . . . , pd) ∈ ∆d and the overdispersion parameter θ > 0.
Appropriate inverse link function can be

pj =
exT β j

1 + ∑d−1
j′=1 exT β j′

, j = 1, . . . , d− 1,

θ = exT βd .

The multinomial-logit model can be treated as a special case with βd = 0. Zhou and Lange
(2010) discuss an algorithm for distribution fitting using this parameterization. Corresponding
estimation algorithm for the regression model needs to be devised and implemented. Similar
re-parameterization applies to the GDM model.

2. Alternative link function. Current version only implements the log link function for positive
distribution parameter and logit link for the probability vector. Inclusion of alternative link
functions such as probit and cloglog would expand the flexibility of the models.

3. Ordinal categorical responses. Multinomial-logit model can be adapted to ordinal categorical
responses (Agresti, 2002, Chapter 7). Parallel developments and implementation for the DM,
NegMN, and GDM models are worth considering.

4. Parameter constraints. Current version does not allow constraints among regression parameters.
MGLMreg calls glm.fit functions to fit weighted Poisson regressions in each iteration; we may
call functions from glmc package (Chaudhuri et al., 2006) instead to incorporate parameter
constraints.

5. The xij argument (Yee, 2015, Chapter 14). Current version assumes the same set of covariates for
all categories. Allowing covariates to take different values for each category can be useful, e.g.,
for discrete choice modeling in econometrics. The corresponding algorithm and implementation
are worth exploring.

The MGLM package for R is continually being developed.
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ArCo: An R package to Estimate Artificial
Counterfactuals
by Yuri R. Fonseca, Ricardo P. Masini, Marcelo C. Medeiros and Gabriel F. R. Vasconcelos

Abstract In this paper we introduce the ArCo package for R which consists of a set of functions
to implement the the Artificial Counterfactual (ArCo) methodology to estimate causal effects of an
intervention (treatment) on aggregated data and when a control group is not necessarily available.
The ArCo method is a two-step procedure, where in the first stage a counterfactual is estimated from a
large panel of time series from a pool of untreated peers. In the second-stage, the average treatment
effect over the post-intervention sample is computed. Standard inferential procedures are available.
The package is illustrated with both simulated and real datasets.

Introduction

In this paper an R package to conduct counterfactual analysis by the Artificial Counterfactual (ArCo)
method is introduced. The ArCo methodology is a flexible and easy-to-implement method to estimate
the causal effects of an intervention on a single treated unit and when a control group is not readily
available. The procedure consists of two steps where, in the first stage, a counterfactual is estimated
on the basis of a large-dimensional set of variables from a pool of untreated units (“donors pool”).
In the second stage, the average intervention effect on a vector of variables from the treated unit is
estimated. The method is robust to the presence of confounding effects, such as a global shock and can
be seen as an extension of the Synthetic Control (SC) approach of Abadie and Gardeazabal (2003) and
Abadie et al. (2011) and the panel factor (PF) model method put forward by Hsiao et al. (2012).

Causality and counterfactual analysis are topics of major importance in Social Sciences, Economics,
Medicine, Psychology, etc. Routinely, causal statements with respect to a given intervention (or
treatment) depend on the construction of counterfactuals, which are estimated from the outcomes of
a similar group of individuals not affected by the intervention. Nevertheless, reaching final cause-
and-effect conclusions is a very challenging task as a consequence of the difficulties in finding reliable
sources of exogenous variation. In microeconometrics there have been major advances in the literature
and the estimation of treatment effects is now part of the current toolbox of applied researchers. On
the other hand, when there is not a natural control group and there is a single treated unit, which is
usually the case when handling, for example, macro (aggregated) data, the econometric tools have
evolved at a slower pace. However, in the recent past, some authors have proposed new techniques
inspired partially by the developments in microeconometrics that are able, under some assumptions,
to estimate counterfactuals with aggregate data. The ArCo method fits into this exciting literature. See,
for example, Athey and Imbens (2016a) or Athey and Imbens (2016b) for recent reviews.

Overview

All the econometric analysis conducted with the ArCo method is on the time dimension and it consists
of the following key ingredients: the definition of the intervention and the intervention time, the
units of interest (treated and untreated units) and the observed variables for each unit. Units are, for
example, municipalities, states, regions, countries, products, firms, stores, etc. The intervention occurs
in one of these units starting in a given point in time and does not affect the other units. Interventions
could be war out-breaks, terrorist attacks, policy changes, enforcement of new laws, natural disasters,
new prices, among many others. Each unit is described by at least one variable. For example, if we
are dealing with countries the variables may be GDP and inflation and for companies they could be
profit and revenue. For products the variables could be prices and sold quantities. All variables are
observed along a period of time (days, months, years, for example).

The ArCo method is a two-step procedure. In the first step, the data before the occurrence of the
intervention is used to estimate a multivariate time-series regression model relating the variables
in the treated unit (dependent variables) with only the variables belonging to the untreated peers
(explanatory variables). In the second step, the counterfactual is constructed by extrapolating the
estimated model with data after the intervention. The estimated effect is the time-series average of
the difference between the actual data and the counterfactual. It is important to stress that the model
is conditioned on data from the untreated peers only and the validity of the method is based on two
key assumptions:

1. The peers are not affected by the intervention;
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2. The data is trend-stationary.

The first assumption is common in the literature and has been also assumed by Abadie and
Gardeazabal (2003) and Hsiao et al. (2012). On the other hand, the trend-stationarity assumption has
been dangerously ignored in the literature. Carvalho et al. (2016a) investigate the consequences of
applying the ArCo, SC or PF methods when the data are integrated processes of order 1. They find
that without a cointegrating relationship (spurious case) the estimator of the effects of the intervention
diverges, resulting in the rejection of the null hypothesis of no effect regardless of its existence with
probability approaching 1. For the case when one cointegrating relationship exists, the estimator is√

T-consistent for the intervention effect albeit with a non-standard distribution. Nevertheless, even
in this case, the test of no intervention effect is extremely oversized if nonstationarity is ignored. When
there is a drift in the data generating processes, the estimator for both cases (cointegrated and spurious)
either diverges or is not well defined asymptotically. The authors thus strongly recommend the use of
first-differenced data to avoid spurious results in case of integrated data. Furthermore, heterogeneous,
possibly nonlinear, deterministic time trends are allowed among units. See also Ferman and Pinto
(2016) for a similar discussion.

High-dimensionality is relevant when the number of parameters to be estimated is large compared
to the actual sample size. This can happen either when the number of peers and/or the number of
variables for each peer is large or when the sample size is too small. In Carvalho et al. (2016b) the
authors consider a linear model estimated by the Least Absolute Selection and Shrinkage Operator (LASSO)
proposed by Tibshirani (1996). However, in the R package we leave the choice of the conditioning
model to the user. LASSO regressions (and extensions), regression trees and random forests, boosted
trees, neural networks, splines, factor models, are some possible examples of models to be estimated
in the first step. The results in Carvalho et al. (2016b) are derived under asymptotic limits on the time
dimension (T). However, the authors allow the number of peers (n) and the number of observed
variables for each peer to grow as a function of T.

A Glimpse on the Literature and Comparison with Other Methods

The ArCo approach nests the PF method proposed by Hsiao et al. (2012) and can been seen as a
generalization of the SC approach in the same lines as discussed by Doudchenko and Imbens (2016)
and Ferman and Pinto (2016). It is also better suited than Difference-in-Differences (DiD) estimators for
comparative case studies when there is a single treated unit and no similar control group is available,
even after the inclusion of many control variables. Furthermore, the ArCo approach relaxes the
stringent parallel trend restriction of the DiD methods.

Recently, Gobillon and Magnac (2016) generalize DiD estimators by considering a correctly speci-
fied linear panel model with strictly exogenous regressors and interactive fixed effects represented as
a number of common factors with heterogeneous loadings. Their theoretical results rely on double
asymptotics when both T and n go to infinity. The authors allow the common confounding factors to
have nonlinear deterministic trends. The ArCo method differs from Gobillon and Magnac (2016) in
several directions. First, as mentioned before, the model is not assumed to be correctly specified and
there is no need to estimate the common factors. Consistent estimation of factors needs that both the
time-series and the cross-section dimensions diverge to infinity and can be severely biased in small
samples. The ArCo methodology requires only the time-series dimension to diverge. Furthermore, the
regressors do not need to be strictly exogenous which is an unrealistic assumption in most applications
with aggregate data. Heterogeneous nonlinear trends are also allowed but there is no need to estimate
them (either explicitly or via common factors). Finally, as in the DiD case, the ArCo does not either
require the number of treated units to grow or to have a reliable control group (after conditioning on
covariates).

Although, both the ArCo and the SC methods construct a counterfactual as a function of observed
variables from a pool of peers, the two approaches have important differences. First, the SC method
relies on a convex combination of peers to construct the counterfactual which, as pointed out by
Ferman and Pinto (2016), biases the estimator. The ArCo solution is a general, possibly nonlinear,
function. Even in the case of linearity, the method does not impose any restriction on the parameters.
For example, the restriction that weights in the SC methods are all positive seems a bit too strong. The
SC method also requires an unrealistic identification assumption about the (perfect-)fit of the model
in the pre-intervention period. Furthermore, the weights in the SC method are usually estimated
using time averages of the observed variables for each peer. Therefore, all the time-series dynamics is
removed and the weights are determined in a pure cross-sectional setting. In addition, the SC method
was designed to evaluate the effects of the intervention on a single variable. In order to evaluate the
effects in a vector of variables, the method has to be applied several times. The ArCo methodology
can be directly applied to a vector of variables of interest. In addition, there is no formal inferential
procedure for hypothesis testing in the SC method, whereas in the ArCo methodology, a simple,
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uniformly valid and standard test can be applied1. Finally, as discussed in Ferman et al. (2016), the SC
method does not provide any guidance on how to select the variables which determine the optimal
weights2.

Framework

This section aims to describe the mathematical notation and the key definitions of the ArCo methodol-
ogy in a way that is compatible with the ArCo (Fonseca et al., 2017) package. For further details on
statistical properties and theoretical results, see Carvalho et al. (2016b) and Carvalho et al. (2016a).
Everything concerning the technique used to estimate the first-step model is left in a very general way
as the ArCo package was developed to accept many different classes of models. Note, however, that
the theory and the inference was developed for LASSO linear regressions.

• units: Indexed by i = 1, . . . , n. Units are, for example, municipalities, states, regions, countries,
products, firms, stores, etc. The treatment occurs in one of these units and do not affect the
others.

• variables: For each unit i, i = 1, . . . , n, and for every time period t, t = 1, . . . , T, we observe
qi ≥ 1 variables. If the units are, for example, firms, the variables may be sales, income, profit,
etc. We will refer to these variables as zit = (z1

it, . . . , zqi
it ).

• intervention: The intervention took place only in the treated unit at time T0 = λ0T with
λ0 ∈ (0, 1).

Assume, without loss of generality, that the treated unit is the first one (i = 1). Furthermore, let

z(0)1t and z(1)1t be the outcomes of the first unit under treatment and without treatment, respectively.
Normally, we do not observe both outcomes simultaneously. Instead, we observe:

z1t = Dtz
(0)
1t + (1− Dt)z

(1)
1t , (1)

where Dt assumes value 1 if the unit in under treatment at time t and 0 otherwise.

The goal is to test the hypothesis on the effects of the intervention being statistically significant for
t ≥ T0. The interventions are considered in the form

y(1)
t =

{
y(0)

1t , t = 1, . . . , T0 − 1
y(0)

1t + δt, t = T0, . . . , T,
(2)

where y(j)
t = h(zj

1t) ∈ Rq for j ∈ {0, 1}, h(·) is a measurable function of z1t and {δt}T
t=T0

is a
deterministic sequence. The function h(·) is very general and allows interventions on the mean,
variance, covariance, etc. The ArCo method is concerned with the following hypothesis:

H0 : ∆T =
1

T − T0 + 1

T

∑
t=T0

δt = 0, (3)

where ∆t is the average treatment effect over the treatment period.

We do not observe y(0)
t for t ≥ T0. This quantity is the counterfactual, i.e., what would yt have

been in the absence of intervention. In order to proceed to the first step estimation of the ArCo,
let z0t = (z′2t, . . . , z′nt)

′ and Z0t = (z′0t, . . . , z′0t−p)
′ be the collection of all untreated units up to an

arbitrary lag p ≥ 0. The dimension of Z0t depends on the number of units, the number of lags and the
number of variables per unit.

Consider the following model for y(0)
t

y(0)
t =Mt + vt, (4)

where E(vt) = 0 andMt =M(Z0t). Note thatM is a measurable mapping in a sense that it does not
need to be an explicit function. For example, one could assume a regression tree or a random forest
structure forMt.

The first step of the ArCo method consists on estimating (4) using the first T0 − 1 observations,

given that for t < T0 we have yt = y(0)
t . Set T1 = T0 − 1 and T2 = T − T0 + 1, then one can estimate

1The theoretical results in Carvalho et al. (2016b) were derived for the case of LASSO regression only but can be
easily extended to other classes of models.

2Doudchenko and Imbens (2016) advocate the use of shrinkage methods to estimate the pre-intervention model
but no theory is provided.
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M̂t,T1 = M̂T1 (Z0t) and use it to construct the counterfactual

ŷ(0)
t =

{
y(0)

t , t = 1, . . . , T0 − 1
M̂t,T1 , t = T0, . . . , T.

(5)

Finally, the ArCo estimator is defined as

∆̂T =
1

T − T0 + 1

T

∑
t=T0

δ̂t, (6)

where δ̂t = yt − ŷ(0)
t and t = T0, . . . , T.

As mentioned in the Introduction, the ArCo methodology is a two-step estimator where the first
step consists on the estimation ofM on the pre-intervention sample and in the second step we estimate
∆̂, which is the average intervention impact.

Hypothesis Testing

Carvalho et al. (2016b) shows the conditions and results for the asymptotic normality of ∆̂T and
also, how to consistently estimate its covariance matrix, given by ΩT . Therefore, one can obtain a
confidence interval for a chosen significance level α given by

Ij,α =

[
∆̂j,T ±

ŵj√
T

Φ−1(1− α/2)
]

, (7)

for each j = 1, . . . , q, where ŵj =
√

Ω̂jj and Φ−1(·) is the quantile function of a standard normal
distribution.

One can also establish a hypothesis test given that Wt = T∆̂′TΩ̂−1
T ∆̂ has a chi-square distribution

with q degrees of freedom.

The estimation of Ω may be a challenge not because of the ArCo itself, but because of the robust
estimator we may choose. The ArCo package allows the user to choose between the methods below:

• Covariance matrix assuming the errors are independent and identically distributed;

• prewhitening using VAR models as in Andrews and Monahan (1992). The lag of the VAR may
be chosen by the user or though information criterion;

• Newey and West (1987) (NW) covariance matrix with quadratic spectral, truncated, Bartlett,
Parzen or Turkey-Hanning kernels; and

• the combination of NW and prewhitening where the NW covariance matrix is calculated on the
residuals of the VAR.

Unknown Intervention Time

In many cases it is reasonable to assume that the intervention time is unknown. For example, although
some new policy has started at a known time, its effects may have been anticipated due to rational
expectations. Regardless the source of the uncertainty, what we need is to estimate λ0 by adjusting the
ArCo estimator to be a function of λ, ∆̂T(λ).

Set Λ = (λ, λ) as a bound for λ0 to avoid finite sample bias close to the boundaries and define
|| · ||p as the `p norm, then

λ̂0,p = arg max
λ∈Λ

JT,p(λ), JT,p = ||∆̂T(λ)||p. (8)

Thus, λ̂0,p is the one that maximizes the `p norm of the ArCo estimator. If ∆ 6= 0 then λ̂0,p =

λ0 + op(1). On the other hand, if ∆ = 0 then λ̂0,p converges in probability to any λ ∈ Λ with equal
probability.

Asymptotic Theory and Sample Size

The inferential procedures for the ArCo method are asymptotic. However, simulation experiments
show that the method works well in small samples (Carvalho et al., 2016b). It is intuitive to think that
the only sample size that matters is the one before the intervention as it is the one used to estimate the
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model. However, for a given sample size T, it is desirable to have the intervention as close as possible
to 0.5T because the average treatment effect, ∆, also depends on the period after the intervention. In
practice, if the number of variables and units is not very big, 40 to 50 observations should be enough
as we show in the Basque example when we compare the ArCo with the Synthetic Control approach.

The first step of the ArCo is a time-series estimation. Therefore, all the data must have the same
periodicity (year, quarters, months, etc). The Synthetic Control kills the time-series dimension of
the control variables because it uses only their average (or other statistic such as median). This is
an important difference between the methods: the ArCo uses all the time-series information but it
requires more data than the Synthetic Control because all series must be complete (without missing
values) and in the same periodicity.

Practical Example: the fitArCo Function

The ArCo package has two datasets that were created using the data generation process (DGP) from
the second simulation example in Carvalho et al. (2016b) and another dataset from the same article’s
empirical example. In this section we walk through the ArCo package using these datasets. All
examples presented here are entirely reproducible using the same codes and datasets.

The DGP is given by:

z(0)it = 0.5Aiz
(0)
it−1 + εi,t, i = 1, . . . , n, t = 1, . . . , T, (9)

where the error has a factor structure εi,t = Λi ft + ηit with ft = [1, (t/T), vt], zit ∈ Rq, Ai(q× q) is a
diagonal matrix with elements between −1 and 1, {vt} is a sequence of independent and normally
(NID) distributed random variables with zero mean and unit variance, {ηit} is a sequence of NID
random vectors with zero mean and covariance matrix (0.2)2 Inq. We set T = 100.

Simple example for one variable

The two generated datasets are data.q1 (one variable and 20 units) and data.q2 (two variables and 6
units). We will start with data.q1, which can be loaded with the following code:

> library(ArCo)
> data(data.q1)

The data.q1 is a matrix with 100 observations of 20 columns. In the ArCo context each column is
a unit, therefore, we have one variable from each of the 20 units from the data. The intervention took
place at the first unit at T0 = 51 by adding a constant of 0.628, which is one standard deviation from
the treated unit before the intervention. The series in question is plotted in Figure 1 with a vertical line
at t = T0.

> plot(data.q1[,1], type="l")
> abline(v=51, col=2, lty=2)

The main function of the ArCo package is the function fitArCo, which estimates the ArCo and
provides the relevant statistics and outputs. The data must be supplied in a list of matrices, each
matrix should have T observations of one single variable for all units. Therefore, if one has q variables,
the list must have q matrices. Since the data.q1 has only one variable, we will supply the function
with a list with only one matrix.

The user can choose any model to estimate the first step of the ArCo as long as it is possible to
write a compatible estimation function (argument fn) and forecasting function (argument p.fn). The
estimation function must receive a matrix of explanatory variables X and the response variable y in a
vector, and it should return the estimated model; the forecasting function receives the output from the
estimation function and the argument newdata3. For the purposes of this example we will write a fn
and a p.fn that uses simple Ordinary Least Squares (OLS). The OLS estimation is the default model of
the fitArCo function in case the user does not supply any functions.

> fn=function(X,y){
+ return(lm(y~X))
+ }
> p.fn=function(model,newdata){
+ b=coef(model)

3The forecasting function is similar to most predict methods in R, which receives a model object and the new
data used on the prediction.
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Figure 1: plot of data.q1 unit 1

+ return(cbind(1,newdata) %*% b)
+ }

The ArCo can now be estimated:

> ArCo=fitArCo(data = list(data.q1), fn = fn, p.fn = p.fn, treated.unit = 1, t0 = 51,
VCOV.type = "nw", VCOV.lag = 3, prewhitening.kernel = TRUE)
> plot(ArCo,display.fitted=TRUE)
> ArCo$delta

LB delta UB
Variable1 0.4115779 0.5174889 0.6233999
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Figure 2: plot of the counterfactual from data.q1 unit 1
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The fitArCo generates an object of class fitArCo with S3 method for plot4 (Figure 2). Additionally,
the user can chose from several types of robust covariance matrix estimations for ∆T such as Newey
and West (1987) with prewhitening options from Andrews and Monahan (1992). The argument lag
allows the inclusion of lags in the model and the argument Xreg accounts for exogenous controls.
Finally, the $delta returns the ∆T and its confidence bands for a significance level α chosen by the
user and $p.value returns the ArCo p-value.

Example for Two Variables and Bootstrap Inference

In this section we show the ArCo with two variables and some additional features from the fitArCo
function such as bootstrap estimation of the couterfactual confidence bands, which have the advantage
that it can be calculated for any model chosen by the user.

If the argument boot.cf is set to TRUE the function will automatically perform block bootstrap
replications of the counterfactual, the number of replications and the block length are controlled
through the arguments R and l respectively. The bootstrap procedure uses the package boot (Canty
and Ripley, 2015) and is described as follows:

1. For t < T0 prepare the data in a way that the vector y1 contains the response variable and a
matrix X1 contains all regressors;

2. sample T0− 1− lag observations from {y′1, X1} using blocks of length l generating the bootstrap
sample {y′1, X1}r;

3. estimate the model on {y′1, X1}r;

4. for t ≥ T0, compute the forecast with the model estimated on step 3 using X2 as the new data;

5. repeat steps 2-4 R times to obtain the counterfactual bootstrap distribution.

The data.q2 dateset has two variables for 6 units. The number of observations is 100 and the
treatment of adding up one standard deviation (0.84 for the first variable and 0.511 for the second
variable) took place at T0 = 51 on the first unit.

The following example estimates the ArCo using LASSO with the glmnet (Friedman et al., 2010).
The function fn is cv.glmnet the function p.fn is predict5. The function cv.glmnet chooses the
regularization parameter λ using cross-validation.

> data(data.q2)
> library(glmnet)
> set.seed(123)
> ArCo2 = fitArCo(data = data.q2, fn = cv.glmnet, p.fn = predict, treated.unit = 1,
t0 = 51, VCOV.type = "nw", VCOV.lag = 3, prewhitening.kernel = TRUE,boot.cf = TRUE,
R=200, l=3)
> plot(ArCo2, display.fitted=TRUE ,confidence.bands = TRUE, alpha = 0.05)
> ArCo2$delta

LB delta UB
Variable1 0.6801909 0.7710389 0.8618870
Variable2 0.4225233 0.5071188 0.5917144

Figure 3 shows the counterfactual with 95% confidence bands. The red line shows if the chosen
model has an acceptable performance in-sample. Moreover, the $delta shows that the treatment was
different from zero on both variables and the point value of ∆̂T is close the value used to generate the
data (0.84 and 0.511 for variables 1 and 2 respectively).

Practical Advice on the Use of the fitArCo Function

A potential issue for the practitioner is the choice of the function used to estimate the model in the
first step of the ArCo (fn) method and the corresponding prediction function (p.fn). The default
is to estimate the ArCo using OLS because it is a simple procedure and require no extra packages.
However, the most recommended model approach is to use LASSO to estimate a linear model due to
its good properties in high-dimensional settings and, more importantly, because most the asymptotic
theory for the ArCo method was developed for LASSO (high-dimensions) and OLS (low-dimensions).
Nevertheless, the user is free to use any other models such as Random Forest, Boosted Trees, Neural

4The plot.fitArCo function will automatically display legends if the argument display.fitted is set to TRUE. For
those who use RStudio, watch out for the figure margins, especially in cases where q > 1 and the user wished to
display multiple plots. If necessary use x11() to plot in a new window.

5Both functions are already on the format required by the fitArCo.
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Figure 3: plot of the counterfactual from data.q2 unit 1, variables 1 and 2, with bootstrap confidence
bands.
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Networks, Factor Models, etc. In these cases, the user should be aware that the inference on the average
treatment effect may not be valid and should only be used as an approximation. We recommend doing
some simulation tests under the null hypothesis (no treatment) and under the alternative hypothesis
(treatment different from zero) if the user chooses to use an estimation approach different from LASSO
and OLS6.

The fitArCo accepts extra arguments to be passed to the fn function. This is not particularly useful
for LASSO or OLS, but if the user chooses models that require tuning (Boosted Trees, Random Forest,
etc) extra arguments may be required.

The fitArCo function returns all the inference regarding the average treatment effect (confidence
intervals and p-values). We included several built-in methods in case a robust covariance matrix is
required. We recommend the user to test the first-stage residuals for autocorrelation and heteroskedas-
ticity. If these features are present in the residuals the most common solution is to use Newey-West
(VCOV.type="nw") with Quadratic Spectral kernel (default). The optimal lag for the covariance matrix
is calculated automatically but the user may force it through the argument VCOV.lag.

The entire list of what the function fitArCo function returns is:

• cf: T2 × q matrix of the estimated counterfactual.

• fitted.values: (T1 − lag)× q matrix with the fitted values for the pre-treatment period.

• model: A list with q estimated models, one for each variable. Each model is the exact output of
the fn function.

• delta: The delta statistics for each variable and its confidence interval.

• p.value: The ArCo p-value.

• data: The data used.

• t0: The intervention period used.

• treated.unit: The treated unit used.

• boot.cf: A list with the bootstrap result (boot.cf=TRUE) or logical FALSE (boot.cf=FALSE). In
the first case, each element in the list refers to one bootstrap replication of the counterfactual, i.e.
the list length is R.

• call: The matched call.

The estimate_t0 Function

We mentioned earlier that in many cases the exact intervention period might be unknown, but it
can be estimated using the maximization of the norm of ∆T(λ). This is precisely what the function
estimate_t0 does. The example below uses the dataset data.q2 and LASSO to estimate the model as
in the previous example. The arguments start and end determine the range of λ where the function
should search for λ0 and consequently T0. The value of T0 returned by the function was 53, which
is very close to the 51 used to generate the data. The user can also see the value of the norm of ∆T
correspondent to the estimated T0.

> library(glmnet)
> set.seed(123)
> data("data.q2")
> t0=estimate_t0(data = data.q2, fn = cv.glmnet, p.fn = predict, treated.unit = 1,
start = 0.4, end = 0.9)
> t0$t0
[1] 53
> t0$delta.norm
[1] 0.9209421

The natural step that follows is to use the estimated T0 on the fitArCo function. The results will
obviously be very similar to the ones presented on the previous section because the estimated T0 is
nearly the same as the value used to generate the data.

6OLS should be used only for small problems with considerably more observations than variables in the period
before the intervention.
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Application to Real Data

This sections shows the ArCo package working on two different examples with real data. The first
example is from Carvalho et al. (2016b) and it shows the effects on inflation of an tax evasion program
on the Brazilian metropolitan area of São Paulo. The second example uses data from the package
Synth (Abadie et al., 2011) to compare the ArCo with the Synthetic Control (Abadie and Gardeazabal,
2003; Abadie et al., 2010).

So far we have used OLS and cross-validation LASSO to make the examples as simple as pos-
sible. However, there are some advantages on selecting the LASSO regularization parameter using
information criterion such as the Bayesian Information Criterion (BIC), which allow us to consistently
estimate the degrees of freedom of the model (Zou et al., 2007). Moreover, choosing by information
criterion is faster and avoids further complications created by cross-validation on time-series. For the
next examples we will define the functions fn and p.fn to to select the model using the BIC as follows:

> fn=function (x, y){
+ n=length(y)
+ model = glmnet(x = x, y = y)
+ coef = coef(model)
+ df = model$df
+ yhat=cbind(1,x)%*%coef
+ residuals = (y- yhat)
+ mse = colMeans(residuals^2)
+ nvar = df + 1
+ bic = n*log(mse)+nvar*log(n)
+ selected= which(bic == min(bic))
+ return(coef[,selected])
+ }
>
> p.fn=function(model,newdata){
+ return(cbind(1,newdata) %*% model)
+ }

The Effects of an Anti Tax Evasion Program

In October 2007 the government of the Brazilian state of São Paulo launched an anti tax evasion
program called Nota Fiscal Paulista (NFP). It consists of a refund from a state tax on the circulation
of products and services. The NFP acts as an incentive for the consumer to ask for electronic sales
receipt. The receipts give the consumer the right to participate on monthly lotteries promoted by the
government and the tax rebate if his tax identifier number (CPF) is included in the receipt.

The NFP program received substantial support from the population. In January 2008, 413 thousand
people were already registered in the program while in October 2013 this number of participants were
more than 15 million.

The problem arises if we assume that there was some degree of tax evasion occurring before the
intervention, and once the consumers start demanding the receipts, the sellers were forced to pay
more tax and evasion became more difficult. If the sellers have some degree of market power they
might increase prices in order to accommodate the extra tax. If these assumptions are true one would
expect an upward movement on prices due to an increase on marginal costs. Therefore, the example
presented in this section tries to investigate whether the NFP had and impact on consumers price in
São Paulo.

The first sector to have the NFP was restaurants, therefore the Food Away from Home component
(FAH) of the Consumer Prices Index (CPI) is a good measure to contemplate the entire program from
the start. The sample is available on the ArCo package with the name of inflationNFP. It consists of
nine Brazilian metropolitan areas including São Paulo from January 1995 to September 2009. Each
metropolitan area has the interpretation of an ArCo unit. The variables are the FAH component of
the CPI inflation and the monthly GDP growth for all metropolitan areas. The treatment happened at
T0 = 34, therefore, we have 33 observations to estimate the first step of the ArCo and 23 observations
to calculate the counterfactual.

> library(glmnet)
> data("inflationNFP")
> t0=34
> ArCoNFP=fitArCo(inflationNFP,fn,p.fn,1,t0,VCOV.type = "nw",VCOV.lag = 2,
prewhitening.kernel = TRUE)
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> plot(ArCoNFP,plot=1,display.fitted = TRUE)
> ArCoNFP$delta

LB delta UB
inflationFAH 0.226033437 0.4226199609 0.619206484
GDP -0.004699182 -0.0006055599 0.003488062
> ArCoNFP$p.value

Joint inflationFAH GDP
1.333664e-04 2.514289e-05 7.718676e-01

0 10 20 30 40 50

−
1

0
1

2

Time

Y
1

Observed Fitted Counterfactual

Figure 4: plot of the counterfactual of the CPI Inflation (FAH) from São Paulo, Brazil.

The $delta shows that in fact there was a significant impact on inflation caused by the NFP. The
impact on the GPD was statistically zero. The $p.value relates to an overall effect considering all
variables, and it also shows that the effects of the NFP were, in general, different from zero. Figure
4 shows that the LASSO had a good fit in sample, but not too good for us to be concerned with
over-fitting. In nearly all periods the estimated counterfactual was below the realized value of the
inflation after the NFP was introduced.

It is also interesting to see what happened with the CPI. The code below accumulates the realized
inflation and the counterfactual. Figure 5 shows that the accumulated increase on the CPI (FAH) might
have been significantly smaller without the NFP.

> FAHsp=inflationNFP$inflationFAH[,1]
> real=cumprod(1+FAHsp/100)
> cf=cumprod(1+c(FAHsp[1:(t0-1)],ArCoNFP$cf[,1])/100)
> fitted=cumprod(1+fitted(ArCoNFP)[,1]/100)
>
> plot(real,type="l",ylab="Y1",xlab="time")
> lines(c(rep(NA,t0-1),tail(cf,length(real)-t0+1)),col=4)
> lines(fitted,col=2)
> abline(v=t0,col=4,lty=2)
> legend("topleft",legend=c("Observed","Fitted","Counterfactual"),col=c(1,2,4),
lty=1,lwd=1,cex=1,seg.len = 1,bty="n")

A Comparison with Synthetic Control

The package Synth provides a user friendly implementation of the SC method and some datasets to
test it. In this section we compare the SC and the ArCo by reproducing the exact examples in the synth
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Figure 5: plot of the counterfactual of the CPI (FAH) from São Paulo, Brazil.

function from the Synth package. The first example is with generate data, the exact code is reproduced
below. The variable of interest is Y and there are three controls. We can only use the control X2 in the
ArCo because X1 and X3 do not have enough observations. A crucial difference between the ArCo and
the SC is that the second kills the time dimension, and therefore, require less data. The ArCo uses the
entire temporal information and needs all the time-series to be complete. Therefore, we dropped the
variables with missing values in the ArCo estimation for the next two examples. There is no built-in
NA treatment in the ArCo package because it is as particular feature of each time-series problem. If
the user is dealing with data in different periodicities, for example, monthly and quarterly, he/she
could repeat the quarterly data in the months with NA or collapse the monthly data to quarterly data.

> # = Exact code reproduced from the first example in the ?synth documentation = #
> library(Synth)
> data("synth.data")
> dataprep.out<-
+ dataprep(
+ foo = synth.data,
+ predictors = c("X1", "X2", "X3"),
+ predictors.op = "mean",
+ dependent = "Y",
+ unit.variable = "unit.num",
+ time.variable = "year",
+ special.predictors = list(
+ list("Y", 1991, "mean"),
+ list("Y", 1985, "mean"),
+ list("Y", 1980, "mean")
+ ),
+ treatment.identifier = 7,
+ controls.identifier = c(29, 2, 13, 17, 32, 38),
+ time.predictors.prior = c(1984:1989),
+ time.optimize.ssr = c(1984:1990),
+ unit.names.variable = "name",
+ time.plot = 1984:1996
+ )
>
> t0 = Sys.time()
> synth.out <- synth(dataprep.out)
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X1, X0, Z1, Z0 all come directly from dataprep object.

****************
searching for synthetic control unit

****************
****************
****************

MSPE (LOSS V): 4.399697

solution.v:
1e-10 0.00358062 0.2382334 0.3691776 1.218e-07 0.3890082

solution.w:
0.2349748 0.007323657 0.02010757 0.1897415 0.4884164 0.05943599

> Sys.time()-t0
Time difference of 14.36551 secs

The synth.data is a panel with variables for the time and the units. We can transform it into
a list using the function panel_to_ArCo_list. The code below shows the structure of the data, its
transformation into list and runs the ArCo using LASSO selecting the best model using the BIC.

> head(synth.data)
unit.num year name Y X1 X2 X3

1 2 1980 control.region.northeast 131.8 NA 21.5 NA
2 2 1981 control.region.northeast 128.7 0.2534060 24.1 NA
3 2 1982 control.region.northeast 127.4 0.2512521 23.8 NA
4 2 1983 control.region.northeast 128.0 0.2489048 21.6 NA
5 2 1984 control.region.northeast 123.1 0.2462865 23.9 17.9
6 2 1985 control.region.northeast 125.8 0.2434099 22.9 18.1
>
> # = Adjust the synth.data panel to be compatible with fitArCo = #
> ArCodata=panel_to_ArCo_list(synth.data,"year","unit.num",c("Y","X2"))
> ArCodata=lapply(ArCodata,function(x)x[as.character(1984:1996),])
>
> # = Run the ArCo = #
> t0 = Sys.time()
> ArCo3=fitArCo(ArCodata,fn,p.fn,treated.unit = 2,t0 = 9)
> Sys.time()-t0
Time difference of 0.01013398 secs
> ArCo3$delta[1,]

LB delta UB
7.816165 16.559440 25.302714
> ArCo3$p.value

Joint Y X2
0.0006722134 0.0002055471 0.0233194437
>
> # = Plot the ArCo and the SC = #
> synthcf=dataprep.out$Y0plot%*%synth.out$solution.w
> plot(dataprep.out$Y1plot,type="l",ylim=c(80,180),ylab="Y",xlab="Time")
> lines(synthcf,col=2)
> abline(v=8,col=4,lty=2)
> lines(c(fitted(ArCo3)[,1], ArCo3$cf[,1]),col=4)
> legend("topleft",legend=c("Y","Synth","ArCo"),col=c(1,2,4),cex = 1,
+ seg.len = 1,bty = "n",lty=1)

The ArCo took 0.01 seconds to run by LASSO, while the SC took 14 seconds. Figure 6 shows that
the two methods had similar results. We used 1992 as the first treated observation (T0) in the ArCo.The
in-sample and out-of-sample are plotted in the same line. Note that we had to drop two variables in
the ArCo because of missing values.

The second example in the Synth package is to estimate the counterfactual of the GDP in the
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Figure 6: ArCo and Synthetic Control using the data from the first example from the synth function

Basque using other Spanish regions as controls. The main assumption is that the terrorism in the 70s
had a negative impact on GDP. The dataset has GDP, investment and several other variables but we
can only use the first two because of missing observations. Most of the other variables are related to
sector production and education. For more details use ?basque.

> # = Exact code reproduced from the second example in the ?synth documentation = #
> # = Comments and printed outputs were omitted = #
> data("basque")
> dataprep.out <-
+ dataprep(
+ foo = basque
+ ,predictors= c("school.illit",
+ "school.prim",
+ "school.med",
+ "school.high",
+ "school.post.high"
+ ,"invest"
+ )
+ ,predictors.op = c("mean")
+ ,dependent = c("gdpcap")
+ ,unit.variable = c("regionno")
+ ,time.variable = c("year")
+ ,special.predictors = list(
+ list("gdpcap",1960:1969,c("mean")),
+ list("sec.agriculture",seq(1961,1969,2),c("mean")),
+ list("sec.energy",seq(1961,1969,2),c("mean")),
+ list("sec.industry",seq(1961,1969,2),c("mean")),
+ list("sec.construction",seq(1961,1969,2),c("mean")),
+ list("sec.services.venta",seq(1961,1969,2),c("mean")),
+ list("sec.services.nonventa",seq(1961,1969,2),c("mean")),
+ list("popdens",1969,c("mean")))
+ ,treatment.identifier = 17
+ ,controls.identifier = c(2:16,18)
+ ,time.predictors.prior = c(1964:1969)
+ ,time.optimize.ssr = c(1960:1969)
+ ,unit.names.variable = c("regionname")
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+ ,time.plot = c(1955:1997)
+ )
>
> dataprep.out$X1["school.high",] <-
+ dataprep.out$X1["school.high",] +
+ dataprep.out$X1["school.post.high",]
> dataprep.out$X1 <-
+ as.matrix(dataprep.out$X1[
+ -which(rownames(dataprep.out$X1)=="school.post.high"),])
> dataprep.out$X0["school.high",] <-
+ dataprep.out$X0["school.high",] +
+ dataprep.out$X0["school.post.high",]
> dataprep.out$X0 <-
+ dataprep.out$X0[
+ -which(rownames(dataprep.out$X0)=="school.post.high"),]
>
> lowest <- which(rownames(dataprep.out$X0)=="school.illit")
> highest <- which(rownames(dataprep.out$X0)=="school.high")
>
> dataprep.out$X1[lowest:highest,] <-
+ (100 * dataprep.out$X1[lowest:highest,]) /
+ sum(dataprep.out$X1[lowest:highest,])
> dataprep.out$X0[lowest:highest,] <-
+ 100 * scale(dataprep.out$X0[lowest:highest,],
+ center=FALSE,
+ scale=colSums(dataprep.out$X0[lowest:highest,])
+ )
>
> t0 = Sys.time()
> synth.out <- synth(data.prep.obj = dataprep.out)
> Sys.time()-t0
Time difference of 5.340531 secs

Since the GDP is non-stationary, it was first differentiated to estimate the ArCo. The code below
prepares the data, which also comes in a panel, estimates the ArCo using LASSO and the BIC to select
the best model and rebuild the GDP on its original level to compare with the SC. Since we do not know
exactly when in the 70s the effects on the GDP begun, we also estimated T0 to be used in the ArCo.

> # = Adjust the panel to fitArCo = #
> leveldata=panel_to_ArCo_list(basque,"year","regionno",c("gdpcap","invest"))
> # = GDP should be differentiated (delta(log)) = #
> diffdata=leveldata
> diffdata$gdpcap=diff(log(diffdata$gdpcap),1)
> diffdata$gdpcap=rbind(NA,diffdata$gdpcap)
> # = adjust sample size = #
> diffdata=lapply(diffdata,function(x)x[-c(1:10,42,43),])
>
> # = Estimate intervention period = #
> t0=Sys.time()
> t0.4=estimate_t0(diffdata,fn,p.fn,treated.unit = 17)
> # = Estimate ArCo = #
> ArCo4=fitArCo(diffdata,fn,p.fn,17,t0.4$t0)
> Sys.time()-t0
Time difference of 0.1583807 secs
> ArCo4$delta

LB delta UB
gdpcap -0.01903297 -0.007195488 0.004641989
invest 0.61542806 1.789351051 2.963274038
> ArCo4$p.value

Joint gdpcap invest
0.009720640 0.233505642 0.002812938
>
> # = Rebuild lvl counterfactual GDP = #
> y0=leveldata$gdpcap[10,17] # = First observation
> ArCocf=y0*exp(cumsum(c(fitted(ArCo4)[,1],ArCo4$cf[,1])))
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> y.lvl=leveldata$gdpcap[as.character(1965:1995),17]
>
> # = Extract synth counterfactual and plot = #
> synthcf=(dataprep.out$Y0plot%*%synth.out$solution.w)[as.character(1965:1995),]
> xax=rownames(diffdata$gdpcap)
> plot(xax, y.lvl,type="l",ylab="Y",xlab="Time",ylim=c(0,12),lwd=3)
> lines(xax,ArCocf,col=4)
> lines(xax,synthcf,col=2)
> abline(v=xax[t0.4$t0],col=4,lty=2)
> legend("topleft",legend=c("Y","Synth","ArCo"),col=c(1,2,4),lty=1,
+ lwd=c(3,1,1),cex=1,seg.len = 1,bty="n")

The $delta showed that the intervention was not significant for the differentiated GDP, however,
Figure 7 shows that there was a considerable impact on its level. The difference estimated by the ArCo
is even bigger than the one estimated by the SC. It also seems that the ArCo counterfactual follows the
trend before the intervention while the SC simply shifts the observed trend after the intervention.
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Figure 7: ArCo and Synthetic Control using the data from the Basque example from the synth function

Final Remarks

In this paper we have introduced the ArCo package which consists in a set of R functions implementing
the ArCo method proposed by Carvalho et al. (2016b), which is a generalization of the Synthetic Control
of Abadie and Gardeazabal (2003) and Abadie et al. (2010) and the panel approach put forward by
Hsiao et al. (2012).

The ArCo method is a two-step methodology where in the first step a counterfactual is estimated
based on a large, possibly high-dimensional, panel of time series from untreated peers. The package
is very flexible and the user can choose any model of her preference such as, for example, LASSO
regressions, random forests, boosted trees, neural networks, among others. In the second stage the
average treatment effect is computed and a test for the null of no intervention effect is provided.

We believe that this R package will serve as an useful addition to the econometrics toolbox to
conduct counterfactual analysis in comparative case studies.
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PanJen: An R package for Ranking
Transformations in a Linear Regression
by Cathrine Ulla Jensen and Toke Emil Panduro

Abstract PanJen is an R-package for ranking transformations in linear regressions. It provides users
with the ability to explore the relationship between a dependent variable and its independent variables.
The package offers an easy and data-driven way to choose a functional form in multiple linear
regression models by comparing a range of parametric transformations. The parametric functional
forms are benchmarked against each other and a non-parametric transformation. The package
allows users to generate plots that show the relation between a covariate and the dependent variable.
Furthermore, PanJen will enable users to specify specific functional transformations, driven by a
priori and theory-based hypotheses. The package supplies both model fits and plots that allow users
to make informed choices on the functional forms in their regression. We show that the ranking
in PanJen outperforms the Box-Tidwell transformation, especially in the presence of inefficiency,
heteroscedasticity or endogeneity.

Introduction

A model that fits data well but is unrelated to theory can only describe correlations. In contrast, a
model with both a good fit and a theoretically sound foundation can give insights into hypotheses on
causality. The functional form in a regression model describes the relationship between a dependent
variable and its covariates. There are numerous examples of researchers who have neglected functional
form relationships and applied the default linear relationship between variables in their regression
models (Box, 1976; Breiman and others, 2001; Berk, 2004; Angrist and Pischke, 2010). From a superficial
point of view, these models may provide efficient parameter estimates with narrow standard errors,
high t-values, and significance. A strong non-linear relationship between a dependent variable and a
covariate will often offer reasonable test statistics with a default linear functional form specification.
However, positive test statistics are not the same as proof of a linear relationship. Even more important
is the fact that a misspecified functional form can lead to an incorrect interpretation and prediction of
the relationship between the dependent variable and a given covariate. The specification should be
driven by theory with an a priori hypothesis of the relationship between the dependent and covariates.

PanJen was developed over several years of applied research on property value models. Here,
the sales price is estimated as a function of its characteristics, such as the size of the living space,
the number of rooms, and access to shopping. However, the package is applicable to most cases in
which the relationship between a continuous dependent variable and its covariates is explored. In the
applied econometrics literature, this task has commonly been solved using power transformations in
initial analyses (Palmquist, 2006).

Two examples of power-transformations are Box-Cox and Box-Tidwell (Box and Tidwell, 1962;
Box, 1976). The power-transformations are easy to use; the ability of these two power transformations
to detect functional forms has been studied extensively in the academic literature, e.g., Kowalski and
Colwell (1986); Brennan et al. (1984); Clark (1984), and they are still used in applied studies (Cohen
et al., 2013; Farooq et al., 2010; Link, 2014; Joshi et al., 2017; Benson et al., 1998; Troy and Grove, 2008).

The popularity of these power-transformations is surprising given that their shortcomings are
well described in the literature (Levin et al., 1993; Wooldridge, 1992a). While power transformations
perform well in many circumstances, they do not perform well in the presence of omitted variables,
inefficiency, heteroscedasticity and endogeneity. Furthermore, a transformation can be challenging to
interpret, does not necessarily relate back to a theory-driven hypothesis and does not detect whether
the relationship changes across the distribution of the dependent variable.

Another approach to the functional form issue is to abandon the parametric model and approach
the challenge from a non- or semi-parametric angle. In the academic literature, a number of alternatives
have been proposed and used, such as non-parametric or semi-parametric methods (Anglin and
Gençay, 1996; Gençay, 1996; Clapp and Giaccotto, 2002; Bin, 2004; Geniaux and Napoléone, 2008).
Non- or semi-parametric models provide data-driven approaches to establish the relationship between
a dependent variable and covariates. A non-parametric model can be attractive, because the functional
form is revealed by the data instead of being be predefined by the researcher. However, the gained
flexibility of non-parametric analysis comes at the cost of more difficult interpretation of the estimates,
which is perhaps why parametric models are often used in applied work.

In non-parametric models, the relationship is fitted to the sample to the extent that the estimated
relationship is at risk of being over-fitted. In other words, the estimated effect captures random error or
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noise in combination with the underlying relationship in the population (Wood, 2006). Additionally, a
central critique concerning this approach is that the results from a non-parametric model are difficult to
generalize or extend outside of the sample (McMillen and Redfearn, 2010). Even so, a non-parametric
model holds great potential in exploratory analysis.

We are certainly not the first researchers to consider the possibility of utilizing the apparent
advantages of the non-parametric modelling to explore functional form relationships in parametric
modelling. The literature on using a non-parametric model to test different parametric specifications
is large (González-Manteiga and Crujeiras, 2013). The primary approach in the existing literature has
been to test a parametric version of a model against a non-parametric version (Wooldridge, 1992b;
Horowitz and Härdle, 1994; Zheng, 1996; Li et al., 2016). However, to the best of our knowledge,
none of these tests have been widely adopted in the empirical literature. PanJenis developed to allow
applied researchers to utilize non-parametric estimation to identify a better parametric functional form.
The package offers a test based on well-established measures and is provided on a well-established
software platform. We believe that very few empirical researchers know about the existing tests,
and the few that do perceive them as too complicated due to their non-parametric basis. PanJen
offers the user a transformation-ranking based on the parametric transformation that captures most
of the variance of the dependent variable. The ranking includes a non-parametric specification that
can detect if the relationship between the dependent variable and covariate is non-stationary. In
contrast to existing tests, semi-parametric transformations are only included as a benchmark rather
than as an incremental part of the test. The engine in the PanJen ranking is the well-known Akaike
Information Criterion (AIC ) and Bayesian Information Criterion (BIC ) measures. These model-fit
measures are already widely applied in the empirical literature and should not be a hindrance for
the empirical researcher. With the PanJen ranking , we hope to introduce an approach that will make
applied researchers explicitly consider functional form in their parametric models.

In the next section, we briefly describe the main idea behind the ranking in the package (PanJen
ranking . In the following section, we describe the workhorse behind it, the Generalized Additive
Model (GAM ). In section 4, we explain how the PanJen ranking works. In section 5, we illustrate
how to use the package by using a real example from our research. Section 6 offers a comparison
between the PanJen ranking and the Box-Tidwell transformation . We simulated 10,000 datasets and
recovered the functional form of one variable in a model with different impediments to show the
merits of PanJen relative to a conventional approach. In section 6, we conclude the paper with a short
discussion of when and how the researcher should use the package with an emphasis on the risk of
pre-test bias.

The main idea of the PanJen ranking

PanJen is built on the idea that the choice of a functional form can be guided by model fit. In the
PanJen ranking , a given number of models that vary only in the transformation of one covariate are
estimated. One of these transformations is a so-called function that for now we will simply note makes
this one model semi-parametric. All the estimated models are then ranked according to their BIC). The
BIC provides a relative goodness-of-fit measure that accounts for the complexity of the model. More
formally, the PanJen ranking estimates a model Y = β0 + Xβk + g(x)βl + ε where Y is the dependent
variable, ε is an i.i.d. error-term, X is a vector of k of covariates, βk is the corresponding vector of
parameter estimates, g(x) represents a set of functional form transformations among the set:

g(x)βl =

{
1
x2 β1,

1
x

β1,
1√
x

β1, log(x)β1,
√

xβ1, xβ1, x2β1, xβ1 + x2β2, f (x), 0
}

where βl the corresponding l parameter estimates for the parametric transformations. In the last
two transformations, there is no parameter estimate for g(x), because f (x) is the non-parametric
smoothing and 0 leaves out the explanatory variable.

The ranked BIC-values show how each transformation performs relative to the others. The semi-
parametric transformation allows the user to assess how well parametric transformations perform
relative to a flexible semi-parametric function. If the data generation process does not resemble any of
the parametric transformations, the smoothing function will still capture the relationship. The BIC
scores are supplemented by the closely related AIC. In practice, both the AIC and the BIC penalize
model complexity, although the penalty term in BIC is larger than in AIC (Burnham and Anderson,
2004). The smoothing function is highly flexible, but the flexibility comes at a cost. Therefore, it is
not necessarily ranked the highest since both AIC and BIC penalize the model complexity. There is
no objective and transparent way to choose between the measures. The right measure depends on
the user’s a priori theory of the data generation process. If the users assume that one of their models
perfectly fits the underlying data generation process, then the BIC is the right measure. If they instead
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assume that the underlying data generation process is extremely complex and none of the possible
models will be able to perfectly capture it, then AIC is the right measure (Aho et al., 2014).

The PanJen ranking is supported by a plot function that graphically outlines the relationship
between the dependent variable and covariate. The plot is created by predicting the dependent variable
using the median for all independent variables other than the one in question. The variable in question
varies across a scale from the 5th quantile to the 95th quantile of the actual distribution in the dataset.
The plot shows the user how each transformation captures the relationship across the distribution of
the dependent variable. If the smoothing far outperforms all parametric transformations, the reason
may be that the relationship changes across the distribution and the proposed simple parametric
transformation does not capture the relationship between the dependent and independent variable.
The plot will reveal this.

A semi-parametric model for benchmark

We estimate the parametric transformations using the Generalized Linear Model (GLM ) and the
semiparametric using GAM. GAM is a special case of the Generalized Linear Model (GLM) in which
it is possible to include one or more so-called smoothing functions. A smoothing function is a non-
parametric way to include a continuous covariate in a parametric model and make it semi-parametric.

The GAM can be written as follows:

Yi = Xiβ + f1(x1i) + εi (1)

Yi is the dependent variable of observation i. It is distributed as an exponential family distribution,
e.g.the normal, the gamma or chi-square distribution. Xi is a matrix of covariates that are parametrically
related to the dependent variable. β is the corresponding vector of the parameter estimate, and fi is a
smoothing function of covariate x1i.

The GAM provides a flexible specification of a covariate by only specifying it as a smoothed
function. By entering a variable with a smoothing function, the researcher does not specify a functional
form, but instead lets the data speak. The smoothing function comprises the sum of k thin plate regres-
sion spline bases bh (•) multiplied by their coefficients. It is estimated as follows: f = ∑k

h=1 βhbh (x1).
The non-parametric component of the model is fitted with a penalty on wiggliness (how flexible the
smoothing is). The penalty, θ, is determined from the data using generalized cross-validation or related
techniques. The penalty directly enters the objective function through an additional term capturing
wiggliness in the smoothing function, i.e.,

∥∥∥Yi − Ŷi

∥∥∥2
+ θ

∫
f ′′(x1)

2dx1 (2)

Here, Ŷ is the fitted dependent variable, and the second derivatives of the smoothing function
describe its wiggliness. We estimate the GAM using the mgcv R-package mgcv (Wood, 2017). For a
thorough introduction to GAM, please see (Wood, 2006).

Using the package

We illustrate the use of PanJen using a hedonic house pricing model. The central idea is that the
sale price of a home is a function of its characteristics, understood as both the characteristics of the
home itself and its surroundings. The latter poses a problem in the empirical application of the
hedonic method because observations can be correlated through space. A very flexible solution to
this problem is to use the GAM framework to smooth over the x-y coordinates, thus allowing one to
non-parametrically control for spatial correlations. von Graevenitz and Panduro (2015) illustrated the
relationship between smoothing over space and classic spatial econometrics with weight-matrices and
fixed spatial effects. They also showed that smoothing is a better alternative when the researcher does
not know the underlying spatial data generation process. For recent applications, please see Rajapaksa
et al. (2017) or Schäfer et al. (2017).

In our example here, we solely focus on the structural characteristics. These characteristics are
measured by a range of variables. The researcher does not a priori know how the characteristics of
the house are related to its price. For example, we expect the price to increase with the size of the
home, but we do not know if that relationship is linear. It could be that going from 2 to 3 bedrooms
is different than going from 7 to 8 bedrooms, i.e., we want to know if we should take account of
marginally increasing or decreasing price-relationships. PanJen was developed to answer this type
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of question by finding the functional form relationship between the home price and different home
characteristics.

An example: the implicit price for living area

Names Description

lprice log transformed price in 1000 EUR
area living area in square meters
age build year
bathrooms number of bathrooms
lake_SLD distance to nearest lake in meters
highways distance to nearest highway in meters
big_roads distance to nearest large road in meters
railways distance to nearest railway in meters
nature_SLD distance to nearest nature area in meters

Table 1: Continous variables

The package features a dataset called ‘hvidovre’. It includes 901 single detached homes sold between
2007 and 2010 within the Danish municipality of Hvidovre . The dataset was compiled from different
Danish databases as a part of a larger hedonic study on households’ willingness to pay for different
urban and recreational services (Lundhede et al., 2013). We have 9 continuous and 7 dummy variables
for quality at our disposal. In addition, the dataset includes 3 year dummies to control for price trends.
The variables are listed in Tables 1 and 2:

Names Description

rebuild70 home rebuild in 1970’s
rebuild80 home rebuild in 1980’s
rebuild90 home rebuild in 1990’s
rebuild00 home rebuild in 2000’s
brick Construction made out of brick =1
roof_tile roof made out of tiles =1
roof_cement roof made out of cement=1
y7,y8,y9 home sold in 2007, 2008, or 2009

Table 2: Dummy variables

First, we load the package and the dataset:

> library(PanJen)
> data("hvidovre")

Then, we set up a formula-object. We log-transform the prices because this introduces flexibility
and is the convention within the hedonic literature (Diewert, 2003). It is possible to test different trans-
formations by simply transforming the variable or test different link-functions by leaving variable
empty in fform(). Ten of the variables are dummy variables where transformations are irrelevant. We
include only these in the first regression:

> formBase<-formula(lprice ~brick+roof_tile+roof_cemen
+ + rebuild70+rebuild80+rebuild90+rebuild00+y7+y8+y9)
> summary(gam(formBase, method="GCV.Cp",data=hvidovre))

Family: gaussian
Link function: identity

Formula:
lprice ~ brick + roof_tile + roof_cemen + rebuild70 + rebuild80 +

rebuild90 + rebuild00 + y7 + y8 + y9

Parametric coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.61058 0.02909 192.902 < 2e-16 ***
brick 0.11530 0.02660 4.334 1.63e-05 ***
roof_tile 0.06238 0.02328 2.679 0.007511 **
roof_cemen 0.08845 0.02969 2.979 0.002969 **
rebuild70 0.08357 0.03158 2.646 0.008285 **
rebuild80 0.14506 0.04382 3.310 0.000970 ***
rebuild90 0.14718 0.05356 2.748 0.006122 **
rebuild00 0.21120 0.04275 4.940 9.33e-07 ***
y7 0.14188 0.02653 5.347 1.14e-07 ***
y8 0.09193 0.02847 3.229 0.001286 **
y9 -0.09633 0.02784 -3.460 0.000566 ***
---
Signif.\ codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.146 Deviance explained = 15.5%
GCV = 0.089003 Scale est.\ = 0.087916 n = 901

This initial model explains nearly 15% of the variation in price. The next characteristic we want
to control for is the size of the home. In the dataset, the living area in square metres is stored under
‘area’.

We start out by using the default transformations supplied by the PanJen function fform(). This
function ranks the fit of nine predefined transformations and a smoothing. The mandatory inputs are
the name of the dataset, the model formula and the new variable we wish to test using the PanJen
ranking :

> PanJenArea<-fform(hvidovre,"area",formBase,distribution=Gamma(link=log))

AIC BIC ranking (BIC)
log(x) 435.07 497.51 1
x^2 435.39 497.84 2
x 437.07 499.52 3
smoothing 436.82 501.42 4
x+x^2 443.96 506.41 5
sqr(x) 444.00 506.44 6
1/x 445.66 508.11 7
base 511.35 568.99 8
[1] "Smoothing is a semi-parametric and data-driven transformation,
please see Wood (2006) for an elaboration"

The results are ranked according to their BIC. Strictly according to this ranking, we should log-
transform the area. This implies approximately that a % change in living area results in a % change
in price. Given the respondent variable has been log-transformed previous to the model-fitting, any
interpretation at the the original scale should be done with care , see e.g. (Barrera-Gómez et al., 2015).

The differences in the score for the four lowest BIC are small, and it might be a matter of differences
in the tails of the distribution. This can be checked by plotting the predicted price against the area.
The function plotff() generates a plot with the predicted price against the area from the 5th to the
95th percentiles with all other covariates variables at their median value:

> plotff(PanJenArea)

The black line is the smoothing function. The log-squared and the linear specification closely
follow this line. In conclusion, the implicit price for the living area is positive and slightly marginally
declining. You can specify your own transformations using choose.fform(). In the following, we test
three transformations: ‘area’, ‘log(area)’ and ‘area2’. We start out by defining a list of transformations:

> fxlist = list(linear = function(x) x,sqr = function(x) x^2,log=function(x) log(x))

> PanJenAreaC <- choose.fform(data=hvidovre, variable="area", base_form=formBase,
+ functionList=fxlist)

AIC BIC ranking (BIC)
log 290.04 352.49 1
linear 291.70 354.15 2
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Figure 1: Plot generated by plotff

smoothing 291.53 355.91 3
sqr 299.15 361.60 4
base 379.20 436.84 5
[1] "Smoothing is a semi-parametric and data-driven transformation,
please see Wood (2006) for an elaboration"

> plotff(PanJenAreaC)

Figure 2: Plot with fewer transformations

We log transform the area and are now able to explain nearly 24% of the variation in price:

> hvidovre$larea<-log(hvidovre$area)
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> formArea<-formula(lprice ~brick+rebuild80+rebuild90+rebuild00+y7+y8+y9+larea)

> summary(lm(formArea, data=hvidovre))

Call:
lm(formula = formArea, data = hvidovre)

Residuals:
Min 1Q Median 3Q Max

-3.2109 -0.1000 0.0194 0.1479 0.9255

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.76482 0.17863 21.076 < 0.0000000000000002 ***
brick 0.08695 0.02477 3.510 0.000471 ***
rebuild80 0.07485 0.04224 1.772 0.076714 .
rebuild90 0.11285 0.05084 2.220 0.026690 *
rebuild00 0.12213 0.04126 2.960 0.003159 **
y7 0.14800 0.02517 5.880 0.00000000579 ***
y8 0.09012 0.02704 3.333 0.000894 ***
y9 -0.10620 0.02645 -4.015 0.00006453604 ***
larea 0.40308 0.03793 10.627 < 0.0000000000000002 ***
---
Signif.\ codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2818 on 892 degrees of freedom
Multiple R-squared: 0.2352, Adjusted R-squared: 0.2284
F-statistic: 34.3 on 8 and 892 DF, p-value: < 0.00000000000000022

A changing relationship

The first transformation was rather straightforward because the relation between area and price is
stable across the price-distribution. The age of the home is a characteristic with which this is not the
case. The reason is that the building changes over the years. As the home gets older, there is not a
direct link between the age and state of the home. Where a newly built home is likely to be built with
modern standards and tastes in mind, an old house can instead be charming and authentic. At the
same time, in general, houses built during periods of building booms, which in Denmark were in the
1960s, are of lesser quality than those built in the 1950s or 1970s. We can show this by running fform()
and plotting the results.

> PanJenAge<-fform(data=hvidovre,variable="age",base_form=formArea)

AIC BIC ranking (BIC)
base 285.82 333.85 1.5
1/x 285.82 333.85 1.5
log(x) 286.72 339.55 3.0
x 286.72 339.56 4.5
x^2 286.72 339.56 4.5
smoothing 274.92 359.94 6.0
x+x^2 359.69 407.73 7.0
sqr(x) 359.72 407.76 8.0

[1] "Smoothing is a semi-parametric and data-driven transformation,
please see Wood (2006) for an elaboration"
> plotff(PanJenAge)

Based on BIC, the best parametric transformation is 1/x. However, omitting the variable altogether,
as described by the "base", works equally well.

The plot shows the relationship between age and price from the 5th to 95th percentile of the age
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Figure 3: The relation between price and age

distribution. Given the plot, it is difficult to think of a parametric relationship that will capture this
relationship. If the age of the home is somehow related to the research question, the best solution
might be to use the smoothing function. If age is nothing more than a control variable, one could
perhaps resort to interval dummies similar to the year dummies in the model. As a part of the final
test of the model, it would be worthwhile to test to what degree the variable of interest is robust to the
way age enters the pricing function. In our setting, what should be noted is that the complexity of the
relation between age and price would have gone unnoticed if we had compared only the parametric
transformations.

Interacting with other packages:

When you run choose.fform() or fform(), all generated models and datasets are stored in a new list
of list -object. Within the list ‘models’, all estimated models are stored as ‘gam’, ‘glm’ and ‘lm’-objects.
This means that all objects used to create the fform output are easily available. The plotting function
in PanJen is simple, but perhaps not enough when the researcher needs to produce plots for a third
party. Here, we show how to use this to make a plot using base R, but we could just as well have used
the tlm if we wanted a more detailed plot (Barrera-Gómez and Basagaña, 2017).

For example, you can create a new plot of just one transformation using predict() from mgcv
and the base R plot. Here, we choose to look at ‘log(area)’:

## The name of the models
> names(PanJenArea$models)
(1) "model_log(x)" "model_x^0.5" "model_smoothing" "model_x"
(5) "model_x+x^2" "model_1/x" "model_x^2" "model_1/x^2"
(9) "model_base"

## getting the variable names used in the log model transformation
> namesVariables<-all.vars(formula(PanJenArea$models[["model_log(x)"]]))[1:11]

## creating a prediction dataframe with median values
> pred_frame<-data.frame(matrix(rep(sapply(hvidovre[namesVariables],median)
+ ,each=100),nrow=100))

## giving the prediction dataframe variable names
> names(pred_frame)<-namesVariables
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## Finding the 0.05 quantile and the 0.95 quantile of the area variable
> min05<-as.numeric(quantile(hvidovre$area,0.05))
> max95<-as.numeric(quantile(hvidovre$area,0.95))

## Create prediction scale from 0.05 quantile to the 0.95 percentile
> pred_frame$area<-seq(min05,max95,length.out=100)

## predicting lprice using the prediction dataframe
> pred_frame$var<-log(pred_frame$area)
> pred_frame$lprice=predict(PanJenArea$models[["model_log(x)"]],
+ newdata=pred_frame, type="response")

## Defining limits for plot
> limx=c(min(pred_frame$area),max(pred_frame$area))
> limy=c(min(pred_frame$lprice),max(pred_frame$lprice))

## Start plot
> plot(pred_frame$lprice~pred_frame$area, data=pred_frame, type="l",sub="",
> xlab="area",ylab="log(price)", lwd=3, col="black", xlim=limx, ylim=limy,
+ main="Price of living area")

## create legend
> legend(80,limy[2] , cex=1,lty=1, "log(x)", horiz=FALSE)

Figure 4: The price of living area
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Monte Carlo simulations

We tested the performance of the PanJen ranking against the well-known Box-Tidwell transformation
(Box and Tidwell, 1962). We choose this as a benchmark since it is the most structured choice applied in
existing empirical work. Power transformations such as Box-Cox and Box-Tidwell were suggested in
the 1960s by Box and Cox (1964) and Box and Tidwell (1962). The Box-Tidwell transformation identifies
the transformation that minimizes non-normality in the error term and linearizes the relationship
between the dependent variable and the covariate using a maximum likelihood function. Thus, the
researcher can use the test to find the power-transformation with the highest likelihood. This section
presents the results from nine Monte Carlo simulations in which the performance of the Box-Tidwell
and PanJen is tested.

The simulations are centred on a base model:

Y = x1β1 + x2β2 + f (x3) + ε (3)

where x3 is the variable of interest and x1 and x2 are two other covariates. The functional relationship
between Y and f (x3) was then tested using PanJen ranking and Box-Tidwell transformations. Table 3
summarizes the results. The fourth and fifth columns show the share of times each method reported
the true functional form. In the Box-Tidwell case, the transformation parameter was allowed to vary
by up to 0.2 from the correct specification.

Simulation Simulation description PanJen BoxTidwell

Identification f (x3) = x2
3 100 97

Identification f (x3) = x3 94 77
Identification f (x3) = x0.5

3 100 100
Efficiency f (x3) = x2

3, high variance 99 65
Collinearity f (x3) = x2

3 , x2 correlated 100 97
Omitted variable f (x3) = x2

3 , omitted variable 100 93
Heteroscedasticity f (x3) = x2

3, heteroskedastic 98 52
Endogeneity f (x3) = x2

3 , x3 is endogenous 100 15
Misspecification f (x3) = x2

3 , x2 misspecified 100 97

Table 3: Simulation results - 10.000 simulations

Each of the nine simulations tested the robustness of the methods in relation to different well-
known econometric methods. Overall, the PanJen ranking performed acceptably. The method pointed
to the correct functional form in 97 to 100% of the cases. The Box-Tidwell transformation performed
just as well when the dataset was "well-behaved." It was already well-established in the literature that
the method is sensitive to endogeneity, inefficient model estimates, heteroscedasticity and endogeneity,
and this is also what we find in our study. In conclusion, PanJen Ranking performs better or just as
well as Box-Tidwell.

Conclusion

In this paper, we present the PanJen package. We provide a simple and intuitive description of the
PanJen ranking . Based on a house price dataset, we show how the functions in the package can be
applied to determine the relationship between a dependent variable and its covariates. Furthermore,
we compare the PanJen ranking method to the Box-Tidwell transformation and show that the PanJen
ranking performs just as well as or better than the Box-Tidwell transformations. The Panjen ranking
outperforms Box-Tidwell in situations where the model suffers from inefficiency, heteroscedasticity or
endogeneity. In some circumstances, the theory provides little or no guidance on the functional rela-
tionship between the dependent and covariates in multiple regression models. In such circumstances,
PanJen can support users in their decision on the functional form of the covariates. If the functional
form relationship is more complex than a simple parametric transformation, we suggest considering a
semi- or non-parametric model. The package has deliberately been restricted to test one covariate at a
time without a silent output option. We want to deter the user from looping over every explanatory
variable in search of a fit using the PanJen ranking , because this increases the pre-test bias. However,
we also recognize that exploratory analysis is part of any empirical application of statistical modelling.
Learning is a sequential process, and in many circumstances, we have not properly thought out an a
priori hypothesis on which to base our models (Wallace, 1977). People perform exploratory model
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estimations and in many cases under-report their approach. Even so, pre-test bias is not a problem
caused or exacerbated by PanJen Ranking . Regardless of how a researcher performs multiple model
estimations, the risk of pre-test bias can be reduced by adopting a sampling approach. The sampling
approach can be implemented by dividing data into training and test datasets, where the explorative
analysis is conducted on the first. It is our hope that people will use PanJen to improve their models
by specifying relationships that more accurately fit their data. In doing so, users should consider
PanJen ranking as a guide and not as a substitute for a priori hypothesis.
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Tackling Uncertainties of Species
Distribution Model Projections with
Package mopa
by M. Iturbide, J. Bedia, and J.M. Gutiérrez

Abstract Species Distribution Models (SDMs) constitute an important tool to assist decision-making
in environmental conservation and planning in the context of climate change. Nevertheless, SDM pro-
jections are affected by a wide range of uncertainty factors (related to training data, climate projections
and SDM techniques), which limit their potential value and credibility. The new package mopa pro-
vides tools for designing comprehensive multi-factor SDM ensemble experiments, combining multiple
sources of uncertainty (e.g. baseline climate, pseudo-absence realizations, SDM techniques, future
projections) and allowing to assess their contribution to the overall spread of the ensemble projection.
In addition, mopa is seamlessly integrated with the climate4R bundle and allows straightforward
retrieval and post-processing of state-of-the-art climate datasets (including observations and climate
change projections), thus facilitating the proper analysis of key uncertainty factors related to climate
data.

Introduction

Species Distribution Models (SDMs) are statistical tools used for the generation of probabilistic
predictions of the presence of biological entities in the geographical space (Guisan and Zimmermann,
2000; Elith and et al, 2006). SDMs operate through the establishment of an empirical link between
known presence locations and the physical characteristics of their environment. A particular case is
that of Climate Envelope Models (CEMs), where appropriate climatic variables are used as predictors
to characterize the climatic conditions where a species can potentially live —typically in the form
of bioclimatic variables (Nix, 1986; Busby, 1991). In the context of climate change, SDMs have
become a valuable tool for the vulnerability and impact assessment community, as a means of
estimating distribution shifts due to climate variations, a problem of current interest in environmental
conservation studies (see e.g.: Araújo et al., 2004; Hamann and Wang, 2006; Jeschke and Strayer, 2008).
These studies require suitable climate products to produce models at an adequate spatial resolution and
varying geographical extents –up to global–, including historical climate databases (i.e. high resolution
gridded observations) and future climate projections for different emission scenarios. However, the
intricacy of climate data retrieval and post-processing of the existing climate products (e.g. the global
and regional climate change projections available from the Earth System Grid Federation, ESGF, Taylor
et al., 2011) has resulted in a wide use of ready-to-use products without considering their limitations
for a particular case study (see Bedia et al., 2013). In this paper we fill this gap with the package
mopa (Species Distribution MOdeling with Pseudo-Absences), which has been developed in the
framework of the climate4R bundle for climate data access and post-processing, thus facilitating the
use of state-of-the-art global and regional climate data for SDM projections.

Despite the increased use of future SDM projections as a support tool for decision-making in
biological conservation, the communication of the inherent uncertainties of these products remains
as an ongoing challenge (see, e.g. Araújo et al., 2005; Beaumont et al., 2008; Fronzek et al., 2011). A
common approach to tackle different sources of uncertainty is based on producing ensembles of future
SDM projections that encompass a wide range of variability by considering multiple choices of each
of the factors/components involved in the modeling and projection chain (Araújo and New, 2007;
Buisson et al., 2010; Bagchi et al., 2013). However, there are important sources of uncertainty that
are rarely quantified, yet crucial, in order to assess the credibility of the future distributions, such as
the training data (including the baseline climate) used to fit the SDMs characterizing the ecological
niche (Mateo et al., 2010; Bedia et al., 2013; Baker et al., 2016), the varying extrapolation ability outside
the training period/spatial extent of the different SDM techniques (known as SDM transferability in
time/space; Bedia et al., 2011; Fronzek et al., 2011), the Global/Regional Climate Model (GCM/RCM)
projections and biases (Turco et al., 2013) and others (see e.g.: Falloon et al., 2014, for an overview).
Moreover, the ensemble approach has also limitations, since it assumes that all SDMs are equally
transferable to climate change conditions, thus posing the risk of diluting insightful model signals
with noise and error from less useful or defective SDMs forming the ensemble (Thuiller et al., 2004;
Peterson et al., 2011).

The package mopa here presented has been designed to facilitate the design and analysis of
comprehensive multi-factor SDM ensemble experiments, exploring different uncertainty factors such
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as presence data sets, pseudo-absence realizations, baseline climate, modeling algorithms, and future
climate projections. Moreover, mopa provides variance partition tools to assess the contribution of
the different factors to the overall uncertainty/spread of the ensemble projection. We illustrate the
functionality of the package with the case-study presented in Iturbide et al. (2018), focusing on the
impact of the pseudo-absence data in the future distribution of a specific Oak phylogenetic group in
Europe resulting from an ensemble of SDM projections considering three factors: 1) different SDMs
techniques, 2) different realizations of randomly generated pseudo-absence data and 3) different
climate projections produced over Europe from an ensemble of RCMs. The analyses undertaken with
mopa reveal the sensitivity of SDMs to the pseudo-absence samples, affecting model stability and
transferability to new climate conditions, with important implications for the construction of the final
ensemble projections. We use and provide publicly available data to guarantee the reproducibility of
the results.

mopa and the climate4R bundle for climate data access

The numerous climate databases available (both baselines and future projections) are scattered across
many different repositories with various file formats, variable naming conventions, etc. sometimes
requiring relatively complex, time-consuming data downloads and error-prone processing steps (e.g.
bias correction) prior to SDM development. This is also a major barrier for research reproducibility
and data exchange. The climate4R bundle is a set of R packages specifically designed to ease climate
data access, analysis and processing in a straightforward manner, tailored to the needs of the impacts
and vulnerability assessment community. Further details and references to worked examples and
tutorials can be found for instance in Cofino et al. (2017), Bedia et al. (2017) and Frías et al. (2018).
With this regard, mopa was developed as part of the climate4R ecosystem, so that typical climate
data operations for SDM applications and conversion features to the data type handled by mopa are
provided. Additionally, mopa includes a user guide with an end-to-end worked example of climate
data retrieval, transformation and SDM development: help(package = "mopa").

The “niche” of mopa within the “SDM ecosystem” in R

The popularity of R and its excellent statistical modeling and spatial analysis support has favored the
development of specific, well-established and actively maintained packages for SDM construction and
analysis, such as sdm (Naimi and Araújo, 2016), biomod2 (Thuiller et al., 2016), dismo (Hijmans et al.,
2017) and SDMTools (Van der Wal et al., 2014), some of them also implementing pseudo-absence data
generation and ensemble building utilities. For instance, both sdm and biomod2 implement methods
for building ensemble projections based on model performance in the calibration phase —e.g. by
discarding or weighting the obtained results—. On the contrary, mopa is oriented towards the design
and analysis of multi-factor ensembles of future SDM projections (considering as potential factors the
presence data sets, the pseudo-absence realizations, the baseline climate, the modeling algorithms, and
the future climate projections). The analysis of the resulting ensemble allows, for instance, assessing
the problem of SDM transferability, which can not be properly evaluated during model calibration.

Besides, unlike previously existing packages, mopa allows pseudo-absence data generation as an
independent step prior to model fitting, thus providing a finer control to the user for the analysis of
several alternative methods and specific tuning options. In addition, the novel Three-Step method for
pseudo-absence data generation is implemented (TS hereafter, Senay et al., 2013; Iturbide et al., 2015),
providing a convenient interface that allows a fine tuning of the technique with simple arguments.
Furthermore, mopa is also seamlessly integrated with standard R packages for spatial data manipula-
tion like raster (Hijmans, 2015) and sp (Pebesma and Bivand, 2005; Bivand et al., 2013), allowing their
usage at any stage of the modeling process (e.g. for data visualization and post-processing), and also
extensibility to other SDM tools available in sdm, biomod2, . . . , also handling the same spatial data
classes.

Input data pre-processing

Climate data

SDM predictor variables (in this case-study a number of bioclimatic variables, but not necessar-
ily so) are introduced in the analysis as collections of raster objects of the classes rasterBrick or
rasterStack, similarly as other SDM-oriented packages. For instance, here we use a set of present
and future bioclimatic variables widely used in SDM applications based on precipitation and tem-
perature climatologies (Busby, 1991), using the function biovars of package dismo. To this aim,
we first exploit the climate4R functionalities to load and post-process observed precipitation and
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temperature climatologies from the E-OBS gridded observational dataset (Haylock et al., 2008) and
the simulations of 7 Regional Climate Model (RCMs) of the project ENSEMBLES (van der Linden and
Mitchell, 2009, http://www.ensembles-eu.org) for the control (20C3M, 1971-2000) and future (A1B,
2071-2100) scenarios, including the application of bias-correction ("delta" method, e.g. Winkler et al.,
1997; Zahn and von Storch, 2010).

> install.packages("mopa")
> library(mopa)

> destfile <- tempfile()
> url <- paste0("https://raw.githubusercontent.com/SantanderMetGroup/",
+ "mopa/master/data/biostack.rda")
> download.file(url, destfile)
> load(destfile, verbose = TRUE)

Species distribution data

Several impact studies indicate that species should be modeled by treating sub-specific groups of
organisms independently (e.g.: distinct genetic linages) due to their differing adaptive responses
to changes in their environment (Hernandez et al., 2006; Beierkuhnlein et al., 2011; Serra-Varela
et al., 2015). Although this is not always possible, due to the rare availability of information on the
distribution of sub-specific groups for most of species, mopa has been conceived with this idea in mind,
being able to deal with several sets of presences simultaneously. This adds flexibility to the modeling
process in order to carry out experiments considering different sub-collections of presences, not only
for sub-specific analyses (Iturbide et al., 2015), but also to address the sensitivity of the modeled
distributions to different characteristics of the training sample (e.g. the sample size, Hernandez et al.,
2006; Mateo et al., 2010). Thus, the Oak_phylo2 mopa dataset contains a named list of length two,
containing the geographical coordinates of presence localities for two different Oak phylogenies (H01
and H11, Petit et al., 2002). More details about the source data are provided in the help file of the
dataset.

> data(Oak_phylo2)
> help(Oak_phylo2)
> presences <- Oak_phylo2$H11

Geographic background

The geographic background is often defined as the spatial extent of the area considered in the SDM
calibration stage. Here, we refer to the background as a regular, geo-referenced grid with a specific size
and resolution, in which both the environmental variables and the presence localities are located, so
its grid-points are the sampling units. Function backgroundGrid provides a simple way of generating
a backgroud using a raster-class object as reference. It also includes an additional argument
(spatial.subset) for spatial subsetting, set by a raster::extent object or by one or several sets of
bounding-box coordinates, providing great flexibility and ease of use for the analysis of SDM spatial
aspects. For instance, it allows straightforward exploration of SDM geographical transferability or
performing cross-validation experiments based on spatial folds (e.g.: Randin et al., 2006). As a result,
when the object Oak_phylo2 is passed to backgroundGrid, two different backgrounds are created by
default, each one spatially restricted by its phylogeny distribution (H11 and H01).

> bg <- backgroundGrid(raster = biostack$baseline$bio1)

A smaller domain than the previous one can be arbitrarily indicated by the user by providing a
specific spatial extent:

> bg.subdomain <- backgroundGrid(raster = biostack$baseline$bio1,
spatial.subset = extent(c(-10, 35, 45, 65)))

Similarly, the user might be interested in a background strictly constrained by the bounding box of
the actual species localities, by just passing to spatial.subset their coordinates:

> bg.species <- backgroundGrid(raster = biostack$baseline$bio1,
spatial.subset = presences)

Thus, the user has flexibility to perform further modifications of the background, so it would be
also possible to discard specific areas based on expert knowledge (e.g. Serra-Varela et al., 2015). In
this case study, we will retain the full background (bg) for further analyses.
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Pseudo-absence generation

Most of SDMs require data not only from known presences of the biological entity, but also absence data
in order to model the binary response presence/absence as a function of the different environmental
variables. While the sampling efforts are typically focused on recording presence localities (atlases,
natural history collections, targeted samplings, . . . ), in most cases there is no explicit information
about the absence of the species. Therefore pseudo-absence generation is often required for SDM
construction, by sampling the background of the study domain. Different methods have been proposed
to this aim, whose choice has an important effect on the final SDM results, as highlighted in different
previous studies (e.g.: Wisz and Guisan, 2009; Iturbide et al., 2015). However, there is no consensus on
the best sampling design for generating pseudo–absences.

Pseudo-absence sampling in mopa is performed by the pseudoAbsence function. It implements
a wide range of methodologies described in the literature (see Iturbide et al., 2015, for an overview
and comparison of methods) for maximum user flexibility, but at the same time its arguments have
been kept as simple as possible to ease its application (Table 1). Here, three methods are described:
random sampling, random sampling with environmental profiling and the three-step method. Their
main characteristics are next briefly described. A more extended explanation can be found in (Iturbide
et al., 2015) and reference therein.

Argument Description

realizations Number of realizations of pseudo-absence generation
exclusion.buffer Minimum distance to be kept between presence data and pseudo-

absence data
prevalence Proportion of presences against absences
kmeans Performs a k-means clustering of the background to extract the

pseudo-absences instead of sampling at random
varstack RasterStack of variables for computing the k-means clustering

Table 1: Arguments of function pseudoAbsences controlling the parameter values involved in pseudo-
absence generation.

Random Sampling (RS). The RS method is the simplest and most frequent way of generating
pseudo-absences (Iturbide et al., 2015). In the next example three times more pseudo-absences than
presences are generated at random, keeping a 0.249◦ (' 30 km) exclusion buffer around known
presence localities. Ten pseudo-absence realizations are considered:

> pa_RS <- pseudoAbsences(xy = presences, background = bg$xy,
realizations = 10, exclusion.buffer = 0.249,
prevalence = -0.5)

As an alternative to random sampling, a stratified sampling approach can be performed, based on
homogeneous environmental conditions. To this aim, a clustering of the environmental space is
applied following Senay et al. (2013) by setting argument kmean to TRUE:

> pa_kmeans <- pseudoAbsences(xy = presences, background = bg$xy,
exclusion.buffer = 0.249,
prevalence = -0.5,
kmeans = TRUE, varstack = biostack$baseline)

Random Sampling with Environmental Profiling (RSEP). The RSEP method imposes restrictions
on the environmental range of the background to be sampled for pseudo-absences. In mopa this
is done by performing an environmental profiling of the background (function OCSVMprofiling)
that, following Senay et al. (2013), applies a one-class support vector machine algorithm (OCSVM,
implemented in package e1071, Meyer et al., 2017) returning a binary (presence/absence) classification
of the background gridboxes based solely on the presence information (bg.profiled$presence and
bg.profiled$absence in the example below). Only the predicted absence background is then retained
for pseudo-absence generation.

> bg.profiled <- OCSVMprofiling(xy = presences, varstack = biostack$baseline,
background = bg$xy)
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> pa_RSEP <- pseudoAbsences(xy = presences, background = bg.profiled$absence,
realizations = 10, exclusion.buffer = 0.249,
prevalence = -0.5)

Three-step method (TS). TS is based on imposing restrictions to both the environmental range and
the spatial extent of the background from which pseudo-absences are sampled. This method has been
shown to outperform other common approaches in terms of resulting SDM robustness (Iturbide et al.,
2015). The TS method adds an additional step to the RSEP method, consisting on the partition of
the background space (as yielded by RSEP) in multiple bands using different radius from presence
localities. In the example below, multiple distance bands with an increasing radius of 30 km between
each other are created (argument by = 0.249, in degrees). The first one (with the shortest radius from
presence localities) is at 30 km from the closest presence point (start = 0.249), and the largest one
(the longest radius from presences) is set by default to half the length of the diagonal of the background
bounding-box (see Iturbide et al., 2015, for more details).

> bg.radius <- backgroundRadius(xy = presences,
background = bg.profiled$absence,
start = 0.249, by = 0.249, unit = "decimal degrees")

> pa_TS <- pseudoAbsences(xy = presences,
background = bg.radius, realizations = 10,
exclusion.buffer = 0.249, prevalence = -0.5)

A spatial representation of the results yielded by the pseudo-absence methods described is next
generated (Fig. 1):

> # Generates Fig. 1
> par(mfrow = c(2, 2), mar = c(2, 2, 2, 1.2))
> # Panel 1a (Presence data)
> plot(bg$xy, pch = 18, cex = 0.4, col = "gray", asp = 1)
> points(presences, pch = 18, cex = 0.6, col = "red")
> # Panel 1b (RS method)
> plot(bg$xy, pch = 18, cex = 0.4, col = "gray", asp = 1)
> points(pa_RS$species1$PA01[[1]], pch = 18, col = "darkviolet", cex = .6)
> points(pa_kmeans$species1$PA01[[1]], pch = 18, col = "yellow", cex = .6)
> points(presences, pch = 18, cex = 0.6, col = "red")
> # Panel 1c (RSEP method)
> plot(bg.profiled$absence, pch = 18, cex = 0.4, col = "gray", asp = 1)
> points(bg.profiled$presence, pch = 18, cex = 0.4, col = "aquamarine")
> points(pa_RSEP$species1$PA01[[1]], pch = 18, cex = 0.6, col = "darkviolet")
> points(presences, pch = 18, cex = 0.6, col = "red")
> # Panel 1d (TS method)
> plot(bg.radius[[1]]$km3120, col = "gray", asp = 1, pch = 18, cex = 0.4)
> points(bg.profiled$presence, pch = 18, cex = 0.4, col = "aquamarine")
> for (i in 1:10) {

l <- (11 - i) * 10
points(bg.radius[[1]][[l]],
col = gray.colors(10, start = .9,end = 0.1)[i],
pch = 18, cex = 0.4)

}
> points(pa_TS$species1$PA01[[50]], pch = 18, cex = 0.6, col = "darkviolet")
> points(presences, pch = 18, cex = 0.6, col = "red")

Thus, mopa allows for the generation of a wide range of combinations of environmental restriction
criteria (using OCSVMprofiling) and spatial extent constraints (using backgroundRadius, see Table 2),
providing unrivalled functionality for the development and inter-comparison of multiple pseudo-
absence setups for SDM refinement and ensemble prediction generation.

SDM fitting and prediction

Model fitting

Once the pseudo-absence dataset(s) chosen by the user is(are) built, the mopaTrain function performs
SDM fitting. The function is a wrapper for different statistical method implementations commonly
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Figure 1: Pseudo-absence dataset maps, as generated by function pseudoAbsences. (a) Known pres-
ence locations of the Oak phylogeny H1 (red points) and initial background for pseudo-absence
sampling (grey grid points). (b) pseudo-absences generated using the RS method randomly (purple
points) and with k-means clustering (yellow points). (c) Pseudo-absences generated with the RSEP
method (purple), where the turquoise area corresponds to the discarded suitable background space as
identified by the OCSVM profiling approach. (d) TS approach. Environmentally stratified as RSEP
(c), but also spatially stratified background, the different strata (spatial extents) identified by the
different gray-scale colors. Pseudo-absences for one of the background extents (3120 km) are depicted
as example (purple points).

used in SDM applications (see summary in Table 3). Moreover, mopaTrain adds extended functionality
for cross-validation for each set of presence/absence data and for each different species contained in
the presence dataset, as routinely done in SDM applications (see e.g.: Verbyla and Litvaitis, 1989). In
the next line of code, the Oak H1 phylogeny is fitted using a generalized linear model (GLM, Guisan
et al., 2002) and multivariate adaptive regression splines (MARS, Friedman, 1991), applying a 10-fold
cross validation approach. Moreover, equal weighting of presences and pseudo-absences is indicated
with the argument weighting = TRUE (see e.g.: Barbet-Massin et al., 2012).

> trainRS <- mopaTrain(y = pa_RS, x = biostack$baseline, weighting = TRUE,
k = 10, algorithm = c("glm", "mars"))

The special case of model fitting with TS pseudo-absences

After the generation of TS pseudo-absences, multiple background extents exist as a result of the
different distances defined by backgroundRadius. It has been noted that the background extent from
which pseudo-absences are sampled is an important factor affecting not only model performance, but
also its transferability and biological meaning Van der Wal and Shoo (2009). With this regard, Iturbide
et al. (2015) propose a selection criterion based on the response of model performance as a function
of distance radius, that is generalizable to different SDM characteristics and spatial scales. With this
regard, the performance criterion chosen is the Area Under the ROC Curve (AUC), one of the most
widely used accuracy measures of binary classification systems (Swets, 1988). Essentially, the method
performs a non-linear regression of the AUC obtained by each SDM extent against their background
radius, considering three possible asymptotic models (Fig. 2):
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OCSVMprofiling backgroundRadius Method

× × No restriction (RS method)

X × Environmental restriction (RSEP
method)

X X
Environmental and spatial restriction
(TS method)

× X Spatial restriction (Particular case of RS)

Table 2: Combinations of functions OCSVMprofiling and backgroundRadius for background definition.
These are used prior to pseudo-absence data generation with function pseudoAbsences, that controls
the different sampling methods.

SDM technique algorithm value pkg::function Reference

Generalized Linear Model "glm" stats::glm Part of R
Random Forest "rf" ranger::ranger Wright and Ziegler (2017)
Multivariate Adaptive Regression Splines "mars" earth::earth Milborrow (2017)
Maximum Entropy "maxent" dismo::maxent Hijmans et al. (2017)
Support Vector Machine "svm" e1071::best.svm Meyer et al. (2017)
Classification and regression tree (tree) "cart.tree" tree::tree Ripley (2016)
Classification and regression tree (rpart) "cart.rpart" rpart::rpart Therneau et al. (2017)

Table 3: SDM techniques available in mopa through the function mopaTrain. The corresponding
algorithm argument values are also indicated.

1. Michaelis-Menten model: v(x) =
ax

Km + x

2. 2-parameter exponential model: v(x) = a(1− e−bx)

3. 3-parameter exponential model: v(x) = a− be−cx

, where v and x represent the AUC and the background extent respectively. a is the asymptotic
AUC value achieved by the system and a− b is the intercept. Km is the Michaelis constant (i.e. the
extent at which the AUC is half of a, and c is the coefficient of the point where the curve is most
pronounced. The asymptotic model that better fits the AUC response to the different background
extents is automatically selected to extract the AUC asymptotical value. The minimum extent at which
the AUC lies above the asymptote is retained as the optimal threshold radius, being the corresponding
fitted SDM returned. The asymptotic models are fitted internally by mopaTrain via the nls function
from package stats always the TS method is used (this is automatically detected by the function).
Optionally, a diagram displaying the results is also returned by setting the argument diagrams=TRUE
(Fig. 2).

> # Train TS model and generate Fig. 2
> trainTS <- mopaTrain(y = pa_TS, x = biostack$baseline, weighting = TRUE,

k = 10, algorithm = c("glm", "mars"), diagrams = TRUE)

Model assessment

The object returned by mopaTrain is a list of several components generated in the model calibration
and evaluation process. Several performance measures are included apart from the AUC, like the
True Skill Statistic (TSS) and Cohen’s Kappa obtained in the cross-validation, frequently use for the
assessment in SDMs (Allouche et al., 2006). These and other ocmponents of the SDM fitted object can
be accessed using extractFromModel. For, instance, to extract the TSS:

> tss.RS <- extractFromModel(models = trainRS, value = "tss")

However, and for maximum user flexibility, a matrix containing the observed and predicted
probability values for each calibration point is returned, allowing other types of user-tailored model
performance assessments.

> ObsPred.RS <- extractFromModel(models = trainRS, value = "ObsPred")
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Figure 2: Asymptotic model fitting in SDMs using the TS approach for pseudo-absence generation.
The blue points are the AUC values (y-axis) obtained by the SDMs for different background radius
extents (x axis). Non-linear fits to the three asymptotic models considered (Michaelis Menten, 2 and
3-parameter exponential). The vertical and horizontal lines indicate the optimal radius and resulting
AUC value of the final mopaTrain SDM output.

The fitted models are stored in the "model" (or "fold.models") component, required for subse-
quent model prediction.

> models.RS <- extractFromModel(models = trainRS, value = "model")

Additionally, variable importance may be also estimated. One straightforward possibility is to
pass the fitted models to function varImp from package caret (Kuhn, 2017).

Model predictions

SDM predictions are obtained by passing a new set of predictors (e.g.: future bioclimatic variables) to
the generated models. The model component corresponds to the models fitted using all available data
for model training, while the SDM predictions for the k-cross-validation setup are generated from the
component fold.models –instead of model–. Thus, mopa allows handling both the cross-fitted models
for flexible model performance assessment and the global model –fitted with all presences and pseudo-
absences– for predicting distributions, accomplished through the use of the function mopaPredict. In
the following example, models corresponding to the RS method are projected to reference climate
conditions (biostack$baseline) and to 7 future climate projections (biostack$future):

> ensemble.present <- mopaPredict(models = models.RS,
newClim = biostack$baseline)

> ensemble.future <- mopaPredict(models = models.RS,
newClim = biostack$future)

Exploring the uncertainty in SDM projections

Projections returned by mopaPredict are structured in a nested list. Each depth or level in the list
corresponds to a different component. These are: presence data sets (SP), pseudo-absence realiza-
tions (PA), modeling algorithms (SDM), baseline climate (baseClim), and the new climate (newClim)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=caret


CONTRIBUTED RESEARCH ARTICLES 130

used to project models (e.g. future climate projections). The function used to extract components is
extractFromPrediction. In the next example, projections corresponding to the first pseudo-absence re-
alization (object rcms_run1) and to the future climate projection from the MPI RCM (object runs_rcm1)
are extracted:

> rcms_run1 <- extractFromPrediction(ensemble.future, "PA01")
> runs_rcm1 <- extractFromPrediction(ensemble.future, "MPI")

Then, the function is again applied to object runs_rcm1 to extract the SDM results for MPI and
GLM. The resulting object is of S4-class raster*, thus being straightforward to apply any of the
plotting/analysis methods for spatial objects. Here, we use spplot from sp for output visualization
(Fig. 3).

> glm_runs_rcm1 <- extractFromPrediction(runs_rcm1, "glm")
> # Generates Fig. 3
> data(wrld)
> spplot(glm_runs_rcm1, layout = c(5, 2), at = seq(0, 1, 0.1),

col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Figure 3: Future species distribution projections (2071-2100) according to the MPI RCM projec-
tions, considering 10 different pseudo-absence realizations of the RS method, as stored in the object
glm_runs_rcm1.

Thus, it is easy to explore the results by inspecting the different components of the mopaPredict
outputs. For instance, the raster package can be particularly useful this aim allowing for a wide
variety of map algebra operations through the function stackApply over user-defined subsets of SDM
projections.

Partition of the uncertainty into components using ANOVA

The relative contribution of each component to the total ensemble spread/variability is implemented
in mopa using an ANOVA approach, through the function varianceAnalysis, following the method
in Déqué et al. (2012), also applied by San-Martín et al. (2016). For instance, in this example, the total
variance V can be decomposed as the summation of the variance explained by the pseudo-absence
realization P, the RCM R and the combination of both PR, so V = P + R + PR. Let i be the index of
the pseudo-absence realization (i = 1, . . . , 10), j the index of the RCM (j = 1, . . . , 7), and Xij is the
response (e.g.: the predicted distribution for the particular realization and climate projection). Then:

P =
1

10

10

∑
i=1

(Xi − X̄)2 and R =
1
7

7

∑
j=1

(Xj − X̄)2 (1)

are the terms resulting from the realization alone (P), and RCM alone (R), and

PR =
1

10

10

∑
i=1

1
7

7

∑
j=1

(Xij − Xi − Xj + X̄)2 (2)

is the interaction term of the realization with the RCM (PR). The following example shows the analysis
performed for the pseudo-absence realizations (component1 = "PA") and the climate projections
(component2 = "newClim") in GLM projections (fixed = "glm"). In order to illustrate thoroughgoing
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information on the spread in the projected potential distributions, variance percentage maps are
returned together with the maps of the mean and standard deviation. Again, the results can be
conveniently visualized with function spplot (Figs. 4 and 5).

> var.glm <- varianceAnalysis(predictions = ensemble.future,
component1 = "PA", component2 = "newClim", fixed = c("glm"))

> # Generates Fig. 4
> spplot(var.glm$mean,

at = seq(0,1,0.1),
col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

> # Generates Fig. 5
> spplot(var.glm$variance,

col.regions = rev(gray.colors(10, end = 1)),
at = seq(0, 100, 10),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Figure 4: Mean and standard deviation of the SDM ensemble projections (GLM), formed by 7 RCMs
× 10 pseudo-absence realizations (RS method, object var.glm$mean).

Figure 5: Variance percentage explained by each component: pseudo-absence realization (PA), RCM
future climate projections (newClim) and their joint contribution (PA.and.newClim), considering GLM
projections (object var.glm$var).

Figures 4 and 5 depict the ensemble SDM projections and the variance analysis results, applied to
the set of projections that correspond to the 10 pseudo-absence realization and 7 climate projections
(10 realizations x 7 RCMs). The mean suitability map and the standard deviation are shown in Figure
4, while Figure 5 are the variance fraction maps (%), depicting the contribution of each component
(realization, RCM and realization & RCM) to the overall variance. For instance, the results displayed
in Figure 5 unveil that the RCM choice (component newClim) is by far the most important factor
contributing to the ensemble spread, while pseudo-absence realization has some impact in areas that
are outside the current domain of the Oak phylogeny H1 (e.g. Scandinavia).

Similarly, the next lines perform the same analysis, but considering MARS instead of GLM as the
statistical modeling technique (Figs. 6 and 7):

> var.mars <- varianceAnalysis(predictions = ensemble.future,
component1 = "PA", component2 = "newClim", fixed = c("mars"))
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> # Generates Fig. 6
> spplot(var.mars$mean,

at = seq(0,1,0.1),
col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

> # Generates Fig. 7
> spplot(var.mars$variance,

at = seq(0, 100, 10),
col.regions = rev(gray.colors(10, end = 1)),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Figure 6: Same as Fig. 4, but considering MARS instead of GLM as statistical modeling technique for
SDM production (object var.mars$mean).

Figure 7: Same as Fig. 5, but considering MARS instead of GLM as the statistical modeling technique
for SDM production (object var.mars$var).

Unlike GLM, in the case of MARS the ensemble spread (Fig. 6) is greatly affected by the pseudo-
absence realization in a wide area of the study domain (Fig. 7), specially in peripheral regions. This
is unequivocally diagnosed after applying function varianceSummary, which provides a summary
of the results, including a graph (Fig. 8) and allowing the comparison of multiple results for a
particular uncertainty component. This summary is based on the spatial subsetting of the study area,
by specifying the number of subsets with argument regions. The output boxplot (Fig. 8) shows the
spatial spread of the results (variance proportion explained by a component and the total standard
deviation) in each region.

As a result, in Figure 8, we compare GLM and MARS (var.glm and var.mars) with regard to
the variance proportion explained by the RCM choice (component = 2L), so that the percentage not
explained by it, is associated to the pseudo–absence realization. From this summary, we can confirm a
significantly higher sensitivity of MARS to the pseudo–absence sample across all regions.

> # Generates Fig. 8
> varianceSummary("glm" = var.glm, "mars" = var.mars,

component = 2L, regions = c(6, 6), drawBoxplot = TRUE)

Alternatively, a SpatialPolygons object (package sp) can be passed to argument regions in order
to focus the analysis on specific areas of interest. For illustrative purposes, in this example we use the
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Figure 8: Summary of the variance analysis results generated with function varianceSummary, where
GLM and MARS techniques (brown and blue respectively) are compared. Boxes account for the spatial
spread of the results in each region. Empty boxes show the variance proportion explained by the RCM
choice (component newClim) and filled boxes show the overall spread, this is, the standard deviation of
the predicted probability expressed as a percentage. Thus, empty boxes show how is the total spread
(filled boxes) distributed between components (PA and newClim). The x-axis corresponds to the regions
shown in the map at the top.
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climatic regions defined in the EU-funded PRUDENCE project (Christensen and Christensen, 2007),
which is available at the climate4R package visualizeR (Frías et al., 2018):

> regiondir <- tempfile()
> download.file(paste0("https://github.com/SantanderMetGroup/",
+ "visualizeR/raw/devel/data/PRUDENCEregions.rda"), destfile = regiondir)
> load(regiondir)
> varianceSummary("glm" = var.glm, "mars" = var.mars,

component = 2L, drawBoxplot = FALSE, regions = PRUDENCEregions)

Additionally, if argument drawBoxplot is set as FALSE, a simpler graph is obtained displaying the
points of the spatial mean. This might be useful when multiple results are being compared in the same
graph.

The much higher sensitivity of MARS to the pseudo–absence sample warns about its instability,
while GLM reveals much better properties in terms of model stability and transferability. These
findings are possible after ANOVA analysis thanks to the utilities included in mopa, enabling a flexible
experimental setup with a simple user interface. Model transferability is thus not apparent during
the SDM calibration stage and is not coupled to model performance (even with the application of
the 10-fold cross validation approach), so for instance TSS among realizations was 0.82 for GLM and
0.85 for MARS, and the mean AUC, 0.91 and 0.92 respectively. The uncertainty analysis results are
extremely valuable for the construction of an ensemble of SDM projections that minimizes the risk of
including unuseful realizations, thus yielding more plausible results.

In the same vein, the contribution of pseudo–absences in front SDM techniques to the overall
spread is achieved by adding a new component argument to varianceAnalysis, while the RCM
projection (MPI in this example) is kept as a fixed factor:

> MPI.var <- varianceAnalysis(ensemble.future,
component1 = "PA", component2 = "SDM", fixed = c("MPI"))

In case further uncertainty components are considered for predicting distributions (named in
mopa as SP, baseClim and foldModels), these could also be analyzed by keeping several fixed factors,
each corresponding to a component that is not being analyzed. This is explained in detail in the help
document of function "varianceAnalysis".

> help(varianceAnalysis)

SDM ensemble building

Finally, the ensemble forecast is built. In this particular example, we could discard those MARS
projections that we consider are the result of bad transferability, e.g. corresponding to the pseudo-
absence realizations that resulted in unrealistic predictions. Let us consider the simplified case where,
after a more detailed analysis of the results, we conclude that MARS projections corresponding to
pseudo–absence realization 8 along with GLM projections, are valid forecasts, then, as shown in the
next example, the definitive ensemble is easily built with function extractFromPrediction and the
utilities of the raster package. Here we calculate and plot the ensemble mean and standard deviation
of the final SDM ensemble projections (Fig. 9):

> marsEns <- extractFromPrediction(ensemble.future, value = "mars")
> marsEnsPA08 <- extractFromPrediction(marsEns, value = "PA08")
> glmEns <- extractFromPrediction(ensemble.future, value = "glm")

> ensemble.future.def <- stack(list(glmEns, marsEnsPA08))
> mean.ensemble <- stackApply(ensemble.future.def, fun = mean,

indices = rep(1, nlayers(ensemble.future.def)))
> sd.ensemble <- stackApply(ensemble.future.def, fun = sd,

indices = rep(1, nlayers(ensemble.future.def)))
> forecast.future <- stack(mean.ensemble, sd.ensemble)
> names(forecast.future) <- c("ensemble mean", "ensemble sd")
> # Generates Fig. 9
> spplot(forecast.future, at = seq(0,1,0.1),

col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Basically, this is a weighting exercise that favors GLM predictions in front of those of MARS,
beyond the performance shown in the calibration phase.
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Figure 9: Future ensemble forecast (mean and standard deviation) of the suitability of the oak phy-
logeny H11 under climate conditions given by 7 different RCMs.

Summary

The impacts of climate change on the biological systems are of current concern worldwide, and future
SDMs have become a key tool for the vulnerability and impact assessment community. Thus, the
utilities in package mopa can help in the SDM production chain since the early stage (climate data
retrieval and post-processing) to the ultimate phase in which a final set of models is retained for
ensemble generation and map production.

In this case-study, we illustrate the development of a set of SDM projections considering multiple
combinations of climate change projections from a set of state-of-the-art RCMs, two popular statistical
modeling methods (GLM and MARS) and different pseudo-absence realizations, enabling the identifi-
cation of those members of the ensemble yielding consistent and plausible future estimates for final
SDM building. With this regard, the ability to quantitatively assess the individual contribution of each
factor to the overall SDM spread, as implemented in function varianceAnalysis proved crucial in the
evaluation. While previously existing R packages already provide functionality for SDM building and
their assessment during the calibration stage, we have shown that model performance, as evaluated
by ordinary cross-validation, is not coupled to model transferabilty into future climate, being therefore
this essential feature specific of mopa. Other characteristic aspects introduced by the package consist
of the novel methods for pseudo-absence generation, and the ability to perform a fine-tuning of these
methods prior to model fitting. Furthermore, the inter-operability of mopa with other SDM-related R
packages enables maximum flexibility and eases the use of R for SDM applications in the framework
of complex modeling exercises, for which multiple aspects have a varying contribution to the overall
uncertainty.
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FHDI: An R Package for Fractional Hot
Deck Imputation
by Jongho Im, In Ho Cho, and Jae Kwang Kim

Abstract Fractional hot deck imputation (FHDI), proposed by Kalton and Kish (1984) and investigated
by Kim and Fuller (2004), is a tool for handling item nonresponse in survey sampling. In FHDI,
each missing item is filled with multiple observed values yielding a single completed data set for
subsequent analyses. An R package FHDI is developed to perform FHDI and also the fully efficient
fractional imputation (FEFI) method of (Fuller and Kim, 2005) to impute multivariate missing data
with arbitrary missing patterns. FHDI substitutes missing items with a few observed values jointly
obtained from a set of donors whereas the FEFI uses all the possible donors. This paper introduces
FHDI as a tool for implementing the multivariate version of fractional hot deck imputation discussed
in Im et al. (2015) as well as FEFI. For variance estimation of FHDI and FEFI, the Jackknife method is
implemented, and replicated weights are provided as a part of the output.

Introduction

Incomplete data are common in survey sampling, biomedical, and social sciences. Naive analysis
with only complete cases, conducted by removing all the cases with any missing items, is exposed to
nonresponse bias unless the missing data mechanism is missing completely at random (Rubin, 1976).
Even if the complete cases can be treated as a complete random sample, the complete case analysis is
inefficient, as all the partially observed cases are ignored. To incorporate these partial observations, we
may consider an imputation technique in which the missing items are filled in with plausible values.

Imputation is often classified into single imputation and repeated imputation on the basis of
the number of imputed values per each missing value. Several values are assigned to each missing
value in repeated imputation, while a single value is imputed in single imputation. Although single
imputation is often preferred in practice, due to its convenience, it does not necessarily preserve the
distribution of the original data. Thus, single imputation is inadequate for general purpose estimation.

There are two popular methods in the repeated imputation: multiple imputation and fractional
imputation. Multiple imputation, proposed by Rubin (1987, 1996) produces multiply imputed data
sets as imputation output. Many multiple imputation methods are already available in R, for example,
mice (van Buuren and Groothuis-Oudshoorn, 2011), mi (Su et al., 2011), Amelia (Honaker et al., 2011),
and VIM (Kowarik and Templ, 2016). Fractional imputation, initially proposed by Kalton and Kish
(1984) and extensively discussed in Fay (1996), Kim and Fuller (2004), Durrant and Skinner (2006), and
Kim (2011), creates a single completed data set with fractional weights after imputation. The size of
the imputed data is always larger than that of the incomplete input data. However, there is no suitable
R package for implementing fractional imputation. So far, the only publicly available software for
doing fractional imputation is the SAS procedure SURVEYIMPUTE (SAS Institue Inc., 2015), which partly
covers some fractional imputation methods.

Fractional imputation is yet to be widely used in practice other than survey sampling possibly
because it is relatively new and there is more complexity involved in implementing variance estimation
compared to multiple imputation. However, fractional imputation has its own advantages. For
instance, in the case of using a method-of-moment estimator, fractional imputation provides consistent
variance estimation while the multiple imputation variance estimator is inconsistent (Yang and Kim,
2016).

Imputing multivariate missing data is challenging for both multiple imputation and fractional
imputation. In practice, a full conditional specification of the joint model can be used to fill in several
missing items. One popular method is multiple imputation using chained equations, also named
mice (van Buuren and Groothuis-Oudshoorn, 2011) as in the name of its R package. This multiple
imputation procedure by chained equation (MICE) involves a variable-by-variable approach using
chained equations, whereby the imputation model for each missing item is separately specified with
the other items as predictors. A linear regression model or predictive mean matching is used for
continuous variables, and a logistic regression is used for categorical variables. Once all the conditional
distributions are specified, the multiple imputation procedure is repeated until convergence.

However, full conditional specification is subject to model mis-specifications and model compat-
ibility problems (Chen, 2010), and the parameter estimation procedure is sometimes cumbersome.
As an alternative, we employ the fractional hot deck imputation (FHDI) proposed by Im et al. (2015),
which is a nonparametric imputation approach using a two-phase sampling idea. To apply FHDI in
multivariate missing data, Im et al. (2015) first created imputation cells to match donors and recipients
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in a nonparametric way, where units with complete data serve as donors and units with at least one
missing item serve as recipients. Once the imputation cells are created, multiple donors are assigned
to each recipient with the probability proportional to fractional weights, which can be understood as
the conditional probability of obtaining the imputed values given the partial observation. After that,
the observed values of each donor are jointly imputed to fill the missing parts of the recipient.

The complete R package FHDI and entire source codes are available in Im et al. (2018), and can be
installed with R 3.4.0 or higher. The package basically includes three main functions with separate
purposes. The function FHDI_CellMake() converts continuous data into categorical data which can
be used as imputation cells. The function FHDI_CellProb() is provided to estimate the imputation
cell probability using a version of the expectation maximization (EM) algorithm. This function can be
used to get the maximum likelihood estimates of the cell probabilities from multivariate, incomplete,
categorical data under the missing at random assumption. The function FHDI_Driver() performs
fractional hot deck imputation, and also provides a set of replicated fractional weights for variance
estimation.

FHDI

Fractional hot deck imputation (FHDI), proposed by Kim and Fuller (2004), replaces each missing
value with a set of imputed values. Those imputed values are selected at random from values of the
donors in the same imputation cell, with the cells constructed to achieve within-cell data homogeneity.
Fractional weights are assigned to each imputed value to preserve the original data structure, and a
singly imputed data set is obtained as the output of the FHDI.

Im et al. (2015) extended Kim and Fuller (2004)’s idea in two ways. First, the new FHDI does not
require imputation cells to be made in advance. Imputation cells are determined as a by-product of the
imputation procedure, and are generally created to preserve the most of the correlations among survey
items. Second, the new FHDI method is now applied to multivariate missing data with arbitrary
missing patterns.

The FHDI of Im et al. (2015) can be understood as an imputation method using two-phase
sampling for stratification. In phase one, the imputation cells are determined so that the survey values
are homogeneous within cells and each missing unit has at least two possible donors within each
imputation cell. The cell probabilities are estimated using the EM by weighting method (Ibrahim,
1990). Once imputation cells are fixed, then the fully efficient fractional imputation (FEFI), named by
Fuller and Kim (2005), is implemented by replacing each missing value with all observed values within
the imputation cell. The FEFI fractional weights are obtained during this FEFI procedure. However, in
general, the size of imputed data from the FEFI procedure can be too large to handle for statistical
analysis. To avoid this size issue, we may select M(≥ 2) donors on each missing unit instead of taking
all possible donors. In phase two, a set of donors are assigned to each recipient with the probability
proportional to their FEFI fractional weights. A vector of missing values is jointly imputed with the
observed values of assigned donors.

Basic setup

For a description of the FHDI procedure, suppose that we have a finite population of size N, indexed
by U = {1, 2, . . . , N}, with two continuous variables y1 and y2. Let z1 and z2 be discretized values of
y1 and y2, respectively. Assume that z1 takes values in {1, . . . , G} and z2 takes values in {1, . . . , H}.
Let δp (p = 1, 2), a response indicator function of yp, take a value of one if yp is observed and zero
otherwise. Note that if yp has a missing value, then zp is also missing.

The finite population U can be subdivided into G× H cells based on z1 and z2, and we assume a
cell mean model on the cells such that

y | (z1 = g, z2 = h) ∼ (µgh, Σgh), g = 1, . . . , G, h = 1, . . . , H, (1)

where y = (y1, y2), µgh = (µ1,gh, µ2,gh) is a vector of cell means and Σgh is the variance-covariance
matrix of y in cell (gh).

Let yobs and ymis be the observed and missing part of y, respectively. We assume that the data are
missing at random (MAR) in the sense that

P(δ | y) = P(δ | yobs), (2)

where δ = (δ1, δ2). The MAR condition (2) implies that the imputation model (1) also holds for the
respondents.

Let A be the index set of the sample elements selected from the finite population U. Let AR be the
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index set of the respondents who answered both items y1 and y2, that is, AR = {j ∈ A; δ1jδ2j = 1}.
Similarly, define AM to be the set of the nonrespondents who have at least one missing value. That is,
AM = {j ∈ A; δ1jδ2j = 0}. Denote nR and nM as the size of AR and AM, respectively. We assume that
AR is non-empty and there exists enough donors in AR, that is,

nR ≥ n∗R (3)

for some n∗R. The value of n∗R is determined by the size of the imputation cells.

Imputation

The FHDI procedure in Im et al. (2015) consists of the following four steps: (i) Cell construction by
discretization, (ii) Estimating cell probabilities, (iii) Constructing FEFI fractional weights, and (iv)
Imputation. A detailed step-by-step description is provided below.

(Step 1): Cell construction by discretization

We wish to construct imputation cells satisfying (1). The imputation cell variable z can be given
in advance, or can be obtained using the estimated sample quantiles. To discuss the latter case, let
{a1, . . . , aG} be a set of cumulative proportions such that 0 = a0 < a1 < · · · < aG−1 < aG = 1. We can
choose ai so that each cell contains an equal number of respondents. Let

F̂(t) = ∑i∈A δ1iwi I(y1i ≤ t)
∑i∈A δ1iwi

(4)

be the estimated distribution function for y1, where wi is the sampling weight of unit i; I(S) is an
indicator function that takes value of one if S is true and zero otherwise; and q̂(ak) be the estimated
sample quantile corresponding to ak, defined by q̂(ak) = min{t; F̂(t) ≥ ak}. Once we have the
estimated sample quantiles, we can construct z1i from y1i. For instance, z1i = g if q̂(ag−1) < y1i ≤
q̂(ag). If y1i is missing, then z1i has a ‘NA’ value. Similarly, we can construct z2 with the range from 1
to H.

From the realized values of z1i and z2i in the sample, we can construct two sets of observed patterns
of (z1, z2) for AR and AM. Let VR be the set of all observed combinations of z1 and z2 in AR. A size of
VR is G× H at maximum, but it can be smaller in the realized samples. Similarly we obtain VM based
on the observed parts of nonrespondents. For example, we may have VM = {(NA, NA), (NA, z2 =
1), (NA, z2 = 2), (z1 = 1, NA), (z1 = 2, NA)} in the case of two binary outcomes.

For the proposed FHDI, we need at least two donors for each recipient to capture the variability
from imputation. However, an initial discretization may not give enough donors for some recipients.
In this case, we apply a cell collapsing procedure to have at least two donors to each recipient. During
the cell collapsing, the dimension of the cell variable z can be adjusted to have larger samples within
the cells. However, each cell variable z should have at least two distinct values marginally for its
validity in the construction of imputation cell. The cell collapsing procedure is designed to be stopped
if any cell variable has a single observation. In the left panel of Table 1, we only have one possible
donor for recipients with (z1 = NA, z2 = 1). In the right panel of Table 2, two cells, (z1 = 1, z2 = 1)
and (z1 = 1, z2 = 2), are merged into a single cell to guarantee a larger size of donors to the recipients.
As the result of cell collapsing, recipients who have observed values in z2 with z2 = 1 or z2 = 2 share
the same donors if they have z1 = 1. Since the cell variables z2 have two distinct values given z1 = 2,
the cell collapsing result does not contradict the overall size assumption of H ≥ 2.

z1\z2 1 2
1 0 3
2 1 4

z1\z2 1 2
1 3
2 1 4

Table 1: An illustrative example for the number of donors in cell with G = 2 and H = 2. Left panel:
initial imputation cell; right panel: final cell subdivision after cell collapsing.

(Step 2): Estimating of cell probabilities

Once the imputation cells are finalized from the above discretization, we need to estimate the cell
probabilities defined by

πgh = P(z1 = g, z2 = h), g = 1, . . . , G; h = 1, . . . , H.
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The initial cell probabilities are obtained using only the respondents in AR. These initial cell proba-
bilities are updated using the following EM method, modified from the EM by weighting (Ibrahim,
1990):

E-step: Let zobs and zmis be observed and missing part of z, respectively. Then, the conditional
probability of zmis = b∗ given zobs = a, denoted by π̂b∗ |a, is computed using the current t-th
estimate of the joint probability, where a is the observed value in zobs, b∗ is one possible value
for z∗mis, and

π̂
(t)
b∗ |a =

P̂(t)(zi,obs = a, zi,mis = b∗)

∑b P̂(t)(zi,obs = a, zi,mis = b)
. (5)

M-step: Updates the joint probability of a particular combination z∗ = (zobs = a, z∗mis = b∗) by

P̂(t+1)(z∗) =

(
n

∑
i∈A

wi

)−1 n

∑
i∈A

wiπ̂
(t)
b∗ |a I(zi,obs = a). (6)

(Step 3): Constructing FEFI fractional weights

The key point of the approach in Im et al. (2015) is to approximate the FEFI by the FHDI method
with a smaller size of donors. To achieve this goal, we first need to compute the FEFI fractional weights
for all possible donors assigned to each recipient. Let w∗ij be the j-th fractional weights for the recipient
i corresponding to donor j given by

w∗ij = π̂z∗i,mis |zi,obs

wj I{(zi,obs, z∗i,mis(i)) = (zj,obs(i), zj,mis(i))}
∑k∈AR

wk I{(zi,obs, z∗i,mis(i)) = (zk,obs(i), zk,mis(i))}
, (7)

where z∗i,mis is an imputed value for the missing part of recipient i and (zk,obs(i), zk,mis(i)) denotes the
values of unit k corresponding to the observed and missing part of recipient i in the sample imputation
cell. Here, the FEFI fractional weights are constructed using the cell conditional probability of zi,mis in
the missing part given the observed part zi,obs. Note that the sum of w∗ij over all j is equal to one by
construction.

(Step 4): Imputation

In FEFI, we employed all respondents as donors to each recipient in the same cell, and then assign
the FEFI fractional weights to each donor. However, this FEFI may not be attractive in practice due to
its huge size. Instead of using all the respondents, we can select just M donors among the FEFI donors
with the selection probability proportional to FEFI fractional weights and then assign equal fractional
weights. As for donor selection, we used a tailored systematic sampling method given below:

(a) Sort all FEFI donors in y values by the half-ascending half-descending order. That is, for example,
{1, 2, . . . , 8} is sorted as follows: 1,3,5,7,8,6,4,2.

(b) Let k ∈ ARd, where ARd is a set of the FEFI donors, be the FEFI donors after the sorting algorithm
in (a). Let (Lk, Uk) be the interval for the following systematic sampling scheme:

(b1) L1 = 0. Set k = 1.

(b2) For current k, Uk = Lk + w∗ik.

(b3) Set k = k + 1 and Lk = Uk−1 then go to Step (b2) until k = nRd, where nRd is a size of ARd.

(c) Let AMr be a subset of AM who has the same values in the observed part and nMr be the size
of AMr. Let RN be a random number generated from a uniform distribution U(0, 1). For each
l ∈ AMr, we select M donors as follows: for j = 1, . . . , M, if

Lk ≤
RN + (l − 1)

nMr
+ (j− 1) ≤ Uk

for some k, then a donor k is selected as the j-th donor for recipient l.

This tailored systematic sampling is designed to select the FEFI donors efficiently within imputa-
tion cells. If nRd is less than M, we select all donors and then assign the FEFI fractional weights instead
of assigning equal weights M−1.
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Analysis

After imputation, we obtain the imputed data in the size of nR + nM ×M. On the imputed data, we
can conduct statistical analysis such as mean estimation, regression analysis, and so on. The FHDI
mean estimator is

ȳ =
∑i∈A ∑M

j=1 wiw∗ijy
∗
ij

∑i∈A wi
, (8)

where y∗ij and w∗ij are the imputed values and the fractional weights for unit i ∈ AM, but y∗ij = yi for
all j and w∗ij = 1 for i = j and w∗ij = 0 for all i 6= j if unit i ∈ AR.

Similarly, the regression coefficient for the regression of y1 given y2 can be written as a classical
weighted regression in the form,

β̂ = (X
′
WX)−1X

′
Wy∗1 , (9)

where X is a design matrix including a vector of y∗2,ij, and W is a weighting matrix whose diagonal
elements are wiw∗ij and non-diagonal elements are all zeros.

The replication method is considered for variance estimation of the FHDI estimator. For L replicates,
the replication variance estimator for the FEFI estimator is

θ̂FHDI =
L

∑
k=1

ck

(
θ̂
(k)
FHDI − θ̂FHDI

)2
, (10)

where ck is a replicate factor associated with θ̂
(k)
FHDI and θ̂

(k)
FHDI is the the k-th replicate estimate obtained

using the k-th fractional weights replicate denoted by w(k)
i × w∗(k)ij . The current version of the FHDI

package provides a set of replication fractional weights using a jackknife method. See Im et al. (2015)
for details in computation of the replication fractional weights.

Implementation of FHDI

In the FHDI package, we have three main functions: (i) FHDI_CellMake, (ii) FHDI_CellProb, and
(iii) FHDI_Driver. The function FHDI_CellMake() is used to create the imputation cell variable z.
The EM algorithm introduced in Section 24.2 is built into the function FHDI_CellProb(). The main
function FHDI_Driver() conducts imputation and variance estimation including cell construction and
estimating cell probabilities. We used simulated data to describe these components of the package
FHDI. All results in this section are obtained from a Microsoft Windows 64 bit operation system. The
FEFI results should be the same without reference to the underlying operating system, while the FHDI
results using other platforms (e.g., Linux) may be slightly different, as FHDI selects donors using a
standard random number library which is generally platform-dependent.

DATA

We have n = 100 sample observations for the multivariate data vector yi = (y1i, y2i, y3i, y4i), i =
1, . . . , n, generated from

Y1 = 1 + e1,

Y2 = 2 + ρe1 +
√

1− ρ2e2,

Y3 = Y1 + e3,

Y4 = −1 + 0.5Y3 + e4.

We set ρ = 0.5; e1 and e2 are generated from a standard normal distribution; e3 is generated from a
standard exponential distribution; and e4 is generated from a normal distribution N(0, 3/2).

Response indicators are generated from a Bernoulli distribution with different pk,

δk ∼ B(pk),

where (p1, p2, p3, p4) = (0.6, 0.7, 0.8, 0.9). Although the response indicators are generated based on the
missing completely at random (MCAR) assumption for simplicity, the FHDI method also holds for
other response models based on MAR.

Based on the outcome models and the response models above, an example data are generated
using the following R code:
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n = 100
set.seed(1345)
rho = 0.5
e1 = rnorm(n, 0, 1)
e2 = rnorm(n, 0, 1)
e3 = rgamma(n, 1, 1)
e4 = rnorm(n, 0, sd = sqrt(3/2))

y1 = 1 + e1
y2 = 2 + rho * e1 + sqrt(1 - rho^2) * e2
y3 = y1 + e3
y4 = -1 + 0.5 * y3 + e4

r1 = rbinom(n, 1, p = 0.6)
r2 = rbinom(n, 1, p = 0.7)
r3 = rbinom(n, 1, p = 0.8)
r4 = rbinom(n, 1, p = 0.9)

y1[r1 == 0] = NA
y2[r2 == 0] = NA
y3[r3 == 0] = NA
y4[r4 == 0] = NA

Imputation cell

Using the R function summary(), we see missing values in all four variables; realized response rates
are 0.58, 0.66, 0.82, and 0.89, respectively; and sample means for complete cases are 0.98, 1.93, 1.80,
and −0.01, respectively.

> daty = cbind(y1, y2, y3, y4) # data
> datr = cbind(r1, r2, r3, r4) # response (0:mising cell; 1: observed cell)
> summary(daty)

y1 y2 y3 y4
Min. :-1.6701 Min. :0.02766 Min. :-1.4818 Min. :-2.920292
1st Qu.: 0.4369 1st Qu.:1.03796 1st Qu.: 0.9339 1st Qu.:-0.781067
Median : 0.8550 Median :1.79693 Median : 1.7246 Median :-0.121467
Mean : 0.9821 Mean :1.93066 Mean : 1.7955 Mean :-0.006254
3rd Qu.: 1.6171 3rd Qu.:2.71396 3rd Qu.: 2.5172 3rd Qu.: 0.787863
Max. : 3.1312 Max. :5.07103 Max. : 5.3347 Max. : 4.351372
NA's :42 NA's :34 NA's :18 NA's :11

We now use the function FHDI_CellMake() to convert continuous y variables into discretized
variables z. A vector of initial cell dimension k should be given as input information. If the input value
k is a single integer, the same number of category is applied to all variables for initial discretization. The
current version allows up to 35 distinct categories for each variable. When the variables are specified
as the unordered categorical type through the option, the algorithm excludes those variables from
the discretization procedure. The details are illustrated in the a ppendix along with the application of
mixed data types.

Sample weight and ID are optional for input information. Default values are 1 through n for the ID
while 1.0 for the sample weight. Another option is s_op_merge which controls randomness in the cell
collapsing procedure. There are two possible values for s_op_merge: "fixed" as default and "rand"
as optional. During the cell collapsing, randomness occur if there exists multiple adjacent cells for
a fixed cell, which is required to be merged into another cell. If s_op_merge is set with "rand", then
the matrix of discretized values can be different even for the same incomplete data. The last option is
"categorical" used to denote the data type which has a value 1 if the input variable is unordered
and 0 otherwise. If the input vector for the option "categorical" is not specified by the users, the
algorithm treats all variables as continuous or ordered categorical types.

The main outputs of the function FHDI_CellMake() are (a) incomplete data matrix attached with ID
and sample weight named by “data", (b) matrix for imputation cell variables named by “cell", (c) cell
pattern matrix for respondents named by “cell.resp", and (d) cell pattern matrix for nonrespondents
named by “cell.non.resp". When missing values are recorded with specific numeric values other
than NA, the response indicator matrix (i.e., “datr") should be inserted with the original data matrix.
The indicator matrix “datr" has the same dimension as “daty" contains 0 for missing cell locations and
1 otherwise. For instance, the first six rows of “datr" of the “daty" given above will look like:
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y1 y2 y3 y4
1 1 0 1
0 1 1 1
1 1 1 0
0 1 0 1
1 1 1 1
1 1 1 1

As long as “daty" contains NA at the missing cell locations, automatic detection of missing cell locations
takes place. When one wants to define more missing cell locations, one can override the automatic
detection by separately defining “datr" and including it in the function argument, for example,
‘FHDI_CellMake(daty,datr,k=3)’. We set k = 3 and do not give additional input information on
weights and ID, then the first output is shown as

> cdaty = FHDI_CellMake(daty, k = 3)
> names(cdaty)
[1] "data" "cell" "cell.resp" "cell.non.resp"
[5] "w" "s_op_merge"
> head(cdaty$data)

ID WT y1 y2 y3 y4
[1,] 1 1 1.47963286 2.150860 NA 1.894211796
[2,] 2 1 NA 1.141496 1.6025296 -1.036946859
[3,] 3 1 0.70870936 1.885673 1.2506894 NA
[4,] 4 1 NA 2.753840 NA 1.211049509
[5,] 5 1 0.86273572 2.425549 1.8875492 -0.539284732
[6,] 6 1 0.03460025 1.740481 0.4909525 0.007130484

The observed values are converted to ordered categorical values from 1 to k. Here, missing values
are presented with a common missing value “0". During the discretization procedure, the initial
dimension of k can be down to have larger donors within imputation cells. In our example, the default
value k = 3 was kept for all variables.

> head(cdaty$cell)
y1 y2 y3 y4

[1,] 3 2 0 3
[2,] 0 1 1 1
[3,] 2 2 2 0
[4,] 0 2 0 3
[5,] 2 3 2 2
[6,] 1 2 1 2

> apply(cdaty$cell, 2, table)
y1 y2 y3 y4

0 42 34 18 11
1 26 18 27 30
2 13 36 32 28
3 19 12 23 31

From the output component named by “cell", we can find out whether the cells are merged
during the discretization process. For instance, we have 34 missing values in y2, and this indicates
that 22 (= 66/3) observations are evenly distributed for each category based on the estimated density
function. However, the finalized frequencies for three categories are 18, 36, and 12. This means that
some initial cells are merged to adjacent cells to obtain enough donors for recipients.

It is important to specify the cell patterns to match the respondents and the nonrespondents.
Thus, the cell pattern matrix for respondents and nonrespondents, named by “cell.resp" and
“cell.non.resp", are produced as the outputs of the function FHDI_CellMake(). Note that it is possible
to have 34 = 81 distinct vectors theoretically, but we only have 10 unique patterns in our toy example.

> cdaty$cell.resp
y1 y2 y3 y4

[1,] 1 1 1 1
[2,] 1 1 2 3
[3,] 1 2 1 2
[4,] 1 2 2 1
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[5,] 2 2 2 3
[6,] 2 3 2 2
[7,] 3 1 3 3
[8,] 3 2 3 2
[9,] 3 2 3 3
[10,] 3 3 3 1

Similarly, a set of unique cell patterns for nonrespondents are reported at the fourth output. We
have 47 patterns for nonrespondents in this example. Some patterns are presented below

> head(cdaty$cell.non.resp)
y1 y2 y3 y4

[1,] 0 0 0 2
[2,] 0 0 0 3
[3,] 0 0 1 1
[4,] 0 0 1 2
[5,] 0 0 2 1
[6,] 0 0 2 2

Note that it is possible to have all zero values as a cell pattern, because we allow to have missing
values for all variables. Under the MAR assumption, if there are no additional auxiliary variables,
then the cases with missing values in all items can be safely removed from the original data set.

Cell probability estimation

We now estimate the cell probabilities based on the second output obtained using FHDI_CellMake().
Since the function FHDI_CellProb() is based on the EM algorithm designed to compute cell probabili-
ties for multivariate categorical data, this function can be separately used when we are only interested
in obtaining the maximum likelihood estimates for the cell probabilities.

> datz = cdaty$cell
> jcp = FHDI_CellProb(datz)
> jcp$cellpr
1111 1123 1212 1221 2223 2322
0.18110421 0.05474648 0.12693514 0.07786676 0.17388579 0.08263912
3133 3232 3233 3331
0.02175015 0.10356376 0.08871434 0.08879425
> sum(jcp$cellpr)
[1] 1

Note that the joint cell probabilities are estimated only from observed patterns, not from all possible
values. Overall sum of the joint cell probabilities should be equal to one. All discretized values are
presented by a single values in the order of data columns. For example, a value of “1111" denotes a
vector (z1 = 1, z2 = 1, z3 = 1, z4 = 1). If the number of categories in a variable is larger than 10, the
categories are label with 26 alphabet letters (a-z). If we have a value ‘b2c’, then it denotes the z vector
(11, 2, 12).

Fractional hot deck imputation

We can use the function FHDI_Driver() without searching for a suitable imputation cell matrix in
advance. In short, FHDI_Driver() automatically performs FHDI_CellMake() and FHDI_CellProb()
and then proceeds toward the imputation and/or variance estimation. The main input information is
the matrix of original variables, matrix for response indicators, and the imputation method ("FEFI",
"FHDI"). In the case of ‘s_op_imputation="FHDI"’, the imputation size M should be given as an input
value. For instance, when M = 5, FHDI will randomly select 5 donors from all possible donors. In
the case of "FEFI", the imputation is conducted to assign all possible values to each recipient with the
FEFI fractional weights.

The output consists of four main parts except for input information: (i) imputation results with
fractional weights named by “fimp.data", (ii) an imputed data in format of single imputation result
named by “simp.data", (iii) the FHDI mean estimates with estimated standard error named by
"imp.mean", and (iv) replication fractional weights for variance estimation named by "rep.weight". If
variance estimation option is given by ‘i_op_variance=0’, then third output and fourth output are not
produced as the main output. The default is ‘i_op_variance=1’.
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The part of the fractionally imputed data are given below with newly attached variables FID and
FWT, where FID denotes donors’ local serial index and FWT denotes fractional weights assigned to
imputed values:

> FEFI = FHDI_Driver(daty, s_op_imputation = "FEFI", i_op_variance = 1, k = 3)
> names(FEFI)
[1] "fimp.data" "simp.data" "imp.mean"
[4] "rep.weight" "M" "s_op_imputation"
[7] "i_option_merge"

> FEFI$fimp.data[1:20,]
ID FID WT FWT y1 y2 y3 y4

[1,] 1 1 1 0.5000000 1.47963286 2.150860 2.881646 1.8942118
[2,] 1 2 1 0.5000000 1.47963286 2.150860 2.493438 1.8942118
[3,] 2 1 1 0.2000000 -0.09087472 1.141496 1.602530 -1.0369469
[4,] 2 2 1 0.2000000 -1.67006193 1.141496 1.602530 -1.0369469
[5,] 2 3 1 0.2000000 -0.39302750 1.141496 1.602530 -1.0369469
[6,] 2 4 1 0.2000000 0.97612864 1.141496 1.602530 -1.0369469
[7,] 2 5 1 0.2000000 0.21467221 1.141496 1.602530 -1.0369469
[8,] 3 1 1 0.1666667 0.70870936 1.885673 1.250689 0.7770526
[9,] 3 2 1 0.1666667 0.70870936 1.885673 1.250689 1.2839115
[10,] 3 3 1 0.1666667 0.70870936 1.885673 1.250689 0.6309413
[11,] 3 4 1 0.1666667 0.70870936 1.885673 1.250689 0.3232018
[12,] 3 5 1 0.1666667 0.70870936 1.885673 1.250689 0.5848844
[13,] 3 6 1 0.1666667 0.70870936 1.885673 1.250689 1.0342970
[14,] 4 1 1 0.1103616 1.22307261 2.753840 1.923865 1.2110495
[15,] 4 2 1 0.1689153 2.29021618 2.753840 2.881646 1.2110495
[16,] 4 3 1 0.1103616 0.86825894 2.753840 1.086562 1.2110495
[17,] 4 4 1 0.1103616 2.16515160 2.753840 2.311461 1.2110495
[18,] 4 5 1 0.1103616 0.79827971 2.753840 3.040016 1.2110495
[19,] 4 6 1 0.1689153 2.01819696 2.753840 2.493438 1.2110495
[20,] 4 7 1 0.1103616 0.73228949 2.753840 3.422369 1.2110495

The singly imputed data has the same size as the original incomplete data in which missing values
are filled with a single value, essentially the mean of fractionally imputed values. For example, in the
first sample presented at ‘daty[1,]’ below, we have a missing value for y3. The imputed values are
2.881646 and 2.493438 presented above, and the weighted mean of two values 2.6875422, considering
sample weights and fractional weights, replaces the missing value. This second output can be used as
the result for single imputation. However, its uses should be controlled under the limitations of single
imputation. The second output is partially presented below

> daty[1,]
y1 y2 y3 y4

1.479633 2.150860 NA 1.894212

> head(FEFI$simp.data)
y1 y2 y3 y4

[1,] 1.47963286 2.150860 2.6875422 1.894211796
[2,] -0.19263266 1.141496 1.6025296 -1.036946859
[3,] 0.70870936 1.885673 1.2506894 0.772381422
[4,] 1.44470586 2.753840 2.3372705 1.211049509
[5,] 0.86273572 2.425549 1.8875492 -0.539284732
[6,] 0.03460025 1.740481 0.4909525 0.007130484

The component “imp.mean" shows the FEFI mean estimates with the standard errors. The first row
presents the FEFI mean estimates and the second row presents the standard error of the FEFI mean
estimates. In our example, the FEFI mean estimates (standard errors) for variables are approximately
0.90(0.128), 1.87(0.121), 1.82(0.137), and −0.03(0.130), respectively.

> FEFI$imp.mean
[,1] [,2] [,3] [,4]

[1,] 0.9049227 1.8668846 1.8188381 -0.03193875
[2,] 0.1275504 0.1206944 0.1369989 0.12958845
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The standard errors are computed using the variance formula in (10) with the replicated fractional
weights reported in the fourth output. In a random sample, the associate factor ck has the same value
for all replicates. For instance, ck = (n − 1)/n for the jackknife variance estimation. Replication
fractional weights for the imputed data are given below:

> dim(FEFI$rep.weight)
[1] 330 100
> FEFI$rep.weight[1:13, 1:6]

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.0000000 0.5050505 0.5050505 0.5050505 0.5050505 0.5050505
[2,] 0.0000000 0.5050505 0.5050505 0.5050505 0.5050505 0.5050505
[3,] 0.2020202 0.0000000 0.2020202 0.2020202 0.2020202 0.2020202
[4,] 0.2020202 0.0000000 0.2020202 0.2020202 0.2020202 0.2020202
[5,] 0.2020202 0.0000000 0.2020202 0.2020202 0.2020202 0.2020202
[6,] 0.2020202 0.0000000 0.2020202 0.2020202 0.2020202 0.2020202
[7,] 0.2020202 0.0000000 0.2020202 0.2020202 0.2020202 0.2020202
[8,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502
[9,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502
[10,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502
[11,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502
[12,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502
[13,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502

Because a jackknife method is used for variance estimation, a matrix of the replication fractional
weights has nI rows and n columns, where nI(> n) denotes the size of the imputed data. By its
construction, the column sums of the replication fractional weights should be the sum of unit weights,

that is, ∑n
i=1 w(k)

i = ∑n
i=1 wi holds for all k.

Instead of the FEFI, we can perform a general FHDI with M(≥ 2). If the imputation method is
chosen to be "FHDI" and an imputation size M is given, then M donors are assigned to each recipients.
If the number of donors for a recipient is smaller than M, all donors are selected and assigned the FEFI
fractional weights.

Note that in the recipient with ID=3 (see ‘FEFI$fimp.data[1:20,]’ results shown above), there are
six donors for FEFI but there are five donors (M = 5) for FHDI (see ‘FHDI$fimp.data[1:14,]’ results
shown below). Five donors are randomly selected among all possible six donors with the probability
proportional to the FEFI fractional weights. This indicates that we have additional randomness due
to donor selection in the FHDI method. As shown in ‘FHDI$imp.mean’ results below, the FHDI mean
estimates (standard errors) are approximately 0.90(0.129), 1.87(0.121), 1.82(0.137), and −0.04(0.131),
respectively. Compared to the FEFI estimates, both point and variance estimates are similar to each
other. This indicates that the FHDI estimator well approximates the FEFI estimator with smaller size
of the imputed data. The results (which can vary slightly between operating systems) are presented
below:

> FHDI = FHDI_Driver(daty, s_op_imputation="FHDI", M=5, i_op_variance=1, k=3)
> FHDI$fimp.data[1:14,]

ID FID WT FWT y1 y2 y3 y4
[1,] 1 1 1 0.5 1.47963286 2.150860 2.881646 1.8942118
[2,] 1 2 1 0.5 1.47963286 2.150860 2.493438 1.8942118
[3,] 2 1 1 0.2 -0.09087472 1.141496 1.602530 -1.0369469
[4,] 2 2 1 0.2 -1.67006193 1.141496 1.602530 -1.0369469
[5,] 2 3 1 0.2 -0.39302750 1.141496 1.602530 -1.0369469
[6,] 2 4 1 0.2 0.97612864 1.141496 1.602530 -1.0369469
[7,] 2 5 1 0.2 0.21467221 1.141496 1.602530 -1.0369469
[8,] 3 1 1 0.2 0.70870936 1.885673 1.250689 0.7770526
[9,] 3 2 1 0.2 0.70870936 1.885673 1.250689 1.2839115
[10,] 3 3 1 0.2 0.70870936 1.885673 1.250689 0.6309413
[11,] 3 4 1 0.2 0.70870936 1.885673 1.250689 0.3232018
[12,] 3 5 1 0.2 0.70870936 1.885673 1.250689 1.0342970
[13,] 4 1 1 0.2 1.22307261 2.753840 1.923865 1.2110495
[14,] 4 2 1 0.2 2.29021618 2.753840 2.881646 1.2110495

> FHDI$imp.mean
[,1] [,2] [,3] [,4]
[1,] 0.9032611 1.865013 1.8204121 -0.03900379
[2,] 0.1291721 0.120509 0.1367363 0.13086824
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Table 2 presents the standard errors of the three mean estimators. Here, the Naive estimator is just
a simple mean estimator computed using only observed values. Since the partially observed values
are used in the mean estimation, the two estimators obtained using fractional hot deck imputation
produce smaller standard errors compared to the Naive estimator.

Estimator y1 y2 y3 y4
Naive 0.135 0.135 0.150 0.138
FEFI 0.128 0.121 0.137 0.130
FHDI 0.129 0.121 0.137 0.131

Table 2: Standard errors of three mean estimators.

It should be noted that the automatically generated “datz" can be replaced with a user-defined
one. If the imputation cell matrix “datz" is separately obtained from FHDI_CellMake() or provided
by the user, it needs to be specified as an option of the function FHDI_Driver(). An example code is
given below:

> FEFI=FHDI_Driver(daty,datz,s_op_imputation="FEFI",i_op_variance=1,k=3)

If survey variables are all categorical, the original data “daty" can be directly used for “datz." In
the case of mixed types including continuous and/or ordered and unordered categorical data, we
need two steps to obtain the imputation cell matrix: (i) discretization procedure for the continuous
parts, and (ii) combining procedure for the converted data and the unordered categorical data. If an
error message is presented due to insufficient of the donors from the function FHDI_CellMake(), then
the cell collapsing procedure has to be engaged manually for the categorical part. We illustrate an
example in Appendix when and how we manually merge categories in practice.

Regression analysis

We now consider a regression analysis using the imputed data. The imputed data can be treated as
complete data with assigned fractional weights. Thus, the regression coefficient estimates of y1 given
y2 can be directly obtained using the lm() function. Compared to using only observed samples, the
fractional weights are given as input information. The estimates are also obtained using a classical
weighted regression estimator presented in Section 24.2. The R codes for obtaining the regression
coefficient estimates for the three estimators are given below:

> reg.naive = lm(y1 ~ y2, data = as.data.frame(daty))
> reg.naive$coeff
(Intercept) y2
-0.07425917 0.58798028
> summary(reg.naive)$coeff[,2]
(Intercept) y2

0.3050262 0.1424451

> i.daty = as.data.frame(FEFI$fimp.data)
> reg.fefi = lm(y1 ~ y2, data = i.daty, weights = FWT)
> reg.fefi$coeff
(Intercept) y2
0.03465671 0.46615949

> i.daty2 = as.data.frame(FHDI$fimp.data)
> reg.fhdi = lm(y1 ~ y2, data = i.daty2, weights = FWT)
> reg.fhdi$coeff
(Intercept) y2

0.0227328 0.4721299

Note that if we directly use lm() on the imputed data, the standard errors are 0.103 and 0.048 for
the FEFI estimator and 0.111 and 0.052 for the FHDI estimator, respectively. However, the standard
errors using the replication method are nearly 0.251 and 0.094 for both the FEFI estimator and FHDI
estimator. Because the variances coming from imputation are not captured with a classical variance
estimator of the regression estimator, variance estimation should be conducted using the replication
variance estimator formula in (10).
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Estimator Intercept (S.E.) Slope (S.E.)
True 0 0.5

Naive -0.074 (0.305) 0.588 (0.142)
FEFI 0.035 (0.103) 0.466 (0.048)
FHDI 0.023 (0.111) 0.472 (0.052)

Table 3: Regression coefficient estimates with standard errors. (S.E.: standard error.)

Table 3 presents the regression coefficient estimates with standard errors for the three estimators.
Point estimates of the FEFI and FHDI estimators are much closer to the true values compared to the
values of the Naive estimator. Also, two fractional imputation estimators have smaller standard errors
than those of the naive estimator. All R codes to obtain these results are given below:

> reg.fefi.coef = reg.fefi$coeff
> reg.est = t(apply(FEFI[[4]], 2, function(s) lm(y1 ~ y2, data = i.daty,

weights = s)$coeff))
> reg.fefi.rep = reg.est - matrix(reg.fefi.coef, n, 2, byrow = TRUE)
> sqrt(apply(reg.fefi.rep^2, 2, sum) * (n - 1)/n)
(Intercept) y2
0.25082547 0.09369202

> summary(reg.fefi)$coeff[,2]
(Intercept) y2
0.10333038 0.04840829

> reg.fhdi.coef = reg.fhdi$coeff
> reg.est2 = t(apply(FHDI[[4]], 2, function(s) lm(y1 ~ y2, data = i.daty2,

weights = s)$coeff))
> reg.fhdi.rep = reg.est2 - matrix(reg.fhdi.coef, n, 2, byrow = TRUE)
> sqrt(apply(reg.fhdi.rep^2, 2, sum) * (n - 1)/n)
(Intercept) y2
0.25165391 0.09524197

> summary(reg.fhdi)$coeff[,2]
(Intercept) y2
0.11149137 0.05230785

Conclusion

FHDI is a useful tool for handling item nonresponse. Since FHDI employs a nonparametric estimation
of the joint distribution and uses observed values as imputed values, it can be widely accepted in
many research and incomplete data analysis. This paper documents the R package FHDI to enable R
users to perform fractional hot deck imputation as well as fully efficient fractional imputation.

The current version of the package FHDI has some limitations. First, the functions within the
package are not always applicable for all types of incomplete data. The current imputation algorithms
cannot be applied to fill in missing values when there is no fully observed units over all variables.
Although the users may assume conditional independence to apply our imputation algorithms, the
imputation on the basis of untestable conditional independence assumption may break the original
data structure. Second, the unordered categorical data should be handled manually for the insufficient
donor cases before the users use FHDI_Driver(). However, overcoming this limitation is identical to
coming up with a way to implement cell collapsing with no regard to the rationality of categorization.
Also, jackknife variance estimation may be not appropriate or efficient for larger or complicated
incomplete data. Algorithm-oriented parallel computing methods and substantial issues including
variable types and variance estimation options will be targeted in the future update.
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Appendix

We here present how R users can handle mixed types, combination of continuous and unordered
categorical data, in practice. For illustration purpose, we use the exit poll data collected to predict the
18th South Korean legislative election held in 2008. The exit poll data include data collection channel,
the sampled voters’ gender, age and candidate. We simply assume the MAR mechanism without any
further discussion to guide how the R users handle categorical data or mixed type data in uses of
FHDI_CellMake().

Table A.1 gives a summary of the exit poll results in an example district. The data were collected
from six different channels, denoted by 1, 2, . . . , 6, and the size of exit poll was 2210. Gender was
recorded with 1 (Male) and 2 (Female), and age was recorded as a numerical value. There were
five parties for the voters’ choice, recorded by 1,2,5,6,7. The response rates for the gender, age and
candidate were 98%, 98%, and 80%, respectively.

Variable Type Size of Support Observation Response Rate (%)
Channel Categorical 6 2210 100
Gender Categorical 2 2172 98
Age Numerical 72 2170 98
candidate Categorical 5 1764 80

Table A.1: A summary of the exit poll results in an example district

For imputation, we first consider the case in which the variables are given as their original types
presented in Table A.1. From the input data types, the cell collapsing procedure can be only applied to
the variable ‘age’. Since three variables, ‘channel’, ’gender’ and ’candidate’, require 60 (= 6× 2× 5)
imputation cells, the final size will be 60× Cage, where Cage is the finally discretized cell size of ′age′.
It is easy to fail to have enough donors within each imputation cell due to sparsity problem. When we
type the R codes below,

> cell.election=FHDI_CellMake(election,k=3,categorical=c(1,1,0,1))

we have the following error message:

The current data set does not have enough donors while there is at least one non-collapsible categorical variable!

To make feasible imputation cells, in addition to ‘age’, we want to also merge parties to reduce
the cell dimensions. One possible approach is to un-specify the variable ‘candidate’ as the unordered
categorical values, and the other approach is to merge candidate manually according to the users’
background knowledge of the parties. The results for the first approach are presented below:

> cell.election = FHDI_CellMake(election, k = 3,categorical = c(1, 1, 0, 0))
> apply(cell.election$cell, 2, table)
$channel
1 2 3 4 5 6

396 708 508 276 127 195

$gender
0 1 2

38 1042 1130

$age
0 1 2 3

40 775 672 723

$candidate
0 1 2 3

446 788 864 112

The observed candidates are 1 (788), 2 (864), 5 (73), 6 (27), and 7 (12), and they are merged into three
categories 1 (788), 2 (864), and 3 (112). During the cell collapsing, the initial integer values are changed
to ordered categorical values and then merged to search out the feasible imputation cells. Although
the imputation cells are now well constructed without error message, the cell collapsing results may
not be undesirable in the sense that the automatically merged candidates (parties) using the algorithm
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in the FHDI_CellMake() may have the opposite political positions. Note that even if the size of initial
categories is given as k = 3, the dimension of variables specified as the unordered categorical type is
kept to preserve their original sizes.

To avoid irrational cell collapsing result, the second approach is implemented by manually combin-
ing the candidates’ parties into two groups, 1 (1,6,7) and 2 (2,5), based on their political characteristics.
The results with the R codes are given below:

> election2 <- election
> election2$candidate[election2$candidate == 5] <- 2
> election2$candidate[election2$candidate == 6] <- 1
> election2$candidate[election2$candidate == 7] <- 1
> cell.election2 = FHDI_CellMake(election2, k = 3, categorical = c(1, 1,

0, 1))
> apply(cell.election2$cell, 2, table)
$channel
1 2 3 4 5 6

396 708 508 276 127 195

$gender
0 1 2

38 1042 1130

$age
0 1 2 3

40 775 672 723

$candidate
0 1 2

446 827 937

As discussed above, there is no errors for both automated and manual cell collapsing procedures.
However, the quality of imputation in the automation case can be unsatisfactory due to the inaccuracy
of joint distribution approximation. This implies that it is often required to carefully and/or manually
handle the unordered categorical variables in practice. Also note that we may want to discretize
the variable ‘age’ with a set of fixed distinct points, for example, (19-29, 30-39, 40-49,50-59, 60+) or
(19-39, 40-59, 60+). In this case, the R users also need to manually replace the initial ‘age’ values to the
discretized values in advance of using the function FHDI_CellMake().
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Bayesian Testing, Variable Selection and
Model Averaging in Linear Models using
R with BayesVarSel
by Gonzalo Garcia-Donato and Anabel Forte

Abstract In this paper, objective Bayesian methods for hypothesis testing and variable selection in
linear models are considered. The focus is on BayesVarSel, an R package that computes posterior
probabilities of hypotheses/models and provides a suite of tools to properly summarize the results. We
introduce the usage of specific functions to compute several types of model averaging estimations and
predictions weighted by posterior probabilities. BayesVarSel contains exact algorithms to perform
fast computations in problems of small to moderate size and heuristic sampling methods to solve
large problems. We illustrate the functionalities of the package with several data examples.

An illustrated overview of BayesVarSel

Testing and variable selection problems are taught in almost any introductory statistical
course. In this first section we assume such background to present the essence of the
Bayesian approach and the basic usage of BayesVarSel (Garcia-Donato and Forte, 2015)
with hardly any mathematical formulas. Our motivating idea in this first section is mainly to
present the appeal of the Bayesian answers to a very broad spectrum of applied researchers.
This introductory section concludes with a discussion about connections with potentially
related R packages.

The remaining six sections are organized as follows. In the second section, on page 158,
the problem is presented and the notation needed is introduced jointly with the basics of the
Bayesian methodology. Then, two sections follow with explanations of the details concerning
the obtention of posterior probabilities in hypothesis testing and variable selection problems,
respectively, in BayesVarSel. In a later section, on page 163, several tools to describe the
posterior distribution are explained, while the section on page 166 is devoted to model
averaging techniques. The paper concludes with a section with plans for the future of the
BayesVarSel project. This paper is supplemented with an appendix, with formulas for
the most delicate ingredient in the underlying problem in BayesVarSel, namely the prior
distributions for parameters within each model.

The version of BayesVarSel presented here is 1.8.0.

Testing

In testing problems, several competing hypotheses, Hi, about a phenomenon of interest are
postulated. The role of statistics is to provide summaries about the evidence in favor (or
against) the hypotheses once the data, y, have been observed. There are many important
statistical problems with roots in testing like model selection (or model choice) and model
averaging.

The formal Bayesian response to testing problems is based on the posterior probabilities
of the hypotheses that summarize, in a fully understandable way, all the available infor-
mation. In the R package BayesVarSel a number of popular objective priors (in the sense
explained in Berger, 2006) are available. Any of these priors have the great appeal of being
fully automatic for users.

For illustrative purposes consider the nutrition problem in Lee (1997), page 143, with
data:

> weight.gains <- c(134, 146, 104, 119, 124, 161, 107, 83, 113, 129, 97, 123,
+ 70, 118, 101, 85, 107, 132, 94)

There it is tested, based on the sample of 19 weight gains (expressed in grams) of rats,
whether there is a difference between the population means of the group with a high
proteinic diet (the first 12) or the control group (the rest):
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> diet <- as.factor(c(rep(1,12), rep(0,7)))
> rats <- data.frame(weight.gains = weight.gains, diet = diet)

This problem (usually known as the two-samples t-test) is normally written as H0 : µ1 = µ2
versus H1 : µ1 6= µ2, where it is assumed that the weight gains are normally distributed
with an unknown (but common) standard deviation. The formulas that define each of the
models under the postulated hypotheses are in R language

> M0 <- weight.gains ~ 1
> M1 <- weight.gains ~ diet

The function to perform Bayesian tests in BayesVarSel is Btest which has an intuitive and
simple syntax (see the section on page 160 for a detailed description). In this example

> Btest(models = c(H0 = M0, H1 = M1), data = rats)
Bayes factors (expressed in relation to H0)
H0.to.H0 H1.to.H0
1.0000000 0.8040127
---------
Posterior probabilities:

H0 H1
0.554 0.446

From these results, we clearly conclude that both hypotheses are similarly supported by
the data. Hence there is no evidence that the diet has any impact on the average weight.

A useful guide to interpret Bayes factors and probabilities, follows from the categories
proposed by Kass and Raftery (1995), reproduced in Table 1. For the problem above, none of
the hypotheses is worth more than a bare mention.

B10 Probability Evidence against the null

1 to 3 0.5 to 0.75 Not worth more than a bare mention
3 to 20 0.75 to 0.95 Substantial
20 to 150 0.95 to 0.99 Strong
>150 > 0.99 Decisive

Table 1: Interpretation of Bayes factors from Kass and Raftery (1995) (B10 stands for the Bayes factor
of H1 to the null hypothesis H0). The column probability is obtained assuming that both hypotheses
are equally likely a priori.

Another illustrative example concerns the classic dataset savings in Belsley et al. (2005)
considered by Faraway (2002), page 29 and distributed under the package faraway (Faraway,
2016).

> data("savings", package = "faraway")

This dataset contains macroeconomic data on 50 different countries during 1960-1970
and the question posed is to elucidate if dpi (per-capita disposable income in U.S), ddpi
(percent rate of change in per capita disposable income), population under (over) 15 (75)
pop15 (pop75) are all explanatory variables for sr, the aggregate personal saving divided by
disposable income which is assumed to follow a normal distribution. This can be written
as a testing problem about the regression coefficients associated with the variables with
hypotheses

H0 : βdpi = βddpi = βpop15 = βpop75 = 0,

versus the alternative, say H1, that all predictors are needed. The competing models can be
defined as

> fullmodel <- sr ~ pop15 + pop75 + dpi + ddpi
> nullmodel <- sr ~ 1

and the testing problem can be solved with

> Btest(models = c(H0 = nullmodel, H1 = fullmodel), data = savings)
---------
Bayes factors (expressed in relation to H0)
H0.to.H0 H1.to.H0
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1.0000 21.46007
---------
Posterior probabilities:

H0 H1
0.045 0.955

Now, the conclusion is that there is strong evidence favoring H1, the hypothesis that all
considered predictors explain the response sr.

Of course, more hypotheses can be tested at the same time. For instance, a simplified
version of H1 that does not include pop15 is

H2 : βdpi = βddpi = βpop75 = 0,

that can be included in the analysis as

> reducedmodel <- sr ~ pop75 + dpi + ddpi
> Btest(models = c(H0 = nullmodel, H1 = fullmodel, H2 = reducedmodel),
+ data = savings)
Bayes factors (expressed in relation to H0)
H0.to.H0 H1.to.H0 H2.to.H0

1.0000000 21.4600656 0.7017864
---------
Posterior probabilities:

H0 H1 H2
0.043 0.927 0.030

Obviously, as more hypotheses are considered, the usefulness of Table 1 to interpret posterior
probabilities reduces since it was conceived for two hypotheses. Nevertheless, in this case,
H1 is clearly supported by the data as the best explanation for the experiment among those
considered.

This scenario can be extended to check which subset of the four covariates is the most
suitable one to explain sr. In general, the problem of selecting the best subset of covariates
from a group of potential ones is better known as variable selection.

Variable selection

Variable selection is a multiple testing problem where each hypothesis proposes a possible
subset of the p potential explanatory variables initially considered. Notice that there are
2p hypotheses, including the simplest one (the null hypothesis) stating that none of the
variables should be used.

A variable selection approach to the economic example above with p = 4 has 16 hypothe-
ses and can be solved using the Btest function. Nevertheless, BayesVarSel has specific
facilities to handle the specificities of variable selection problems. A main function for
variable selection is Bvs, fully described in the section on page 161. It has a simple syntax
inspired by the well-known lm function. The variable selection problem in this economic
example can be solved by executing:

> Bvs(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings)
The 10 most probable models and their probabilities are:

pop15 pop75 dpi ddpi prob
1 * * * * 0.297315642
2 * * * 0.243433493
3 * * 0.133832367
4 * 0.090960327
5 * * * 0.077913429
6 * * 0.057674755
7 * * 0.032516780
8 * * * 0.031337639
9 0.013854369
10 * * 0.006219812

With a first look at these results, we can see that the most probable model is the model with
all covariates (probability 0.30), which is closely followed by the one without dpi with a
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posterior probability of 0.24. Note that the results are sensitive to the choice of parameter
priors (see the appendix for more details on the priors).

As we will see later, a variable selection exercise generates a lot of valuable information
of which the above printed information is only a very reduced summary. This additional
information can be accessed with specific methods that explore the characteristics of objects
of the type created by Bvs.

Related packages

In a recent study, Forte et al. (2018) analyse the differences among available R packages
that, according to either title and/or description, perform common variable selection (and
related) tasks. The main underlying motivation in that study was to clarify the commonali-
ties/differences of the different packages available sharing a common theoretical framework
(Bayesian variable selection with a particular type of priors). Five packages turned out to
have these characteristics: BayesFactor (Morey et al., 2015); BayesVarSel; BMS (Zeugner
and Feldkircher, 2015); mombf (Rossell et al., 2014) and BAS (Clyde, 2017). These were
further compared taking into account relevant aspects like flexibility on prior specification,
types of summaries provided, and even computational skills. The main conclusion was
that, despite the connections, there are important differences (e.g., on prior specifications or
implemented summaries) that will dictate the choice of package (for more details see Forte
et al., 2018).

Another package worth mentioning is BMA (Raftery et al., 2015). This is one of the most
downloaded packages for variable selection in CRAN. BMA performs variable selection
based on the (BIC) Bayesian Information Criterion (which was developed as an asymptotic
approximation to Bayes factors).

Basic formulae

The problems considered in BayesVarSel concern Gaussian linear models. Consider a
response variable y, size n, assumed to follow the linear model (the subindex F refers to the
full model)

MF : y = X0α + Xβ + ε, ε ∼ Nn(0, σ2 In), (1)

where the matrices X0 : n × p0, X : n × p and the regression vector coefficients are of
conformable dimensions. Suppose you want to test H0 : β = 0 versus HF : β 6= 0, that is, to
decide whether the regressors in X actually explain the response. This problem is equivalent
to the model choice (or model selection) problem with competing models MF and

M0 : y = X0α + ε, ε ∼ Nn(0, σ2 In), (2)

and we will refer to models or hypotheses indistinctly.
Posterior probabilities are based on the Bayes factors (see Kass and Raftery, 1995), a

measure of evidence provided by BayesVarSel when solving testing problems. The Bayes
factor of HF to H0 is

BF0 =
mF(y)
m0(y)

,

where mF is the integrated likelihood or prior predictive marginal for the full model:

mF(y) =
∫

MF(y | α, β, σ)πF(α, β, σ)dβ dα dσ,

and, similarly:

m0(y) =
∫

M0(y | α, σ)π0(α, σ)dα dσ.

Above, π0 and πF are the prior distributions for the parameters within each model. The
assignment of such priors (which we call model selection priors) is quite a delicate issue (see
Berger and Pericchi, 2001) and has inspired many important contributions in the literature,
particularly from an objective point of view. Of these, the package BayesVarSel allows using
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many of the most important proposals, which are fully detailed in the appendix. The prior
implemented by default is the robust prior by Bayarri et al. (2012), as it can be considered
optimal in many senses and is based on a foundational basis.

Posterior probabilities can be obtained as

Pr(HF | y) =
BF0Pr(HF)

(Pr(H0) + BF0Pr(HF))
, Pr(H0 | y) = 1− Pr(HF | y),

where Pr(HF) is the probability, a priori, that hypothesis HF is true.
Similar formulas can be obtained when more than two hypotheses, say H1, . . . , HN , are

tested. In this case

Pr(Hi | y) =
Bi0(y)Pr(Hi)

∑N
j=1 Bj0(y)Pr(Hj)

, i = 1, . . . , N, (3)

which is the posterior distribution over the model space (the set that contains all competing
models). For simplicitly, the formula in (3) has been expressed, without any loss of generality,
using Bayes factors to the null model but the same results would be obtained by fixing any
other model. The default definition for Pr(Hi) in testing problems is to use a constant prior,
which assigns the same probability to all models, that is, Pr(Hi) = 1/N.

For instance, within the model

M3 : y = α1n + β1x1 + β2x2 + ε,

we cannot test the hypotheses H1 : β1 = 0, β2 6= 0, H2 : β1 6= 0, β2 = 0, H3 : β1 6= 0, β2 6= 0
since neither M1 (the model defined by H1) nor M2 are nested in the rest. Nevertheless, it is
perfectly possible to test the problem with the four hypotheses H1, H2, H3 (as just defined)
plus H0 : β1 = 0, β2 = 0, but of course H0 must be, a priori, a plausible hypothesis. In this
last case H0 would take the role of null model.

Hypotheses do not have to be necessarily of the type β = 0 and, if testable (see Ravis-
hanker and Dey, 2002, for a proper definition), any linear combination of the type Ctβ = 0
can be considered a hypothesis. For instance one can be interested in testing β1 + β2 = 0.
In Bayarri and García-Donato (2007) it was formally shown that these hypotheses can be,
through reparameterizations, reduced to hypotheses like β = 0. In next section we show
examples of how to solve these testing problems in BayesVarSel .

Variable selection is a multiple testing problem but is traditionally presented with
convenient specific notation that uses a p dimensional binary vector γ = (γ1, . . . , γp) to
identify the models. Consider the full model in (1), and suppose that X0 contains fixed
covariates that are believed to be sure in the true model (by default X0 = 1n that would
make the intercept present in all the models). Then each γ ∈ {0, 1}p defines a hypothesis
Hγ stating which β’s (those with γi = 0) corresponding to each of the columns in X are zero.
Then, the model associated with Hγ is

Mγ : y = X0α + Xγβγ + ε, ε ∼ Nn(0, σ2 In), (4)

where Xγ is the matrix with the columns in X corresponding to the ones in γ. Notice that
Xγ is a n× pγ matrix where pγ is the number of 1’s in γ.

Clearly, in this variable selection problem there are 2p hypotheses or models and the null
model is (2) corresponding to γ = 0.

A particularity of variable selection is that it is affected by multiplicity issues. This is
because, and specially for moderate to large p, the possibility of a model showing spurious
evidence is high (just because many hypotheses are considered simultaneously). As con-
cluded in Scott and Berger (2006) multiplicity must be controlled with the prior probabilities
Pr(Hγ) and the constant prior does not control for multiplicity. Instead, these authors
propose using

Pr(Hγ) =
(
(p + 1)

(
p

pγ

))−1. (5)
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The assignment above states that models of the same dimension (the dimension of Mγ is
pγ + p0) should have the same probability which must be inversely proportional to the
number of models of that dimension. In the sequel we refer to this prior as the ScottBerger
prior.

Both the ScottBerger prior and the Constant prior for Pr(Hγ) are particular cases of the
very flexible prior

Pr(Mγ | θ) = θpγ(1− θ)p−pγ , (6)

where the hyperparameter θ ∈ (0, 1) has the interpretation of the common probability that a
given variable is included (independently of all others).

The Constant prior corresponds to θ = 1/2 while the ScottBerger to θ ∼ Unif(0, 1). Ley
and Steel (2009) study priors for θ of the type

θ ∼ Beta(θ | 1, b). (7)

They argue that, on many occasions the user has, a priori, some information regarding
the number of covariates (among the p initially considered) that are expected to explain
the response, say w?. As they explain, this information can be translated into the analysis
assigning in (7) b = (p− w?)/w?. The resulting prior specification has the property that the
expected number of covariates is precisely w?.

Straightforward algebra shows that assuming (7) into (6) is equivalent to (integrating
out θ)

Pr(Mγ | b) ∝ Γ(pγ + 1)Γ(p− pγ + b). (8)

The prior over the model space implemented by default in BayesVarSel is the ScottBerger
prior.

Hypothesis testing with BayesVarSel

Tests are solved in BayesVarSel with Btest which, in its default usage, only depends on
two arguments: models a named list of formula-type objects defining the models compared
and data the data frame with the data.

The prior probabilities assigned to the hypotheses is constant, that is, Pr(Hi) = 1/N.
This default behavior can be modified specifying prior.models = "User" jointly with the
argument priorprobs that must contain a named list (with names as specified in the main
argument models) with the prior probabilities to be used for each hypotheses.

Suppose that in the last example of first subsection, we establish a priori that the simpler
model is twice as likely as the other two. This can be specified as:

> Btest(models = c(H0 = nullmodel, H1 = fullmodel, H2 = reducedmodel),
+ data = savings, prior.models = "User",
+ priorprobs = c(H0 = 1/2, H1 = 1/4, H2 = 1/4))
---------
Bayes factors (expressed in relation to H0)
H0.to.H0 H1.to.H0 H2.to.H0

1.0000000 21.4600656 0.7017864
---------
Posterior probabilities:

H0 H1 H2
0.083 0.888 0.029

Notice that the Bayes factor remains the same, and the change is in posterior probabilities.
Btest tries to identify the null model (i.e. the model nested in all the others) using the

names of the variables. If such a model does not exist, the execution of the function stops
with an error message. Nevertheless, there are important situations where the simplest (null)
hypothesis is defined through linear restrictions (sometimes known as ‘testing a subspace‘)
making it very difficult to determine its existence just using the names. In this situation, the
user must provide the name of the simplest model in the argument null.model.

To illustrate this case, consider for instance the extension of the savings example in
Faraway (2002), page 32 where Heqp : βpop15 = βpop75 is tested against the full alternative.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 161

This null hypothesis states that the effect on personal savings, sr, of both segments of
populations is similar. The model under Heqp can be specified as:

> equalpopmodel <- sr ~ I(pop15 + pop75) + dpi + ddpi

but the command

> Btest(models = c(Heqp = equalpopmodel, H1 = fullmodel), data = savings)

produces an error, although it is clear that Heqp is nested in H1. To overcome this error, the
user must make the name of the null model explicit. In our example:

> Btest(models = c(Heqp = equalpopmodel, H1 = fullmodel), data = savings,
+ null.model = "Heqp")
Bayes factors (expressed in relation to Heqp)
Heqp.to.Heqp H1.to.Heqp
1.0000000 0.3336251

---------
Posterior probabilities:
Heqp H1
0.75 0.25

Still, the code would produce an error if it detects that the model defined as the null model
does not have the largest sum of squared errors or if it is not of a smaller dimension than all
the others.

Variable selection with BayesVarSel

The number of entertained hypotheses in a variable selection problem, 2p, can range from
a few to an extremely large number. This makes it necessary to program specific tools to
solve the multiple testing problem in variable selection problems. BayesVarSel provides
two different functions for variable selection

• Bvs performs exhaustive enumeration of hypotheses and hence the size of problems
must be small or moderate (say p ≤ 25),

• GibbsBvs simulates from the posterior distribution over the model space using a Gibbs
sampling scheme (intended to be used for large problems, with p > 25).

Except for a few arguments that are specific to the algorithm implemented (e.g., the
number of cores in Bvs or the number of simulations in GibbsBvs) the usage of the two
functions is very similar. We describe the common use in the first of the following sub-
sections and the function-specific arguments in the second.

Bvs and GibbsBvs return objects of class "Bvs" which are a list with relevant information
about the posterior distribution. For these objects, BayesVarSel provides a number of func-
tions, based on the tradition of model selection methods, to summarize the corresponding
posterior distribution (e.g., what is the hypothesis most probable a posteriori) and for its
posterior usage (e.g., to obtain predictions or model averaged estimates). These capabilities
are described in next two sections.

For illustrative purposes we use the following datasets:

UScrime data. The US crime data set was first studied by Ehrlich (1973) and is available
from the package MASS (Venables and Ripley, 2002). This data set has a total of n = 47
observations (corresponding to states in the US) of p = 15 potential covariates aimed at
explaining the rate of crimes in a particular category per head of population (labelled y in
the data).

SDM data. This dataset has a total of p = 67 potential drivers for the annual GDP growth
per capita between 1960 and 1996 for n = 88 countries (response variable labelled y in the
data). This data set was initially considered by Sala-I-Martin et al. (2004) and revisited by
Ley and Steel (2007).
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Common arguments

The customary arguments in Bvs and GibbsBvs are formula, with a definition of the most
complex model considered (the full model in (1)) and data (a data frame with the data). The
default execution setting corresponds to a problem where the null model (2) contains just
the intercept (i.e. X0 = 1n) and prior probabilities for models are defined as in (5).

A different null model can be specified with the optional argument null.model, that
must take the value of the formula of the the null model (a model that should be nested in
the full model).

Suppose for example that in the UScrime dataset and apart from the constant, theory
suggests that the covariate Ed must be used to explain the dependent variable. To consider
these conditions we execute the command

> crime.Edfix <- Bvs(formula = y ~ ., data = UScrime,
+ null.model = y ~ Ed)
Info. . . .
Most complex model has 16 covariates
From those 2 are fixed and we should select from the remaining 14
M, So, Po1, Po2, LF, M.F, Pop, NW, U1, U2, GDP, Ineq, Prob, Time
The problem has a total of 16384 competing models
Of these, the 10 most probable (a posteriori) are kept
Working on the problem...please wait.
> crime.Edfix

During the execution (which takes about 0.22 seconds in a standard laptop) the function
informs which variables take part of the selection process. The number of these defines p
which in this problem is p = 14 (and the model space has 214 models). In what follows, and
unless otherwise stated we do not reproduce this informative output to save space.

The assignment of priors probabilities, Pr(Hi), is regulated with prior.models, an argu-
ment that by default takes the value ‘"ScottBerger"’ corresponding to the proposal in (5).
Other options for this argument are ‘"Constant"’, which stands for Pr(Hi) = 1/2p, and the
more flexible value, ‘"User"’, under which the user must specify the prior probabilities with
the extra argument priorprobs.

The argument priorprobs is a p + 1 numeric vector, which in its i-th position defines the
probability of a model of dimension p0 + i− 1 (these probabilities can be specified except
for the normalizing constant).

Suppose that in the UScrime dataset with null model just the intercept, we want to specify
the prior in eq (6) with θ = 1/4, this can be done as (notice that here p = 15)

> theta <- 1/4; pgamma <- 0:15
> crime.thQ <- Bvs(formula = y ~ ., data = UScrime, prior.models = "User",
+ priorprobs = theta^pgamma*(1-theta)^(15-pgamma))
> crime.thQ

In variable selection problems it is quite standard to have the situation where the number
of covariates is large (say larger than 30) preventing the exhaustive enumeration of all the
competing models. The SDM dataset is an example of this situation with p = 67. In these
contexts, the posterior distribution can be explored using the function GibbsBvs. To illustrate
the elicitation of prior probabilities as well, suppose that the number of expected covariates
to be present in the true model is w? = 7. This situation is considered in Ley and Steel (2009)
and can be implemented as (see (8))

> set.seed(1234)
> data(SDM)
> p <- ncol(SDM) - 1; wstar <- 7;
> b <- (p-wstar)/wstar; pgamma <- 0:p
> growth.wstar7 <- GibbsBvs(formula = y ~ ., data = SDM, prior.models = "User",
+ priorprobs = gamma(pgamma+1)*gamma(p-pgamma+b), n.iter = 10000, n.thin = 1,
+ time.test = FALSE)
> growth.wstar7

The above code took 18 seconds to run.
One last common argument to Bvs and GibbsBvs is time.test. If it is set to TRUE and

the problem is of moderate size (p ≥ 18 in Bvs and p ≥ 21 in GibbsBvs), an estimation of
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computational time is calculated and the user is asked about the possibility of not executing
the command.

Specific arguments

In Bvs The algorithm implemented in Bvs is exact in the sense that the information collected
about the posterior distribution takes into account all competing models as these are all
computed. The logical parameter parallel, if set to TRUE, distributes the task among the
number of processors specified in the argument n.nodes. By default the parameter parallel
is set to FALSE. To save computational time and memory it is quite appropriate to keep only
a moderate number of the best (most probable a posteriori) models. This number can be
specified with the argument n.keep which must be an integer number between 1 (only the
most probable model is kept) and 2p (a full ordering of models is kept) (or 2p divided by
n.nodes in the case of parallel computation). The default value for n.keep is 10.

The argument n.keep is not of great importance to analyze the posterior distribution over
the model space. Nevertheless, it has a more relevant effect if model averaging estimates
or predictions are to be obtained (see the corresponding section on page 166) since, as
BayesVarSel is designed, only the n.keep retained models are used for these tasks.

In GibbsBvs The algorithm in GibbsBvs samples models from the posterior over the model
space and this is done using a simple (yet very efficient) Gibbs sampling scheme introduced
in George and McCulloch (1997), later studied in Garcia-Donato and Martinez-Beneito (2013)
in the context of large model spaces. The type of default arguments that can be specified in
GibbsBvs are typical in any Monte Carlo Markov Chain scheme (as usual the default values
are given in the assignment)

• init.model = "Full" The model at which the simulation process starts. Options
include ‘"Null"’ (the model only with the covariates specified in null.model), ‘"Full"’
(the model defined by formula), and ‘"Random"’ (a randomly selected model) a vector
with p zeros and ones defining a model.

• n.burnin = 500 Length of burn in, i.e. the number of iterations to discard at the start
of the simulation process.

• n.iter = 10000 The total number of iterations performed after the burn in process.

• n.thin = 1 Thinning rate that must be a positive integer. Set n.thin > 1 to save
memory and computation time if n.iter is large.

• seed = runif(1,0,16091956) A seed to initialize the random number generator.

Notice that the number of total iterations is n.burnin+n.iter but the number of models
that are used to collect information from the posterior is, approximately, n.iter/n.thin.

Summaries of the posterior distribution

In this section we describe the tools implemented in BayesVarSel conceived to summarize
(in the tradition of the relevant model selection literature) the posterior distribution over the
model space. In R, this corresponds to describing methods to explore the content of objects
of class "Bvs".

Printing a "Bvs" object created with Bvs shows the best 10 models with their associated
probability (see examples in first section). If the object was built with GibbsBvs the 10
most probable a posteriori models among the visited ones are shown. Though, in this case,
posterior probabilities of models are not provided, as these are unknown.

The rest of the summaries are very similar, independent of the routine used to create it,
but recall that if the object was obtained with Bvs (likely because p is small or moderate)
the given measures here explained are exact. If instead GibbsBvs was used, the reported
measures are approximations of the exact ones (that likely cannot be computed due to
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the huge size of the model space). In BayesVarSel these approximations are based on the
frequency of visits of Mγ as an estimator since, as studied in Garcia-Donato and Martinez-
Beneito (2013), these provide quite accurate summaries.

The HPM is returned when an object of class "Bvs" is summarized (via summary) jointly
with the inclusion probabilities for each competing variable, Pr(xi | y). These are the sum
of the posterior probabilities of models containing that covariate and provide evidence
about the individual importance of each explanatory variable. The model defined by those
variables with an inclusion probability greater than 0.5 is called a Median Probability Model
(MPM), which is also included in the summary. Barbieri and Berger (2004) show that, under
general conditions, if a single model has to be utilized with predictive purposes, the MPM is
optimal.

For instance, if we summarize the object crime.Edfix1 of the fourth section, we obtain:

> summary(crime.Edfix)

Inclusion Probabilities:
Incl.prob. HPM MPM

M 0.6806 *
So 0.2386
Po1 0.8489 * *
Po2 0.3663
LF 0.2209
M.F 0.3184
Pop 0.2652
NW 0.2268
U1 0.2935
U2 0.4765
GDP 0.3204
Ineq 0.9924 * *
Prob 0.6174 *
Time 0.2434

Inclusion probabilities implicitly answer a testing problem with two hypotheses, namely
if the variable should or should not be included. This is made sensible (and practical) using
the categorization in Table 1 to interpret them. With this guide, the importance of Ineq is
decisive followed by Po1, M and Prob with a substantial evidence in favour of their relevance
in explaining the response.

Graphical summaries and jointness The main graphical support in BayesVarSel is con-
tained in the S3 function plot2 which depends on x (an object of class "Bvs") and the
argument option specifying the type of plot to be produced:

• option="joint" A matrix plot with the joint inclusion probabilities, Pr(xi, xj | y)
(marginal inclusion probabilities in the diagonal).

• option="conditional" A matrix plot with Pr(xi | xj, y), the conditional inclusion
probabilities (ones in the diagonal).

• option="not" A matrix plot with Pr(xi | Not xj, y), the conditional inclusion probabil-
ities (zeroes in the diagonal).

• option="dimension" A bar plot representation of the posterior distribution of the
dimension of the true model (number of variables, ranging from p0 to p0 + p).

• option="trace" A trace plot with the evolution of the inclusion probabilities with
the iterations in Gibbs sampling (useful to check convergence; only available for
GibbsBvs).

1Notice that variable Ed is not on the list as it was assumed to be fixed.
2Depending on p, this function may produce very large plots causing margin-type errors to be thrown if either

the device or the active graphical window are too small. In these cases the user must consider ways of enlarging
the graphical output recipient.
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The first three options above are basic measures describing aspects of the joint effect of
two given variables, xi and xj, and can be understood as natural extensions of the marginal
inclusion probabilities. In Figure 1, we have reproduced the first three plots (from left to
right) obtained with the following lines of code:

> mj <- plot(crime.Edfix, option = "joint")
> mc <- plot(crime.Edfix, option = "conditional")
> mn <- plot(crime.Edfix, option = "not")

Apart from the plot, these functions return (invisibly) the matrix represented for futher
study. For the conditional probabilities (conditional and not) the variables in the row are
the conditioning variables (e.g., in mc above, the position (i, j) is the inclusion probability of
variable in j-th column conditional on the variable in i-th row).

Within these matrices, the most interesting results correspond to variations from the
marginal inclusion probabilities (represented in the top of the plots as a separate row for
reference). Our experience suggests that the most valuable of these is option="not", as it
can reveal key details about the relations between variables in relation with the response.
For instance, take that plot in Figure 1 (plot on the left of the second row) and observe that
while variable Po2 barely has any effect on y (crime), it becomes relevant if Po1 is removed.
This is the probability Pr(Po2 | Not Po1, y) with value

> mn["Not.Po1", "Po2"]
[1] 0.9996444

which, as we observed in the graph, is substantially large compared with the inclusion
probability of Po2

> crime.Edfix$inclprob["Po2"]
Po2

0.3662537

Similarly, we observe that Po1 is of even more importance if Po2 is not considered as a
possible explanatory variable. All this implies that, in relation with the dependent variable,
both variables contain similar information and one can act as proxy for the other.

We can further investigate this idea of a relationship between two covariates with respect
to the response using the jointness measures proposed by Ley and Steel (2007). These
are available using a function Jointness that depends on two arguments: x, an object of
class "Bvs" and covariates, a character vector indicating which pair of covariates we are
interested in. The default covariates="All" will output the matrices with the jointness
measurement for every pair of covariates. In particular, three jointness measures relative to
two covariates are reported by this function: i) the joint inclusion probability, ii) the ratio
between the joint inclusion probability and the probability of including at least one of them,
and iii) the ratio between the joint inclusion probability and the probability of including one
of them alone.

For instance:

> joint_measures <- Jointness(crime.Edfix, covariates = c("Po1" , "Po2"))
> joint_measures
---------
The joint inclusion probability for Po1 and Po2 is: 0.22
---------
The ratio between the probability of including both covariates and the probability of
including at least one of then is: 0.22
---------
The probability of including both covariates together is 0.27 times the probability of
including one of them alone

Alternatively, the single numbers can be accessed using:

> joint_measures$prob_joint
[1] 0.215181
> joint_measures$joint_LS1
[1] 0.2151926
> joint_measures$joint_LS2
[1] 0.274198
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Figure 1: Plots corresponding to the four possible values of the argument option in plot over the
object crime.Edfix of section four. From left to right: joint, conditional, not, and dimension.

With these results we must conclude that it is unlikely that both variables, Po1 and Po2,
are to be included together in the true model.

Finally, within plot, the assignment option="dimension" produces a plot that speaks
about the complexity of the true model in terms of the number of covariates that it contains.
The last plot in Figure 1 is the output of executing:

> plot(crime.Edfix, option = "dimension")

From this plot we conclude that the number of covariates is about 7 but with a high variability.
The exact values of this posterior distribution are in the component postprobdim of the Bvs
object.

The last possibility for the plot method corresponds to option="trace" which produces
a trace plot of the inclusion probabilities. The resulting graph is useful to asses the conver-
gence of the posterior inclusion probabilities when Gibbs sampling was used and we can
informally check if the number of iterations is enough. For instance, Figure 2 shows how
the posterior inclusion probabilities in this setting stabilize after roughly 8000 iterations.

> plot(growth.wstar7, option = "trace")

Model averaged estimations and predictions

In a variable selection problem it is explicitly recognized that there is uncertainty regarding
which variables make up the true model. Obviously, this uncertainty should be propagated
in the inferential process (as opposed to inferences using just one model) to produce more
reliable and accurate estimations and predictions. These type of procedures are normally
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Figure 2: Plot corresponding to the “trace” option in plot over the object growth.wstar7.

called model averaging (Madigan and Raftery, 1994; Raftery, 1995) and are performed once
the model selection exercise is performed (that is, the posterior probabilities have been
already obtained). In BayesVarSel these inferences can be obtained acting over objects of
class "Bvs".

Suppose that Λ is a quantity of interest and that under model Mγ it has a posterior
distribution πN(Λ | y, Mγ) with respect to certain non-informative prior πN

γ . Then, we can
average over all entertained models using the posterior probabilities in (3) as weights to
obtain

f (Λ | y) = ∑
γ

πN(Λ | y, Mγ) Pr(Mγ | y). (9)

In BayesVarSel for πN
γ we use the reference prior developed in Berger and Bernardo (1992)

and further studied in Berger et al. (2009). This is an objective prior with very good
theoretical properties. The formulas for the posterior distribution with a fixed model are
known (Bernardo and Smith, 1994). These priors are different from the model selection priors
used to compute the Bayes factors (see the second section), but, as shown in Consonni
and Deldossi (2016), the posterior distributions approximately coincide, and so f (Λ | y)
basically can be interpreted as the posterior distribution of Λ.

There are two different quantities, Λ, that are of main interest in variable selection
problems. First is a regression parameter βi and second is a future observation y? associated
with known values of the covariates x?. In what follows we refer to each of these problems
as (model averaged) estimation and prediction, respectively, to which we devote the next
subsections.

Estimation

Inclusion probabilities Pr(xi | y) can be roughly interpreted as the probability that βi is
different from zero. Nevertheless, it does not say anything about the magnitude of the
coefficient βi nor anything about its sign.

Such type of information can be obtained from the distribution in (9) which in the case
of Λ ≡ (α, β) is

f (α, β | y) = ∑
γ

Stpγ+p0((α, βγ) | (α̂, β̂γ), (Z>γ Zγ)
−1 SSEγ

n− pγ − p0
, n− pγ − p0) Pr(Mγ | y),

(10)
where α̂, β̂γ is the maximum likelihood estimator under Mγ (see (4)), Zγ = (X0, Xγ) and
SSEγ is the sum of squared errors in Mγ. St above refers to the multivariate student
distribution:

Stk(x | µ, Σ, d f ) ∝
(
1 +

1
d f

(x− µ)>Σ−1(x− µ)
)−(d f+k)/2.
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In BayesVarSel the whole model averaged distribution in (10) is provided in the form
of a random sample through the function BMAcoeff which depends on two arguments:
x, a "Bvs" object and n.sim, the number of observations to be simulated (with default
value of 10000). The returned object is an object of class "bma.coeffs" which is a column-
named matrix with n.sim rows (one per each simulation) and p + p0 columns (one per each
regression parameter). The way that BMAcoeff works depends on whether the object was
created with Bvs or with GibbsBvs. This is further explained below.

If the Bvs object was generated with Bvs In this case the models over which the average
is performed are the n.keep (previously specified) best models. Hence, if n.keep equals 2p

then all competing models are used; while, if n.keep<2p, only a proportion of them are used
and posterior probabilities are re-normalized to sum to one.

On many occasions where estimations are required, the default value of n.keep (which
we recall is 10) is small and should be increased. Ideally 2p should be used but, as noticed
by Raftery et al. (1997) this is normally unfeasible and commonly it is sufficient to average
over a reduced set of good models that accumulate a reasonable posterior mass. This set is
what Raftery et al. (1997) call the “Occam’s window.” The function BMAcoeff informs about
the total probability accumulated in the models that are used.

For illustrative purposes, let us retake the UScrime dataset and, in particular, the example
in first section in which, apart from the constant, the variable Ed was assumed as fixed. The
total number of models is 214 = 16384 and we execute Bvs again but now with n.keep=2000:

> crime.Edfix <- Bvs(formula = y ~ ., data = UScrime,
+ null.model = y ~ Ed, n.keep = 2000)
> crime.Edfix

(This takes about 1.9 seconds). The crime.Edfix object contains identical information as the
one previously created with the same name, except for the models retained, which in this
case are the best 2000. These models accumulate a probability3 of roughly 0.90, which seems
quite reasonable to derive the estimates. We do so executing the second command of the
following script (the seed is fixed for the sake of reproducibility).

> set.seed(1234)
> bma.crime.Edfix <- BMAcoeff(crime.Edfix)
Simulations obtained using the best 2000 models
that accumulate 0.9 of the total posterior probability

The distribution in (10) and hence the simulations obtained can be highly multimodal and
providing default summaries of it (like the mean or standard deviation) is potentially mis-
leading. For a first exploration of the model averaged distribution, BayesVarSel comes
armed with a plotting function, histBMA, that produces a histogram-like representation bor-
rowing ideas from Scott and Berger (2006) and placing a bar at zero with height proportional
to the number of zeros obtained in the simulation.

The function histBMA depends on several arguments:

• x An object of class bma.coeffs.

• covariate A string specifying the name of an explanatory variable whose accompany-
ing coefficient is to be represented. This must be the name of one of the columns in
x.

• n.breaks The number of equal width bars for the histogram. Default value is 100.

• text If set to TRUE (default value) the frequency of zeroes is added at the top of the bar
at zero.

• gray.0 A numeric value between 0 and 1 that specifies the darkness, in a gray scale (0
is white and 1 is black) of the bar at zero. Default value is 0.6.

• gray.no0 A numeric value between 0 and 1 that specifies the darkness, in a gray scale
(0 is white and 1 is black) of the bars different from zero. Default value is 0.8.

3sum(crime.Edfix$modelsprob$prob)
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Figure 3: Representation provided by the function histBMA of the Model averaged posterior distribu-
tions of β Ineq, βTimeand βProb for the UScrime dataset with a constant and Ed considered as fixed in the
variable selection exercise.

For illustrative purposes let us examine the distributions of β Ineq (inclusion probability
0.99); βTime (0.24) and βProb (0.62) using histBMA

> histBMA(bma.crime.Edfix, covariate = "Ineq", n.breaks = 50)
> histBMA(bma.crime.Edfix, covariate = "Time", n.breaks = 50)
> histBMA(bma.crime.Edfix, covariate = "Prob", n.breaks = 50)

The plots obtained are reproduced in Figure 3. We can see that Ineq has a positive effect.
This distribution is unimodal so there is no drawback to summarizing the effect of the
response Ineq over y (crime) using say, the mean or quantiles, For example:

> quantile(bma.crime.Edfix[, "Ineq"], probs = c(0.05, 0.5, 0.95))
5% 50% 95%

4.075685 7.150184 10.326606

This implies an estimated effect of 7.2 with a 90% credible interval [4.1,10.3]. The situation
of Time is clear and its estimated effect is basically null (in agreement with a low inclusion
probability).

Much more problematic is reporting estimates of the effect of Prob with a highly polarized
estimated effect being either very negative (around -4100) or zero (again in agreement with its
inconclusive inclusion probabilty of 0.62). Notice that, in this case, the mean (approximately
-2500) should not be used as a sensible estimation of the parameter βProb.

If the Bvs object was generated with GibbsBvs In this case, the average in (10) is per-
formed over the n.iter (an argument previously defined) models sampled in the MCMC
scheme. Theoretically this corresponds to sampling over the whole distribution (all models
are considered) and leads to the approximate method pointed out in Raftery et al. (1997). All
previous considerations regarding the difficult nature of the underlying distribution apply
here.

Let us consider again the SDM dataset in which analysis we created growth.wstar7 in the
fourth section. Suppose we are interested in the effect of the variable P60 on the response
GDP. The summary method informs that this variable has an inclusion probability of 0.77.

> set.seed(1234)
> bma.growth.wstar7 <- BMAcoeff(growth.wstar7)
Simulations obtained using the 10000 sampled models.
Their frequencies are taken as the true posterior probabilities
> histBMA(bma.growth.wstar7, covariate = "P60", n.breaks=50)

The distribution is bimodal (graph not shown here to save space) with modes at zero and
2.8, approximately. Again, it is difficult to provide simple summaries to describe the model
averaged behaviour of P60. Nevertheless, it is always possible to answer relevant questions
such as: what is the probability that the effect of P60 over savings is greater than one?

> mean(bma.growth.wstar7[, "P60"] > 1)
[1] 0.7511

Prediction

Suppose we want to predict a new observation y? with associated values of covariates
(x?)> ∈ Rp0+p (in what follows, the product of two vectors corresponds to the usual scalar
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Figure 4: For SDM data and related Bvs object growth.wstar7, model averaged prediction of the
“mean” case (predicting the output associated with the mean of observed covariates)

product). In this case, the distribution (9) adopts the form

f (y? | y, x?) = ∑
γ

St(y? | x?γ (α̂, β̂γ),
SSEγ

hγ
, n− pγ − p0) Pr(Mγ | y), (11)

where
hγ = 1− x?γ

(
(x?γ)

>x?γ + Z>γ Zγ

)−1
(x?γ)

>.

As with estimations, BayesVarSel has implemented a method for the S3 function predict,
designed to simulate a desired number of observations from (11). A main difference with
model averaged estimations is that, typically, the above predictive distribution is unimodal.

The predict method depends on object, an object of class "Bvs", newdata, a data frame
with the values of the covariates (the intercept, if needed, is automatically added) and n.sim
the number of observations to be simulated. The considerations about the calculation of the
probabilities described in the previous section for the Bvs object depending on the type of
function originally used apply here.

The predict method returns a matrix with n.sim rows (one per each simulated observa-
tion) and with the number of columns being the number of cases (rows) in the data frame
newdata.

For illustrative purposes, consider the "Bvs" object named growth.wstar7 from the
analysis of the SDM dataset. Simulations from the predictive distribution (11) associated
with values of the covariates fixed at their means can be obtained with the following code.
Here, a histogram is produced (see Figure 4) as a graphical approximation of the underlying
distribution.

> set.seed(1234)
> pred.growth.wstar7 <- predict(object = growth.wstar7,
+ newdata = data.frame(t(colMeans(SDM))))
> hist(pred.growth.wstar7[, 1], main = "SDM",
+ border = gray(0.6), col = gray(0.8), xlab = "y")

Future work

The first version of BayesVarSel was released on December 2012 with the main idea of
making available the C code programmed for the work Garcia-Donato and Martinez-Beneito
(2013) to solve exactly moderate to large variable selection problems. Since then, seven
versions have followed with new abilities that make up the complete toolbox that we have
described in this paper.

Nevertheless, BayesVarSel is an ongoing project that we plan to continue in the fu-
ture as solid and contrasted methods become available. The emphasis is placed on the
prior distribution that should be used, since this is a particularly relevant aspect of model
selection/testing problems.

New functionalities that we expect to incorporate in the future are:
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• The case where n < p + p0 and possibly n << p + p0,

• specific methods for handling factors,

• heteroscedastic errors,

• other types of error distributions.

Acknowledgments

This paper was supported in part by the Spanish Ministry of Economy and Competitivity
under grant MTM2016-77501-P (BAiCORRE). The authors would like to thank the referees
for their many valuable comments that helped to greatly improve both, this paper and our
package BayesVarSel. Also, we would like to thank Jim Berger for his suggestions during
the process of building the package and Carlos Vergara for his invaluable help with the use
of the versions control system Git.

Bibliography

M. M. Barbieri and J. O. Berger. Optimal predictive model selection. The Annals of Statistics,
32(3):870–897, 2004. URL https://doi.org/10.1214/009053604000000238. [p164]

M. J. Bayarri and G. García-Donato. Extending conventional priors for testing general
hypotheses in linear models. Biometrika, 94(1):135–152, 2007. URL https://doi.org/10.
1093/biomet/asm014. [p159]

M. J. Bayarri, J. O. Berger, A. Forte, and G. García-Donato. Criteria for Bayesian model
choice with application to variable selection. The Annals of Statistics, 40:1550–1577, 2012.
URL https://doi.org/10.1214/12-AOS1013. [p159, 173]

D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics: Identifying Influential Data
and Sources of Collinearity. John Wiley & Sons, 2005. URL https://doi.org/10.1002/
0471725153. [p156]

J. O. Berger. The case for objective Bayesian analysis. Bayesian Analysis, 1(3):385–402, 2006.
URL https://doi.org/10.1214/06-BA115. [p155]

J. O. Berger and J. M. Bernardo. On the development of the reference prior method. In J. M.
Bernardo, editor, Bayesian Statistics 4, pages 35–60. London: Oxford University Press, 1992.
[p167]

J. O. Berger and L. R. Pericchi. Objective Bayesian Methods for Model Selection: Introduction
and Comparison. In Model Selection, volume 38 of Lecture Notes–Monograph Series, pages
135–207. Institute of Mathematical Statistics, Beachwood, OH, 2001. URL https://doi.
org/10.1214/lnms/1215540968. [p158]

J. O. Berger, J. M. Bernardo, and D. Sun. The formal definition of reference priors. The Annals
of Statistics, 37(2):905–938, 2009. URL https://doi.org/10.1214/07-AOS587. [p167]

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. John Wiley & Sons, 1994. [p167]

M. Clyde. BAS: Bayesian Adaptive Sampling for Bayesian Model Averaging, 2017. URL http:
//CRAN.R-project.org/package=BAS. R package version 1.4.7. [p158]

G. Consonni and L. Deldossi. Objective bayesian model discrimination in follow-up ex-
perimental designs. Test, 25:397–412, 2016. URL https://doi.org/10.1007/s11749-015-
0461-3. [p167]

I. Ehrlich. Participation in illegitimate activities: a theoretical and empirical investigation.
Journal of Political Economy, 81(3):521–567, 1973. [p161]

J. Faraway. Practical Regression and Anova in R, 2002. [p156, 160]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1214/009053604000000238
https://doi.org/10.1093/biomet/asm014
https://doi.org/10.1093/biomet/asm014
https://doi.org/10.1214/12-AOS1013
https://doi.org/10.1002/0471725153
https://doi.org/10.1002/0471725153
https://doi.org/10.1214/06-BA115
https://doi.org/10.1214/lnms/1215540968
https://doi.org/10.1214/lnms/1215540968
https://doi.org/10.1214/07-AOS587
http://CRAN.R-project.org/package=BAS
http://CRAN.R-project.org/package=BAS
https://doi.org/10.1007/s11749-015-0461-3
https://doi.org/10.1007/s11749-015-0461-3


CONTRIBUTED RESEARCH ARTICLES 172

J. Faraway. Functions and Datasets for Books by Julian Faraway, 2016. URL http://CRAN.R-
project.org/package=faraway. R package version 1.0.7. [p156]

C. Fernández, E. Ley, and M. F. Steel. Benchmark priors for Bayesian model averag-
ing. Journal of Econometrics, 100:381–427, 2001. URL https://doi.org/10.1016/S0304-
4076(00)00076-2. [p174]

A. Forte, G. Garcia-Donato, and M. F. J. Steel. Methods and Tools for Bayesian Variable
Selection and Model Averaging in Univariate Linear Regression. International Statistical
Review (to appear), 2018. URL https://doi.org/10.1111/insr.12249. [p158]

G. Garcia-Donato and A. Forte. BayesVarSel: Bayes Factors, Model Choice and Variable Selec-
tion In Linear Models, 2015. URL http://CRAN.R-project.org/package=BayesVarSel. R
package version 1.6.1. [p155]

G. Garcia-Donato and M. A. Martinez-Beneito. On Sampling Strategies in Bayesian Variable
Selection Problems with Large Model Spaces. Journal of the American Statistical Association,
108(501):340–352, 2013. URL https://doi.org/10.1080/01621459.2012.742443. [p163,
164, 170]

E. I. George and R. E. McCulloch. Approaches for Bayesian variable selection. Statistica
Sinica, 7:339–373, 1997. [p163]

H. Jeffreys. Theory of Probability. Oxford University Press, 3rd edition, 1961. [p174]

R. E. Kass and A. E. Raftery. Bayes factors. Journal of the American Statistical Association,
90(430):773–795, 1995. URL https://doi.org/10.1080/01621459.1995.10476572. [p156,
158]

R. E. Kass and L. Wasserman. A reference Bayesian test for nested hypotheses and its
relationship to the Schwarz criterion. Journal of the American Statistical Association, 90(431):
928–934, 1995. URL https://doi.org/10.1080/01621459.1995.10476592. [p174]

P. M. Lee. Bayesian Statistics. An Introduction. Second Edition. John Wiley & Sons, 1997. [p155]

E. Ley and M. F. Steel. On the effect of prior assumptions in Bayesian model averaging
with applications to growth regression. Journal of Applied Econometrics, 24(4):651–674, 2009.
URL https://doi.org/10.1002/jae.1057. [p160, 162]

E. Ley and M. F. J. Steel. Jointness in Bayesian variable selection with applications to growth
regression. Journal of Macroeconomics, 29(3):476 – 493, 2007. URL https://doi.org/10.
1016/j.jmacro.2006.12.002. Special Issue on the Empirics of Growth Nonlinearities.
[p161, 165]

F. Liang, R. Paulo, G. Molina, M. A. Clyde, and J. O. Berger. Mixtures of g-priors for Bayesian
variable selection. Journal of the American Statistical Association, 103(481):410–423, 2008.
URL https://doi.org/10.1198/016214507000001337. [p174]

D. Madigan and A. E. Raftery. Model selection and accounting for model uncertainty in
graphical models using Occam’s window. Journal of the American Statistical Association, 89:
1535 – 1546, 1994. URL https://doi.org/10.1080/01621459.1994.10476894. [p167]

R. D. Morey, J. N. Rouder, and T. Jamil. BayesFactor: Computation of Bayes Factors for Com-
mon Designs, 2015. URL http://CRAN.R-project.org/package=BayesFactor. R package
version 0.9.11-1. [p158]

A. Raftery, J. Hoeting, C. Volinsky, I. Painter, and K. Y. Yeung. BMA: Bayesian Model Averaging,
2015. URL http://CRAN.R-project.org/package=BMA. R package version 3.18.4. [p158]

A. E. Raftery. Bayesian model selection in social research. Sociological Methodology, 25:111 –
163, 1995. URL http://doi.org/10.2307/271063. [p167]

A. E. Raftery, D. Madigan, and J. Hoeting. Bayesian model averaging for linear regression
models. Journal of the American Statistical Association, 92:179–191, 1997. [p168, 169]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=faraway
http://CRAN.R-project.org/package=faraway
https://doi.org/10.1016/S0304-4076(00)00076-2
https://doi.org/10.1016/S0304-4076(00)00076-2
https://doi.org/10.1111/insr.12249
http://CRAN.R-project.org/package=BayesVarSel
https://doi.org/10.1080/01621459.2012.742443
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1080/01621459.1995.10476592
https://doi.org/10.1002/jae.1057
https://doi.org/10.1016/j.jmacro.2006.12.002
https://doi.org/10.1016/j.jmacro.2006.12.002
https://doi.org/10.1198/016214507000001337
https://doi.org/10.1080/01621459.1994.10476894
http://CRAN.R-project.org/package=BayesFactor
http://CRAN.R-project.org/package=BMA
http://doi.org/10.2307/271063


CONTRIBUTED RESEARCH ARTICLES 173

N. Ravishanker and D. K. Dey. A First Course in Linear Model Theory. Chapman and
Hall/CRC, 2002. [p159]

D. Rossell, J. D. Cook, D. Telesca, and P. Roebuck. Mombf: Moment and Inverse Moment Bayes
Factors, 2014. URL http://CRAN.R-project.org/package=mombf. R package version 1.5.9.
[p158]

X. Sala-I-Martin, G. Doppelhofer, and R. I. Miller. Determinants of long-term growth: A
Bayesian averaging of classical estimates (BACE) approach. American Economic Review, 94
(4):813–835, 2004. URL https://doi.org/10.1257/0002828042002570. [p161]

J. G. Scott and J. O. Berger. An exploration of aspects of Bayesian multiple testing. Journal of
Statistical Planning and Inference, 136(7):2144–2162, 2006. URL https://doi.org/10.1016/
j.jspi.2005.08.031. [p159, 168]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, New York,
4th edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0.
[p161]

A. Zellner. On assessing prior distributions and Bayesian regression analysis with g-prior
distributions. In A. Zellner, editor, Bayesian Inference and Decision Techniques: Essays in
Honor of Bruno De Finetti, pages 389–399. Edward Elgar Publishing Limited, 1986. [p174]

A. Zellner and A. Siow. Posterior odds ratio for selected regression hypotheses. In J. M.
Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, editors, Bayesian Statistics 1,
pages 585–603. Valencia: University Press, 1980. [p174]

A. Zellner and A. Siow. Basic Issues in Econometrics. Chicago: University of Chicago Press,
1984. [p174]

S. Zeugner and M. Feldkircher. Bayesian model averaging employing fixed and flexible
priors: The BMS package for R. Journal of Statistical Software, 68(4):1–37, 2015. URL
https://doi.org/10.18637/jss.v068.i04. [p158]

Gonzalo Garcia-Donato
Universidad de Castilla-La Mancha (Department of Economy and Finance; Instituto de Desarrollo
Regional (IDR))
Plaza Universidad 2, Albacete
Spain
gonzalo.garciadonato@uclm.es

Anabel Forte
Universidad de Valencia (Department of Statistics and OR) Calle Dr. Moliner, Burjassot (Valencia)
Spain
anabel.forte@uv.es

Appendix: Model selection priors for parameters within models

A key technical component of Bayes factors and hence of posterior probabilities is the prior
distribution for the parameters within each model. That is, the prior πγ(α, βγ, σ) for the
specific parameters of the model

Mγ : y = X0α + Xγβγ + ε, ε ∼ Nn(0, σ2 In). (12)

In BayesVarSel the prior used is specified in main functions Btest, Bvs, and GibbsBvs with
the argument prior.betas with default value ‘"Robust"’ that corresponds to the proposal
the same name in (Bayarri et al., 2012). It is argued in this paper, based on foundational
arguments, that the robust prior is an optimal choice for testing in linear models.
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The robust prior for Mγ can be specified hierarchically as

πR
γ (α, βγ, σ) = σ−1 Npγ(βγ | 0, g Σγ), (13)

where Σγ = σ2 (V>γ V γ)−1, with

V γ = (In − X0(X>0 X0)
−1X>0 )Xγ, (14)

and

g ∼ pR
γ (g) =

1
2

√
1 + n

pγ + p0
(g + 1)−3/2, g >

1 + n
pγ + p0

− 1. (15)

For the null model, the prior assumed is π0(α, σ) = σ−1.
The idea of using the matrix Σγ to scale variable selection priors dates back to Zellner

and Siow (1980) and is present in other very popular proposals in the literature. As we
next describe, these proposals differ about which distribution should be used for the hy-
perparameter g. Many of these can be implemented in BayesVarSel through the argument
prior.betas.

• prior.betas="ZellnerSiow" (Jeffreys (1961); Zellner and Siow (1980, 1984)) corre-
sponds to g ∼ IGa(1/2, n/2) (leading to the very famous proposal of using a Cauchy).

• prior.betas="gZellner" (Zellner (1986); Kass and Wasserman (1995)) corresponds to
fixing g = n (leading to the so called Unit Information Prior).

• prior.betas="FLS" (Fernández et al. (2001)) corresponds to fixing g = max{n, p2}.
• prior.betas="Liangetal" (Liang et al. (2008)) corresponds to g ∼ π(g) ∝ (1 +

g/n)−3/2.
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onewaytests: An R Package for One-Way
Tests in Independent Groups Designs
by Osman Dag, Anil Dolgun and Naime Meric Konar

Abstract One-way tests in independent groups designs are the most commonly utilized statistical
methods with applications on the experiments in medical sciences, pharmaceutical research, agri-
culture, biology, engineering, social sciences and so on. In this paper, we present the onewaytests
package to investigate treatment effects on the dependent variable. The package offers the one-way
tests in independent groups designs, which include ANOVA, Welch’s heteroscedastic F test, Welch’s
heteroscedastic F test with trimmed means and Winsorized variances, Brown-Forsythe test, Alexander-
Govern test, James second order test and Kruskal-Wallis test. The package also provides pairwise
comparisons, graphical approaches, and assesses variance homogeneity and normality of data in each
group via tests and plots. A simulation study is also conducted to give recommendations for applied
researchers on the selection of appropriate one-way tests under assumption violations. Furthermore,
especially for non-R users, a user-friendly web application of the package is provided. This application
is available at http://www.softmed.hacettepe.edu.tr/onewaytests.

Introduction

There are many statistical procedures for one-way independent groups designs. The one-way fixed
effects analysis of variance (ANOVA) is the most common one being used for comparing k independent
group means. Independence of the observations in each group and between groups, normality (i.e.,
k samples come at random from normal distribution) and variance homogeneity (i.e., k populations
have equal variances) are three basic assumptions of ANOVA. ANOVA is a valid and powerful
test for identifying group differences provided that these assumptions are held. However, most of
the data sets in practice are not normally distributed and group variances are heterogeneous, and
it is difficult to find a data set that satisfies both assumptions. When the assumptions underlying
ANOVA are violated, the drawn inferences are also invalid. There have been remarkable efforts to
find an appropriate and robust test statistic under non-normality and variance heterogeneity. Several
procedures alternative to ANOVA were proposed, including Welch’s heteroscedastic F test (Welch,
1951), Welch’s heteroscedastic F test with trimmed means and Winsorized variances (Welch, 1951),
Alexander-Govern test (Alexander and Govern, 1994), James second order test (James, 1951, 1954),
Brown-Forsythe test (Brown and Forsythe, 1974a,b) and Kruskal-Wallis test (Kruskal and Wallis, 1952).

In the literature, there are many studies in which the comparison of ANOVA and its alternative
tests was made with respect to type I error rate and power when the assumptions of ANOVA are not
satisfied. The effects of sample size (balanced/unbalanced case), non-normality, unequal variances,
and combined effects of non-normality and unequal variances were investigated in details (Wilcox,
1988; Cribbie et al., 2012; Lantz, 2013; Gamage and Weerahandi, 1998; Parra-Frutos, 2013; Cribbie et al.,
2007). In the light of these studies, we conduct a Monte Carlo simulation study in an attempt to give
recommendations for applied researchers on the selection of appropriate one-way tests.

ANOVA, Welch’s heteroscedastic F test, Welch’s heteroscedastic F test with trimmed means and
Winsorized variances, Kruskal-Wallis test, and Brown-Forsythe test are available under some packages
(given in Table 1) on the Comprehensive R Archive Network (CRAN). Alexander-Govern test and
James second order test are also found to be robust to assumption violations, but have been overlooked
as their calculation and implementation were not easily available elsewhere.

In this paper, we introduce an R package, onewaytests (Dag et al., 2017) which implements
Alexander-Govern test and James second order test, in addition to the ANOVA, Welch’s heteroscedastic
F test, Welch’s heteroscedastic F test with trimmed means and Winsorized variances, Kruskal-Wallis
test, and Brown-Forsythe test. Besides the omnibus tests, the package provides pairwise comparisons
to investigate which groups create the difference providing that a statistically significant difference is
obtained by the omnibus test. Moreover, the package offers several graphic types such as grouped
box-and-whisker plot and error bar graph. Also, it provides statistical tests and plots (i.e. Q-Q plot
and histogram) to assess variance homogeneity and normality, in the package version 1.5 and later.
The onewaytests package is publicly available on the CRAN.

The organization of this paper is presented as follows. First, we give the theoretical background
on the one-way tests in independent groups designs. Second, we introduce the onewaytests package
and demonstrate the applicability of the package using two real-life datasets. Third, the web interface
of the onewaytests package is introduced. A Monte Carlo simulation study is also conducted to give
recommendations for applied researchers on the selection of appropriate tests included in the package.
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Results of this simulation study and the general conclusions on the effects of assumption violations
are mentioned.

One-way tests in independent groups designs

In this section, the statistical tests that are used to test the equality of several populations in the one-
way independent groups designs are explained. Among these tests, ANOVA, Welch’s heteroscedastic
F test (Welch, 1951), Alexander-Govern test (Alexander and Govern, 1994), James second order test
(James, 1951, 1954) and Brown-Forsythe test (Brown and Forsythe, 1974a,b) test the null hypothesis
H0 : µ1 = µ2 = . . . = µk versus alternative H1 : at least one µj (j = 1, 2, . . . , k) is different. Welch’s
heteroscedastic F test with trimmed means and Winsorized variances (Welch, 1951) tests the equality
of population trimmed means, H0 : µt1 = µt2 = . . . = µtk versus alternative H1 : at least one µtj is
different, where µtj represents the trimmed mean of the jth population (j = 1, 2, . . . , k). Kruskal-Wallis
test (Kruskal and Wallis, 1952) tests the null hypothesis H0 : θ1 = θ2 = . . . = θk versus alternative H1 :
at least one θj (j = 1, 2, . . . , k) is different. For the Kruskal-Wallis test, θj represents sum of the ranks of
the jth population.

ANOVA

The one-way fixed effects analysis of variance (ANOVA) is the most common statistical procedure to
test the equality of k independent population means. Underlying assumptions associated with ANOVA
include homogeneity of group variances, normality of distributions and statistical independence of
errors. Under these conditions, the ANOVA test statistic,

F =
∑j nj(X̄.j − X̄..)2/(k− 1)

∑i ∑j(Xij − X̄.j)2/(N − k)
, (1)

follows an F distribution with k− 1 degrees of freedom for the numerator and N− k degrees of freedom
for the denominator. In Equation (1), k is the number of groups, N is the total number of observations,
and nj is the number of observations in the jth group. Xij is the ith observation (i = 1, 2, . . . , nj) in
the jth group (j = 1, 2, . . . , k), ∑j nj = N, X̄.. is the overall mean, where X̄.. = ∑j nj(X̄.j)/N and X̄.j is
sample mean for the jth group, where X̄.j = ∑i Xij/nj. ANOVA is more powerful if the assumptions of
normality and variance homogeneity hold true. Non-normality has minimal effect on the type I error
when the variances are equal (Lantz, 2013) but when the variances are not equal, ANOVA provides
poor control over the type I and type II error rates (Bishop, 1976).

Welch’s heteroscedastic F test

Welch (1951) proposed a heteroscedastic alternative to ANOVA that is robust to the violation of
variance homogeneity assumption. Under the null hypothesis H0 : µ1 = µ2 = . . . = µk, the test
statistic Fw,

Fw =
∑j wj(X̄.j − X

′
..)

2/(k− 1)[
1 + 2

3 ((k− 2)ν)
] , (2)

follows an F distribution with degrees of freedom k− 1 for the numerator and 1/ν degrees of freedom
for the denominator. In Equation (2), wj = nj/S2

j , S2
j = ∑i(Xij − X̄.j)

2/(nj − 1),

X
′
.. =

∑j wjX̄.j

∑j wj
,

and

ν =

3 ∑j

[(
1− wj

∑j wj

)2
/(nj − 1)

]
k2 − 1

.

Welch’s heteroscedastic F test is robust and less sensitive to heteroscedasticity when compared to
the ANOVA as within groups variance is based on the relationship between the different sample sizes
in the different groups instead of a simple pooled variance estimate (Lantz, 2013).
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Welch’s heteroscedastic F test with trimmed means and Winsorized variances

Welch’s heteroscedastic F test with trimmed means and Winsorized variances (Welch, 1951) is a
robust procedure that tests the equality of means by substituting trimmed means and Winsorized
variances for the usual means and variances. Therefore, this test statistic is relatively insensitive
to the combined effects of non-normality and variance heterogeneity (Keselman et al., 2008). Let
X(1)j ≤ X(2)j ≤ . . . ≤ X(nj)j be the ordered observations in the jth group and gj = ‖εnj‖, ε is the
proportion to be trimmed in each tail of the distribution. After trimming, the effective sample size for
the jth group becomes hj = nj − 2gj. Then jth sample trimmed mean is

X̄tj =
1
hj

nj−gj

∑
i=gj+1

X(i)j,

and jth sample Winsorized mean is

X̄wj =
1
nj

nj

∑
i=1

Yij,

where

Yij =


X(gj+1)j if Xij ≤ X(gj+1)j ,

Xij if X(gj+1)j < Xij < X(nj−gj)j,

X(nj−gj)j if Xij ≥ X(nj−gj)j.

The sample Winsorized variance is

s2
wj =

1
(nj − 1)

nj

∑
i=1

(Yij − X̄wj)
2.

Let

qj =
(nj − 1)s2

wj

hj(hj − 1)
,

wj =
1
qj

,

U = ∑
j

wj,

X̃ =
1
U ∑

j
wjX̄tj,

A =
1

k− 1 ∑
j

wj(X̄tj − X̃)2,

B =
2(k− 2)
k2 − 1 ∑

j

(1− wj/U)2

hj − 1
.

Under H0 : µt1 = µt2 = . . . = µtk, Welch’s heteroscedastic F test with trimmed means and
Winsorized variances Fwt,

Fwt =
A

B + 1
, (3)

follows an approximately F distribution with k− 1 and ν′ degrees of freedom, where ν′ is

ν′ =

 3
k2 − 1 ∑

j

(1− wj/U)2

hj − 1

−1

.

Fwt is not only less sensitive to heteroscedasticity and non-normality but also robust to the negative
effects of outliers as it utilizes the trimmed means and Winsorised variances (Keselman et al., 2008).
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Brown-Forsythe test

Brown and Forsythe (1974a,b) proposed the following test statistic:

FBF =
∑j n.j(X̄.j − X̄..)2

∑j(1− nj/N)S2
j

. (4)

Under the null hypothesis, FBF statistic has an approximately F distribution with k− 1 and f degrees
of freedom, where f is obtained with

f =

∑
j

c2
j /(nj − 1)

−1

,

and

cj =
(1− nj/N)S2

j[
∑j(1− nj/N)S2

j

] .

FBF is a modification of ANOVA which has the same numerators as the ANOVA but an altered
denominator. This test is more powerful when some variances appear unusually low (Brown and
Forsythe, 1974a).

Alexander-Govern test

Alexander and Govern (1994) presented another robust test that is alternative to ANOVA, and it is
used when group variances are not homogeneous. The test statistic for Alexander-Govern test is

χ2
AG =

k

∑
j=1

z2
j . (5)

Under the null hypothesis, χ2
AG is distributed as χ2 distribution with k− 1 degrees of freedom. In

Equation (5),

zj = c +
(c3 + 3c)

b
− (4c7 + 33c5 + 240c3 + 855c)

(10b2 + 8bc4 + 1000b)
,

where c = [α× ln(1 + t2
j /vj)]

1/2, b = 48α2, α = vj − 0.5 and vj = nj − 1. The t statistic for each group
is

tj =
X̄.j − X+

S′j
. (6)

The variance-weighted mean is X+ = ∑k
j=1 wjX̄.j and the standard error for the jth group is

S
′
j =

[
∑

nj

i=1(Xij − X̄.j)
2

nj(nj − 1)

]1/2

.

Also, weights for each group are defined as

wj =
1/S

′2
j

∑k
j=1 1/S′2j

. (7)

χ2
AG is another modification of ANOVA under heterogeneity of variance using the normalizing

transformation of the one-sample t statistic. This test provides a good control of type I and II error
rates for normally distributed data, but it is not robust to non-normality (Myers, 1998).

James second order test

An alternative test to ANOVA was proposed by James (1951). This test statistic (J) is

J = ∑
j

t2
j , (8)
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where tj is given in Equation (6). The test statistic, J, is compared to a critical value, h(α), where

h(α) = r +
1
2
(3χ4 + χ2)T +

1
16

(3χ4 + χ2)
2
(

1− k− 3
r

)
T2

+
1
2
(3χ4 + χ2)(8R23 − 10R22 + 4R21 − 6R2

12 + 8R12R11 − 4R2
11)

+ (2R23 − 4R22 + 2R21 − 2R2
12 + 4R12R11 − 2R2

11)(χ2 − 1)

+
1
4
(−R2

12 + 4R12R11 − 2R12R10 − 4R2
11 + 4R11R10 − R2

10)(3χ4 − 2χ2 − 1)

+ (R23 − 3R22 + 3R21 − R20)(5χ6 + 2χ4 + χ2)

+
3
16

(R2
12 − 4R23 + 6R22 − 4R21 + R20)(35χ8 + 15χ6 + 9χ4 + 5χ2)

+
1

16
(−2R22 + 4R21 − R20 + 2R12R10 − 4R11R10 + R2

10)(9χ8 − 3χ6 − 5χ4 − χ2)

+
1
4
(−R22 + R2

11)(27χ8 + 3χ6 + χ4 + χ2) +
1
4
(R23 − R12R11)(45χ8 + 9χ6 + 7χ4 + 3χ2).

For any integers s and t, Rst = ∑j(nj − 1)−swt
j , χ2s = rs/ [( k− 1)(k + 1) . . . (k + 2s− 3)] where r

is the (1− α) centile of a χ2 distribution with k− 1 degrees of freedom, T = ∑j(1−wj)
2/(nj − 1) and

wj is defined in Equation (7). If the test statistic, J, exceeds h(α), then the null hypothesis is rejected.

The James second order test has been acknowledged as the best option for both normal het-
eroscedastic data (Alexander and Govern, 1994) and non-normal symmetric heteroscedastic data
(Oshima and Algina, 1992). The disadvantage of this method is the complexity of the computation of
critical values.

Kruskal-Wallis test

Kruskal and Wallis (1952) proposed the nonparametric alternative to ANOVA. Let rij denote the rank

of Xij when N = n1 + . . . + nk observations are ranked from smallest to largest. Rj = ∑
nj

i=1 rij is the
sum of ranks assigned to the observations in the jth group and R̄j = Rj/nj is the average rank for
these observations. Under these definitions, the Kruskal-Wallis test statistic is given by

χ2
KW =

1
S2

 k

∑
j=1

R2
j

nj
− N(N + 1)2

4

 , (9)

where

S2 =
1

N − 1

 k

∑
j=1

nj

∑
i=1

r2
ij −

N(N + 1)2

4

 .

When nj → ∞, χ2
KW has an asymptotic χ2 distribution under the null hypothesis H0 : θ1 = θ2 =

. . . = θk. We reject H0 if χ2
KW ≥ χ2

k−1,α where χ2
k−1,α is the upper α percentile for the χ2 distribution

with k− 1 degrees of freedom. Note that, when there are no ties, S2 simplifies to N(N + 1)/12.

The Kruskal-Wallis test is robust to non-normality as it utilizes ranks instead of actual values.
However, it assumes that the observations in each group come from populations with the same shape
of distribution. Therefore, if different groups have different shapes (e.g., some are skewed to the right
and another is skewed to the left), the Kruskal-Wallis test may give inaccurate results (Fagerland and
Sandvik, 2009).

There are other R packages including one-way tests in independent groups designs; namely,
stats (R Core Team, 2017), lawstat (Gastwirth et al., 2017), coin (Hothorn et al., 2006), car (Fox and
Weisberg, 2011), WRS2 (Mair et al., 2017), welchADF (Villacorta, 2017). The aov.test (onewaytests)
can be seen as a simplified version of anova (stats) and Anova (car), but the latter two are more flexible
and comprehensive in a way that they can handle two or more variables (e.g., two-way ANOVA,
multivariate ANOVA, repeated measures ANOVA, etc.). Amongst the alternatives, the onewaytests
is the first package including seven different one-way independent design tests that are covered in
one package. A brief comparison between these packages and onewaytests is given in Table 1. In
Table 1, the numbers in parentheses indicate the rankings of the functions in terms of computational
speed and the checks indicate the availability of the specific one-way design test in the packages. The

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 180

onewaytests package has the fastest running times except for Welch’s heteroscedastic F test, where the
stats’s function elapse time is 0.001 seconds faster. Note that the computational time is system-specific
and may vary according to the number of iterations and the inclusion of additional arguments in the
functions.

Table 1: Comparison of R packages including one-way independent design tests

Test stats car lawstat welchADF WRS2 coin onewaytests
F (2)X (3)X (1)X
Fw (1)X (4)X (3)X (2)X
Fwt (3)X (2)X (1)X
FBF (2)X (1)X
χ2

AG X
J X
χ2

KW (2)X (3)X (1)X

Demonstration of the onewaytests package

The onewaytests package includes several functions specially designed for one-way independent
groups designs along with functions for assessing fundamental assumptions via relevant tests and
plots. In this section, we demonstrate the usage of onewaytests package by using two different data
sets from different fields.

Iris data

In this part, we work with iris data set, collected by Anderson (1935), available in R. Fisher (1936)
introduced this data set as an application of the linear discriminant analysis. At present, the popularity
of the data set still continues within a variety of studies; examples include the studies related to data
mining (Hu, 2005), multivariate normality assessment (Korkmaz et al., 2014), and so on.

This data set includes iris flowers’ length and width measurements of sepal and petal characteristics
in centimeters along with a grouping variable indicating the type of iris flowers (setosa, virginica and
versicolor). For illustrating the implementation of our package, we use sepal length measurements as
a response variable and iris types as a grouping variable. This data set has a total of 150 observations
(50 observations in each type of iris flowers).

After installing and loading onewaytests package, the functions designed for one-way indepen-
dent groups designs are available to be used. One-way tests in this package generally give test statistics
and p-values to decide on the hypothesis of the statistical process, except for James second order test.
In this test, test statistic and critical value are given as an output since the asymptotic distribution of
the test statistic is not available.

The onewaytests package is also able to give some basic descriptive statistics of the given groups.

# obtain some basic descriptive statistics
R> describe(Sepal.Length ~ Species, data = iris)

n Mean Std.Dev Median Min Max 25th 75th Skewness Kurtosis NA
setosa 50 5.006 0.3524897 5.0 4.3 5.8 4.800 5.2 0.1164539 2.654235 0
versicolor 50 5.936 0.5161711 5.9 4.9 7.0 5.600 6.3 0.1021896 2.401173 0
virginica 50 6.588 0.6358796 6.5 4.9 7.9 6.225 6.9 0.1144447 2.912058 0

For all functions in the onewaytests package, the argument must be specified as a formula in
which left and right-hand sides of the formula give sample values and its corresponding groups,
respectively. The left and right-hand sides of the formula must have one variable. The variable on
the left must be a numeric while the variable on the right must be a factor. Otherwise, each function
returns an error message.

The functions for one-way design tests are coded from scratch. The function for pairwise compari-
son is coded for pairwise comparison of one-way independent groups designs by using the p-value
adjustment methods available in the p.adjust function under stats package. For checking assump-
tions, the tests are used from different packages (stats, car and nortest (Gross and Ligges, 2015)) and
adapted for one-way independent groups designs. The function for the graphics is coded from scratch
using the ggplot2 package (Wickham, 2009).
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One-way tests in independent groups designs

The onewaytests package includes seven one-way tests in independent groups designs. In this part,
the implementations of these tests are presented.

ANOVA: aov.test(...)

The aov.test is utilized to test the equality of k independent population means.

R> aov.test(Sepal.Length ~ Species, data = iris, alpha = 0.05, na.rm = TRUE,
verbose = TRUE)

One-Way Analysis of Variance
---------------------------------------------------------
data : Sepal.Length and Species

statistic : 119.2645
num df : 2
denom df : 147
p.value : 1.669669e-31

Result : Difference is statistically significant.
---------------------------------------------------------

Here, the statistic is the ANOVA test statistic distributed as F with the degrees of freedom for
the numerator (num df) and denominator (denom df). Also, p.value is the significance value of the test
statistic. Since the p-value, derived from aov.test, is lower than 0.05, it can be concluded that there is
statistically significant difference between the iris species (F = 119.2645, p-value = 1.669669×10−31).

alpha is the level of significance to assess the statistical difference. Default is set to alpha = 0.05.
na.rm is a logical value indicating whether NA values should be stripped before the computation
proceeds. Default is na.rm = TRUE. verbose is a logical for printing output to R console. Default is set
to verbose = TRUE. These arguments are available in the functions for one-way tests and checking
assumptions. The users who would like to use the statistics in the output in their programs can use
the following codes.

R> result <- aov.test(Sepal.Length ~ Species, data = iris, alpha = 0.05, na.rm = TRUE,
verbose = FALSE)

# the ANOVA test statistic
R> result$statistic
[1] 119.2645

# the degrees of freedom for numerator and denominator
R> result$parameter
[1] 2 147

# the p-value of the test
R> result$p.value
[1] 1.669669e-31

Here, the codes for how to obtain the statistics from the ANOVA output are given. Since all
one-way design tests return similar outputs, similar codes are not repeated in the other tests. For all
tests, the level of significance is taken as 0.05.

Welch’s heteroscedastic F test: welch.test(...)

One may use the welch.test function in the onewaytests package to perform Welch’s heteroscedastic
F test.

R> welch.test(Sepal.Length ~ Species, data = iris)

Welch's Heteroscedastic F Test
---------------------------------------------------------
data : Sepal.Length and Species
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statistic : 138.9083
num df : 2
denom df : 92.21115
p.value : 1.505059e-28

Result : Difference is statistically significant.
---------------------------------------------------------

In the output, similar to aov.test, the statistic is the Welch’s test statistic distributed as F with
the degrees of freedom for the numerator (num df) and denominator (denom df). One can conclude that
the difference between the species is statistically significant (Fw = 138.9083, p-value = 1.505059×10−28).

Welch’s heteroscedastic F test with trimmed means and Winsorized variances: welch.test(...)

The welch.test function in the onewaytests package is also used to perform Welch’s heteroscedastic
F test with trimmed means and Winsorized variances.

R> welch.test(Sepal.Length ~ Species, data = iris, rate = 0.1)

Welch's Heteroscedastic F Test with Trimmed Means and Winsorized Variances
-----------------------------------------------------------------------------
data : Sepal.Length and Species

statistic : 123.6698
num df : 2
denom df : 71.64145
p.value : 5.84327e-24

Result : Difference is statistically significant.
-----------------------------------------------------------------------------

Here, the statistic is the test statistic distributed as F with the degrees of freedom for the numer-
ator (num df) and denominator (denom df). Moreover, the rate is the rate of observations trimmed
and Winsorized from each tail of the distribution. If rate = 0, it performs Welch’s heteroscedastic F
test. Otherwise, one can perform Welch’s heteroscedastic F test with trimmed means and Winsorized
variances. Default is set to rate = 0. One can conclude that there is a statistically significant difference
between the species (Fwt = 123.6698, p-value = 5.84327×10−24).

Brown-Forsythe test: bf.test(...)

One may use the bf.test function in the onewaytests package to perform Brown-Forsythe test to
compare more than two groups.

R> bf.test(Sepal.Length ~ Species, data = iris)

Brown-Forsythe Test
---------------------------------------------------------
data : Sepal.Length and Species

statistic : 119.2645
num df : 2
denom df : 123.9255
p.value : 1.317059e-29

Result : Difference is statistically significant.
---------------------------------------------------------

In the output, the statistic is the Brown-Forsythe test statistic distributed as F with the degrees
of freedom for numerator (num df) and denominator (denom df). It can be concluded that there is a
statistically significant difference between the iris species (FBF = 119.2645, p-value = 1.317059×10−29).

Alexander-Govern test: ag.test(...)

The ag.test function in the onewaytests package is used to perform Alexander-Govern test.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 183

R> ag.test(Sepal.Length ~ Species, data = iris)

Alexander-Govern Test
-----------------------------------------------------------
data : Sepal.Length and Species

statistic : 146.3573
parameter : 2
p.value : 1.655451e-32

Result : Difference is statistically significant.
-----------------------------------------------------------

Here, statistic is the Alexander-Govern test statistic distributed as χ2 with the degrees of freedom
(parameter). One can conclude that the difference between the species is statistically significant (χ2

AG
= 146.3573, p-value = 1.655451×10−32).

James second order test: james.test(...)

One may use the james.test function in the onewaytests package to perform James second order test.

R> james.test(Sepal.Length ~ Species, data = iris, alpha = 0.05)

James Second Order Test
---------------------------------------------------------------
data : Sepal.Length and Species

statistic : 279.8251
criticalValue : 6.233185

Result : Difference is statistically significant.
---------------------------------------------------------------

Here, alpha is the significance level, statistic is the James second order test statistic, J, criticalValue
is the critical value, h(α), corresponding to the significance level, α. If J exceeds h(α), then the null
hypothesis is rejected. Since J = 279.8251, obtained from james.test, is higher than h(α) = 6.233185,
it can be concluded that there is a statistically significant difference between the iris species.

Kruskal-Wallis test: kw.test(...)

The kw.test function in the onewaytests package is utilized to perform Kruskal-Wallis test.

R> kw.test(Sepal.Length ~ Species, data = iris)

Kruskal-Wallis Test
---------------------------------------------------------
data : Sepal.Length and Species

statistic : 96.93744
parameter : 2
p.value : 8.918734e-22

Result : Difference is statistically significant.
---------------------------------------------------------

In the output, statistic is the Kruskal-Wallis test statistic distributed as χ2 with the degrees
of freedom (parameter). One can conclude that the difference between the species is statistically
significant (χ2

KW = 96.93744, p-value = 8.918734×10−22).

Pairwise comparisons

In this part, we present the pairwise comparisons to investigate which groups create the difference.
We utilized the p.adjust function under the stats package (R Core Team, 2017) for our paircomp
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function. The paircomp function has also the same p-value adjustment methods as p.adjust, including
bonferroni, holm (Holm, 1979), hochberg (Hochberg, 1988), hommel (Hommel, 1988), BH (Benjamini
and Hochberg, 1995), BY (Benjamini and Yekutieli, 2001), and none. The default is set to "bonferroni".
Pairwise comparisons are made by adjusting p-values according to the specified method, except when
the method is James second order test, which requires adjusting the significance level instead of the
p-value.

One-way tests return a list with class "owt" except for James second order test. The reason for
returning a list with class "owt" is to introduce the output to the paircomp function for pairwise
comparison adjusting p-values according to the specified method. Besides, James second order test
returns a list with class "jt" introducing the output to the paircomp function for pairwise comparison
by adjusting the significance level instead of the p-value.

In the iris example, there is a statistically significant difference between iris species in terms of sepal
length measurements. All pairwise comparisons of groups can be conducted using paircomp function.
For simplicity, the Bonferroni correction is applied to show the usage of the pairwise comparisons
following the significant result obtained by Alexander-Govern test and James second order test.

# Alexander-Govern test
R> out <- ag.test(Sepal.Length ~ Species, data = iris, verbose = FALSE)
R> paircomp(out, adjust.method = "bonferroni")

Bonferroni Correction (alpha = 0.05)
------------------------------------------------------

Level (a) Level (b) p.value No difference
1 setosa versicolor 8.187007e-17 Reject
2 setosa virginica 1.105024e-25 Reject
3 versicolor virginica 5.913702e-07 Reject
------------------------------------------------------

# James second order test
R> out <- james.test(Sepal.Length ~ Species, data = iris, verbose = FALSE)
R> paircomp(out, adjust.method = "bonferroni")

Bonferroni Correction (alpha = 0.0166666666666667)
----------------------------------------------------------------

Level (a) Level (b) statistic criticalValue No difference
1 setosa versicolor 110.6912 5.959328 Reject
2 setosa virginica 236.7350 5.992759 Reject
3 versicolor virginica 31.6875 5.938643 Reject
----------------------------------------------------------------

In both Alexander-Govern and James second order tests with Bonferroni correction, statistical
differences between all types of iris flowers are significant in terms of sepal length measurements.

Checking assumptions via tests and plots

Two main assumptions, normality and variance homogeneity, can be checked through the onewaytests
package. One can assess the variance homogeneity via homog.test, which has options including
Levene (Levene’s test), Bartlett (Bartlett’s test) and Fligner (Fligner-Killeen test). Also, the normality
of data in each group can be checked through nor.test, which has options including SW (Shapiro-Wilk
test), SF (Shapiro-Francia test), LT (Lilliefors test known as Kolmogorov-Smirnov test), AD (Anderson-
Darling test), CVM (Cramer-von Mises test), PT (Pearson Chi-square test). Moreover, the nor.test has
options to assess the normality of data in each group through plots (Q-Q plots and Histograms with
normal curves).

# Bartlett's homogeneity test
R> homog.test(Sepal.Length ~ Species, data = iris, method = "Bartlett")

Bartlett's Homogeneity Test
-----------------------------------------------
data : Sepal.Length and Species

statistic : 16.0057
parameter : 2
p.value : 0.0003345076
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Result : Variances are not homogeneous.
-----------------------------------------------

Bartlett’s homogeneity test results reveal that the variances between iris species are not homoge-
neous (χ2 = 16.0057, p-value = 0.0003345076).

# Shapiro-Wilk normality test
R> nor.test(Sepal.Length ~ Species, data = iris, method = "SW", plot = "qqplot-histogram")

Shapiro-Wilk Normality Test
--------------------------------------------------
data : Sepal.Length and Species

Level Statistic p.value Normality
1 setosa 0.9776985 0.4595132 Not reject
2 versicolor 0.9778357 0.4647370 Not reject
3 virginica 0.9711794 0.2583147 Not reject
--------------------------------------------------

Shapiro-Wilk normality test results state that there is not enough evidence to reject the normality
of sepal length values in each iris species since all p-values are greater than 0.05. Also, the normality of
data in each group can be assessed visually by Q-Q plots and histograms with normal curves (Figure
1).
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Figure 1: Q-Q plots and histograms with normal curves

Graphical approaches

The users can obtain several graphic types of given groups via the gplot, which has options involving
box-and-whisker plot with violin line - a rotated density line on each side - (Figure 2a), box-and-
whisker plot (Figure 2b), mean ± standard deviation graph (Figure 2c) and mean ± standard error
graph (Figure 2d). These graphics can be obtained via the following codes:

# Box-and-whisker plot with violin line
R> gplot(Sepal.Length ~ Species, data = iris, type = "boxplot")

# Box-and-whisker plot
R> gplot(Sepal.Length ~ Species, data = iris, type = "boxplot", violin = FALSE)
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# Mean +- standard deviation graph
R> gplot(Sepal.Length ~ Species, data = iris, type = "errorbar", option = "sd")

# Mean +- standard error graph
R> gplot(Sepal.Length ~ Species, data = iris, type = "errorbar", option = "se")
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(a) Box-and-whisker plot with violin line
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(b) Box-and-whisker plot
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(c) Mean ± standard deviation graph
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(d) Mean ± standard error graph

Figure 2: Graphics of given groups

German breast cancer data

In this part, we utilize German breast cancer study group (GBSG) data set, available in the mfp package
(Ambler and Benner, 2015) in R. This data set was collected from a cohort study and measurements
from patients with primary node positive breast cancer were taken between July 1984 and December
1989. Seven risk factors, including menopausal status, tumor size, tumor grade, age, number of
positive lymph nodes, progesterone and oestrogen receptor concentrations were examined in the work
done by Sauerbrei et al. (1999). For illustrative purposes, we take the dependent variable as recurrence
- free survival times of patients, of whom an event for recurrence-free survival occurs, and the factor
as tumor grade. This factor is a three-level categorical variable: 1 = grade I, 2 = grade II , and 3 = grade
III. A total of 299 observations (18, 202, 79 observations in each group, respectively) are available.

The objective of adding GBSG dataset is showing the usage of the package in practice rather than
demonstrating the usage of all functions in the onewaytests package. After checking the normality
and variance homogeneity assumptions, an appropriate one-way test is decided to compare groups.
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Also, pairwise comparisons are applied when it is necessary to determine which groups create the
difference.

After installing and loading the mfp package, GBSG dataset can be reached by using the following
R code.

# load GBSG data
R> data("GBSG")

# select the patients of whom an event for recurrence-free survival occurs
R> GBSG_subset <- GBSG[GBSG$cens == 1,]

# obtain the descriptive statistics of the tumor grades in terms of recurrence-free
# survival times
R> describe(rfst ~ tumgrad, data = GBSG_subset)

n Mean Std.Dev Median Min Max 25th 75th Skewness Kurtosis NA
1 18 1052.1111 444.5332 969.0 476 1990 729 1290.25 0.8712495 2.938206 0
2 202 845.9505 511.2683 729.5 72 2456 487 1160.75 0.9484978 3.253876 0
3 79 616.6076 432.2091 476.0 98 2034 312 758.00 1.4487566 4.698735 0

The assumptions of variance homogeneity and normality are assessed by using homog.test and
nor.test, respectively.

# Bartlett's homogeneity test
R> homog.test(rfst ~ tumgrad, data = GBSG_subset, method = "Bartlett")

Bartlett's Homogeneity Test
-----------------------------------------------
data : rfst and tumgrad

statistic : 3.262419
parameter : 2
p.value : 0.1956927

Result : Variances are homogeneous.
-----------------------------------------------

Bartlett’s homogeneity test results reveal that there is no enough evidence to reject the variance
homogeneity (χ2 = 3.262419, p-value = 0.1956927) since p-value is larger than 0.05.

# Shapiro-Wilk normality test
R> nor.test(rfst ~ tumgrad, data = GBSG_subset, method = "SW")

Shapiro-Wilk Normality Test
--------------------------------------------------
data : rfst and tumgrad

Level Statistic p.value Normality
1 1 0.9097324 8.510408e-02 Not reject
2 2 0.9195909 4.749653e-09 Reject
3 3 0.8489033 1.708621e-07 Reject
--------------------------------------------------

Shapiro-Wilk normality test results state that there is not enough evidence to reject the normality
of recurrence - free survival times of the patients with tumor grade I since p-value is greater than 0.05.
The normality of recurrence - free survival times of the patients with tumor grade II and III is not
met since the p-value is smaller than 0.05. Our simulation study results suggest that ANOVA is the
appropriate one-way test in such case.

R> aov.test(rfst ~ tumgrad,data = GBSG_subset)

One-Way Analysis of Variance
---------------------------------------------------------
data : rfst and tumgrad
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statistic : 8.875494
num df : 2
denom df : 296
p.value : 0.000180542

Result : Difference is statistically significant.
---------------------------------------------------------

Since the p-value, derived from aov.test, is lower than 0.05, it can be concluded that there is a
statistically significant difference between the tumor grades with respect to recurrence - free survival
times (F = 8.875494, p-value = 0.000180542).

On the other hand, we observe that recurrence - free survival times of the patients with tumor
grade II and III have few outliers and positively-skewed distributed. Liao et al. (2016) suggests that
Kruskal-Wallis test should be used in such cases. Therefore, this test is also utilized along with ANOVA
to compare groups.

R> kw.test(rfst ~ tumgrad, data = GBSG_subset)

Kruskal-Wallis Test
---------------------------------------------------------
data : rfst and tumgrad

statistic : 23.42841
parameter : 2
p.value : 8.176855e-06

Result : Difference is statistically significant.
---------------------------------------------------------

One can conclude that the difference between the tumor grades with respect to recurrence - free
survival times is statistically significant (χ2

KW = 23.42841, p-value = 8.176855×10−06) since p-value is
smaller than 0.05.

Both ANOVA and Kruskal-Wallis test results reveal that there is a statistically significant difference
between tumor grade groups in terms of recurrence-free survival times. In the next step, we need to
determine which groups create the difference.

# ANOVA
R> out <- aov.test(rfst ~ tumgrad, data = GBSG_subset, verbose = FALSE)
R> paircomp(out, adjust.method = "bonferroni")

Bonferroni Correction (alpha = 0.05)
------------------------------------------------------
Level (a) Level (b) p.value No difference

1 1 2 0.2980174599 Not reject
2 1 3 0.0006698433 Reject
3 2 3 0.0014901832 Reject
------------------------------------------------------

# Kruskal-Wallis test
R> out<- kw.test(rfst ~ tumgrad, data = GBSG_subset, verbose = FALSE)
R> paircomp(out, adjust.method = "bonferroni")

Bonferroni Correction (alpha = 0.05)
------------------------------------------------------
Level (a) Level (b) p.value No difference

1 1 2 0.0949942647 Not reject
2 1 3 0.0001333143 Reject
3 2 3 0.0002457434 Reject
------------------------------------------------------

Pairwise comparisons with Bonferroni correction after both ANOVA and Kruskal-Wallis test
indicate that there is no statistically significant difference between the patients with tumor grade I and
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those with tumor grade II in terms of recurrence-free survival times. On the other hand, there exists a
statistically significant difference between the patients with tumor grade I/II and those with tumor
grade III.

Web interface of onewaytests package

The objective of this package is to provide the users with one-way tests in independent groups designs,
pairwise comparisons, graphical approaches, and assess variance homogeneity and normality of data
in each group via tests and plots. At times, it is difficult for new R users or applied researchers to deal
with R codes. Thus, we have developed a web interface of onewaytests package by using shiny (Chang
et al., 2017). The web interface is available at http://www.softmed.hacettepe.edu.tr/onewaytests.

(a) Data upload (b) Describe data

(c) One-way tests (d) Graphics

Figure 3: Web interface of onewaytests package

Users can upload their data to the tool via Data upload tab (Figure 3a). There exist two demo
datasets on this tab for the users to test the tool. Basic descriptive statistics can be obtained through
Describe data tab (Figure 3b). Moreover, assumptions of variance homogeneity and normality can be
checked via this tab to decide on which one-way test is appropriate to test the statistical difference.
Variance homogeneity is checked by variance homogeneity tests (Levene’s test, Bartlett’s test, Fligner-
Killeen test). The normality of data in each group is assessed by normality tests (Shapiro-Wilk,
Cramer-von Mises, Lilliefors (Kolmogorov-Smirnov), Shapiro-Francia, Anderson-Darling, Pearson
Chi-Square tests) and plots (Q-Q plot and Histogram with a normal curve). After describing the data,
users can test statistical difference between groups through One-way tests tab (Figure 3c). In this tab,
there exist one-way tests (ANOVA, Welch’s heteroscedastic F, Welch’s heteroscedastic F test with
trimmed means and Winsorized variances, Brown-Forsythe, Alexander-Govern, James second order
test, Kruskal-Wallis tests) and pairwise comparison methods (Bonferroni, Holm, Hochberg, Hommel,
Benjamini-Hochberg, Benjamini-Yekutieli, no corrections). Moreover, users can obtain the graphics of
given groups (Figure 2) through Graphics tab (Figure 3d).

Simulation study

In this section, it is aimed to compare the performances of seven tests in terms of type I error and
adjusted power (Lloyd, 2005), and give some general suggestions on which test(s) should be used or
avoided under the violations of assumptions. The adjusted power, R(α), is

R(α) = Φ(δ̂ + Φ−1(α)), (10)

with
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δ̂ = Φ−1(1− β̂)−Φ−1(α̂).

In Equation (10), α̂ is the estimated type I error, β̂ is the estimated type II error, α is the nominal
size for type I error, Φ and Φ−1 are the cumulative and inverse cumulative distribution functions of
the standard normal distribution, respectively.

Simulation design

A Monte Carlo simulation is implemented to illustrate the performances of these tests for the scenarios
in which the assumptions of normality and/or variance homogeneity are held or not. The algorithm
of the simulation study can be depicted as follows:

1. Generate three random samples from normal or skew normal distribution with means µ1, µ2 and
µ3 and standard deviations σ1, σ2, σ3. Group standard deviations are taken as σ1 = σ2 = σ3 = 1
for homogeneous case, and σ1 = 1, σ2 =

√
2, σ3 = 2 for heterogeneous case. Skewness γ is set

to γ = 0 for normal distribution, γ = 0.5 for positive skew normal distribution and γ = −0.5
for negative skew normal distribution with different sample size combinations (balanced and
unbalanced). Set µ1 = µ2 = µ3 = 0 for gathering type I error; µ1 = 0, µ2 = 0.25, µ3 = 0.5 or
µ1 = 0, µ2 = 0.5, µ3 = 1 or µ1 = 0, µ2 = 1, µ3 = 2 for power.

2. Check whether groups are different by the corresponding one-way test in independent groups
designs at the level of significance α (α = 0.05).

3. Repeat steps i) - ii) for 10,000 times and calculate the probability of rejecting the null hypothesis
when the null hypothesis is true (type I error) or false (power).

4. Calculate adjusted power (given in Lloyd (2005)) by using the estimated type I error and power
found in iii).

Results

In this section, the performances of one-way tests in independent groups designs are investigated
through type I error and adjusted power. All results are not given here to protect the content integrity,
but attached as supplementary tables 2–4.

Type I error rates

In this part, we compare seven one-way tests in terms of their type I errors. We observed that the type
I errors get closer to nominal level as sample size increases under the data generated from normal
distribution (γ = 0) with equal variances (σ1 = σ2 = σ3 = 1). Kruskal-Wallis test tends to be more
conservative compared to the rest of them in the unbalanced small sample sizes (n1 = 6, n2 = 9, n3 =
15). When variance homogeneity is not held under normality, unbalance of sample sizes causes a
decline in type I error rates of ANOVA and Kruskal-Wallis test regardless of sample size.

When the data in each group come from right skew normal distribution (γ = 0.5) with un-
balanced small sample size setting, type I error rate of ANOVA is estimated to be 0.052 under
variance homogeneity (σ1 = σ2 = σ3 = 1) whereas it declines to 0.026 under variance heterogeneity
(σ1 = 1, σ2 =

√
2, σ3 = 2). The type I error rate of ANOVA is negatively affected by the combined effect

of heterocedasticity and unbalanced sample size. Especially, when the smaller variances are associated
with groups having smaller sample size, the empirical type I error rate of ANOVA is halved compared
to the homoscedastic case. Kruskal-Wallis test is dramatically affected by variance heterogeneity. It
tends to be conservative in the unbalanced case whereas it becomes liberal in the balanced case.

James second order test, Alexander-Govern test, Welch’s heteroscedastic F test and Welch’s het-
eroscedastic F test with trimmed means and Winsorized variances control the type I error rate at the
nominal size for all simulation scenarios. Brown-Forsythe test is not able to control type I error rate;
especially when the variances are heterogeneous, it becomes liberal.

Adjusted powers

Adjusted power is important to compare tests having different type I errors since it adjusts power
with respect to type I error. The results are illustrated in Figures 4–5 to see the clear difference among
the tests.

Within the tests discussed in this study, ANOVA is the best one with respect to adjusted power
when the sample sizes are not equal under normality (γ = 0) and variance homogeneity (σ1 = σ2 =
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σ3 = 1). Under the same condition, ANOVA and Brown-Forsythe test are superior to the rest of
them in terms of adjusted power when the design of sample size is balanced. As expected, ANOVA
performs poor under normality when variances are unstable (σ1 = 1, σ2 =

√
2, σ3 = 2); however,

Alexander-Govern, James and Welch’s heteroscedastic F tests have higher adjusted powers compared
to other tests. Brown-Forsythe and Kruskal-Wallis tests perform poorly compared to the others under
the same condition.

When the data are generated from positive skew normal distribution (γ = 0.5) with equal variances,
ANOVA and Kruskal-Wallis test perform better than other tests. ANOVA is slightly better than
Kruskal-Wallis test for small sample sizes and vice versa is true for the medium sample sizes. James,
Alexander-Govern and Welch’s heteroscedastic F tests have the highest adjusted powers among the
whole tests for all scenario combinations under the data generated from a positive skew normal
distribution with heterogeneous variances.

ANOVA, Brown-Forsythe test and Kruskal-Wallis test perform better than the other tests when the
data are generated from negative skew normal distribution (γ = −0.5) with homogeneous variances
and equal sample sizes; however, Kruskal-Wallis test is slightly superior to ANOVA and Brown-
Forsythe test. The adjusted power of ANOVA seems not to be affected by the skewness and it performs
best under the same condition when the design of sample size is unbalanced. When the data are
generated from the negative skew normal distribution with heterogeneous variances, Kruskal-Wallis
test performs best for low (µ1 = 0, µ2 = 0.25, µ3 = 0.5) and medium (µ1 = 0, µ2 = 0.5, µ3 = 1) effect
sizes while Welch’s heteroscedastic F test with trimmed mean and Winsorized variance has higher
performance compared to other tests for high effect size (µ1 = 0, µ2 = 1, µ3 = 2).

It is noted that the Kruskal-Wallis test is affected by the skewness of the distribution especially
under heterogeneity of variance (σ1 = 1, σ2 =

√
2, σ3 = 2). Kruskal-Wallis test has the highest

adjusted power when the data are generated from a negatively skewed distribution (γ = −0.5). On
the other hand, it has the lowest adjusted power when the data are generated from a positively skewed
distribution (γ = 0.5).
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Figure 4: Estimated adjusted power results under homogeneous-variance (σ1 = σ2 = σ3 = 1) scenarios
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Figure 5: Estimated adjusted power results under heterogeneous-variance (σ1 = 1, σ2 =
√

2, σ3 = 2)
scenarios

Summary and further research

One-way tests in independent groups designs are the most commonly utilized statistical methods with
applications on the experiments in medical sciences, pharmaceutical research, agriculture, biology,
chemistry, engineering, and social sciences. In this paper, we present the onewaytests package for
researchers to investigate treatment effects on the dependent variable.

The onewaytests package includes well-known one-way tests in independent groups designs
including one-way analysis of variance, Kruskal-Wallis test, Welch heteroscedastic F test, Brown-
Forsythe test. In addition to these well-known tests, Alexander-Govern test, James second order test
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and Welch heteroscedastic F test with trimmed means and Winsorized variances, not available in most
statistical software, are able to be reached via this package. Also, pairwise comparisons can be applied
if the statistically significant difference is obtained.

Normality and variance homogeneity are the vital assumptions for the selection of the appropriate
test. Therefore, this package also enables the users to check these assumptions via variance homo-
geneity and normality tests. It also enables the users some basic descriptive statistics and graphical
approaches.

ANOVA is the most commonly used method for one-way independent groups designs. However,
this method has two certain assumptions, homogeneity of variances and normality, to be satisfied.
When these assumptions are not met, there are some other alternatives for one-way independent
groups designs, which include Welch’s heteroscedastic F test, Welch’s heteroscedastic F test with
trimmed means and Winsorized variances, Alexander-Govern test, James second order test, Brown-
Forsythe test and Kruskal-Wallis test.

In this paper, we also compared seven one-way tests in onewaytests package with respect to
the type I error rate and adjusted power. In the light of Monte Carlo simulation, it is noted that the
normality assumption does not have a negative effect on the adjusted power of the tests as severe
as variance homogeneity assumption. ANOVA is suggested to be used if the variance homogeneity
assumption is held. Otherwise, Alexander-Govern, James second order and Welch’s heteroscedastic
F tests are recommended to be utilized. It is pointed out that under the negatively skew normal
distribution with heterogeneous variances, Kruskal-Wallis test performs best with small and medium
effect sizes while the Welch’s heteroscedastic F test with trimmed means and Winsorized variances
has the highest adjusted power with large effect size.

At present, the onewaytests package offers the one-way tests in independent groups designs,
pairwise comparisons, graphical approaches, and assessment of variance homogeneity and normality
via tests and plots. The package and its web-interface will be updated at regular intervals.
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Table 2: Estimated type I error rates

Distribution σ1, σ2, σ3 n1, n2, n3 F Fw Fwt FBF χ2
AG J χ2

KW

6, 9, 15 0.046 0.047 0.047 0.046 0.046 0.047 0.041
10, 10, 10 0.052 0.050 0.050 0.050 0.049 0.051 0.047
18, 27, 45 0.049 0.051 0.051 0.048 0.051 0.051 0.048

1, 1, 1 30, 30, 30 0.051 0.052 0.053 0.051 0.052 0.052 0.051
60, 90, 150 0.050 0.049 0.050 0.051 0.049 0.049 0.050

Normal 100, 100, 100 0.051 0.050 0.052 0.051 0.050 0.050 0.050

(γ = 0) 6, 9, 15 0.023 0.045 0.047 0.051 0.043 0.046 0.029
10, 10, 10 0.058 0.051 0.051 0.053 0.050 0.052 0.054
18, 27, 45 0.025 0.050 0.050 0.053 0.049 0.050 0.032

1,
√

2, 2 30, 30, 30 0.058 0.052 0.051 0.056 0.051 0.052 0.055
60, 90, 150 0.025 0.051 0.051 0.055 0.051 0.051 0.034

100, 100, 100 0.059 0.052 0.052 0.059 0.052 0.052 0.059
6, 9, 15 0.052 0.055 0.053 0.051 0.056 0.055 0.047

10, 10, 10 0.048 0.048 0.048 0.046 0.048 0.050 0.045
18, 27, 45 0.053 0.054 0.052 0.052 0.053 0.054 0.050

1, 1, 1 30, 30, 30 0.047 0.046 0.045 0.047 0.045 0.046 0.046
60, 90, 150 0.046 0.046 0.050 0.046 0.046 0.046 0.049

Skew Normal 100, 100, 100 0.052 0.052 0.052 0.052 0.052 0.052 0.050

(γ = 0.5) 6, 9, 15 0.026 0.052 0.051 0.053 0.052 0.053 0.032
10, 10, 10 0.059 0.051 0.051 0.054 0.051 0.053 0.052
18, 27, 45 0.023 0.051 0.053 0.055 0.050 0.051 0.038

1,
√

2, 2 30, 30, 30 0.053 0.046 0.046 0.052 0.046 0.046 0.057
60, 90, 150 0.022 0.048 0.052 0.052 0.048 0.048 0.052

100, 100, 100 0.058 0.050 0.053 0.058 0.050 0.050 0.082
6, 9, 15 0.048 0.050 0.051 0.048 0.053 0.051 0.045

10, 10, 10 0.051 0.048 0.048 0.048 0.048 0.048 0.043
18, 27, 45 0.048 0.051 0.049 0.049 0.050 0.051 0.047

1, 1, 1 30, 30, 30 0.048 0.047 0.048 0.048 0.047 0.047 0.045
60, 90, 150 0.049 0.051 0.050 0.050 0.050 0.051 0.049

Skew Normal 100, 100, 100 0.053 0.054 0.054 0.053 0.053 0.054 0.052

(γ = −0.5) 6, 9, 15 0.024 0.047 0.049 0.048 0.047 0.049 0.031
10, 10, 10 0.058 0.051 0.051 0.054 0.050 0.052 0.053
18, 27, 45 0.024 0.049 0.049 0.053 0.048 0.049 0.037

1,
√

2, 2 30, 30, 30 0.054 0.048 0.048 0.052 0.047 0.048 0.059
60, 90, 150 0.022 0.050 0.050 0.054 0.049 0.050 0.054

100, 100, 100 0.058 0.054 0.055 0.058 0.054 0.054 0.085
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Table 3: Adjusted power results

Distribution σ1, σ2, σ3 n1, n2, n3 µ1, µ2, µ3 F Fw Fwt FBF χ2
AG J χ2

KW

0, 0.25, 0.5 0.141 0.129 0.127 0.130 0.132 0.130 0.136
6, 9, 15 0, 0.5, 1 0.447 0.400 0.392 0.417 0.404 0.399 0.428

0, 1, 2 0.961 0.937 0.931 0.948 0.937 0.937 0.951

0, 0.25, 0.5 0.140 0.136 0.136 0.141 0.133 0.138 0.139
10, 10, 10 0, 0.5, 1 0.449 0.436 0.436 0.451 0.430 0.437 0.433

0, 1, 2 0.973 0.963 0.963 0.973 0.961 0.964 0.963

0, 0.25, 0.5 0.353 0.335 0.324 0.351 0.334 0.334 0.335
1, 1, 1 18, 27, 45 0, 0.5, 1 0.911 0.897 0.886 0.905 0.895 0.896 0.894

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.367 0.356 0.343 0.368 0.356 0.356 0.347
30, 30, 30 0, 0.5, 1 0.937 0.930 0.915 0.937 0.929 0.930 0.920

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.861 0.858 0.848 0.859 0.858 0.858 0.842
60, 90, 150 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.891 0.890 0.877 0.891 0.891 0.890 0.874
100, 100, 100 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Normal 0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(γ = 0) 0, 0.25, 0.5 0.091 0.093 0.089 0.086 0.096 0.093 0.087
6, 9, 15 0, 0.5, 1 0.214 0.228 0.220 0.209 0.232 0.229 0.207

0, 1, 2 0.682 0.721 0.703 0.691 0.724 0.723 0.677

0, 0.25, 0.5 0.084 0.089 0.089 0.086 0.087 0.089 0.082
10, 10, 10 0, 0.5, 1 0.200 0.217 0.217 0.200 0.217 0.219 0.195

0, 1, 2 0.657 0.697 0.697 0.655 0.702 0.700 0.647

0, 0.25, 0.5 0.164 0.192 0.186 0.175 0.192 0.193 0.170
1,
√

2, 2 18, 27, 45 0, 0.5, 1 0.562 0.629 0.612 0.574 0.630 0.630 0.568
0, 1, 2 0.995 0.997 0.996 0.996 0.997 0.997 0.995

0, 0.25, 0.5 0.167 0.185 0.180 0.166 0.187 0.185 0.165
30, 30, 30 0, 0.5, 1 0.553 0.615 0.600 0.554 0.619 0.615 0.561

0, 1, 2 0.996 0.997 0.997 0.996 0.998 0.997 0.994

0, 0.25, 0.5 0.491 0.559 0.545 0.496 0.558 0.560 0.496
60, 90, 150 0, 0.5, 1 0.987 0.994 0.992 0.987 0.994 0.994 0.988

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.483 0.553 0.545 0.482 0.554 0.553 0.483
100, 100, 100 0, 0.5, 1 0.988 0.994 0.992 0.988 0.994 0.994 0.985

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0, 0.25, 0.5 0.128 0.137 0.127 0.135 0.136 0.137 0.134

6, 9, 15 0, 0.5, 1 0.419 0.395 0.372 0.410 0.392 0.393 0.418
0, 1, 2 0.955 0.919 0.906 0.924 0.918 0.917 0.944

0, 0.25, 0.5 0.150 0.141 0.141 0.149 0.138 0.141 0.144
10, 10, 10 0, 0.5, 1 0.472 0.450 0.450 0.470 0.443 0.450 0.463

0, 1, 2 0.972 0.964 0.964 0.971 0.961 0.964 0.967

0, 0.25, 0.5 0.348 0.350 0.345 0.352 0.351 0.350 0.359
Skew Normal 1, 1, 1 18, 27, 45 0, 0.5, 1 0.907 0.891 0.887 0.895 0.892 0.891 0.907

(γ = 0.5) 0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.397 0.395 0.386 0.397 0.396 0.395 0.398
30, 30, 30 0, 0.5, 1 0.942 0.939 0.934 0.942 0.940 0.939 0.943

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.875 0.868 0.851 0.867 0.869 0.868 0.870
60, 90, 150 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.890 0.887 0.882 0.890 0.887 0.887 0.894
100, 100, 100 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4: Adjusted power results continued

Distribution σ1, σ2, σ3 n1, n2, n3 µ1, µ2, µ3 F Fw Fwt FBF χ2
AG J χ2

KW

0, 0.25, 0.5 0.072 0.085 0.077 0.083 0.085 0.085 0.068
6, 9, 15 0, 0.5, 1 0.181 0.216 0.193 0.199 0.215 0.216 0.172

0, 1, 2 0.664 0.691 0.659 0.684 0.687 0.693 0.652

0, 0.25, 0.5 0.072 0.072 0.072 0.069 0.072 0.073 0.067
10, 10, 10 0, 0.5, 1 0.180 0.194 0.194 0.176 0.194 0.192 0.170

0, 1, 2 0.672 0.693 0.693 0.661 0.693 0.692 0.653

0, 0.25, 0.5 0.169 0.199 0.174 0.171 0.200 0.198 0.109
Skew Normal 1,

√
2, 2 18, 27, 45 0, 0.5, 1 0.573 0.625 0.591 0.579 0.627 0.625 0.475

(γ = 0.5) 0, 1, 2 0.997 0.997 0.995 0.996 0.997 0.997 0.993

0, 0.25, 0.5 0.167 0.189 0.167 0.166 0.188 0.189 0.111
30, 30, 30 0, 0.5, 1 0.584 0.639 0.593 0.582 0.638 0.639 0.483

0, 1, 2 0.997 0.998 0.997 0.997 0.998 0.998 0.994

0, 0.25, 0.5 0.514 0.573 0.489 0.516 0.573 0.573 0.246
60, 90, 150 0, 0.5, 1 0.991 0.994 0.989 0.991 0.994 0.994 0.949

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.487 0.554 0.486 0.487 0.554 0.554 0.245
100, 100, 100 0, 0.5, 1 0.990 0.994 0.990 0.990 0.994 0.994 0.946

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0, 0.25, 0.5 0.144 0.111 0.120 0.120 0.107 0.111 0.135

6, 9, 15 0, 0.5, 1 0.432 0.364 0.386 0.396 0.355 0.365 0.417
0, 1, 2 0.961 0.940 0.946 0.962 0.935 0.940 0.959

0, 0.25, 0.5 0.142 0.142 0.142 0.142 0.138 0.142 0.150
10, 10, 10 0, 0.5, 1 0.455 0.449 0.449 0.457 0.439 0.451 0.470

0, 1, 2 0.972 0.966 0.966 0.972 0.963 0.966 0.970

0, 0.25, 0.5 0.358 0.322 0.325 0.340 0.322 0.322 0.356
1, 1, 1 18, 27, 45 0, 0.5, 1 0.917 0.908 0.903 0.920 0.907 0.908 0.921

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.391 0.392 0.376 0.390 0.390 0.393 0.401
30, 30, 30 0, 0.5, 1 0.941 0.939 0.929 0.941 0.937 0.939 0.943

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.867 0.860 0.862 0.868 0.861 0.860 0.867
60, 90, 150 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.884 0.880 0.874 0.884 0.880 0.880 0.892
100, 100, 100 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Skew Normal 0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(γ = −0.5) 0, 0.25, 0.5 0.101 0.094 0.098 0.092 0.091 0.094 0.102
6, 9, 15 0, 0.5, 1 0.240 0.229 0.243 0.225 0.223 0.230 0.249

0, 1, 2 0.672 0.720 0.728 0.691 0.707 0.720 0.694

0, 0.25, 0.5 0.094 0.103 0.103 0.094 0.102 0.104 0.104
10, 10, 10 0, 0.5, 1 0.220 0.240 0.240 0.220 0.242 0.242 0.243

0, 1, 2 0.658 0.713 0.713 0.649 0.717 0.713 0.692

0, 0.25, 0.5 0.188 0.197 0.207 0.178 0.197 0.197 0.242
1,
√

2, 2 18, 27, 45 0, 0.5, 1 0.579 0.635 0.645 0.582 0.633 0.636 0.666
0, 1, 2 0.993 0.999 0.999 0.996 0.999 0.999 0.998

0, 0.25, 0.5 0.180 0.213 0.225 0.183 0.213 0.212 0.238
30, 30, 30 0, 0.5, 1 0.574 0.646 0.658 0.576 0.647 0.646 0.659

0, 1, 2 0.994 0.997 0.998 0.994 0.997 0.997 0.997

0, 0.25, 0.5 0.518 0.576 0.624 0.517 0.577 0.576 0.659
60, 90, 150 0, 0.5, 1 0.988 0.994 0.996 0.988 0.994 0.994 0.996

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.487 0.552 0.595 0.486 0.552 0.552 0.630
100, 100, 100 0, 0.5, 1 0.984 0.992 0.994 0.984 0.992 0.991 0.995

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Inventorymodel: an R Package for
Centralized Inventory Problems
by Alejandro Saavedra-Nieves

Abstract Inventory management of goods is an integral part of logistics systems; common to various
economic sectors such as industry, agriculture and trade; and independent of production volume. In
general, as companies seek to minimize economic losses, studies on problems of multi-agent inventory
have increased in recent years. A multi-agent inventory problem is a situation in which several
agents face individual inventory problems and agree to coordinate their orders with the objective of
reducing their costs. The R package Inventorymodel allows the determination of both the optimal
policy for some inventory situations with deterministic demands and the allocation of costs from a
game-theoretic perspective. The required calculations may be computed for any number of agents
although the computational complexity of this class of problems when the involved agents enlarge is
not reduced. In this work, the different possibilities that the package offers are described and some
examples of usage are also demonstrated.

Introduction

Often, once a product is chosen to be acquired, the seller advises that he or she does not have a unit of
that product in stock. Probably, this vendor has not managed the storage of this commodity efficiently
since the possibility of not being able to satisfy the demand for a product in time leads to shortages.
Specific techniques may prevent situations such as this, allowing for reduction in economic losses
associated with the lack of products.

Inventory is defined as the amount of goods stored by a company at a moment of time, which
represents a capital investment for the purchase and maintenance of the product in stock. Each
company desires having the proper inventory level to meet the needs of customers, and so they
would prefer to handle it optimally. Inventory theory focuses on the design and optimization of
production systems to minimize economic losses due to product shortages. However, this implies the
existence of extra costs associated with different assumptions imposed on the model with an influence
on the overall cost of the procedure. The consideration of the holding cost or variable cost for the
transportation of a new order from a supplier to the warehouse are examples, among others, of new
conditions to take into account in the models. Generally, this study focuses on a single product with
fixed characteristics that companies need. Moreover, it presents new inventory situations in which
a customer can switch to another supplier to get the desired product or an analogous product with
similar properties. So, in an inventory system, the following must be considered:

• An agent that wants to organize its inventory of a certain commodity.

• A deterministic demand for a product that this agent needs over a fixed period of time.

• The agent satisfies its demand through an external provider.

• In some circumstances, the agent can consider the possibility of not fulfilling all the demand in
time, that is, a shortage of the good is allowed.

The main goal entails determining the optimal amount of product to request and the moment in which
it is requested. The balance between quantity and the number of orders is essential. Not following
the optimal policy implies that fewer orders than necessary are placed or that they are placed more
frequently than usual, and hence the cost of the procedure increases.

Usually, we talk about inventory management for a single company, with a single decision
determining the amount required depending on the demand or, for instance, the moment in which that
order must be placed. Although individually, such inventory models totally ignore the decisions made
by other agents in the same circumstances, it is possible to consider situations wherein they cooperate.
Sometimes, in order to obtain savings, it is possible to consider the joint action of several individuals
who, independently, would face situations of inventory management of a product as described.

In a centralized inventory problem, several agents who face individual inventory problems decide to
coordinate their orders to reduce costs. The determination of the optimal level of inventory involves:

(a) formulation of an appropriate mathematical model that describes the situation of inventory
(shortages, transportation costs, holding costs, etc.),

(b) identification of the optimal policy under the cooperation of a group of individuals, and

(c) allocation of the incurred costs among the involved agents by using, for instance, game theoretic
procedures.
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The analysis of cooperative multi-agent inventory problems has received much attention in recent
years. The most basic models, the Economic Order Quantity (EOQ) model and the Economic Production
Quantity (EPQ) model, are introduced in Meca et al. (2003) for the cooperative case, using the Share
the Ordering Costs rule (SOC rule) as a procedure to obtain allocations with interesting properties.
However, other inventory problems have been treated in the literature under this approach, including
those detailed below. In Fiestras-Janeiro et al. (2012), the inventory transportation systems are defined as
a new approach of the EOQ problem when individual transportation costs by a new order are taken
into account. The line-rule allows us to allocate the costs generated by the joint order in these situations.
This model is generalized in Saavedra-Nieves et al. (2018), where a general function of transportation
costs is considered and an extension of the line-rule is proposed. Fiestras-Janeiro et al. (2014) describe
two EOQ models with no holding costs: a basic model and a model with transportation costs. The
Shapley value and the two-lines rule are the chosen allocation procedures for sharing costs in this class of
situations. Fiestras-Janeiro et al. (2015) introduce a cooperative multi-agent inventory model, where
the holding costs are negligible and shortages are allowed. Saavedra-Nieves et al. (2018a) introduce a
variant of the previous model by considering that shortages are cheaper than the original product. For
these models, two rules are proposed to allocate the collaborating costs. Apart from those mentioned
above, Nagarajan and Sošić (2008), Dror and Hartman (2011), and Fiestras-Janeiro et al. (2011) are
examples of some recent surveys in this field.

This paper describes the R package Inventorymodel and its capabilities for determining the
optimal policies in the mentioned inventory models under a game-theoretic approach. For each of
them, an allocation procedure is implemented to share the collaborating costs. This package can be
very useful when the number of involved agents increases due to the computational complexity of the
calculus of all possible groups considerably increases.

The remainder of this paper is organized as follows. First, we introduce some game theoretic
notations used in this class of problems. Then, we present the different inventory models included
in the Inventorymodel package, describing, for each, the optimal policy and appropriate allocation
rule for the collaborating costs. Usage of the package is illustrated through the analysis of different
examples considered in the literature.

Preliminaries on game theory

In this section, we introduce some necessary theoretical game terminology.

The cost games correspond to one of the most important classes of cooperative games. They are
necessary for analysing those cost situations where n agents collaborate. Its definition is based on the
concept of coalition. In what follows, if N := {1, ..., n} denotes the set of agents which cooperate, a
coalition of N is a subset S ⊆ N with s := |S| elements. Following González-Díaz et al. (2010), a cost
game is a pair (N, c), where N is the set of players and c is a characteristic function, a map from 2N to
R satisfying that c(∅) = 0. Usually, c(S) represents the cost of the collaboration of the players in the
coalition S, for every S ⊆ N.

In this class of situations, some natural properties to verify are the following. We say that (N, c)
is subadditive if, for each S, T ⊆ N, with S ∩ T = ∅, it satisfies c(S) + c(T) ≥ c(S ∪ T). Subadditivity
implies that agents in S ∪ T do have economic incentives to collaborate with respect to the cooperation
of the groups S and T independently. As consequence, the formation of coalition N is profitable. A
game (N, c) is concave if, for all i ∈ N and for all S ⊂ T ⊆ N \ {i}, it satisfies c(S ∪ {i})− c(S) ≥
c(T ∪ {i})− c(T). Under concavity, players will have more incentive to join the coalition with a lower
cost to contribute.

When a set of N agents cooperate, an important issue is the definition of procedures to allocate
the cost c(N) obtained by collaborating among the involved agents. Below, we introduce two of the
most important classes of allocations in this context according to different criteria in order to define
the new allocation rules. The first approach focuses on the equanimity of allocations between players
that cooperate. The Shapley value, introduced in Shapley (1953), is an example of a rule defined under
this criteria to distribute c(N). The Shapley value of (N, c), Φ(N, c), is defined for each i ∈ N by:

Φi(N, c) :=
1
n! ∑

σ∈Π(N)

mσ
i (c),

where Π(N) denotes the set of permutations of N, Pσ
i := {j ∈ N : σ(j) < σ(i)} denotes the

predecessors of agent i by a permutation σ, and mσ
i (c) := c(Pσ

i ∪ i)− c(Pσ
i ) for each σ ∈ Π(N). The

Shapley value assigns to each i ∈ N its expected value if an agreement is reached, and each agent has
to pay its contribution in the costs to the indicated set of predecessors. It is assumed that the arrival
order is random and all orders are equally likely.

The second criteria is represented by the stability of the allocations. The core of (N, c), as in Gillies
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(1953), is the following set of payoff vectors for the members of N:

C(N, c) :=
{

x ∈ RN : ∑
i∈N

xi = c(N), and for each non empty coalition S ⊂ N, ∑
i∈S

xi ≤ c(S)
}

.

It is said that the core allocations are stable in the sense that abandoning N and acting independently
represents no improvement (in terms of gains) to coalition S, with S ⊂ N. This is due the fact that
agents in S will pay more, when N does not form, than in those situations where its members act
jointly with the rest of agents in N \ S. The study of the core of a game (N, c) and its cardinality
become a complex issue in game theory since the number of associated constraints increases when
n enlarges. For this reason, the definition of rules whose allocations are stable is a main goal in this
class of problems. Under the verification of some properties of (N, c), it is easy to study the core. In
particular, if the cost game is concave, the Shapley value of (N, c) is an element of this set, and when
(N, c) is subadditive, C(N, c) is a non-empty set.

Centralized inventory problems

The Inventorymodel package includes functions to obtain the optimal policy in this class of situations.
In particular, different scenarios with deterministic demands are considered: for example, shortages
can be allowed, transportation costs can be taken into account by assuming that agents are in a line or
a general route, or different costs of product during shortages are allowed.

Depending on the considered assumptions, different parameters should be selected for modelling
the problem among those described below. If a set of agents N cooperate to place joint orders, we can
distinguish the following parameters:

• a > 0, the fixed part of the ordering cost that is independent of the size of a new order,

• ai > 0, the variable part of the ordering cost that depends on the distance between i and the
supplier,

• di > 0, the deterministic demand of the product of agent i,

• hi > 0, a holding cost by unit of a product stored in the own warehouse,

• bi > 0, the shortage cost per item and per time unit,

• Ki > 0, the capacity of the warehouse of agent i.

This section introduces the different inventory models included in our package, which are dealt
with in the literature by considering several assumptions about them.1

The EOQ and EPQ models under cooperation

The EOQ model under cooperation, introduced in Meca et al. (2003), establishes the optimal policy for an
agent i ∈ N to satisfy its demand of a product. This model supposes a fixed ordering cost, a > 0, and,
for each i ∈ N, a deterministic demand of di > 0 units of product per time unit and a holding cost by
unit, hi > 0. For this model, it is assumed that shortages are not allowed.

If Qi denotes the required size of the order to satisfy di, the time between two consecutive orders
(length of the cycle) is Qi/di. If only one agent acts, we deal with a basic EOQ problem, a well-known
problem in operations research. The optimal policy is simple in this case: once the stock runs out, this
agent places a new order. When a group of agents S ⊆ N decides to cooperate, instead of ordering
independently, it applies for a unique joint order. Moreover, all agents should order at the same time,
and thus the lengths of the individual cycles coincide as well (this is, Qi/di = Qj/dj for each pair of
agents i, j ∈ S). In addition, if we define the number of orders per time unit by mi = di/Qi, in the
cooperative case we have that mi = mj for each i, j ∈ S. Therefore, it is easy to check that the average
cost per cycle is

CS({Qi}i∈S) := a
dk
Qk

+ ∑
i∈S

hi
Qi
2

, for any k ∈ S. (1)

Using optimization techniques, (1) takes its minimum value at Q∗i :=
√

2ad2
i

∑j∈S hjdj
for each i ∈ S. Hence,

1To simplify the description of the different inventory models contained in this package, we only consider the
cooperative case when the formation of a certain group S ⊆ N is assumed. Moreover, this generalizes the case
where a single agent i ∈ N acts, by taking S = {i}.
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we can associate a cost game (N, c), where c(S) = CS({Q∗i }i∈S) for all S ⊆ N. This is

c(S) := a
dk
Q∗k

+ ∑
i∈S

hi
Q∗i
2

= 2a
√

∑
j∈S

m∗j
2, (2)

where m∗i := di
Q∗i

denotes the optimal number of orders per time unit for each i ∈ S.

The EPQ model under cooperation is introduced by Meca et al. (2003) by adding the following
assumptions to those for the the EOQ model:

• Each agent i of group S faces the possibility of not fulfilling its demand on time by incurring a
level of shortage of βi units. The cost by shortage unit is bi > 0.

• Once the agents order, in a unit of time, agent i obtains ri units of the product, and the replace-
ment rate of agent i with ri > di.

When an agent acts individually, the optimal policy is simple as well: once the stock runs out and
the maximum level of shortage is reached, this agent places a new order. Following Meca et al. (2003),
when a group S ⊆ N is formed, its members apply for new joint orders. The average cost per cycle is

CS({Qi}i∈S, {βi}i∈S) := a
dk
Qk

+ ∑
j∈S

hj

(Qj(1− dj
rj
)− β j)

2

2Qj(1− dj
rj
)

+ ∑
j∈S

bj
β2

j

2Qj(1− dj
rj
)

, for any k ∈ S. (3)

So, (3) reaches the minima in Q∗i :=
√

2ad2
i

∑j∈S djhj
bj

hj+bj
(1− dj

rj
)

and β∗i := Q∗i
hi(1− di

ri
)

hi+bi
. With the appropriate

calculations, we can associate a cost game (N, c) to the EPQ model by defining, for each S ⊆ N,

c(S) := CS({Q∗i }i∈S, {β∗i }i∈S) = 2a
√

∑
j∈S

m∗j
2, (4)

where m∗i := di
Q∗i

denotes the optimal number of orders per time unit for each i ∈ S.

The cooperative inventory cost situations defined in this section are denoted by (N, a, m). The class

of the obtained games is called inventory games, verifying that for each S ⊆ N, c(S) = 2a
√

∑j∈S m∗j
2

and also c2(S) = ∑i∈S c({i})2.

The SOC rule, introduced by Meca et al. (2003), establishes proportional allocations in situations
such as detailed. Let (N, a, m) be a situation of inventory as defined, and let (N, c) be the associated
cost game. When N cooperate, the SOC rule σ proposes to each agent i ∈ N a core allocation that
includes a part of the fixed order cost (proportional to m2

i ), a part of the holding costs and, in the EPQ
model, a part relative to shortages. Hence, when N cooperates, for each i ∈ N,

σi(N, c) :=
2am2

i√
∑j∈N m2

j

, (5)

while mj 6= 0 for j ∈ N. Otherwise, σi(N, c) = 0. Following Meca et al. (2003), as ∑i∈S σi(N, c) ≤ c(S)
for all S ⊂ N and ∑i∈N σi(N, c) = c(N), the stability of the allocations is ensured. It is remarkable
that the calculation of σi(N, c) does not require the determination, in a explicit way, of the complete
characteristic function of (N, c).

The inventory transportation systems

An inventory transportation system is an inventory situation wherein agents face a basic EOQ model. As
Fiestras-Janeiro et al. (2012) propose, the cost of a new order has two components: the first is common
to all and the second is proportional to the distance between the supplier and the agent.

Let N := {1, . . . , n} be the set of agents. We consider as parameters the fixed ordering cost, a > 0,
and for each i ∈ N, the variable ordering cost, ai > 0; the deterministic demand of the product, di > 0;
and the holding cost by unit stored by the agent i, hi > 0. Let (N, a, {ai, di, hi}i∈N) be an inventory
transportation system. The formation of a group S ⊆ N implies that, instead of ordering independently,
agents apply for a unique joint order. As we mention, all agents have to order at same time, and thus
the lengths of the individual cycles are equal. In addition, in this model, we assume the following:

• All agents are in a same route. If S places a new order, the ordering cost is equal to, first, a and,
second, the maximal distance aS between the agents in S and the supplier. So, aS := max{ai :
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i ∈ S}.
• The supplier allows the formation of ordering coalitions. Given S ⊆ N, the cost of a new order

of S is a + aS, although in some specific order, an agent in S may not buy the product.

According to Fiestras-Janeiro et al. (2012), the average cost per cycle is determined by

CS({Qi}i∈S) := (a + aS)
dk
Qk

+ ∑
j∈S

hj
Qj

2
= (a + aS)

dk
Qk

+
Qi
2di

∑
j∈S

djhj, for any k ∈ S.

After some algebraic calculation, when S ⊆ N is formed, the optimal size of the order for i ∈ S is

Q∗i :=
√

2(a+aS)d2
i

∑j∈S djhj
, which is the optimal number of orders per time unit m∗S := di

Q∗i
=

√
∑j∈S djhj

2(a+aS)
. So,

for an inventory transportation system, we can define a cost game (N, c) for S ⊆ N by

c(S) := CS({Q∗i }i∈S) =
√

2(a + aS) ∑
j∈S

djhj = 2(a + aS)m∗S. (6)

Fiestras-Janeiro et al. (2012) propose the line-rule L(N, c) as the procedure to share the collaborating
costs. This rule assigns to each i ∈ N

Li(N, c) :=
1

|ΠL(N, c)| ∑
σ∈ΠL(N,c)

mσ
i (N, c), (7)

where ΠL(N, c) denotes the set of permutations of N that reverse the order given by the distances
from the agents to the supplier. Formally, ΠL(N, c) := {σ ∈ Π(N) : σ(i) ≤ σ(j)⇒ ai ≥ aj}. So, this
rule can be seen as a variation of the Shapley value for cost games. It requires less computational effort
than the original, and Fiestras-Janeiro et al. (2012) prove that it is an element of the core of the game
using the subadditivity character of (N, c) under these assumptions.

The inventory problems with no-holding costs and without shortages

A basic EOQ system without holding costs is a model with a deterministic demand, no holding costs, and
a limited capacity of the warehouses and shortages are not allowed. Let N := {1, . . . , n} be the set of
agents. Following Fiestras-Janeiro et al. (2014), the parameters associated with each i ∈ N in these
systems are the fixed ordering cost, a > 0; the deterministic demand of the product of agent i, di > 0;
and the capacity of the warehouse of i, Ki > 0.

We denote these systems by (N, a, {di, Ki}i∈N). The optimal policy of a group S ⊆ N is very
simple. When a group of agents S is formed, the length of a joint cycle is minj∈S{Kj/dj} and its
associated cost per time unit is

cost of a cycle
length of a cycle

=
a

minj∈S{Kj/dj}
= a max

j∈S
{

dj

Kj
}.

Thus, we can associate with every basic EOQ system without holding costs and with general trans-
portation costs (N, a, A, {di, Ki}i∈N) the cost game (N, c) which is given for all S ⊆ N by

c(S) := a max
j∈S
{

dj

Kj
}. (8)

Notice that the obtained cost game can be seen as an airport game (see Littlechild and Owen (1973),
for details). For it, the Shapley value is an excellent rule with stable allocations. Moreover, there is a
simple procedure to obtain it. By ordering in a non-decreasing order, the ratio di/Ki for all i ∈ N, the
expression of the Shapley value for agent i ∈ N, Φi(N, c), is

Φi(N, c) :=
c({1})

n
+

i

∑
j=2

c({j})− c({j− 1})
n− j + 1

. (9)

Below, we describe an inventory system with costs for transporting a new order.

A basic EOQ system without holding costs and with transportation costs is an inventory situation
introduced by Fiestras-Janeiro et al. (2014), where agents face a basic EOQ model. Let N := {1, . . . , n}
be the set of agents. For each i ∈ N, the following parameters are considered: the fixed part of the
ordering cost, a > 0; the variable part of the ordering cost, ai > 0; the deterministic demand of the product
of i, di > 0; and the capacity of the warehouse of i, Ki > 0.
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These models are denoted by (N, a, {ai, di, Ki}i∈N). The formation of a group S ⊆ N implies that
agents in S place a unique joint order instead of independent orders. All of them have to order at
the same time, and thus the lengths of the individual cycles are equal. In addition, we consider the
following two assumptions imposed on the inventory transportation systems (see Fiestras-Janeiro
et al. (2012), for instance):

• All agents are in the same route. When a group S is formed, the ordering cost is equal to,
first, a fixed value a and, second, the maximal distance aS of agents in S to the supplier. Thus,
aS := max{ai : i ∈ S}.

• The supplier allows the formation of ordering coalitions. Given S ⊆ N, the cost of a new order
of S is a + aS, regardless of whether an agent in S does not buy the product.

The optimal policy of a group S ⊆ N in this context is simple. When agents in S place joint orders,
since shortages are not allowed, the length of a cycle is minj∈S{Kj/dj} and the minimum joint cost
per time unit is

cost of a cycle
length of a cycle

=
a + aS

minj∈S{Kj/dj}
= (a + aS)max

j∈S
{

dj

Kj
}.

Thus, we can associate with basic EOQ system without holding costs and with transportation costs
(N, a, {ai, di, Ki}i∈N) the cost game (N, c), which is given for all S ⊆ N by

c(S) := (a + aS)max
j∈S
{

dj

Kj
}. (10)

For each system (N, a, {ai, di, Ki}i∈N), the two-lines rule assigns the cost allocation TL(N, c) :=
(TL(N, c))i∈N . Following Fiestras-Janeiro et al. (2014), it belongs to the core of (N, c) and is given, for
each i ∈ N, by

TLi(N, c) :=
1

2|Π1(N, c)| ∑
σ∈Π1(N,c)

mσ
i (N, c) +

1
2|Π2(N, c)| ∑

σ∈Π2(N,c)
mσ

i (N, c), (11)

where Π1(N, c) and Π2(N, c) are the following sets:

• Π1(N, c) := {σ ∈ Π(N) : ai ≥ aj ⇒ σ(i) ≤ σ(j), for all i, j ∈ N}. It is composed of
permutations that reverse the order given by the transportation costs.

• Π2(N, c) := {σ ∈ Π(N) : di
Ki
≥ dj

Kj
⇒ σ(i) ≤ σ(j), for all i, j ∈ N}. This contains the

permutations that reverse the order given by the ratio of demand/capacity.

Below, the assumption of a general transportation cost function is introduced in the previous
model. Saavedra-Nieves et al. (2018) analyse the EOQ systems without holding costs and with general
transportation costs, a generalization of the basic model with transportation costs proposed in Fiestras-
Janeiro et al. (2014).

In some circumstances, it is certainly restrictive to consider that agents are located in the same
route. For instance, they can be located in a circular route or other types of graphs, and that aS := A(S)
for each S ⊆ N and for a general function A. So, A is a general map to assign the variable part of
the transportation cost of a group S that depends on the distance of a member of S to the supplier. In
addition, we consider as parameters the fixed part of ordering cost, a > 0, the deterministic demand of
the product of i, di > 0, and the capacity of the warehouse of i, Ki > 0.

Thus, this model is denoted by (N, a, A, {di, Ki}i∈N). The optimal policy of a group S ⊆ N is easy
to obtain. Since holding costs are irrelevant, when the agents in S place joint orders, the length of a
cycle is minj∈S{Kj/dj}, and then the minimum joint cost per time unit is

cost of a cycle
length of a cycle

=
a + A(S)

minj∈S{Kj/dj}
=
(
a + A(S)

)
max
j∈S
{

dj

Kj
}.

Thus, we can associate with every basic EOQ system without holding costs and with general trans-
portation costs (N, a, A, {di, Ki}i∈N) the cost game (N, c), which is given by, for all S ⊆ N,

c(S) :=
(
a + A(S)

)
max
j∈S
{

dj

Kj
}. (12)

Notice that for each S ⊆ N, c(S) can be written as the sum of two terms. Therefore, c(S) :=
ca(S) + cb(S), with ca(S) = a maxj∈S{ dj

Kj
} and cb(S) = A(S)maxj∈S{ dj

Kj
} for each S ⊆ N.

For every system as the proposed, Saavedra-Nieves et al. (2018) introduce the following allocation.
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This rule proposes, for every i ∈ N,

Ri(N, c) :=
1

|Π(N)| ∑
σ∈Π(N)

mσ
i (ca) +

1
|Πn(N)| ∑

σ∈Πn(N)

mσ
i (cb), (13)

where Πn(N) := {σ ∈ Π(N) satisfying, for all i ∈ {1, . . . , n− 1}, that
d

σ−1(i)
K

σ−1(i)
≥ d

σ−1(i+1)
K

σ−1(i+1)
} denotes the

set of permutations that reverse the order of the ratios {di/Ki}i∈N . Saavedra-Nieves et al. (2018) prove
that if the game (N, cb) is subadditive and the function A is submodular2, the proposed rule is in the
core of (N, c).

The inventory problems with no-holding costs and shortages

An EOQ system without holding costs and shortages, introduced in the reference Fiestras-Janeiro et al.
(2015), is a multi-agent situation, where each agent faces a continuous review inventory problem with
no-holding costs, with shortages and with a limited capacity warehouse. The parameters associated
with each i ∈ N are the fixed part of the ordering cost, a > 0; the shortage cost per item and per time
unit, bi > 0; the demand of the product of i, di > 0; and the capacity of the warehouse of i, Ki > 0.

This model is denoted by (N, a, {bi, di, Ki}i∈N). As shortages are allowed, the optimal policy
changes. When agent i reaches the maximum shortage level, agent i places a new order of size Ki + βi,
where βi is the level of shortages for i. So, the length of the cycle is Ki+βi

di
, and the length of the period

with shortages is max{βi ,0}
di

. When a group S ⊆ N cooperates, we assume that its members place joint
orders, and thus:

1
xi

=
Ki + βi

di
=

Kj + β j

dj
=

1
xj

,

where xi and xj denote the number of orders per time unit for each agent i, j ∈ N. Hence, the average

cost per cycle for a coalition S is a + ∑i∈S bi
max{βi ,0}

2
max{βi ,0}

di
, and the average cost by time unit is

a + ∑i∈S bi
max2{βi ,0}

2di
Kj+β j

dj

=
adj

Kj + β j
+

dj

Kj + β j
∑
i∈S

bi
max2{βi, 0}

2di
.

Denoting by x the common number of orders per time unit under cooperation, we have βi = −Ki +
di
x

for all i ∈ S, and the average cost per time unit can be written as:

CS(x) := ax + x ∑
i∈S

bi
2di

max2{−Ki +
di
x

, 0} = ax +
1
x ∑

i∈S

bi
2di

max2{−Kix + di, 0}.

The calculus of the optimal policy in this problem consists of calculating the minima of CS(x).
Fiestras-Janeiro et al. (2015) propose an iterative algorithm to obtain this value. So, once it is applied,
CS(x) reaches its minimum value as follows:

CS(x∗S) := ∑
i∈i(S)

bidi
1
x∗S
− ∑

i∈i(S)
biKi, in x∗S :=

√√√√ ∑i∈i(S) bidi

2a + ∑i∈i(S) bi
K2

i
di

with i(S) := {i ∈ S : x∗S < di/Ki}.

(14)
Thus, we can associate with every system as described the cost game (N, c) which is given, for all
S ⊆ N, by c(S) := CS(x∗S). When agents in N cooperate, the authors propose a procedure to share
the collaborating costs which ensures that the obtained allocation is in the core of (N, c). The G-rule
proposes

Gi(c) :=

{
bidi

1
x∗N
− biKi, if i ∈ i(N),

0, otherwise.
(15)

The stable character of the allocations can be justified by the fact of ∑i∈S Gi(c) ≤ c(S) for all S ⊂ N
and ∑i∈N Gi(c) = c(N) (for details, see Fiestras-Janeiro et al. (2015)).

The previous model considers that the initial product and shortages have the same price by a unit
of commodity. In some situations, the latter cost may be significantly smaller than the initial cost, as
when shortages are produced by the same agent. Saavedra-Nieves et al. (2018a) justify and analyse
this new inventory situation.

2A map A : 2N → R is submodular when the marginal contribution of an agent to a coalition does not
increase when the coalition enlarges, that is, if, for all S, T ⊂ N with S ⊂ T and for all i ∈ N \ T, it holds that
A(S ∪ {i})− A(S) ≥ A(T ∪ {i})− A(T).
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An EOQ problem without holding costs and with two acquisition costs is a multi-agent inventory model
wherein each agent faces a continuous-review inventory problem involving the same commodity. In
this case, the considered parameters are the fixed part of the ordering cost, a > 0; the shortage cost per
unit and per time unit, bi > 0; the demand of the product of i, di > 0; and the capacity of the warehouse
of i, Ki > 0. Additionally:

• c1 > 0, the acquisition cost of one unit of the purchased commodity,

• c2 > 0, the acquisition cost of one unit of the produced commodity, with c2 < c1.

We denote this class of situations by (N, a, c1, c2, {bi, di, Ki}i∈N). In an analogous way to the model
studied in Fiestras-Janeiro et al. (2015), the inventory optimal policy varies when shortages are allowed.
If agent i reaches the maximum shortage level, agent i places an order of size Ki + βi, with βi the level
of shortages for i. The length of the cycle is given by Ki+βi

di
and the length of the period with shortages

is max{βi ,0}
di

. When a coalition S is formed, it verifies the following:

1
xi

=
Ki + βi

di
=

Kj + β j

dj
=

1
xj

,

where xi and xj denote the number of orders per time unit for each agent i, j ∈ S. Hence, the average

cost per cycle for a coalition S is [a + c1 ∑i∈S (Ki + min{βi, 0})] + ∑i∈S

[
bi

max2{βi ,0}
2di

+ c2 max{βi, 0}
]

and the average cost by time unit is

dj

Kj + β j
[a + c1 ∑

i∈S
(Ki + min{βi, 0})] +

dj

Kj + β j
∑
i∈S

[bi
max2{βi, 0}

2di
+ c2 max{βi, 0}].

Taking βi := −Ki +
di
x for all i ∈ S, we have for each x > 0:

CS(x) := x

[
a + c1 ∑

i∈S

(
Ki + min{−Ki +

di
x

, 0}
)]

+

+
1
x ∑

i∈S

bi
2di

max2{−Kix + di, 0}+ c2 ∑
i∈S

max{−Kix + di, 0}.

Authors propose another iterative procedure to obtain the optimal inventory policy with the calculus
of the minima of CS(x). So, the minimum value of CS(x) is

CS(x∗S) := ∑
i∈i(S)

bidi
1
x∗S

+ c1 ∑
i∈S\i(S)

di + ∑
i∈i(S)

(c2di − biKi), (16)

where x∗S :=

√√√√√ ∑
i∈i(S)

bidi

2a+2(c1−c2) ∑
i∈i(S)

Ki+ ∑
i∈i(S)

bi
K2

i
di

with i(S) := {i ∈ S : x∗S < di/Ki}. A cost game (N, c) can be

associated with every system as proposed. It is given by c(S) := CS(x∗S) for all S ⊆ N. When agents
in N cooperate in (N, a, c1, c2, {bi, di, Ki}i∈N), the GR-rule allocates, for i ∈ N:

GRi(c) :=

{
bidi

1
x∗N

+ c2di − biKi, si i ∈ i(N),

c1di, si i ∈ N \ i(N).
(17)

In order to summarize the assumptions on the described models in this section, Table 1 relates
them with the associated cost game and the allocation rule proposed for each case.

Inventorymodel in practice

This section presents an overview of the structure of the package. Inventorymodel is a tool for
calculating the optimal policy in several inventory situations and for allocating the collaboration costs
among the agents involved in the process. This software helps the user to determine faster the optimal
policy when the number of agents increases. Remark that these functions only automatize the required
operations for the calculus of the optimal costs under theses scenarios although the computational
complexity still maintains.3

3Recall that for a given value of n, the length of a characteristic cost function corresponds to the quantity of
coalitions to be evaluated, this is, 2n subsets of N.
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Ordering costs Variable ordering costs Holding costs Shortages (N, c) Allocation rule

X - X - (2) SOC rule (5)
X - X X (4) SOC rule (5)
X X(ai, i ∈ N) X - (6) Line-rule (7)
X - - - (8) Shapley value (9)
X X(ai, i ∈ N) - - (10) Two-lines rule (11)
X X(A(S), S ⊆ N) - - (12) R-rule (13)
X - - X (14) G-rule (15)
X - - X(two costs) (16) GR-rule (17)

Table 1: Summary of assumptions, cost games, and allocations rules.

Inventorymodel package includes several functions that enable users to determine the optimal
inventory policy for the inventory models decribed in previous section. Moreover, auxiliary functions
are implemented to obtain some intermediate values in the calculation. This package has as depen-
dencies e1071 and GameTheoryAllocation packages of which takes some functions in its calculations.
The last one, in a primitive version, includes some generic functions related to game-theoretic concepts.
The functions incorporated in the package are briefly described in Table 2.

Function Description

coalitions Function to obtain all possible coalitions with n players.
EOQ Function to calculate the optimal policy and costs in an EOQ model (2).
EOQcoo Function to calculate the optimal policy and associated cost game in an

EOQ model when n agents cooperate (2).
EPQ Function to calculate the optimal policy and costs in an EPQ model (4).
EPQcoo Function to calculate the optimal policy and associated cost game in an

EPQ model when n agents cooperate (4).
inventorygames Function to determine the associated cost game in an EOQ (2) or an

EPQ (4) model.
inventorymodelfunction Main function to obtain the optimal policy by selecting any model and

its parameters.
linerule Function to obtain the line-rule allocation (7) for an inventory trans-

portation system (6) when a coalition N is formed .
linerulecoalitional Function to obtain the line-rule allocation (7) for an inventory trans-

portation system (6) for each possible coalition.
marginal_contribution_mean Intermediate auxiliary function to calculate the mean of the marginal

contributions for a set of permutations.
mct Function to obtain the costs in a basic EOQ system without holding

costs and with transportation cost (10).
mfoc Function to obtain the associated costs in a fixed order cost model (8).
mwhc Function to obtain the associated costs in a model without holding

costs (14).
mwhc2c Function to obtain the associated costs in a model without holding

costs and with two different costs of a product (16).
mwhcct Function to obtain the associated costs in a basic EOQ system without

holding costs and with a general transportation cost (12).
shapley_mfoc Function to calculate the Shapley value (9) for the associated game in a

fixed order cost model (8).
SOC Function to obtain the allocation proposed by the SOC rule (5) under

an EOQ/EPQ model, see (2) and (4).
STI Function to obtain the optimal orders and associated cost in inventory

transportation systems (6).
STIcoo Function to obtain the optimal orders and associated cost when n

agents are cooperating in the inventory transportation system (6).
twolines Function to calculate the allocation proposed by the two-lines rule (11)

in a basic EOQ system without holding costs and with transportation
cost (10).

Table 2: Summary of functions in the Inventorymodel package.
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Users can obtain the optimal inventory policy in each case by introducing the associated parameters
to each model in the corresponding function. Table 3 describes the different options to define the
inventory models included in Inventorymodel. However, not all of the mentioned options are
necessary since only some of them are specific for each inventory situation. Table 4 summarizes the
required arguments in the specific function associated with each inventory model. Examples of usage
for the implemented functions are described in the next section.

Argument Description

model A character string that indicates the selected model and required only in the
inventorymodelfunction. The possible values are "EOQ" (EOQ), "EPQ" (EPQ), "STI"
(the inventory transportation systems), "FOC" (the fixed order cost model), "MCT" (the
basic EOQ system without holding costs and with transportation cost), "MWHC" (the
model without holding costs and shortages), "MWHC2" (the model without holding
costs and two acquisition costs), and "MWHCCT" (the EOQ system without holding costs
and with general transportation costs).

n An integer specifying the number of agents involved in the inventory model. It
corresponds to the cardinality of the set N.

a A real number that indicates the fixed cost per new order.
av A vector of dimension n that contains, in each component, the transportation costs

associated with each agent i ∈ N.
d A vector of dimension n that contains, in each component, the deterministic demands

per time unit associated with each agent i ∈ N.
h A vector of dimension n that indicates, in each component, the holding costs per

product unit associated with each agent i ∈ N.
m A vector of dimension n that indicates, in each component, the number of orders mi

associated with each agent i ∈ N. These values are necessary only when information
about demands is unknown.

r A vector of dimension n that contains, in each component, the replacement rate of
a product associated with each agent i ∈ N in a EPQ model. In general, it verifies
ri > di.

K A vector of dimension n that details, in each component, the warehouse capacity of
the product associated with each agent i ∈ N.

b A vector of dimension n that details, in each component, the cost by shortage unit of
the product associated with each agent i ∈ N.

c1 A real value with the acquisition cost of one unit of the purchased commodity.
c2 A real value with the acquisition cost of one unit of the produced commodity.
cooperation A variable that indicates if cooperation is considered. If it exists, cooperation=1, else

cooperation=0.
allocation A variable that indicates if the defined allocation in each case is required. If it exists,

allocation=1, else allocation=0.

Table 3: Summary of arguments for functions in the Inventorymodel package.

Additionally, the function coalitions takes, as a unique argument, the integer variable n (the
number of involved agents) to calculate all possible subsets of the set of N. The auxiliary function
marginal_contribution_mean allows the calculation of the average of the marginal contribution
vectors for some indicated permutations. Therefore, it only needs as arguments a matrix with the
permutations to study (permute) and a vector that contains the characteristic function with associated
cost values for each possible coalition in a set of agents N (costs).

Examples of application

Several examples of application of the Inventorymodel package are used to illustrate its performance
in the different contexts considered. After installing the package from CRAN, as an initial step a user
should load the package in the R Console:

> library("Inventorymodel")

Below, in order to illustrate the performance of those functions which determine the optimal order
and the associated cost game, we consider examples extracted from the references. In this situations,
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Function model n a av d h m r K b c1 c2 cooperation allocation

EOQ - X X - X X X - - - - - - -
EOQcoo - X X - X X X - - - - - - -
EPQ - X X - X X X X - X - - - -
EPQcoo - X X - X X X X - X - - - -
inventorygames X - X - X X X X - X - - - -
inventorymodelfunction X X X X X X X X X X X X X X
linerule - X X X X X X - - - - - - -
linerulecoalitional - X X X X X X - - - - - - -
mct - X X X X - - - X - - - X -
mfoc - X X - X - - - X - - - X -
mwhc - X X - X - - - X X - - X X
mwhc2c - X X - X - - - X X X X X X
mwhcct - X X X X - - - X - - - X X
shapley_mfoc - X X - X - - - X - - - - -
SOC X X X - X X X X - - - - - -
STI - X X X X X X - - - - - - -
STIcoo - X X X X X X - - - - - - -
twolines - X X X X - - - X - - - - -

Table 4: Arguments for each function in the Inventorymodel package.

the number of involved agents is always lesser than n = 10. For cases where n is greater, such as we
have mentioned through this paper, the characteristic function requires a high memory size. Hence, the
implemented functions only return the individual costs, c({i}), and values associated to the formation
of coalition N, c(N), with an analogous structure of the results.

The EOQ and EPQ models under cooperation in R

This example, taken from Meca et al. (2004), describes the EOQ problem that surges when three airlines
place joint orders. Let N = {1, 2, 3} be the set of agents and a = 600 the fixed cost of a new order with
values for the individual demands, and the holding costs (by unit of product) are depicted in Table 5.

i 1 2 3

di 500 300 400
hi 9.6 11 10

Table 5: Demands and holding costs for agents in N in the EOQ problem.

Using EOQcoo, we obtain the optimal policy for each possible subgroup S ⊆ N in terms of the
number of orders and its associated costs (as a data frame in a list) following (2).

> EOQcoo(n = 3, a = 600, d = c(500, 300, 400), h = c(9.6, 11, 10))
EOQ model
Cooperative case
Optimal order

Coalition 1 2 3 Coalitional costs
1 0 0.0000 0.0000 0.0000 0.000
2 '{ 1 }' 250.0000 0.0000 0.0000 2400.000
3 '{ 2 }' 0.0000 180.9068 0.0000 1989.975
4 '{ 3 }' 0.0000 0.0000 219.0890 2190.890
5 '{ 1,2 }' 192.4501 115.4701 0.0000 3117.691
6 '{ 1,3 }' 184.6372 0.0000 147.7098 3249.615
7 '{ 2,3 }' 0.0000 121.6327 162.1770 2959.730
8 '{ 1,2,3 }' 157.4592 94.4755 125.9673 3810.512

To evaluate the implementation in R of the EPQ model, we consider in the previous example a
replacement rate ri = 600 units of product for all i ∈ N. Moreover, the cost by shortage unit is 100, 150
and 200 for each agent, respectively. Below, the optimal policy in terms of the number of orders and
shortages is depicted (4). It is obtained by using EPQcoo in R.

> EPQcoo(n = 3, a = 600, d = c(500, 300, 400), h = c(9.6, 11, 10),
+ r = rep(600, 3), b = c(100, 150, 200))
EPQ model
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Cooperative case
`Optimal order`

Coalition 1 2 3 Coalitional costs
1 0 0.0000 0.0000 0.0000 0.0000
2 '{ 1 }' 641.0928 0.0000 0.0000 935.9019
3 '{ 2 }' 0.0000 265.0557 0.0000 1358.2049
4 '{ 3 }' 0.0000 0.0000 388.8444 1234.4268
5 '{ 1,2 }' 363.7611 218.2567 0.0000 1649.4341
6 '{ 1,3 }' 387.3208 0.0000 309.8566 1549.1036
7 '{ 2,3 }' 0.0000 196.1473 261.5297 1835.3556
8 '{ 1,2,3 }' 291.2332 174.7399 232.9866 2060.2045

`Optimal shortages`
1 2 3

0.000000 0.000000 0.000000
9.359019 0.000000 0.000000
0.000000 9.054699 0.000000
0.000000 0.000000 6.172134
5.310381 7.455973 0.000000
5.654318 0.000000 4.918359
0.000000 6.700683 4.151265

The output is a list which contains as a first element a data frame with optimal orders and the associated
costs, and a data frame where the optimal shortages by agent are depicted for the different coalitions.

The calculation of the SOC rule (5) in the abovementioned example for the EOQ problem completes
this evaluation. To conclude, we use the SOC function to obtain this allocation (as a numeric vector).

> SOC(n = 3, a = 600, d = c(500, 300, 400), h = c(9.6, 11, 10), model = "EOQ")
EOQ model
`Share the ordering costs rule (individually)`

1 2 3
0.000 0.000 0.000

2400.000 0.000 0.000
0.000 1989.975 0.000
0.000 0.000 2190.890

1847.521 1270.171 0.000
1772.517 0.000 1477.098

0.000 1337.960 1621.770
1511.608 1039.230 1259.673

In an obvious way, this function returns the allocation proposed by the SOC rule correspond to each
possible group of agents.

The inventory transportation systems in R

To evaluate the performance of the inventory transportation systems in R, we consider the example
depicted in Fiestras-Janeiro et al. (2012). Let N = {1, 2, 3} be a set of three involved agents, with
a = 200 as the fixed cost of a new order. The remainder of the data are detailed in Table 6.

i 1 2 3

ai 300 300 900
di 90 80 20
hi 0.06 0.06 0.1

Table 6: Distances to the supplier, demands, and individual holding costs.

The function STIcoo allows the determination of the optimal policy for each possible S ⊆ N in this
inventory situation. Its result is shown below in terms of the number of orders and its associated costs
(6).

> STIcoo(n = 3, a = 200, av = c(300, 300, 900), d = c(90, 80, 20),
+ h = c(0.06, 0.06, 0.1))
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`Optimal order`
1 2 3 Coalition Order cost

1 0.0000 0.000 0.0000 0 0.00000
2 1224.7449 0.000 0.0000 '{ 1 }' 73.48469
3 0.0000 1154.701 0.0000 '{ 2 }' 69.28203
4 0.0000 0.000 663.3250 '{ 3 }' 66.33250
5 891.1328 792.118 0.0000 '{ 1,2 }' 100.99505
6 1551.8080 0.000 344.8462 '{ 1,3 }' 127.59310
7 0.0000 1438.954 359.7385 '{ 2,3 }' 122.31108
8 1208.5759 1074.290 268.5724 '{ 1,2,3 }' 163.82918

Finally, we utilize the function linerule to obtain the allocation proposed by the line-rule when N
is formed (7).

> linerule(n = 3, a = 200, av = c(300, 300, 900), d = c(90, 80, 20),
+ h = c(0.06, 0.06, 0.1))
[1] 51.38935 46.10733 66.33250

The inventory problems with no-holding costs and without shortages in R

First, we evaluate the basic EOQ system without holding costs in R by taking the example considered
in Fiestras-Janeiro et al. (2014). There are five farms with 40, 140, 120, 130 and 120 cows, respectively.
The fixed cost by order is a = 200 euros. The information about demands of the product and capacity
of warehouses are depicted in Table 7.

i 1 2 3 4 5

di 0.4 1.4 1.2 1.3 1.2
Ki 4 10 8 8 6

Table 7: Demands and capacities of the warehouses.

By using the mfoc function, we obtain the individual inventory costs (as a numeric vector).

> mfoc(n = 5, a = 200, d = c(0.4, 1.4, 1.2, 1.3, 1.2), K = c(4, 10, 8, 8, 6),
+ cooperation = 0)
MFOC model
[1] 20.0 28.0 30.0 32.5 40.0

When cooperation=1, the costs associated to each possible coalition (8) are depicted in a data frame.

Below, we obtain the Shapley value (as numeric) with the previous costs according to that described
(9). For this, we use the shapley_mfoc function.

> shapley_mfoc(n = 5, a = 200, d = c(0.4, 1.4, 1.2, 1.3, 1.2),
+ K = c(4, 10, 8, 8, 6))
Shapley-Value
MFOC model
[1] 4.000000 6.000000 6.666667 7.916667 15.416667

In order to evaluate the basic EOQ system without holding costs and with transportation costs in
R, we consider the example proposed in Fiestras-Janeiro et al. (2014) for three farms. In this case, if
N = {1, 2, 3}, the cost by a new order is a = 100, and the rest of the data are detailed in Table 8.

i di Ki ai di/Ki

1 2 9 300 0.222
2 2 8 500 0.250
3 5 7 200 0.714

Table 8: Demands, capacities of the warehouses, and costs by transportation.

The function mct allows the calculation, for each S ⊆ N, of the optimal costs of the collaboration
(10). As cooperation=1, the output is a matrix; otherwise, it is a numeric vector.
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> mct(n = 3, a = 400, av = c(300, 500, 200), d = c(2, 2, 5), K = c(9, 8, 7),
+ cooperation = 1)
MCT model
Cooperative case
1 2 3 Coalition Cost

1 0 0 0 0 0.0000
2 1 0 0 '{ 1 }' 155.5556
3 0 1 0 '{ 2 }' 225.0000
4 0 0 1 '{ 3 }' 428.5714
5 1 1 0 '{ 1,2 }' 225.0000
6 1 0 1 '{ 1,3 }' 500.0000
7 0 1 1 '{ 2,3 }' 642.8571
8 1 1 1 '{ 1,2,3 }' 642.8571

For this class of problems, when N agents cooperate, the allocation proposed by the two-lines rule (11)
for the dealt example is obtained by the function twolines:

> twolines(n = 3, a = 400, av = c(300, 500, 200), d = c(2, 2, 5), K = c(9, 8, 7))
MCT model
Cooperative case
Two-lines rule
[1] 0.0000 219.6429 423.2143

Finally, the performance of the implementation in R of the EOQ systems without holding costs
and with general transportation costs is considered. For this, we take one example for n = 3 agents
extracted from Saavedra-Nieves et al. (2018). In that case, a = 10 and d/K = (1, 0.95, 0.9), and the
transportation cost function is detailed in Table 9.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

A(S) 10 10 10 20 20 20 30

Table 9: Transportation costs function A for each S ⊆ N.

The function mwhcct allows the determination of the optimal policy for this model (12), and with
the selected option, we obtain the allocation the R-rule (13) proposes.

> mwhcct(n = 3, a = 10, av = c(0, 10, 10, 10, 20, 20, 20, 30), d = c(1, 0.95,
+ 0.9), K = c(1, 1, 1), cooperation = 1, allocation = 1)
MWHC with Transportation Costs model
Cooperative case
`Optimal solution`
1 2 3 Coalition Cost

1 0 0 0 0 0.0
2 1 0 0 '{ 1 }' 20.0
3 0 1 0 '{ 2 }' 19.0
4 0 0 1 '{ 3 }' 18.0
5 1 1 0 '{ 1,2 }' 30.0
6 1 0 1 '{ 1,3 }' 30.0
7 0 1 1 '{ 2,3 }' 28.5
8 1 1 1 '{ 1,2,3 }' 40.0

`Allocation R rule`
1 2 3

13.75 13.25 13

The results are in a list which contains a data frame with optimal costs and a vector with the allocation
that the R rule proposes for this model.

The inventory problems with no-holding costs and shortages in R

The EOQ system without holding costs and shortages in R is evaluated using the example taken from
Fiestras-Janeiro et al. (2015). In that case, a = 180, and the rest of the necessary data in the model are
given in Table 10.
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i 1 2 3 4

di 0.45 0.95 1.05 1.20
bi 15 15 10 12
Ki 5 7.5 8 9

Table 10: Demands, shortage costs, and capacities of the warehouses.

Using the function mwhc, the optimal policy (14) in terms of the number of orders and shortages
is obtained, and the allocation proposed for this inventory scenario is also calculated for the case in
which N cooperate.

> mwhc(n = 4, a = 180, b = c(15, 15, 10, 12), d = c(0.45, 0.95, 1.05, 1.2),
+ K = c(5, 7.5, 8, 9), cooperation = 0, allocation = 0)
MWHC model
`Number of orders per time unit`
[1] 0.07520921 0.10684954 0.10406757 0.11094004

Costs
[1] 14.74965 20.86510 20.89599 21.79985

`Optimal shortages`
[1] 0.9833101 1.3910067 2.0895986 1.8166538

In this case, the output corresponds to a list with components for the orders, the costs, and the optimal
shortages. When cooperation=1, the output is a list with the optimal policies for the different groups,
indicating the orders and the costs, and the allocation proposed by G (15).

To conclude, we analyse the EOQ problem without holding costs and with two acquisition costs
in R. For this, we consider an example from Saavedra-Nieves et al. (2018a) for n = 3 agents whose
associated data is depicted in Table 11. The remainder of the data are given by a = 1, c1 = 3.5, and
c2 = 3.

i 1 2 3

di 30 45 46
bi 10 10 10
Ki 30 45 46

Table 11: Demands, shortage costs, and capacities of the warehouses.

The function mwhc2c allows the calculation of the optimal policy in terms of the number of orders
and shortages when all agents cooperate (16). Moreover, we obtain the proposed allocation in this
case.

> mwhc2c(n = 3, a = 1, b = c(10, 10, 10), d = c(30, 45, 46),
+ K = c(30, 45, 46), c1 = 3.5, c2 = 3, cooperation = 0, allocation = 0)
MWHC model
`Number of orders per time unit`
[1] 0.9505864 0.9515422 0.9515838

Costs
[1] 105.5947 157.9165 161.4046

`Optimal shortages`
[1] 1.559468 2.291648 2.340459

The output has the following structure: it is a list with the orders, the costs and the optimal shortages.
When cooperation=1, the output corresponds to a list with the optimal policies for the different
groups, with the associated orders and the costs in a data frame, and the allocation proposed by GR
(17) for each coalition S ⊆ N in a matrix.
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All examples dealt with in this section can be evaluated with inventorymodelfunction by intro-
ducing, for each case, the corresponding character chain for the associated model and its parameters
(see Table 3 for details).

Computing time

To illustrate the time required by the different functions in the R package Inventorymodel, we
performed the following simulations with artificial data. We generated, according to a uniform
distribution, 100 samples of the involved parameters in the functions included in the package for
values of n from 3 to 10.

For each sample, we evaluate the available functions. All the computations included in this paper
have been performed on a personal computer with Intel(R) Core(TM) i5-4210U and 8 GB of memory
using a single 2.40GHz CPU processor. The results of the evaluations for all samples are depicted in
Tables 12 and 13, where the values are reported in seconds.4

n 3 4 5 6 7 8 9 10

EOQcoo 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
EPQcoo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STIcoo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
mfoc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mct 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
mwhc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
mwhc2c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mwhcct 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01

Table 12: System time (in seconds) for 100 computations using Inventorymodel and for several values
of n.

n 3 4 5 6 7 8 9 10

EOQcoo 0.00 0.00 0.34 0.72 1.00 2.20 4.35 9.35
EPQcoo 0.00 0.00 0.26 0.24 0.63 1.35 2.72 5.98
STIcoo 0.00 0.00 0.37 0.65 1.14 2.13 4.50 9.43
mfoc 0.00 0.00 0.32 0.45 0.75 1.65 3.48 7.16
mct 0.00 0.00 1.00 1.96 4.03 8.34 17.97 38.22
mwhc 0.00 0.00 0.72 1.27 2.17 4.45 9.32 18.93
mwhc2c 0.00 0.00 0.92 1.64 3.26 7.31 14.38 31.86
mwhcct 0.00 0.00 0.84 1.76 3.52 7.27 15.47 32.79

Table 13: User time (in seconds) for 100 computations using Inventorymodel and for several values
of n.

We can observe that the runtime is mainly affected by the number of agents. As we expected, as
the procedure is based on the subsets of N, the dimension of the characteristic function determines
the runtime required for its calculation. In view of Tables 12 and 13, it is easy to check that when n
increases, the computing time increases too. However, in most of cases, it does not exceed ten seconds
of running time for all computation. Only in seven situations the computing time is bigger (without
exceeding a minute).

Conclusions

This paper discusses the implementation in R of several procedures to calculate the optimal policy in
different inventory situations from using game theory results. Mechanisms to allocate the collaborating

4These values were obtained by using the basic function proc.time() in R. By definition, the user time is the
CPU time charged for the execution of user instructions of the calling process. The system time is the CPU time
charged for execution by the system on behalf of the calling process.
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costs among the agents have been incorporated as well. Thus, the Inventorymodel package provides
R users a set of functions to determine the optimal costs in different situations defined in the literature:
with holding costs, with costs by the transport of a new order, with shortages, and with different
prices of a unit of purchased and produced products. When the number of agents increases, these
calculations become computationally more complicated since that the number of possible groups of
agents considerably enlarges. Future research and development plans for forthcoming versions of
the package include the addition of new inventory models that can be dealt with in the framework
presented above and the inclusion of alternative procedures in order to reduce the computational
complexity present in this class of problems.
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R Package imputeTestbench to Compare
Imputation Methods for Univariate Time
Series
by Marcus W Beck, Neeraj Bokde, Gualberto Asencio-Cortés, and Kishore Kulat

Abstract Missing observations are common in time series data and several methods are available to
impute these values prior to analysis. Variation in statistical characteristics of univariate time series
can have a profound effect on characteristics of missing observations and, therefore, the accuracy of
different imputation methods. The imputeTestbench package can be used to compare the prediction
accuracy of different methods as related to the amount and type of missing data for a user-supplied
dataset. Missing data are simulated by removing observations completely at random or in blocks of
different sizes depending on characteristics of the data. Several imputation algorithms are included
with the package that vary from simple replacement with means to more complex interpolation
methods. The testbench is not limited to the default functions and users can add or remove methods
as needed. Plotting functions also allow comparative visualization of the behavior and effectiveness of
different algorithms. We present example applications that demonstrate how the package can be used
to understand differences in prediction accuracy between methods as affected by characteristics of a
dataset and the nature of missing data.

Introduction

Univariate time series data provide valuable information that forms the basis of analysis across
several disciplines. The most notable characteristic of time series data is time-dependent correlations
between observations such that the likelihood of observing a single value depends on the values of
past or future observations (Shumway and Stoffer, 2011; Box et al., 2015). This precludes the use of
most conventional statistical methods that require independence of observations as a fundamental
assumption prior to analysis. However, unique methods have been developed that account for and
leverage the statistical characteristics of time series data to provide insight beyond those provided
by more conventional techniques. For example, additive or multiplicative models can be used to
separate a univariate time series data into unique components with different structures (e.g., Gould
et al., 2008), whereas multiple methods for signal processing seek to isolate dominant components
that are independent of random variation in the observed data (e.g., Mendel, 2000).

Many analysis methods for time series require complete observations at each time step across the
period of interest. Complete datasets rarely exist such that missing observations are often defining
characteristics of time series data (e.g., Gomez and Maravall, 1994; Honaker and King, 2010). Missing
observations can occur for several reasons, although the type and amount of missing values depend
on characteristics of the data (Schafer, 1997; Schafer and Graham, 2002). For example, a time series
with no serial dependence between observations is more likely to have missing observations that
are completely random (Rubin, 1976). A more common scenario for time series data is missing
observations in ’chunks’ or data missing in sequence for a period of time (Schafer, 1997; Donders et al.,
2006). The occurrence of missing chunks relates directly to the correlation structure of time series
data, as in cases when experiments are not continuously maintained, remote data fail to transmit
from the source to the user, or funding mechanisms for monitoring programs are discontinuous. As
such, the accuracy of imputation methods can vary considerably depending on characteristics of the
dataset (Yozgatligil et al., 2013). Similar to the application of analysis methods that use time-dependent
information, imputation methods must also faithfully reconstruct missing observations in this context.

Identifying an appropriate imputation method is often the first step towards more formal time
series analysis. Different imputation methods will have differing precision in reproducing missing
values, where precision will depend on how much data are missing and how the data are missing (i.e.,
individual observations missing at random or data missing in continuous chunks). The characteristics
of the dataset will also influence imputation precision between methods. An expectation is that
imputation methods that leverage characteristics of the dataset to predict missing values will perform
better than more naïve methods, if indeed there is sufficient temporal structure. Accordingly, choosing
an appropriate imputation method can be facilitated by using a standardized method of comparison. A
simple approach for method comparison is to evaluate prediction accuracy from imputed values after
removing observations from a test dataset, where the test dataset should have characteristics similar
to the one requiring imputation. For example, Zhu et al. (2011) proposed a kernel-based iterative
estimation method for missing data and compared the approach to other conventional frequency
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10% 80%
Method names T V T V

Mixing 8 0.085 20 1.53
Poly 10 0.103 25 2.11
RBF 11 0.107 29 2.86
Normal 14 0.121 30 3.01
FE 13 0.117 29 2.59

Table 1: An approach for comparing imputation methods. Methods in the left column are compared
by varying the amount of missing data (10% and 80%) in a complete dataset and number of iterations
(T) for which the missing data are removed at random. V is the mean RMSE of the imputed values.
Reproduced from Zhu et al. (2011).

estimators. The methods were compared by simulating different amounts of missing data, predicting
the missing values with each method, and then comparing the predictions to the actual data that
were removed. Table 1 reproduces the results, where the rows show root-mean squared error (RMSE)
between observed and predicted data for each imputation method after removing and predicting 10%
and 80% of the complete dataset. Additional studies have used a similar workflow to compare the
performance of imputation methods (Jörnsten et al., 2007; Li et al., 2015; Nguyen et al., 2013; Ran et al.,
2015; Tak et al., 2016).

There are several challenges for adopting a standardized approach to compare imputation methods.
An obvious concern is the amount of missing data, such that a complete gradient from very few to
many observations should be evaluated with each method (Zhu et al., 2011). For example, one method
may be superior for very few missing observations but perform poorly relative to other methods for
many missing observations. Additionally, missing data as random or in chunks could also influence
the comparisons of prediction accuracy depending on the dataset (Donders et al., 2006). Interpretations
may also be influenced by the choice of error metric (e.g., RMSE) as different metrics have different
objectives (Yozgatligil et al., 2013).

This paper describes the imputeTestbench package to simultaneously compare different imputa-
tion methods for univariate time series (Bokde and Beck, 2017). The goal of this package is to provide
an evaluation toolset that addresses the above challenges for identifying an appropriate imputation
method before more detailed analysis. This package provides several options for simulating missing
observations with repeated sampling from a complete dataset. Missing values are imputed using any
of several methods and then compared with a common error metric chosen by the user. Plotting func-
tions are available to visualize the simulation methods for missing data, the predicted time series from
each method, and overall evaluation of prediction accuracy between methods. Example applications
are provided to demonstrate how imputeTestbench can be used to understand why different methods
have different prediction accuracy given characteristics of the original data and characteristics of the
missing data.

Overview of imputeTestbench

The theoretical foundation of imputeTestbench is shown in Figure 1. Comparing imputation methods
begins by identifying the range of missing observations to remove and the number of repetitions
for randomly removing the data. The removed data are imputed using one of several methods for
each percentage of missing observations up to the maximum. Error metrics are used to identify the
prediction accuracies of each imputation method for each repetition and interval of missing data.

Components of the workflow in Figure 1 are executed with the functions in imputeTestbench.
The primary function is impute_errors() which is used to evaluate different imputation methods
with missing data that are randomly generated from a complete dataset. The sample_dat() function
is used to generate missing data within impute_errors() and includes a plotting option to demon-
strate how the missing data are generated. The default error metrics for the imputed data are in the
error_functions() function. The remaining two functions, plot_impute() and plot_errors(), are
used to visualize imputation results and error summaries for the chosen methods. Dependencies in-
clude additional packages for data manipulation (dplyr, Wickham and Francois (2016); reshape2, Wick-
ham (2007); tidyr, Wickham (2017)), graphing (ggplot2, Wickham (2009)), and imputation (forecast,
Hyndman et al. (2017); imputeTS, Moritz and Bartz-Beielstein (2017); zoo, Zeileis and Grothendieck
(2005)).
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Figure 1: Workflow diagram for comparing imputation methods. Min% and Max% are minimum and
maximum percent of missing values in the dataset. Details are described below.

The impute_errors() function:

The impute_errors() function evaluates the accuracy of different imputation methods based on
changes in the amount and type of missing observations from the complete dataset. The default
methods included in impute_errors() are three methods for linear interpolation (na.approx(), zoo;
na.interp(), forecast; na.interpolation(), imputeTS), last-observation carried forward (na.locf(),
zoo), and mean replacement (na.mean(), imputeTS). These methods are routinely applied in time
series analysis, are easily understood compared to more complex approaches, and have relatively
short computation times (Moritz and Bartz-Beielstein, 2017). Moreover, these methods represent
a gradient from none to more complex dependence on the serial correlation of the time series - re-
placing missing data with overall means (na.mean()), replacing missing data with the last prior
observation (na.locf()), and gap interpolation with linear methods (na.approx(), na.interp(),
na.interpolation()). Note that the three linear methods vary considerably in the optional arguments
that affect the imputation output. An expectation with the default methods included in imputeTest-
bench is varying imputation accuracy based on how each method relies on characteristics of a dataset
to predict missing observations. Although we acknowledge that the effectiveness of a chosen method
depends on the data, the default techniques represent a broad range that is sufficient for most applica-
tions. As noted below, additional methods can be added as needed.

The impute_errors() function has the following arguments:

impute_errors(dataIn, smps = "mcar",
methods = c("na.approx","na.interp",
"na.interpolation", "na.locf", "na.mean"),
methodPath = NULL, errorParameter = "rmse",
errorPath = NULL, blck = 50, blckper = TRUE,
missPercentFrom = 10, missPercentTo = 90,
interval = 10, repetition = 10, addl_arg =
NULL)
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dataIn:

A ts (stats) or numeric object that will be evaluated. The input object is a complete dataset to evaluate
by simulating missing data for performance evaluation and comparison of imputation methods. The
examples in the documentation use the nottem time series object of average air temperatures recorded
at Nottingham Castle from 1920 to 1930 (datasets package).

smps:

The desired type of sampling method for removing values from the complete time series provided by
dataIn. Options are smps = 'mcar' for missing completely at random (MCAR, default) and smps =
'mar' for missing at random (MAR). Both methods provide different approaches to generating missing
data in time series. In general, MCAR removes individual observations where the likelihood of a single
observation being removed does not depend on whether observations closer in time have also been
removed. By contrast, MAR removes observations in continuous blocks such that the likelihood of an
observation being removed depends on whether observations closer in time have also been removed.
The methods are described in detail in the section Sampling methods for missing observations.

methods:

Methods that are used to impute the missing values generated by smps: replace with means (na.mean()),
last-observation carried forward (na.locf()), and three methods of linear interpolation (na.approx(),
na.interp(), na.interpolation()). All five default methods are used unless the argument is changed
by the user. For example, methods = 'na.approx' will use only na.approx() with impute_errors().
Methods not included with the default options can be added by including the name of the function
in methods and providing the path to the script in methodPath. Additional arguments passed to each
method can be included in addl_arg described below.

methodPath:

A character string for the path of the user-supplied script that includes one to many functions passed
to methods. The path can be absolute or relative within the current working directory for the R session.
The impute_errors() function sources the file indicated by methodPath to add the user-supplied
function to the global environment.

errorParameter:

The error metric used to compare the true, observed values from dataIn with the imputed values.
Metrics included with imputeTestbench are root-mean squared error (RMSE), mean absolute percent
error (MAPE) and mean absolute error (MAE). The metric can be changed using errorParameter =
'rmse' (default), 'mape', or 'mae'. Formulas for the error metrics are as follows:

RMSE =

√√√√√ n
∑

i=1
(xi − x̂i)

2

n
(1)

MAPE = 100 ·

n
∑

i=1
| (xi − x̂i) /xi|

n
(2)

MAE =

n
∑

i=1
|xi − x̂i|

n
(3)

where n is the total number of missing observations, x are the actual observations, and x̂ are the
imputed observations. Additional error measures can be provided as user-supplied functions.

errorPath:

A character string for the path of the user-supplied script that includes one to many error methods
passed to errorParameter.
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blck:

The block size for missing data if the sampling method is at random, smps = 'mar'. The block size
can be specified as a percentage of the total amount of missing observations to remove or as a number
of time steps in the input dataset. For example, if blck = 50 and blkper = TRUE (indicating blck is a
percentage), each block has a size that is 50% of the total amount of observations to remove. A time
series with 100 observations will have two missing chunks of 20 observations each if a total of 40% of
the observations are removed and each chunk is 50% of the total. The total amount of observations to
remove depends on values inherited from missPercentFrom, missPercentTo, and interval.

blckper:

A logical value indicating if the value for blck is a percentage (blckper = TRUE) of the total number of
observations to remove or a sequential number of time steps (blckper = FALSE) to remove for each
block. This argument only applies if smps = 'mar'.

missPercentFrom, missPercentTo:

The minimum and maximum percentages of missing values, respectively, that are introduced in
dataIn. Appropriate values for these arguments are 10 to 90, indicating a range from few missing
observations to almost completely absent observations.

interval:

The interval of missing data from missPercentFrom to missPercentTo. The default value is 10% such
that missing percentages in dataIn are evaluated from 10% to 90% at an interval of 10%, i.e., 10%, 20%,
30%, ..., 90%. Combined, these arguments are identical to seq(from = 10,to = 90,by = 10).

repetition:

The number of repetitions at each interval. Missing values are placed randomly in the original data
such that multiple repetitions must be evaluated for a robust comparison of the imputation methods.

Considering the default values for the above arguments, the impute_errors() function returns an
"errprof" object as the error profile for the imputation methods:

library(imputeTestbench)
set.seed(123)
a <- impute_errors(dataIn = nottem)
a
## $Parameter
## [1] "rmse"
##
## $MissingPercent
## [1] 10 20 30 40 50 60 70 80 90
##
## $na.approx
## [1] 0.87 1.49 1.87 3.01 3.91 4.58 6.75
## [8] 8.68 9.82
##
## $na.interp
## [1] 0.76 1.09 1.41 1.67 1.91 2.09 2.30
## [8] 2.53 2.92
##
## $na.interpolation
## [1] 0.87 1.49 1.87 3.01 3.91 4.58 6.75
## [8] 8.68 9.82
##
## $na.locf
## [1] 1.8 2.6 3.7 5.4 6.5 7.3 9.1
## [8] 11.0 11.0
##
## $na.mean
## [1] 2.6 3.8 4.6 5.4 6.2 6.7 7.2 7.6 8.4
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The "errprof" object is a list with seven elements. The first element, Parameter, is a character string
of the error metric used for comparing imputation methods. The second element, MissingPercent, is
a numeric vector of the missing percentages that were evaluated in the input dataset. The remaining
five elements show the average error for each imputation method at each interval of missing data
in MissingPercent. The averages at each interval are based on the repetitions specified in the initial
call to impute_errors(), where the default is repetition = 10. Although the print method for
the "errprof" object returns a list, the object stores the unique error estimates for every imputation
method, repetition, and missing data interval. These values are used to estimate the averages in
the printed output and to plot the distribution of errors with plot_errors() shown below. All error
values can be accessed from the errall attribute, i.e., attr(a,'errall').

Viewing results from impute_errors()

The plot_errors() function can be used to view summaries of the imputation errors for each method.
This function uses the "errprof" object as input and returns a graph of error values to compare results
from the methods across the range of missing data. Three plot types are provided by plot_errors()
and are specified with the plotType argument using one of three values: “boxplot”, “bar”, or “line”.
The default value is plotType = 'boxplot' that graphs the distribution of error values for each
method and missing data interval using boxplot summaries (i.e., 25th, 50th, and 75th percentile shown
by the box, whiskers as 1.5 times interquartile range, and outliers beyond). The boxplots are created
using all error values stored in the 'errall' attribute of the "errprof" object (Figure 2).

plot_errors(a)
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Figure 2: Distribution of error values from the "errprof" object for each imputation method and
interval of missing observations. The plot is created with plot_errors() using the boxplot option.

The bar and line options for plotType show the average error values for each repetition. Similar
information is shown as the boxplot option, although the range of error values for each imputation
method is not shown (‘line’ option shown in Figure 3).

plot_errors(a, plotType = 'line')

Sampling methods for missing observations

The impute_errors() function uses sample_dat() to remove observations for imputation from the
input dataset. Observations are removed using one of two methods relevant for univariate time series:
MCAR and MAR. The MCAR sampling scheme assumes all observations have equal probability of
being selected for removal and is appropriate for understanding imputation accuracy with univariate
time series that are not serially correlated (Rubin, 1976). Conversely, the MAR sampling scheme
selects observations in blocks such that the probability of selection for a single observation depends on
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Figure 3: Average error values for each imputation method and interval of missing observations. The
line option is used for plot_errors().

whether an observation closer in time was also selected (Schafer and Graham, 2002). The MAR scheme
is appropriate for time series with serial correlation. The sample_dat() function has the following
syntax:

sample_dat(datin, smps = "mcar", repetition = 10, b = 50, blck = 50, blckper = TRUE,
plot = FALSE)

datin:

Input "ts" object or numeric vector, inherited from dataIn from impute_errors().

smps, repetition, blck, blckper:

Arguments that are inherited as is from impute_errors() indicating the sampling type (smps), number
of repetitions for each missing data type (repetition), block size (blck), and block type as percentage
or count (blckper).

b:

Numeric indicating the total amount of missing data as a percentage to remove from the complete
time series. The arguments missPercentFrom, missPercentTo, and interval from impute_errors()
define b for each simulation of missing observations with sample_dat(). For example, missing data
will be simulated with sample_dat() for percentages of the total sample size as b = 10,20,...,90 if
missPercentFrom = 10, missPercentTo = 90, and interval = 10 for impute_errors().

plot:

Logical indicating if a plot is returned that shows one repetition of the sampling scheme defined by
the arguments (Figure 4).

The MCAR sampling scheme is used if smps = 'mcar', where the only relevant arguments are
missPercentFrom, missPercentTo, and interval from impute_errors() for the missing data. The
amount of data to remove for each interval is passed to the b argument in sample_dat(). Alternatively,
the MAR sampling scheme requires additional arguments to control the block size for removing data
in continuous chunks, in addition to the total amount of data to remove defined by b. The block size
argument, blck, can be given as a percentage or as number of observations in sequence. The type
of block size passed to blck is controlled by blckper, where blckper = TRUE indicates a percentage
and FALSE indicates a count for blck. For example, if the total sample size of the dataset is 1000, b
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= 50, blck = 20, and blckper = TRUE means half the dataset is removed (b = 50, 500 observations)
and each block will have 100 observations (20% of 500). For both percentages and counts, the blocks
are automatically selected until the total amount of missing data is equal to that specified by b. Final
blocks may be truncated to make the total amount of missing observations equal to b. The starting
location of each block is selected at random and overlapping blocks are not uniquely counted for
the required sample size given by b (i.e., blocks larger than that specified by blck may occur of two
separate blocks overlap).

The sample_dat() function is typically not used independently of impute_errrors(), although an
optional plotting argument is provided to visualize different sampling schemes for removing data.
Figure 4 shows examples of sampling with MCAR and MAR.

The plot_impute() function

The third plotting function available in imputeTestbench is plot_impute(). This function returns
a plot of the imputed values for each imputation method in impute_errors() for one repetition of
sampling for missing data. The plot shows the results in individual panels for each method with the
points colored as retained or imputed (i.e., original data not removed and imputed data that were
removed). An optional argument, showmiss, can be used to plot the original values as open circles
that were removed from the data. The plot_impute() function shows results for only one simulation
and missing data type (e.g., smps = 'mcar' and b = 50). Although the plot from plot_errors() is
a more accurate representation of overall performance of each method, plot_impute() is useful to
better understand how the methods predict values for a sample dataset (Figure 5).

plot_impute(dataIn = nottem, showmiss = T)

Including additional arguments

Additional arguments for the imputation functions used by impute_errors() can easily be modified.
This is useful for changing the default arguments, particularly for the three linear interpolation
methods (na.approach(), na.interp(), na.interpolation()). Although these methods are very
similar in the default configuration, the amount of flexibility varies considerably. For example,
na.interpolation() provides spline interpolation as an alternative that is not provided by the other
functions. Using each method without modifying the additional arguments is not suggested given
that no information is gained by comparing the linear interpolation methods with the default setup.

Accordingly, additional arguments can be passed to any of the imputation methods using the
addl_arg argument. These additional arguments are passed as a list of lists, where the list contains
one to many elements that are named by the methods in methods. The elements of the list are lists with
arguments that are specific to each imputation method. For example, the default imputation function
na.mean() has an additional option argument that specifies the algorithm for missing values, where
possible values are "mean", "median", and "mode". This argument can be changed from the default
option = "mean" with addl_arg in impute_errors(), as shown below. Arguments to user-supplied
imputation functions (below) can be changed similarly.

# changing the option argument for na.mean
impute_errors(dataIn = nottem,
addl_arg = list(na.mean = list(option = 'mode'))
)

Adding imputation methods and error metrics

Additional imputation methods saved as an R script can be added to impute_errors(). Attention
should be given to the format of the user-supplied function shown below. The time series data
(as numeric or "ts" object) with missing values is required as input and the return value is the
input dataset with imputed values, where the input and output objects have the same length. The
impute_errors() function will not process the data correctly if the format is incorrect. The file path
for the R script is supplied as an input string to the methodPath argument and the function name is
added to the methods argument for the impute_errors() function.

# function to include with impute_errors
new_imp <- function(In){
out <- imputeTS::na.random(In)
out <- as.numeric(out)
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Figure 4: Examples of sampling schemes for missing data provided by sample_dat(), plotted using
the argument plot = T. Values to be removed and imputed are shown as open circles and the data
to be kept are in blue. From top to bottom, sampling is MCAR with 10% missing, MCAR with 50%
missing, MAR with 10% missing and block size 10% of total missing, MAR with 50% missing and
block size 50% of total missing, MAR with 10% missing and block size of ten observations, and MAR
with 50% missing and block size of fifty observations.

return(out)
}

As described above, the error metrics included with imputeTestbench are RMSE, MAE, and
MAPE. These metrics provide different information and contrasting approaches to evaluate imputation
methods. For example, RMSE is a commonly used metric that maintains the scale of observations in
the input data. The MAE metric is similar but more interpretable as the differences are in proportion
to the absolute values of the errors, which differs from RMSE that uses the sum of squared deviations.
The MAPE metric is a simple extension of MAE that scales the output by the range of observations in
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Figure 5: Output from the plot_impute() function that shows the data that were retained (blue),
removed (open circles), and imputed (red).

the input data and is useful for comparing datasets that differ in scale. Users should choose a metric
based on the information provided by each. For example, imputation comparisons with different
datasets should use the MAPE metric that standardizes the scale of assessment.

Each of the metrics are called by the error_functions() function internally within impute_errors().
Additional error metrics are added using an approach similar to that used for adding imputation
methods. The following example shows use of the percent change in variance (PCV, Tak et al. (2016))
as an alternative error metric:

PCV =
var(V̄)− var(V)

var(V)
(4)

The user-supplied error function must include two arguments as input, the first being a vector
of observed values and the second being a vector of imputed missing values equal in length to the
first. The function must also return a single value as a summary of the errors or differences. As
before, the new error function should be saved as an R script. The file path is added to the errorPath
argument and the error function name is added as a character string to the errorParameter argument
for impute_errors().

# error metric to include with impute_errors
pcv <- function(dataIn, imputed)
{
d <- (var(imputed) - var(dataIn)) *
100/ var(imputed)

d <- as.numeric(d)
return(d)

}
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Demonstration of imputeTestbench

This example demonstrates how imputeTestbench can be used to compare imputation methods, and
more importantly, how it can be used to better understand the effects of time series characteristics
on prediction accuracies. The objective of the comparison is to relate prediction accuracies of each
method to the time series characteristics of each dataset, including a description of how the amount
and type of missing data influence the results. Three univariate datasets with different characteristics
are evaluated (Figure 6). The first dataset, nrm, is a sample of 100 random observations from a standard
normal distribution to simulate a dataset with no temporal correlation. The second dataset, austres, is
a "ts" object of Australian population in thousands, measured quarterly from 1971 to 1994 (Brockwell
and Davis, 1996). This dataset includes a simple correlation structure with minimal random noise.
The final dataset is nottem as described above. This dataset is characterized by a cyclical or repeating
seasonal component. Lagged correlations show the differences in the temporal dependencies between
the datasets (Figure 6).
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Figure 6: Three datasets used to demonstrate application of imputeTestbench. The top dataset, nrm,
was created with random samples from a normal distribution. The bottom two datasets are austres
and nottem from the datasets package. Each dataset has different temporal correlation structures
shown at different lags (right column). The light red shading indicates a threshold beyond which
correlations are significant (α = 0.05).

Each dataset was evaluated by simulating missing observations from 10% to 90% of the complete
data using MCAR (smps = 'mcar') and MAR (smps = 'mar') sampling. The size of each chunk (blck
argument) for MAR sampling was evaluated at 20% and 100% of the total percentage of missing
observations to evaluate an effect of chunk size (small chunks to one large chunk) on imputation
accuracy. As such, the analysis evaluated imputation accuracy between the default methods as
affected by dataset type (nrm - no correlation structure, austres - simple correlation, nottem - seasonal
correlation) and characteristics of the missing observations (MAR, MCAR, varying amounts of missing
data and chunk sizes). All comparisons used the MAPE metric to evaluate imputation errors given
scale differences between the datasets. The following code demonstrates the analysis setup.

# load packages, set seed
library(tidyverse)
library(imputeTestbench)
set.seed(123)
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# create nested list of datasets
dats <- list(
nrm = rnorm(100),
aust = austres,
nott = nottem
) %>%
enframe('nms', 'dataIn')

# create parameters to vary with imputeTestbench
prms <- crossing(
smps = c('mcar', 'mar'),
blck = c(20, 100),
nms = dats$nms
) %>%
mutate( # blck does not matter for mcar
blck = ifelse(smps %in% 'mcar', NA, blck)

) %>%
unique

# join parameters with data
# map parameter and data to impute_errors
ests <- prms %>%
left_join(dats, by = 'nms') %>%
mutate(

est = pmap(
list(smps = smps, blck = blck, dataIn = dataIn),
.f = impute_errors,
errorParameter = 'mape'
)

)
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Figure 7: Comparisons of prediction errors for three datasets with different temporal correlation
structures (see Figure 6). Missing observations were simulated from the complete datasets as MCAR
and MAR with missing chunks of different sizes from 20% and 100% of the total. The total percentage
of missing observations from the complete datasets varied from 10% to 90%.

The prediction errors varied considerably between the datasets, imputation method, and type

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 230

of simulation for missing observations (Figure 7). As expected, the type of simulation (MCAR and
MAR with different chunk sizes) did not have a noticeable influence on prediction accuracy for the
normally distributed dataset with no correlation structure (nrm). This dataset is described by only two
parameters (mean and standard deviation) and the observations are completely independent such that
imputation accuracy was similar for both MCAR and MAR sampling, although accuracy decreased
with the addition of missing observations which is not unexpected. The na.mean() function generally
outperformed the other imputation methods that incorporate some level of information about the
relationship between observations. The nrm dataset has observations that are not correlated and the
use of imputation methods that leverage temporal dependence in the input dataset is expected to
induce bias in the imputation, as shown by larger errors.

By comparison, the prediction errors for the austres and nottem datasets differed in both the type
of simulation for missing observations and the imputation method. For austres, linear interpolations
consistently produced imputations with the least error and each of the three linear interpolation
methods (na.approx(), na.interp(), na.interpolation()) performed equally well regardless of sim-
ulation type for missing data. This result is not surprising given that austres can be described as a
monotonic linear increase with minimal variation. That is, imputing a straight line between obser-
vations reproduces the original dataset with high accuracy. However, relative prediction accuracies
between methods were affected by the type of simulation for removing observations. Imputations with
na.locf() method had increasing error with increasing size of the missing chunk and errors exceeded
na.mean() for large chunk sizes and high percentages of missing data (i.e., > 60% missing as one large
chunk). These results can be explained by viewing sample imputations with plot_impute() (Figure
(8). As in Figure 7, the na.mean() function performs poorly for most scenarios because it does not
capture the linear increase through time. However, the na.locf() and na.approx() functions perform
equally well for small percentages of missing data but error values diverge for larger percentages.
Errors for na.locf() exceed those for na.mean() when large chunks are removed given that the latter
produces less biased estimates, although the method performs poorly overall.
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Figure 8: An example from plot_impute() of imputed values for the austres dataset using na.approx,
na.locf, and na.mean. Seventy percent of observations were removed for each dataset. The left
column shows the observations removed using MCAR and the right shows the observations removed
using MAR.

Finally, imputations of the nottem dataset had similar prediction errors independent of how
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the data were removed, although the imputation methods varied considerably. Specifically, the
na.interp() function consistently had lower prediction errors for all percentages of missing ob-
servations. Interestingly, the na.approx() and na.interpolation() functions did not have similar
performance as na.interp(), although all three methods are similarly documented as linear interpola-
tions. Examples in Figure 5 demonstrate differences in the imputations between the three methods.
Both na.approx() and na.interpolation() do not describe the seasonal variation in the data that is
well-described by na.interp(). As noted in the documentation, na.interp() optionally performs
periodic decomposition for seasonal time series based on characteristics of the input data (Hyndman
et al., 2017). This highlights the need to carefully understand the assumptions of each method and that
the default behavior between ostensibly similar approaches could vary. Users should be familiar with
the help documentation and are advised to make use of the addl_args argument in impute_errors()
to modify the default behavior of the chosen imputation functions. The imputeTestbench package
provides sufficient flexibility to accommodate differences among methods for each approach evaluated
with impute_errors().

Summary

The applied example demonstrated the value of imputeTestbench for informing the use of imputation
methods as a necessary step towards more formal time series analysis. For all examples, a complete
dataset was used to demonstrate how characteristics of the temporal correlation structure can influence
the prediction accuracy. The default imputation methods in the package have different approaches
to imputing missing values that vary in the amount of dependence on the correlation structure of
input data. As expected, the accuracy of each imputation method varied depending on the dataset
and a general conclusion is that users should carefully evaluate the correlation structure and periodic
components of actual data as an approach to choosing an imputation method. The imputeTestbench
package greatly facilitates this preliminary step by simultaneously comparing different methods
and considering the type and amount of missing observations. In practice, observational data that
contain missing values cannot be used directly with the package because the intent is to evaluate
hypothetical scenarios of missing observations with complete data. As such, the sample dataset
used with imputeTestBench should have characteristics similar to the dataset for which imputation
is needed. Our applied example evaluated three time series data with different characteristics and
additional comparisons of datasets with more complex temporal dependencies could be helpful
towards informing practical applications.

We also demonstrated how the package can be modified to include additional imputation methods
or comparison metrics. By default, the package provides a core set of existing imputation methods
(na.approx(), na.interp(), na.interpolation(), na.locf(), and na.mean()), which are simultane-
ously compared using RMSE, MAE, or MAPE error metrics. These simple methods will likely be
sufficient for most users, although we recognize that the comparison of other methods and error
metrics will be required in more advanced cases. As such, the package allows users to include addi-
tional imputation methods for comparison, which could be particularly useful given the capability of
R to interface with other programming languages (e.g, Rcpp for compiled languages, Eddelbuettel
and François (2011); matlabr for MatLab, Muschelli (2016)). As such, the simple architecture of im-
puteTestbench to add or remove multiple methods and error metrics makes it a robust and useful tool
to evaluate existing and proposed imputation techniques for univariate time series.
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ICSOutlier: Unsupervised Outlier
Detection for Low-Dimensional
Contamination Structure
by Aurore Archimbaud, Klaus Nordhausen, and Anne Ruiz-Gazen

Abstract Detecting outliers in a multivariate and unsupervised context is an important and ongoing
problem notably for quality control. Many statistical methods are already implemented in R and
are briefly surveyed in the present paper. But only a few lead to the accurate identification of
potential outliers in the case of a small level of contamination. In this particular context, the Invariant
Coordinate Selection (ICS) method shows remarkable properties for identifying outliers that lie on
a low-dimensional subspace in its first invariant components. It is implemented in the ICSOutlier
package. The main function of the package, ics.outlier, offers the possibility of labelling potential
outliers in a completely automated way. Four examples, including two real examples in quality control,
illustrate the use of the function. Comparing with several other approaches, it appears that ICS is
generally as efficient as its competitors and shows an advantage in the context of a small proportion of
outliers lying in a low-dimensional subspace. In quality control, the method may help in properly
identifying some defective products while not detecting too many false positives.

Introduction

The unsupervised detection of multivariate outliers is a timeless subject of interest in statistics, see
Aggarwal (2017), Hodge and Austin (2004), Hadi et al. (2009) for a complete overview. Indeed, this
can be the goal of the analysis, like in fraud detection, in medical applications or manufacturing-defect
detection. It can also be used for preprocessing in almost any statistical analysis that is sensitive to
the presence of outliers, e.g. Principal Component Analysis (PCA). Many statistical methods exist
and have already been implemented in R through tens of packages. Only some of these packages are
dedicated to the unsupervised context and are mentioned below. One of the most common methods
for multivariate outlier detection is the Mahalanobis Distance (MD), and many packages are based
on this distance: mvoutlier (Filzmoser and Gschwandtner, 2017), CerioliOutlierDetection (Green
and Martin, 2017a), rrcovHD (Todorov, 2016), faoutlier (Chalmers and Flora, 2015). Additionally,
traditional methods such as the angle-based methods are implemented in the packages abodOutlier
(Jimenez, 2015), HighDimOut (Fan, 2015), the distribution-based methods in alphaOutlier (Rehage
and Kuhnt, 2016), extremevalues (van der Loo, 2010), HDoutliers (Fraley, 2016), outliers (Komsta,
2011), the density-based methods in DMwR2 (Torgo, 2016), HighDimOut, ldbod (Williams, 2017),
Rlof (Hu et al., 2015) and the depth-based methods in depth (Genest et al., 2017). Finally, other
approaches have been implemented, such as the one based on Projection Pursuit (PP) in REPPlab
(Fischer et al., 2016b), and PCA in OutlierDC (Eo and Cho, 2014), pcadapt (Luu and Blum, 2017),
rrcov (Todorov and Filzmoser, 2009) and rrcovHD. However, it is important to note that all the
implemented functions do not necessary return outlierness measures and the identities of the outlying
observations. Limiting only to some packages fulfilling these conditions and to multivariate methods
for numerical variables leads to focusing on mvoutlier, CerioliOutlierDetection and rrcov. These
packages implement modified versions of the robust Mahalanobis distance, different algorithms for
the outlier identification in high dimensions (Filzmoser and Todorov, 2013), classical and robust
PCA. In PCA, the labelling of the outliers is based on the comparison of two outlierness measures: a
score distance (SD) based on the first principal components and a distance in the orthogonal space
(OD). All these methods rely on distances. To extend the analysis, we include comparisons with
Local Outlier Factor (LOF) (Rlof package) and Angle-Based Outlier Factor (ABOD) (abodOutlier
package) approaches even if they only return outlierness measures and not the identities of the outlying
observations.

These methods dedicated to outlier detection in an unsupervised context have different properties.
Contrary to PCA, the Mahalanobis distance and its modified versions are invariant under any affine
transformation as long as the location and scatter estimators are affine equivariant. However, several
drawbacks have been noticed in the use of these distances. First, Filzmoser et al. (2005) highlight the
fact that an outlier is not necessarily an extreme value. So, using a fixed threshold to label outliers
for every data set is not the wisest solution and the threshold should be adjusted to the sample
size. Moroever, as Cerioli (2010) notes, the threshold used usually is not adapted to the case in
which there is no outlier in the data. Finally, for Cerioli (2010), the comparison of the distances
of each observation to the threshold should not be performed independently without taking into
account any simultaneous adjustments. Otherwise, the method may lead to many false positives,
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i.e non outlying observations that are identified as outliers. Note that this is a serious concern that
applies to almost all the outlier-detection methods. To the best of our knowledge, the mvoutlier and
CerioliOutlierDetection packages are the first ones that tend to correct these drawbacks, but only for
the robust Mahalanobis distance with the Minimum Covariance Determinant (MCD) estimators.

The ICSOutlier (Archimbaud et al., 2016) package is another approach to the detection of outliers.
It appears that ICS is as efficient as its competitors in many situations and shows an advantage
in the case of a small proportion of outliers lying in a low-dimensional subspace. This method is
well-designed in particular for quality control. Its current version is able to handle a small proportion
of outliers that lie on a subspace, using the affine equivariant Invariant Coordinate Selection (ICS)
method, as presented by Archimbaud et al. (2018). The method relies on a generalized diagonalization
and on the selection of the invariant components associated with the largest eigenvalues. Note that
when more than say 10% of the observations are suspected to be outlying, invariant components
associated with the smallest eigenvalues may also be of interest and this alternative will be considered
in a future version of the package. ICS fulfills all the properties mentioned previously: (i) detect the
absence of outliers, (ii) not be sensitive to the standardization of the data and (iii) be a multivariate
method which controls the number of observations identified as outliers. The restriction to a small
proportion of outliers that belong to a subspace is of interest in some areas of manufacturing products
with a high level of quality control (e.g. automotive, avionics or aerospace).

In the following sections, the principle of the Invariant Coordinate Selection (ICS) method is
recalled as well as the three steps of the outlier detection procedure: (i) invariant components selection,
(ii) outlierness measure definition and (iii) outlier identification. Then, we explain how to use the
ICSOutlier package and finally we analyze the efficiency of the ICS method compared to other
methods on four examples, including a new real data set included in the package.

Invariant Coordinate Selection (ICS) for outlier detection

Principle

The ICS method is a powerful method designed for exploring multivariate data by revealing their
structure (Nordhausen et al., 2008). As explained in Tyler et al. (2009), it is based on a simultaneous
spectral decomposition of two scatter matrices and leads to an affine invariant coordinate system.
Readers not so familiar with the concept of scatter matrices are refered for example to Rousseeuw
and Hubert (2013), Nordhausen and Tyler (2015) and references therein for definitions, examples and
properties.

Following Archimbaud et al. (2018), for a p-variate dataset Xn = (x1, . . . , xn)′, let V1(Xn) and
V2(Xn) be two affine equivariant scatter matrices (symmetric and positive definite) and m1(Xn) and
m2(Xn) their associated location estimators. ICS is looking for the diagonal p × p matrix D(Xn)
containing the eigenvalues of V1(Xn)−1V2(Xn) in decreasing order and the p× p matrix B(Xn) =
(b1, . . . , bp)′ containing the corresponding eigenvectors as its rows and such that

B(Xn)V1(Xn)B′(Xn) = Ip.

We have:
V1(Xn)

−1V2(Xn)B(Xn)
′ = B(Xn)

′D(Xn).

Letting V1(Xn) be “more robust” than V2(Xn), the interpretation of these eigenvalues is the main
point of the ICS method: they correspond to some kurtosis measure that depends on the choice of
V1(Xn) and V2(Xn) . For example if V1 is the usual empirical variance-covariance matrix and V2 is the
scatter matrix based on the fourth moments (the default in the ics.outlier function), the eigenvalues
are ordered according to their classical Pearson kurtosis values in decreasing order. In this case and
for a small proportion of outliers, it is advisable to analyze the projections that maximize the kurtosis
and are associated with the largest eigenvalues (Archimbaud et al., 2018).

Then, using the location estimator m1(Xn) associated with the scatter matrix V1(Xn) , the corre-
sponding centered scores are obtained as zi = B(Xn)(xi −m1(Xn)) for i = 1, . . . , n, so that:

Zn = (z1, . . . , zn)
′ = (Xn − 1nm′1(Xn))B′(Xn).

They are called the invariant components (IC) because of their affine invariance property in the sense
that if X∗n = XnA + 1nb′ for any p× p regular matrix A and any p-vector b,

(X∗n − 1nm1(X∗n)
′)B(X∗n)

′ = (Xn − 1nm1(Xn)
′)B(Xn)

′J,

where 1n is a n-vector of ones and J is a p× p diagonal matrix with diagonal elements ±1, which
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means the invariant coordinates change at most their signs.

These scores are related to the Mahalanobis Distance (MD). For any observation xi with i = 1, . . . , n,
the squared Euclidian norm of its centered invariant coordinates is exactly the squared Mahalanobis
distance from m1(Xn) in the sense of V1(Xn):

z′izi = (xi −m1(Xn))
′V1(Xn)

−1(xi −m1(Xn)).

The added value of using ICS over MD is realized when the structure of the data is on a subspace of
dimension q < p. In this context and with a small percentage of outliers, it is of interest to focus only
on the q projections that maximize a kurtosis measure. Indeed, if the number k of selected Invariant
Coordinates corresponds to the dimension q of the subspace on which the outliers lie, then the ICS
method is expected to recover the subspace of interest for outlier detection. As detailed in Tyler et al.
(2009), this subspace corresponds to Fisher’s discriminant subspace in case of mixtures of Gaussian
distributions. Nevertheless, the main difficulty is to correctly estimate this dimension k.

Invariant coordinates selection

Depending on the combination of the scatters V1(Xn) and V2(Xn) chosen, the ICSOutlier package
incorporates automated ways to select these k invariant coordinates. The two approaches proposed
in Archimbaud et al. (2018) are implemented here: a test based on a quasi-inferential procedure and
some normality tests. Considering V1(Xn) be more robust than V2(Xn) and a small percentage of
outliers (less than 10% is recommended), the structure of the outlierness should be contained in the
first k non-normal components. Note that the structure may be also contained in the last components
(associated with the smallest eigenvalues) if the proportion of outliers is large. What is meant by
“large” depends on the scatter pair but also on the distribution of the data as detailed in Archimbaud
et al. (2018). Since the invariant coordinates are already ordered decreasingly according to a kurtosis
measure, it is enough to test whether each component is Gaussian beginning by the one associated
with the largest eigenvalue and stop the test procedure as soon as we find a Gaussian component. So,
if k + 1 denotes the rank of the first Gaussian component, the components are sequentially tested at the
adapted level αj = α/j, for j = 1, . . . , k, as in Dray (2008). Because of the sequentiality, the Bonferroni
correction adjusts the significance of each test and ensures a nominal level α.

The first approach is a Parallel Analysis (PA) based on Monte Carlo simulations of eigenvalues
for Gaussian populations of the same dimension as the initial dataset. This method is common for
selecting components in PCA as described in Peres-Neto et al. (2005). It is based on mEig simulations
of a Gaussian population and, for each j = 1, . . . , p, the computation of the 1− αj percentile of the
jth eigenvalue of ICS which is considered as a cut-off for the jth component. Then, sequentially from
j = 1, if the observed jth eigenvalue exceeds the cut-off then the jth invariant component is declared
non-Gaussian and is selected. As soon as one eigenvalue is smaller than its associated cut-off, the
invariant component is considered as Gaussian and the test procedure is stopped.

The second approach is directly based on usual normality tests and is applied to the invariant
coordinates. In the package the user can choose out of the following five tests: the D’Agostino test
of skewness (DA), the Anscombe-Glynn (AG) test of kurtosis, the Bonett-Seier (BS) test of Geary’s
kurtosis, the Jarque-Bera (JB) test for normality which is based on both skewness and kurtosis measures
and the Shapiro-Wilk (SW) normality test (see Yazici and Yolacan (2007) and Bonett and Seier (2002)
for a complete description of each). The process of testing is still sequential with an adaptation of the
level of each test. Once the first normal coordinate is found, the test procedure stops and only the
non-Gaussian coordinates are selected.

Measure of outlierness

Let k denote the number of invariant components selected by one of the two test procedures detailed
previously or by looking at the screeplot of the eigenvalues. Then, for each observation xi, i = 1, . . . , n,
its squared ICS distance is computed based on the k selected invariant coordinates by:

ICSD2
V1(Xn)−1V2(Xn)

(xi, k) = z′i,kzi,k.

where zi,k = B(Xn, k)(xi −m1(Xn)), for i = 1, . . . , n, and the k× p matrix B(Xn, k) contains the k first
rows of B(Xn).
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Outlier identification

Finally, the outliers are identified based on the comparison of their ICS distance with the expectation
under the Gaussian distribution as in Archimbaud et al. (2018). The cut-off is derived from mDist
Monte Carlo simulations of a Gaussian population of the same dimension as the initial dataset. For
each observation, the ICS distance is computed using the k selected components. For a given level β,
the cut-off corresponds to the average of the 1− β percentiles of the distances over all the simulations.
An observation is labeled as outlier if its ICS distance is higher than this cut-off. By default, β = 5%.

Using the package ICSOutlier

The main function available in ICSOutlier is ics.outlier which directly calls all the other functions
included in the package. First it is necessary to apply the ics2 function from the ICS (Nordhausen
et al., 2008) package in order to create an object of class ics2. The ICS package has been available for a
few years, and contains a function called ics for implementing the ICS method. However, the ics
function cannot be used directly for outlier detection, and a new function, ics2, had to be added to
the ICS package (version 1.3-0). The arguments of ics2 are mostly the same as those of the function
ics, except for now it is necessary to add the location vectors associated with the scatter estimators.
The main function ics.outlier of the package ICSOutlier uses the output of the ics2 function as an
input. The function ics.outlier implements the three steps necessary for outlier detection using ICS
in an automated way:

(i) Select the invariant coordinates which recover at best the subspace where the outliers are lying
using some test procedure.

(ii) Compute the ICS distance based on the selected invariant coordinates as an outlierness measure
for each observation.

(iii) Label the outliers using the cut-off value obtained through simulations.

The links between the ics2 function from the ICS package and the functions available in the
ICSOutlier package are illustrated on Figure 1.

ICS ics2

Outlier detection ics.outlier

1. Invariant components
selection

2. ICS distances compu-
tation

comp.simu.test comp.norm.test

ics.distances

3. Cut-off computation
for outlier identification

dist.simu.test

4. Outlier interpretation summaryprint plot

Figure 1: Organization chart of the functions called by ics.outlier

The ics.outlier function only takes as parameter an object of class ics2 and not an object of
class ics because this later returns only uncentered invariant coordinates contrary to the ics2 class.
From a practical point a view, the S1 and S2 arguments of the ics2 function should be the name of the
function which returns a list with the first (resp. second) location vector m1 (resp. m2) and the first
scatter matrix V1 (resp. V2).
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In addition to this ics2 object, there are other parameters of ics.outlier that can be tuned,
including an option to parallelize the computations in order to increase the speed of the function:

• method: name of the method used to select the ICS components. Options are "simulation" for
the parallel analysis approach and "norm.test" for the normality tests approach. Depending
on the method, either comp.norm.test or comp.simu.test is used.

• test: name of the marginal normality test to use if method = "norm.test". Possibilities are
"jarque.test", "anscombe.test", "bonett.test", "agostino.test", "shapiro.test". Default
is "agostino.test".

• mEig: number of simulations performed to derive the cut-off values for selecting the ICS
components. Only if method = "simulation". See comp.simu.test for details.

• level.test: level for the comp.norm.test or comp.simu.test functions. The inital level for
selecting the invariant coordinates.

• adjust: logical. For selecting the invariant coordinates, the level of the test can be adjusted
for each component to deal with multiple testing. See comp.norm.test and comp.simu.test for
details. Default is TRUE.

• level.dist: level for the dist.simu.test function. The (1-level(s))th quantile(s) used to
determine the cut-off value(s) for the ICS distances.

• mDist: number of simulations performed to derive the cut-off value for the ICS distances. See
dist.simu.test for details.

• type: currently the only option is "smallprop" which means that only the first ICS components
can be selected. See comp.norm.test or comp.simu.test for details.

• ncores: number of cores to be used in dist.simu.test and comp.simu.test. If NULL or 1, no
parallel computing is used. Otherwise makeCluster with type = "PSOCK", from the parallel
package, is used.

• iseed: The seed passed on to clusterSetRNGStream if parallel computation is used. Default is
NULL which means no fixed seed is used.

• pkg: A character vector listing all the packages which need to be loaded on the different cores
via require if parallel computation is used. Must be at least "ICSOutlier" and must contain the
packages needed to compute the scatter matrices.

• qtype: specifies the quantile algorithm used in quantile.

By default the ics2 function performs ICS with the usual mean vector and the usual empirical
variance-covariance matrix returned by MeanCov and the location vector based on the third moments
associated to the scatter matrix based on the fourth moments returned by Mean3Cov4.

Examples

In the following examples, we illustrate first, using an artifical data set, how ics.outlier behaves in
the case of no outlier and then apply the function to three data sets available in R. For reproducibility
all examples have a fixed seed.

Example with no outlier

One of the advantages of using ICS for outlier detection is its ability to detect the absence of outliers.
If the first invariant coordinate is considered normal that means there is no outlier in the data set. So,
in presence of a normal multivariate data set the function should select in most cases no component
and hence will not detect outliers.

For the first example we simulate a bivariate normally distributed data set with 500 observations
and we determine the cut-offs for identifying the outliers at the level 2.5% for all methods.

library("ICSOutlier", quietly = TRUE)
# Data simulation
set.seed(123)
X <- matrix(rnorm(1000, 0, 0.1), 500, 2)

Using the default ICS setting and choosing the Jarque-Bera test of kurtosis to select the components
at the default level 5% can easily be done as follows.
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icsX <- ics2(X)
icsOutlierJB <- ics.outlier(icsX, test = "jarque", level.test = 0.05,

level.dist = 0.025)
print(icsOutlierJB)

R> [1] "0 components were selected and no outliers were detected."

Hence in this outlier-free normal data no component was considered non-normal and therefore as
desired no outliers were detected.

As a comparison we compute the robust Mahalanobis distances using the MCD with a breakdown
point of 25% and compute the commonly used cut-off value coming from the χ2

2 distribution and the
adjusted cut-off value from (Green and Martin, 2017b) as implemented in the package CerioliOut-
lierDetection.

# Robust Mahalanobis distance with MCD estimates with a breakdown point of 25%
library("robustbase")
MCD <- covMcd(X, alpha = 0.75)
RD <- mahalanobis(X, MCD$center, MCD$cov)

# Cut-off based on the chi-square distribution
cutoff.chi.sq <- qchisq(0.975, df = ncol(X))
cutoff.chi.sq

R> [1] 7.377759

# Cut-off based Green and Martin (2017)
library("CerioliOutlierDetection")
cutoff.GM <- hr05CutoffMvnormal(n.obs = nrow(X), p.dim = ncol(X), mcd.alpha = 0.75,

signif.alpha = 0.025, method = "GM14",
use.consistency.correction = TRUE)$cutoff.asy

cutoff.GM # This dollar sign works around the mathjax bug: $

R> [1] 14.22071

To visualize these results, the robust squared Mahalanobis distances are plotted with two different
cut-off values in Figure 2.

# Code for the Figure 2
colPoints <- ifelse(RD >= min(c(cutoff.chi.sq, cutoff.GM)), 1, grey(0.5))
pchPoints <- ifelse(RD >= min(c(cutoff.chi.sq, cutoff.GM)), 16, 4)
plot(seq_along(RD), RD, pch = pchPoints, col = colPoints,

ylim=c(0, max(RD, cutoff.chi.sq, cutoff.GM) + 2), cex.axis = 0.7, cex.lab = 0.7,
ylab = expression(RD**2), xlab = "Observation Number")

abline(h = c(cutoff.chi.sq, cutoff.GM), lty = c("dashed", "dotted"))
legend("topleft", lty = c("dashed", "dotted"), cex = 0.7, ncol = 2, bty = "n",

legend = c(expression(paste(chi[p]**2, " cut-off")), "GM cut-off"))

Hence in this example using the χ2
2 cut-off yields 12 outliers while the more sophisticated cut-off

does not classify any observation as outlying.

Another situation where the ics.outlier function can conclude to an absence of outliers is when
the squared ICS distances are below the corresponding cut-off for all observations, as illustrated in the
help file of the function: ?ics.outlier.

HTP data set

The real data set HTP, introduced in Archimbaud et al. (2018), is included in this package. The data set
provides the results of 88 numerical tests for 902 high-tech parts. Based on these results the producer
considered all parts functional and all of them were sold. However two parts, 581 and 619, showed
defects in use and were returned to the manufacturer. These two observations can thus be considered
as outliers and the objective is to detect them. We use the ics.outlier function with its default
settings, as most users initially would do but with the parallelizing option for the computations.

# HTP dataset
library("ICSOutlier")
set.seed(123)
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Figure 2: Squared robust Mahalanobis distances and two different cut-off values.

data(HTP)
outliers <- c(581, 619)

# default ICS
icsHTP <- ics2(HTP)

# Outlier detection with selection of components based on normality tests
# by default it can take quite long as mDist = 10000 so we choose to
# use all but one available cores to parallelize the simulations.
library(parallel)
icsOutlierDA <- ics.outlier(icsHTP, ncores = detectCores()-1, iseed = 123)
summary(icsOutlierDA)

R>
R> ICS based on two scatter matrices and two location estimates
R> S1: MeanCov
R> S2: Mean3Cov4
R>
R> Searching for a small proportion of outliers
R>
R> Components selected at nominal level 0.05: 14
R> Selection method: norm.test (agostino.test)
R> Number of outliers at nominal level 0.025: 43

# Code for the Figure 3
plot(icsOutlierDA, cex.lab = 0.7, cex.axis = 0.7)
points(outliers, icsOutlierDA@ics.distances[outliers], pch = 5)
text(outliers, icsOutlierDA@ics.distances[outliers], outliers, pos = 2, cex = 0.7)

Based on this result we are able to identify the two outliers among the 5% of the observations
declared as outliers, taking into account the 14 first components selected by the D’Agostino normality
test.

However, following Archimbaud et al. (2018), a simple alternative for selecting components is to
use the screeplot of the icsHTP object, in a similar way as for PCA. Note that while the eigenvalues
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Figure 3: Squared ICS distances for HTP data with default parameters.

plotted on the screeplot are related to the variance, for PCA they correspond to a generalized kurtosis
for ICS (see Tyler et al. (2009)).

# Code for the Figure 4
screeplot(icsHTP, cex.lab = 0.7, cex.axis = 0.7, cex.names = 0.7, cex.main = 0.7)

Based on this screeplot, three components might be a reasonable choice and then the functions
ics.distances and dist.simu.test can be used to obtain the desired distances and cut-off value.

ics.dist.scree <- ics.distances(icsHTP, index = 1:3)
# by default it can take quite long as m = 10000, so we choose to
# use all but one available cores to parallelize the simulations.
library(parallel)
ics.cutOff <- dist.simu.test(icsHTP, 1:3, ncores = detectCores()-1, iseed = 123)
ics.cutOff

R> 97.5%
R> 12.80771

Before visualizing these results we also apply two competing outlier detection methods. First
the Finite-Sample Reweighted MCD (FSRMCD) outlier detection test of Cerioli (Cerioli, 2010), imple-
mented in the package CerioliOutlierDetection and secondly the SIGN1 algorithm (Filzmoser et al.,
2008) implemented in the package mvoutlier. For the FSRMCD algorithm, we choose as nominal level
α = 1− γ1/n for the individual outlier tests, with γ the nominal size of the intersection test and n the
number of observations. Then the ICS distances based on the three selected components are plotted
against the distances from the two competing methods together with the corresponding cut-off values.

# FSRMCD
library("CerioliOutlierDetection")
FSRMCD <- cerioli2010.fsrmcd.test(HTP, signif.alpha = 1 - 0.975**(1/nrow(HTP)),

mcd.alpha = 0.75)
# Two critical values: one for points included in the reweighted MCD (weights == 1)
# and one for points excluded from the reweighted MCD (weights == 0)).
FSRMCD.cutoffs <- unique(FSRMCD$critvalfcn(FSRMCD$signif.alpha))
FSRMCD.cutoffs
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Figure 4: Screeplot of ICS eigenvalues for HTP data and default parameters.

R> [1] 144.8583 183.2797

# SIGN1
library("mvoutlier", quietly = TRUE)
SIGN1 <- sign1(HTP, qcrit = 0.975)

# Code for the Figure 5
par(mfrow = c(1, 2))
par(mar = c(4, 4, 2, 0.2))

# Comparison ICS vs FSRMCD
colPoints <- ifelse(ics.dist.scree >= ics.cutOff , 1, grey(0.5))
pchPoints <- ifelse(ics.dist.scree >= ics.cutOff, 16, 4)
plot(FSRMCD$mahdist.rw, ics.dist.scree, col = colPoints, pch = pchPoints,

cex.lab = 0.7, cex.axis = 0.7, cex.main = 0.7,
main = "ICS vs FSRMCD", ylab = "ICS Distances", xlab = "FSRMCD") # This dollar sign works around the mathjax bug: $

points(FSRMCD$mahdist.rw[outliers], ics.dist.scree[outliers], pch = 5)
text(FSRMCD$mahdist.rw[outliers], ics.dist.scree[outliers], labels = outliers, pos = 2,

cex = 0.7)
abline(h = ics.cutOff, v = FSRMCD.cutoffs, lty = "dashed")

# Comparison ICS vs SIGN1
plot(SIGN1$x.dist, ics.dist.scree, col = colPoints, pch = pchPoints,

cex.lab = 0.7, cex.axis = 0.7, cex.main = 0.7,
main = "ICS vs SIGN1", ylab = "ICS Distances", xlab = "SIGN1")

points(SIGN1$x.dist[outliers], ics.dist.scree[outliers], pch = 5)
text(SIGN1$x.dist[outliers], ics.dist.scree[outliers], labels = outliers, pos = 2,

cex = 0.7)
abline(h = ics.cutOff, v = SIGN1$const, lty = "dashed")

As illustrated in Figure 5, the cut-offs used for the FSRMCD and SIGN1 algorithms plotted on
the x-axis lead to too many false positives. Even when focusing only on the rank of the outlying
observations it is clear that the ICS method outperforms the other methods. The outlier labelled 619
is obviously outlying with all methods, but the outlier labelled 581 has the 4th highest squared ICS
distance compared to 15th and 12th for the distances computed with FSRMCD and SIGN1 algorithms.
Note that the data set contains highly collinear variables and it is well-known that high-breakdown
point methods are not optimal in this case.

Archimbaud et al. (2018) contains a more detailed analysis of this dataset comparing ICS with
other methods and also gives the impact of the choice of different scatter matrices. For the present data
set the default scatter combination used here seems the best. In this analysis, it is also interesting to
notice that the first component highlights only the two defective parts. The other two observations are
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Figure 5: Squared ICS distances with 3 components against FSRMCD (left panel) and SIGN1 (right
panel) measures of outlierness for HTP data with cut-offs at level of 2.5%.

detected on the second and the third components of ICS and as far as we know they are not defective
parts but false positives.

Reliability data set

The Reliability data set comes also from an industrial context and is part the of REPPlab package. It
contains 55 variables measured during the production process of 520 units. The challenge for this data
is to identify the produced items with a fault not detected by the marginal tests. According to Fischer
et al. (2016a), the observations numbered 414 and 512 are most likely outliers.

A special feature of this data set is that for example variable 24 is nearly constant which makes
this data set hard to use with high-breakdown methods. For example the MCD cannot be computed
for this data set when all variables are used. The use of ICS and other distance-based outlier detection
methods is also detailed in Archimbaud et al. (2018).

Let us now illustrate the use of other scatter matrices than the default one together with the way
to pass arguments to some of the functions. This time the invariant components are selected using
simulations (Parallel analysis) with an initial decision level of 5%. These results are then compared to
two methods not included in Archimbaud et al. (2018), namely the Local Outlier Factor (LOF, (Breunig
et al., 2000)) and the Angle-Based Outlier Factor (Kriegel et al., 2008) outlier detection methods.
First, we apply the LOF method with the lof function from the Rlof package which parallelizes
the computation of the local outlier factor using l neighbours for each observation. The number
of neighbours is determined based on the guidelines from Breunig et al. (2000): we compute the
outlierness measures for l between 5 and 50 and we aggregate the results by taking the maximum
of the local outlier factor for each observation. However, the distribution of the LOF values (and of
the aggregated indices) is not known and therefore, there exists no theoretical cut-off to identify the
outlying observations. In practice, observations with LOF values much higher than one are considered
as potentially outlying. Second, we calculate the angle-based outlier factor for each observation
through the abod function from the abodOutlier package on a random sample of 10% (the default)
of the data (not on the entire data set because it is too time-consuming). As for the LOF method,
the distribution of the outlyingness indices is unknown. But for this method, a potentially outlying
observation is indicated by a small index value.

The location and scatter combinations we use here are the regular mean vector and covariance
matrix and the joint maximum likelihood estimation of location and scatter of a t-distribution with
one degree of freedom, also known as Cauchy MLE estimate. The function MeanCov returns the mean
vector and regular covariance matrix as required for ics2 and for the Cauchy MLE we use the function
tM where the degree of freedom is specified using the argument df. As the Cauchy MLE is considered
the more robust estimator it should be specified in ics2 as S1.

# ReliabilityData example: the observations 414 and 512 are suspected to be outliers
library("ICSOutlier")
library("REPPlab")

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 244

set.seed(123)
data(ReliabilityData)
outliers <- c(414, 512)

# ICS with MLE Cauchy and the Mean-Cov
icsReliabilityData <- ics2(ReliabilityData, S1 = tM, S2 = MeanCov,

S1args = list(df = 1))

# Outlier detection with selection of components based on simulations
# it can take quite long as mEig = 5000 and mDist = 5000, so we choose
# to use all but one available cores to parallelize the simulations.
icsOutlierPA <- ics.outlier(icsReliabilityData, method = "simulation",

level.test = 0.05, mEig = 5000,
level.dist = 0.01, mDist = 5000,
ncores = detectCores()-1, iseed = 123)

icsOutlierPA

R> [1] "39 components were selected and 86 outliers were detected."

# LOF: Local Outlier Factor
library("Rlof", quietly = TRUE)
X.lof <- lof(ReliabilityData, 5:50, cores = 2)
X.lof.max <- apply(X.lof, 1, max)

# ABOD: Angle-Based Outlier Factor
library("abodOutlier", quietly = TRUE)
X.abod <- abod(ReliabilityData, method = "randomized")

# Code for the Figure 6
par(mfrow = c(1, 2))
par(mar = c(4, 4, 2, 0.2))

# Comparison ICS vs LOF
plot(X.lof.max, icsOutlierPA@ics.distances, cex.lab = 0.7, cex.axis = 0.7, pch = 4,

cex.main = 0.7, main = "ICS vs LOF", ylab = "ICS Distances", xlab = "LOF")
text(X.lof.max[outliers], icsOutlierPA@ics.distances[outliers], labels = outliers,

pos = 4, cex = 0.7)

# Comparison ICS vs ABOD
plot(X.abod, icsOutlierPA@ics.distances, cex.lab = 0.7, cex.axis = 0.7, cex.main = 0.7,

main = "ICS vs ABOD", ylab = "ICS Distances", xlab = "ABOD", pch = 4)
text(X.abod[outliers], icsOutlierPA@ics.distances[outliers], labels = outliers,

pos = 4, cex = 0.7)

This analysis shows that ICS selects here quite many components and suggests 86 outliers at
the level of 1%. For their part, the LOF and ABOD methods do not provide cut-offs for identifying
outlying observations. So we only consider the ranks of the observations. When looking at the ICS
distances on Figure 6, the observations 414 and 512 are clearly separated from the main bulk of the
data while the two observations do not differ at all from the rest of the data using the LOF and ABOD
methods (see also Archimbaud et al. (2018) for more details on this exmaple).

HBK data set

The hbk data set is included in the robustbase package (Rousseeuw et al., 2017). It is an artificial
data set created by Hawkins et al. (1984) for illustrating the so-called masking effect of outliers. It
contains two groups of outliers with observations 1-10 in the first group and observations 11-14 in the
second group, over the 75 observations characterized by the three explanatory variables. Usually with
non-robust methods only the observations 12, 13 and 14 are identified as outliers. For this example
the percentage of outliers is around 19% and so is larger than the percentage we recommend for the
current version of the package. Our aim is to illustrate that in such a situation, the choice of the scatter
matrices may have a large impact on the results.

First, the combination of the highly robust MCD estimates with the mean vector and regular
covariance matrix is studied. Note that in order to be able to use the MCD via the function CovMcd a
wrapper needs to be written around the function so that it returns the proper list as expected by ics2.
Using then the D’Agostino test for skewness for selecting the invariant components leads to select two
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Figure 6: Squared ICS distances with 39 components against LOF (left panel) and ABOD (right panel)
measures of outlierness for Reliability data.

components at the default level of 5%. The level of the quantile used for deriving the cut-off for outlier
identification is the default, 2.5%. For this combination, ICS performs equally well as the MCD-based
Mahalanobis distances, as illustrated in the first three plots of the Figure 7. All outliers are correctly
identified, no false positive is detected and the two groups of outliers are clearly separated.

Next, we consider the combination of two non-robust location vectors and scatter matrices which
are the default in ICS, with the same parameters for selecting the components and for identifying the
outliers as previously. The results are presented on the fourth plot of Figure 7.

library("rrcov")
set.seed(123)
# HBK data set
data(hbk)

# ICS with MCD estimates and the usual estimates
# Need to create a wrapper for the CovMcd function to return first the location estimate
# and the scatter estimate secondly.
myMCD <- function(x,...){
mcd <- CovMcd(x,...)
return(list(location = mcd@center, scatter = mcd@cov))

}
icsHBK_mcd <- ics2(hbk[, 1:3], S1 = myMCD, S2 = MeanCov, S1args = list(alpha = 0.75))

# Outlier detection with selection of components based on the D'Agostino test for
# skewness. It can take quite long as mEig = 10000 and mDist = 10000, so we choose
# to use all but one available cores to parallelize the simulations.
library(parallel)
icsOutlierDA.MCD <- ics.outlier(icsHBK_mcd, mEig = 10000, level.dist = 0.025,

mDist = 10000,
ncores = detectCores()-1, iseed = 123,
pkg = c("ICSOutlier", "rrcov"))

icsOutlierDA.MCD

R> [1] "2 components were selected and 14 outliers were detected."

# Robust Mahalanobis distance with MCD estimates with a breakdown point of 25%
MCD <- covMcd(hbk[, 1:3], alpha = 0.75)
RD <- mahalanobis(hbk[, 1:3], MCD$center, MCD$cov)
cutoff.chi.sq <- qchisq(0.975, df = ncol(hbk[, 1:3]))

# Cut-off based Green and Martin (2017)
library("CerioliOutlierDetection")
cutoff.GM <- hr05CutoffMvnormal(n.obs = nrow(hbk[, 1:3]), p.dim = ncol(hbk[, 1:3]),
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mcd.alpha = 0.75, signif.alpha = 0.025, method = "GM14",
use.consistency.correction = TRUE)$cutoff.asy #This dollar sign works around the mathjax bug: $

# ICS with non robust estimates
icsHBK <- ics2(hbk[,1:3], S1 = MeanCov, S2 = Mean3Cov4)

# Outlier detection with selection of components based on the D'Agostino test for
# skewness. It can take quite long as mEig = 10000 and mDist = 10000, so we choose
# to use all but one available cores to parallelize the simulations.
icsOutlierDA <- ics.outlier(icsHBK, mEig = 10000, level.dist = 0.025,

mDist = 10000,
ncores = detectCores()-1, iseed = 123,
pkg = c("ICSOutlier", "rrcov"))

icsOutlierDA

R> [1] "2 components were selected and 2 outliers were detected."

# Code for the Figure 7
par(mfrow = c(1, 3))
par(mar = c(4, 2, 2, 0.2))

# Robust Mahalanobis distance with MCD estimates
colPoints <- ifelse(RD >= cutoff.chi.sq, 1, grey(0.5))
pchPoints <- ifelse(RD >= cutoff.chi.sq, 16, 4)
plot(RD, col = colPoints, pch = pchPoints, xlab = "Observation Number",

cex.lab = 0.7, cex.axis = 0.7, main = "Robust MD", cex.main = 0.7)
abline(h = c(cutoff.chi.sq, cutoff.GM), lty = 1:2)
legend("topright", lty = 1:2, cex = 0.7, bty = "n",

legend = c(expression(paste(chi[p]**2, " cut-off")), "GM cut-off"))

# ICS with MCD estimates and regular covariance
plot(icsOutlierDA.MCD, cex.lab = 0.7, cex.axis = 0.7, main = "ICS MCD-COV",

cex.main = 0.7)

# ICS with default non-robust estimates
plot(icsOutlierDA, cex.lab = 0.7, cex.axis = 0.7, main = "ICS COV-COV4",

cex.main = 0.7)

Here the default ics2 scatter combination does not perform well. Only three outliers from the
second group are detected, although the distance plot indicates three distance levels but the cut-
off value is not good and the separation not clear especially when compared with the MCD-COV
combination. However, when looking at the invariant coordinates on Figure 8, we can see that
the default scatter combination reveals the 14 outliers and the masking effect appears only when
computing the ICS distances.

# Code for the Figure 8
plot(icsHBK, col = rep(3:1, c(10, 4, 61)))

Conclusion and future developments

The use of ICSOutlier for outlier detection has been illustrated on several examples. The results are
already pretty good with the default parameters as soon as the percentage of outliers is small. Note
however that the components selection procedure can be improved sometimes by a visual inspection
of the screeplot and the cut-off for outlier identification can be adjusted by looking at the ICS distances
plot. The ability of the method to check for the absence of outliers is an advantage compared with
methods such as the Mahalanobis distance. In the same vein, the number of false positives, i.e the
number of non-outliers declared as outliers, is restricted thanks to the use of the cut-off derived from
simulations. Moreover, the real HTP data set included in the package shows that the ICS method is
useful for outlier detection in the context of quality control, among possible applications. Finally the
ICS method competes with common approaches based on distances (the Mahalanobis distance, its
robust version, the PCA methods, its variants and improvements) as well as other methods based on
the density (LOF) or on angles (ABOD).

The computation time for cut-offs for the selection of the non-Gaussian invariant components,
on the one hand, and for the threshold for labeling the outliers, on the other hand, can be reduced
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Figure 7: Squared robust Mahalanobis distance based on the MCD (left panel), squared ICS distances
with MCD and Mean-Cov (middle panel), and squared ICS distances with default scatters (right
panel). All cut-offs values are at level of 2.5%

by using the parallelizing option. Moreover, for now, the function can only select the first invariant
components which is relevant when the percentage of outliers is small. For a large percentage, the
invariant components associated with the smallest eigenvalues may also be of interest and this is a
current perspective of the present package. A generalization of the ICS method in case of perfectly
collinear variables is also a work in progress.
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rpostgis: Linking R with a PostGIS
Spatial Database
by David Bucklin and Mathieu Basille

Abstract With the proliferation of sensors and the ease of data collection from online sources, large
datasets have become the norm in many scientific disciplines, and efficient data storage, management,
and retrival is imperative for large research projects. Relational databases provide a solution, but
in order to be useful, must be able to be linked to analysis and visualization tools, such as R. Here,
we present a package intended to facilitate integration of R with the open-source database software
PostgreSQL, with a focus on its spatial extension, PostGIS. The package rpostgis (version 1.4.1)
provides methods for spatial data handling (vector and raster) between PostGIS-enabled databases
and R, methods for R "data.frame"s storage in PostgreSQL, and a set of convenient wrappers for
common database procedures. We thus expect rpostgis to be useful for both (1) existing users of
spatial data in R and/or PostGIS, and (2) R users who have yet to adopt relational databases for their
projects.

Introduction

R has become an important tool for manipulating, analyzing, and displaying spatial (vector and raster)
datasets. R has a growing set of contributed packages (see the CRAN Spatial task view). R can already
import and export stand-alone vector (e.g, ESRI shapefiles) with relative ease using rgdal (Bivand
et al., 2017) or maptools (Bivand and Lewin-Koh, 2017), and raster datasets using raster (Hijmans,
2016). With the proliferation and availability of geographic data from deployed sensors, open-GIS web
data sources, and remotely-sensed environmental datasets (to name just a few), users are increasingly
taking advantage of Database Management Systems (DBMS) with spatial database extenders, which
store spatial data as an object in a database table column. DBMS are especially useful to researchers
and scientists managing project datasets, due to the ability to store large amounts of data efficiently,
specify data relationships among tables, maintain data integrity using constraints, ensure long-term
storage, manage multiple users, and add, update, and retrieve data efficiently.

PostgreSQL (The PostgreSQL Global Development Group, 2017) is an advanced relational DBMS,
and it is also free and open-source, making it popular and accessible to a large base of users. The
PostgreSQL extension PostGIS (PostGIS Project Steering Committee, 2017) allows PostgreSQL to
handle spatial data by introducing spatial data types (Geometry, Geography, Raster, and Topology),
along with a library of functions which operate on objects of these types. For R users, the package
RPostgreSQL (Conway et al., 2017), a backend for the generic R database interface package DBI (R
Special Interest Group on Databases (R-SIG-DB) et al., 2017), provides the driver and methods to
connect and interface with a PostgreSQL database, to do a variety of data import and export tasks,
and to query the database. However, not all data types supported by PostgreSQL can be imported
into equivalent R data types using RPostgreSQL; among these are the PostGIS spatial data types. In
addition, some data types in R possess attributes (e.g., POSIX* time zones), which are not handled
by RPostgreSQL reading and writing. Finally, while RPostgreSQL is an essential tool for users of
PostgreSQL databases and R, it is not designed to facilitate new database users, who may not be
familiar with database techniques, terminology, or Structured Query Language (SQL), the language
used to interact with a DBMS.

Noting these gaps, we designed rpostgis as a general-purpose extension package for RPostgreSQL.
The primary goal of rpostgis is to provide spatial data handling between R and PostGIS, and as such,
it includes methods for bi-directional transfer of both vector and raster spatial datasets between R and
PostGIS, spatial projection handling, and other PostGIS-related tools. In addition, the package also
features methods for users who wish to work primarily (or exclusively) in R, including saving of R
"data.frame"s (including data types and attributes) to PostgreSQL, and “SQL wrapper” functions
which execute common database procedures. The latter provide not only convenient, script-able access
to these procedures through R, but also can function as learning tools for new users of DBMS and
SQL. In this paper, we explain and demonstrate the purpose and usage of rpostgis functions within a
general workflow, following the three focal areas described above (PostGIS-specific, "data.frame"
handling, and SQL wrappers).
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Background

PostgreSQL and rpostgis basics

While it is far beyond the scope of this paper to provide a complete introduction to PostgreSQL, it is
important to introduce several basic features of the DBMS, and the common terms we use to refer to
them, especially concerning their usage in rpostgis.

A PostgreSQL install creates a PostgreSQL server , which is the host of one or more databases .
Databases within a server are self contained (data cannot be shared across databases). Users interact
with the database server using Structured Query Language (SQL ) to write queries . Within a database,
there are one or more named schemas, which are collections of database objects. In PostgreSQL, on
new database creation, a default schema is created in the database with the name public.

Schemas can be used to organize objects in a database. Schemas can contain many different
objects, including functions, data types, and sequences; the objects which users of rpostgis should
be most aware of are tables and views. Tables store data, while standard views only store an SQL
query, that when executed, creates a virtual table (in memory), using data from other tables or views.
There is no functional difference between how tables and views (which both fall under the umbrella
term relation) are referred to within a query, with the convention being ‘schema_name.relation_name’.
Relations typically contain one or more columns, and each column has a defined data type (e.g.,
integer, character, timestamp with time zone), and optionally a defined sub-type , that specifies what
type of data the column can contain. A column can also store records representing a spatial type,
which is described in the next section. Relations have 0 or more records, or rows, which contain the
data.

In rpostgis, most functions perform an action on a relation. Following RPostgreSQL convention,
the relation name is supplied to the argument name, which can be given either a length-one or
length-two character vector. One-length character elements are interpreted as a relation name, and
looked for in the default user schema(s) (by default, ‘public’). Length-two character vectors are
interpreted as schema and relation name, e.g., name = c("schema_name","table_name"). It is generally
recommended to provide both schema and relation name, since identical relation names can be re-
used across schemas. For ease of reading, from this point on we refer to relations (tables and views)
generally as “tables” throughout this paper.

This brief summary should provide the new user with enough terminology to understand this pa-
per, and begin working with databases using rpostgis. New users are encouraged to learn more about
PostgreSQL from its excellent online documentation (https://www.postgresql.org/docs/manuals/).

Spatial objects in PostGIS and R

Vector spatial data in PostGIS tables are stored as GEOMETRY (planar) or GEOGRAPHY (spherical)
types in a column, and usually have a specified sub-type, such as POINT, LINESTRING, or POLY-
GON. Each record of a GEOMETRY/GEOGRAPHY column represents one spatial feature , which
represents one or more geometric objects. Records containing multiple geometric objects in one feature
are specified as a MULTI sub-type (e.g., MULTIPOLYGON). Geometry and geography columns can
also store a spatial reference identifier (SRID) attribute, which is an integer value referring to the
spatial reference system (the “projection”) of the spatial data. Since spherical data are represented
using geographic longitude/latitude coordinates on the sphere (specifically, the spheroid defined by
WGS 84), the Geography data type is restricted to ‘SRID = 4326’.

Raster spatial data are stored in PostGIS using the RASTER data type. Raster columns also can
store an SRID attribute defining the projection of the raster. One raster record can store one or more
bands (rasters with identical spatial coverage but different data). In PostGIS, it is common to store
one raster dataset in one PostGIS table, but split the raster into multiple tiles. A raster tile is one
rectangular spatial subset, or block, of a raster dataset. One tile of a PostGIS raster type corresponds
with one record in the corresponding table. Storing rasters in this way allows for more efficient spatial
queries on the raster, by working on subsets of the raster.

Geometry, geography, and raster data types can all be exported from PostGIS using a variety
of supplied export functions. In addition, the PostGIS library contains a large set of GIS functions
to manage, construct, and edit Geometry objects, as well as measure spatial relationships between
geometries, making it a full-featured GIS system. However, PostgreSQL/PostGIS is not packaged
with a native software to visualize spatial data, so most users employ 3rd-party software to access
the database whenever visualization is needed. For spatial data, desktop GIS systems like ArcGIS
(ESRI, 2017) and QGIS (QGIS Development Team, 2017) can load spatial data directly as layers in the
mapping environment, where users can take advantage of tools available in those software.
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Because of its advanced statistical, processing, and visualization capabilities, many users employ
R as a front-end for their database systems. In R, the long-time standard for handling vector spatial
objects are "Spatial*" classes (e.g., "SpatialPoints", "SpatialMultiPoints", "SpatialLines", and
"SpatialPolygons" and their "Spatial*DataFrame" variants) provided by the package sp (Pebesma
and Bivand, 2005). Likewise the raster package provides standard methods for handling raster datasets
in R, in "Raster*" classes (e.g., "RasterLayer" for single-band, "RasterBrick" or "RasterStack" for
multi-band rasters). There are several notable packages and utilities that assist in transfer of spatial
data between PostGIS and sp "Spatial*"-objects or "Raster*"-objects in R:

1. rgdal : The R package providing bindings to GDAL (Geospatial Data Abstraction Library)
provides the functions readOGR and writeOGR to read, and write, respectively, PostGIS tables
with ‘GEOMETRY’ columns and R "Spatial*" objects. A limitation of readOGR is that it cannot
query the database table to obtain only a subset of the table; similarly writeOGR can only write
new tables (or overwrite existing ones); it does not allow writing to existing database tables. The
rgdal package also provides methods for reading rasters from PostGIS tables with readGDAL,
though GDAL writing of rasters to PostGIS tables is (as of writing) not available, but potentially
still under development (https://trac.osgeo.org/gdal/wiki/frmts_wtkraster.html). One
major drawback of this solution is that the PostGIS driver for rgdal is not included by default on
Windows operating systems, meaning most Windows users cannot use these methods without
manually installing rgdal from source.

2. rgeos (Bivand and Rundel, 2017): The functions readWKT and writeWKT provide conversion
between the WKT format and "Spatial*"-objects. WKT format “well-known text” is a stan-
dardized, text-based version of a vector geometry, which can be written and read using PostGIS
functions.

3. wkb (TIBCO Software Inc., 2016): The R package offers the functions readWKB and writeWKB
functions, which convert vector geometries to and from the WKB format (“well-Known binary”).

4. Alternatively, it is possible to use system calls to command-line utilities such as ogr2ogr,
shp2pgsql or raster2pgsql, which brings the full power of these utilities at the expense of
additional complexity, especially for scripting: This solution mixes two syntaxes (R syntax and
the one of the command-line utility) and requires the passing of passwords at every call.

Read and write functions from both rgeos and wkb are utilized in rpostgis import/export func-
tions to provide the translations of geometries from and to R’s "Spatial*" objects. The rpostgis
functions wrap additional functionality around these low-level functions in the vector data export
(pgInsert) and import (pgGetGeom) functions, to ease data transferability and managed data stored
alongside vector geometries in R "data.frame"s or PostGIS tables.

Also of importance is the recently developed package sf (Pebesma, 2017), which provides Simple
Features access in R, for vector spatial data. Simple Features is an Open Geospatial Consortium
(OGC) and International Organization for Standardization (ISO) standard for storing and accessing
geometry objects, and is used by many RDBMS, including PostGIS. Like sp, sf provides standardized,
comprehensive spatial data handling in R, notably using a "data.frame" with a geometry-list column
to store Simple Feature objects, instead of the various "Spatial*" classes utilized in sp. The sf package
also provides its own functions for reading and writing geometries from PostGIS databases, both
through GDAL (using st_read/st_write) and directly (using st_read_db/st_write_db). At the time
of writing, rpostgis reads from and writes to sp-class "Spatial*" objects, though we anticipate a
migration to sf-class objects as they become the new standard for vector spatial data in R.

A note on permissions and privileges

A proper administration of a database, especially in a multi-user context, requires a consideration
of the permissions given to users to access, write, or modify the database and its various objects.
While it is beyond the scope of this paper to provide an exhaustive presentation of the issue, it is
worth introducing the basic concepts from a PostgreSQL perspective: permissions on a database object
are called “privileges,” and there are several different ones, allowing to access (‘SELECT’) or modify
them (‘INSERT’, ‘UPDATE’), or even to create or delete them (‘CREATE’ and ‘DELETE’, respectively), among
others. By default, the owner of an object (the user who created the object) and superusers (generally
the DBMS administrator(s)) can do anything with it: they are granted all privileges on this object.
PostgreSQL uses the functions ‘GRANT’ and ‘REVOKE’ to assign or revoke privileges of a certain user
on a database object. We refer the interested reader (and the database administrator) to the official
PostgreSQL documentation for more details about privileges.

Database privileges for a given user are not different by accessing the database through a connec-
tion from R, although it adds a layer of complexity as there will be R users and PostgreSQL users
mixed in a session (as well as system users, which are distinct from database users, and we do not
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consider here purposely). In other words, an R user could have different privileges on the database
and its objects depending on the PostgreSQL user they use to connect to the database. In this paper, we
will use the default PostgreSQL superuser ‘postgres’, which thus comes with all privileges granted on
all database objects. This approach is fine for many use cases, especially single-user databases, but will
be limited on multi-user databases, where privileges are set up at a finer grain. In general, all rpostgis
functions that create, modify, or drop an object (e.g., dbIndex, dbAsDate, dbDrop) require ownership
of the object being modified (so they require the appropriate ‘CREATE’ privileges). In addition, we
specifically indicate special privileges that are necessary for the different functions of rpostgis when
relevant.

PostGIS-specific functions

In the following two sections, we explain the main functionality and usage of the rpostgis package.
Note that functions within rpostgis have one of two prefixes: “pg*” (for PostGIS-oriented functions,
described in this section) and “db*” (for general PostgreSQL database functions, described in the next
section), emulating the pattern established by DBI. The general presentation of the functions consist
of (1) a code block presenting the generic version of the function(s) with all arguments and defaults
listed, as well as specific privileges required, (2) descriptive text about the function(s), and in most
cases (3) example calls of the function(s).

In this section, we use the term “PostGIS” generically to refer to the PostgreSQL/PostGIS DBMS;
that is, PostgreSQL with the PostGIS extension installed. All usage of PostGIS within R begins with a
connection to a database server and a particular database: here, using RPostgreSQL::dbConnect, we
connect to the database ‘rpostgis’ which exists on the local computer/server (‘localhost’):

> library(rpostgis)
> conn <- dbConnect(drv = "PostgreSQL", host = "localhost", dbname = "rpostgis",
+ user = "postgres", password = "postgres_password")

It is not the purpose of this article to detail connection details, so we refer to documentation from
DBI and RPostgreSQL for this aspect.

PostGIS management

Check and create PostGIS extension: pgPostGIS

> pgPostGIS(conn, topology = FALSE, tiger = FALSE, sfcgal = FALSE,
+ display = TRUE, exec = TRUE)

Special privileges: pgPostGIS requires ownership of the database (or superuser role) to
install the extension (‘CREATE EXTENSION’) the first time.

The “starter” function for new users of rpostgis is pgPostGIS. This function installs and/or checks
the version of PostGIS currently available on the database. This is the first example of a function
in rpostgis which implements the display and exec arguments. These respectively control printing
(to the R console) of the constructed SQL query, and execution of the query on the database. When
PostGIS is installed and ready to use, pgPostGIS returns TRUE. A standard in rpostgis: is when a
function does not return an object, the function returns TRUE if the action was successfully executed in
the database. Note that you can also enable the Topology, Tiger Geocoder, and SFCGAL extensions,
with topology, tiger, and sfcgal arguments set to TRUE.

List geometries/rasters: pgListGeom and pgListRast

> pgListGeom(conn, geog = TRUE)
> pgListRast(conn)

These pgList* functions return information on GEOMETRY/GEOGRAPHY and RASTER columns
stored in any database table. In a PostGIS database, these information are stored in three views
(‘geometry_columns’, ‘geography_columns’, and ‘raster_columns’, respectively), all of which are cre-
ated during the installation of PostGIS in the ‘public’ schema of the database.

Find (or create) PostGIS SRID based on CRS object: pgSRID

> pgSRID(conn, crs, create.srid = FALSE, new.srid = NULL)
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Special privileges: pgSRID requires ‘INSERT’ privilege on the ‘spatial_ref_sys’ table with
create.srid = TRUE.

On installation of PostGIS, a new table ‘spatial_ref_sys’ is created in the ‘public’ schema, which
stores a large set of spatial reference systems, each of which has a unique (integer) spatial reference
identifier (SRID), along with specifications of the projection in PROJ.4 and WKT. The function pgSRID
allows users to check if a projection they are using in R (stored as a "sp::CRS" object, which contains
the PROJ.4 representation of the projection) has matching SRID(s) in PostGIS. If there is no match and
create.srid = TRUE, then pgSRID adds it to the ‘spatial_ref_sys’ table. In these cases, the user can
also specify a desired SRID with new.srid; otherwise, rpostgis uses the next available value between
880001 and 889999. In the following example, we demonstrate how to find the SRID for the common
WGS 1984 latitude/longitude projection:

> crs <- sp::CRS("+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0")
> pgSRID(conn, crs)

[1] 4326

In some cases, pgSRID may return multiple SRIDs, since there are equivalent projections stored
in multiple SRIDs in the ‘spatial_ref_sys’ table. Note that pgSRID is used in spatial data writing
functions in rpostgis, with create.srid = TRUE.

Spatial data transfer

The following section describes the functions in rpostgis that transfer spatial data between R and
PostGIS databases (Table 1 contains a summary of all data transfer functions, including for non-spatial
data). Outside of conn and name (discussed previously), there are several other arguments re-used
across functions, which have consistent default values:

• geom: this is the column name in the PostGIS table containing a Geometry or Geography data
type. Defaults to "geom".

• rast: this is the column name in the PostGIS table containing a Raster data type. Defaults to
"rast".

• overwrite: in writing to database functions, this defaults to FALSE; overwrite = TRUE allows
the user to delete (‘DROP’) the existing table and create a new one.

In this section we begin to use example datasets. We first load the well-known meuse dataset
containing information on environmental observations from sample points along the Meuse river
in the Netherlands. After loading the data, we create a "SpatialPointsDataFrame" object, setting its
associated projection (oblique stereographic for the Netherlands, i.e. EPSG 28992) as the proj4string
attribute, which is a standardized character representation of the projection of class "CRS":

> library(sp)
> data("meuse")
> meuse <- SpatialPointsDataFrame(meuse[, 1:2], data = meuse[,
+ 3:length(meuse)], proj4string = sp::CRS("+init=epsg:28992"))
> class(meuse)

[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"

> head(meuse@data)

cadmium copper lead zinc elev dist om ffreq soil lime landuse
1 11.7 85 299 1022 7.909 0.00135803 13.6 1 1 1 Ah
2 8.6 81 277 1141 6.983 0.01222430 14.0 1 1 1 Ah
3 6.5 68 199 640 7.800 0.10302900 13.0 1 1 1 Ah
4 2.6 81 116 257 7.655 0.19009400 8.0 1 2 0 Ga
5 2.8 48 117 269 7.480 0.27709000 8.7 1 2 0 Ah
6 3.0 61 137 281 7.791 0.36406700 7.8 1 2 0 Ga
dist.m

1 50
2 30
3 150
4 270
5 380
6 470
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Function Reads from: Writes to:

pgInsert "Spatial*",
"Spatial*DataFrame",
"data.frame"

new or existing database table
(with GEOMETRY or GEOGRA-
PHY column for spatial objects)

pgWriteRast "RasterLayer", "RasterBrick",
"RasterStack",
"SpatialPixels",
"SpatialPixelsDataFrame",
"SpatialGrid",
"SpatialGridDataFrame"

new database table

dbWriteDataFrame "data.frame" new database table

pgGetGeom database table/view with GE-
OMETRY or GEOGRAPHY col-
umn

"Spatial*",
"Spatial*DataFrame"

pgGetRast database table/view with
RASTER column

"RasterLayer", "RasterBrick",
"SpatialPixels",
"SpatialPixelsDataFrame",
"SpatialGrid",
"SpatialGridDataFrame"

pgGetBoundary database table/view with GE-
OMETRY, GEOGRAPHY, or
RASTER column

"SpatialPolygons"

dbReadDataFrame database table/view "data.frame"

Table 1: Functions for data transfer between R and PostgreSQL/PostGIS in rpostgis.

Vector spatial data: pgInsert and pgGetGeom

> pgInsert(conn, name, data.obj, geom = "geom", df.mode = FALSE,
+ partial.match = FALSE, overwrite = FALSE, new.id = NULL,
+ row.names = FALSE, upsert.using = NULL, alter.names = FALSE,
+ encoding = NULL, return.pgi = FALSE, df.geom = NULL, geog = FALSE)

Special privileges: pgInsert requires ‘CREATE’ privilege in schema for new tables, ‘INSERT’
privilege on existing tables, and ‘UPDATE’ privilege when using upsert.using argument.

As evidenced by the large number of possible arguments, pgInsert is a flexible function that aims
to provide a variety of methods for PostGIS ‘INSERT’s, from data originating in R as an object of class
"Spatial*", "Spatial*DataFrame", or "data.frame". The most basic usage requires just a PostgreSQL
connection, a database table name to insert into, and a data object of one of the three types. In our
example, we also utilize the new.id argument, providing a new column name for a sequential ID
("gid"):

> pgInsert(conn, "meuse", meuse, new.id = "gid")

Creating new table...

Using writeWKB from wkb package...

Data inserted into table "public"."meuse"

[1] TRUE

The data was inserted into the new database table ‘meuse_sp’ in the ‘public’ schema, printing out
several informative messages, including an indication that wkb::writeWKB was used to convert spatial
objects to well-known binary in order to write to the database (if the optional package wkb is not
installed, rgeos::writeWKT is used instead). So that is clear to users how and where data is written
to the database, pgInsert is a fairly verbose function—however, these messages can be hidden by
wrapping the function call within suppressMessages(...).
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Since pgInsert can also insert into existing tables, a partial.match argument allows specifying
if all columns in the R object must be present in the database in order to do the insert. The default
is partial.match = FALSE, meaning if any column is found in the R object but not in the database
table, an error is printed and no data is written in the database. Note that the check is uni-directional—
database table columns not found in the R data object do not affect the insert, except if the database
column definition requires that it have assigned values (e.g., ‘NOT NULL’ with no assigned ‘DEFAULT’
value).

> pgGetGeom(conn, name, geom = "geom", gid = NULL, other.cols = TRUE,
+ clauses = NULL, boundary = NULL, query = NULL)

Special privileges: pgGetGeom requires ‘SELECT’ on the table, and ‘CREATE’ in the schema to
create a new view when both query and name are not null

pgGetGeom returns vector spatial data from a PostGIS table storing a Geometry or Geography—the
column name of either type can be supplied to the geom column. We can retrieve the full ‘meuse’ table
which we just wrote to the database, demonstrating the most basic use of the function:

> meuse.db <- pgGetGeom(conn, "meuse")

Returning Point types in SpatialPoints*-class.

A message prints the type of "Spatial*" class that is created in R. The other.cols argument can
be a vector of character names of database table columns, indicating which (if any) columns to return
with the spatial data. The default is the full table (all columns), but other.cols = FALSE returns the
spatial data only (i.e., a "Spatial*" object). The clauses argument can take additional SQL to modify
the data to take from the table. For instance, using a ‘WHERE’ clause allows filtering results based on
specific filter, as long as it is valid SQL (in this case, indexing the filtering column will significantly
speed up the query; see the section “Create an index: dbIndex” below). Conversely, a full SQL query
can be provided using the query argument; in this case the names argument can be NULL, or set to
the name of a (new) view to create in the database using the specified query. This is the method to
use when it is necessary to combine multiple database tables and return a geometry, or use PostGIS
functions within a query, which highlights the potential of rpostgis for complex GIS operations in the
database.

For example, we can use the PostGIS function ‘ST_Buffer’ to create 100-m buffers around points in
our ‘meuse’ table, and then transform the layer to another projection using ‘ST_Transform’, with ‘SRID
= 4326’ (WGS 1984, lat-lon). Note that we specified the output geometry in the SQL query ‘AS geom’,
which is the default name for GEOMETRY columns for pgGetGeom. This query returns only the original
points ID (gid) and a GEOMETRY column that can be directly loaded into a "SpatialPolygons" object
using pgGetGeom. Since we specify gid as the unique ID for meuse.buff (using gid = "gid"), and
there are no other columns of data to import, there is no data frame associated with this object. We can
then plot the result to highlight the “flat” shape of the buffers after reprojection (Figure 1):

> query <- "SELECT gid, ST_Transform(ST_Buffer(geom, 100), 4326) AS geom FROM meuse;"
> meuse.buff <- pgGetGeom(conn, name = "meuse_buff", query = query,
+ gid = "gid")

Returning Polygon types in SpatialPolygons*-class.

Created view "public"."meuse_buff".

> par(mar = c(2, 2, 2, 2))
> plot(meuse.buff, axes = TRUE, asp = 1)

Raster spatial data: pgWriteRast and pgGetRast

> pgWriteRast(conn, name, raster, bit.depth = NULL, blocks = NULL,
+ constraints = TRUE, overwrite = FALSE)

Special privileges: pgWriteRast requires ‘CREATE’ privilege in schema.

The pgWriteRast function sends R rasters to a new database table. We can demonstrate this
loading the meuse.grid data set into a "SpatialPixelsDataFrame" object:
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Figure 1: Buffered points (as polygons) from meuse dataset, created and loaded from a PostGIS query.

> data("meuse.grid")
> meuse.grid <- SpatialPointsDataFrame(meuse.grid[, 1:2], data = meuse.grid[,
+ 3:length(meuse.grid)], proj4string = sp::CRS("+init=epsg:28992"))
> gridded(meuse.grid) <- TRUE
> class(meuse.grid)

[1] "SpatialPixelsDataFrame"
attr(,"package")
[1] "sp"

The rpostgis package works with "Raster*"-class or gridded "Spatial*" objects (i.e. "SpatialPixels",
"SpatialGrid", and their "*DataFrame" counterparts). We can create directly send meuse.grid, a
"SpatialPixelsDataFrame" object, to a new raster table in the database using pgWriteRast. Its five
variables are converted into raster “bands” in the PostGIS data structure:

> pgWriteRast(conn, "meuse_rast", meuse.grid)

Splitting 5 band(s) into 1 x 1 blocks...

[1] TRUE

Since pgWriteRast is only for new database tables (or overwrites), the column storing the raster in
the database is fixed to "rast". The function automatically splits the raster into tiles (called “blocks”
in the raster package), with one tile for each record in the table, and adds automatic raster constraints
(when constraints = TRUE, the default). Setting raster constraints in PostGIS allows the raster
overview data to be registered correctly in the ‘raster_columns’ view, and include attributes of the
raster such as scale, extent, SRID, and checks on alignment between blocks in the raster table.

In this example case, we see that the raster only includes one block (1× 1), since meuse.grid
is relatively small (~8,000 cells); the default target block size in pgWriteRast is 10,000 cells (e.g., a
100× 100 cell raster). Optionally, the user can specify the exact number of blocks to split the raster
into using the blocks argument set to either a length-one or two integer vector (e.g., blocks = 5
splits the raster into 5× 5 blocks, and blocks = c(2,4) splits the raster into 2× 4 blocks). Note that
specifying a smaller number of blocks will reduce write time using pgWriteRast. Block size should
largely be determined by usage within PostGIS. For example, with larger blocks, PostGIS queries that
only summarize across blocks will be less precise (since more total raster cells will fall within these
blocks), and these queries could also be slower as a result.

The function pgWriteRast uses only the R raster package and SQL queries to create and populate
rasters, meaning it is not dependent on external software or command-line utilities. While this makes
it particularly useful as a cross-platform solution, and for new users who are not familiar with existing
command-line tools for loading rasters into PostGIS (e.g., raster2pgsql), it may be less memory-
efficient and take more time to process rasters than these command-line options. Users who frequently
work with very large rasters should keep this consideration in mind.

> pgGetRast(conn, name, rast = "rast", bands = 1, boundary = NULL)
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Special privileges: pgGetRast requires ‘SELECT’ privilege on the table.

Loading rasters from the database can be done with pgGetRast, where the column to retrieve from
defaults to "rast". Since we did not specify any bands, the default is to return the first band:

> lc.db <- pgGetRast(conn, "meuse_rast")
> summary(lc.db)

Object of class SpatialPixelsDataFrame
Coordinates:

min max
x 178440 181560
y 329600 333760
Is projected: TRUE
proj4string :
[+init=epsg:28992 +proj=sterea +lat_0=52.15616055555555
+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000
+ellps=bessel
+towgs84=565.4171,50.3319,465.5524,-0.398957,0.343988,-1.87740,4.0725
+units=m +no_defs]
Number of points: 3103
Grid attributes:

cellcentre.offset cellsize cells.dim
s1 178460 40 78
s2 329620 40 104
Data attributes:

part.a
Min. :0.0000
1st Qu.:0.0000
Median :0.0000
Mean :0.3986
3rd Qu.:1.0000
Max. :1.0000

Multi-band writing and reading of is also possible with pgWriteRast and pgGetRast, as illustrated
in this example using the RGB RasterBrick of the R logo (available in the raster package as a raster
of 77× 101 pixels, with three layers for red, green, and blue values). We also demonstrate the boundary
argument method of pgGetRast by providing an extent as four numbers in the raster’s projection [top,
bottom, right, left]. We finally plot the output in Figure 2:

> rlogo <- raster::brick(system.file("external/rlogo.grd", package = "raster"))
> pgWriteRast(conn, "rlogo", rlogo)

Splitting 3 band(s) into 1 x 1 blocks...

[1] TRUE

> just.r <- pgGetRast(conn, "rlogo", bands = TRUE, boundary = c(60, 0, 95, 35))
> just.r

class : RasterBrick
dimensions : 60, 60, 3600, 3 (nrow, ncol, ncell, nlayers)
resolution : 1, 1 (x, y)
extent : 35, 95, 0, 60 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=merc +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
data source : in memory
names : red, green, blue
min values : 0, 0, 1
max values : 255, 255, 255

> raster::plotRGB(just.r)

The R data class, proj4string attribute, and band/column names of R raster objects are also saved
in the raster table, and are imported when pgGetRast re-creates the raster in R. The boundary argument
can also be specified as a "Spatial*" object, where the raster is clipped to the bounding box of the
object. This can greatly increase the speed of the import, and is recommended when working with
large rasters.
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Figure 2: (clipped) Logo of R.

Users should note that "Raster*"-class data types are handled natively within the rpostgis raster
functions. "Spatial*" objects are converted to/from "Raster*"s within the function execution; as
such, there may be a performance benefit to working with "Raster*" objects.

Other spatial functions

Bounding box retrieval: pgGetBoundary

> pgGetBoundary(conn, name, geom = "geom", clauses = NULL)

Special privileges: pgGetBoundary requires ‘SELECT’ privilege on the table.

The function pgGetBoundary can return the outer bounding box of all spatial data (or a subset
using clauses) in a PostGIS table, and the geom argument can actually take the column name of a
Geometry, Geography, or Raster column. A single feature in a "SpatialPolygons" object is returned
in the original projection of the spatial data, as in this example using the ‘meuse_dist’ raster table
previously created:

> (m.bound <- pgGetBoundary(conn, "meuse_rast", "rast"))

class : SpatialPolygons
features : 1
extent : 178440, 181560, 329600, 333760 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889
+k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel
+towgs84=565.2369,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812
+units=m +no_defs

Add a POINT or LINESTRING geometry field: pgMakePts and pgMakeStp

> pgMakePts(conn, name, colname = "geom", x = "x", y = "y", srid,
+ index = TRUE, display = TRUE, exec = TRUE)
>
> pgMakeStp(conn, name, colname = "geom", x = "x", y = "y", dx = "dx",
+ dy = "dy", srid, index = TRUE, display = TRUE, exec = TRUE)

These are specialized functions that can be used to apply a new Geometry column to an existing
database table, and are of particular use for managing sequential location data tables (i.e., trajectories).
While pgMakePts requires only columns storing x and y coordinates to create a ‘POINT GEOMETRY’
column, pgMakeStp also needs increments along the x/y dimensions to the next point, and builds the
line segments connecting those points into a ‘LINESTRING GEOMETRY’ column.

PostgreSQL functions and wrappers

Storing R "data.frame"s in PostgreSQL: dbWriteDataFrame and dbReadDataFrame

> dbWriteDataFrame(conn, name, df, overwrite = FALSE, only.defs = FALSE)
> dbReadDataFrame(conn, name, df = NULL)

Special privileges: dbWriteDataFrame requires ‘CREATE’ privilege in schema.
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Data frame columns have attributes which store important information about the class of data
in the column, as well information specific to that class. However, when writing a "data.frame"
object to databases (e.g, using RPostgreSQL::dbWriteTable), these attributes are not carried over. For
users who want to work in R, store data in a database, and then wish to retrieve it in the same state
that it was prior to storing, rpostgis introduces a “data frame mode” for its data writing and reading
functions.

The first time it is used in a schema, data frame mode creates a new database table named
‘.R_df_defs’ to store column types and attributes. Within the data table itself, data frame mode
adds a column to store the "data.frame" row names (in ‘.R_rownames’), and another to act as the
database table’s primary key (in ‘.df_pkid’), and provide sorting for the "data.frame". Note that
since ‘.R_df_defs’ and ‘.df_pkid’ are only intended for internal rpostgis usage, we begin them with
the non-standard “.” to function as a flag to users of the database. It is not recommended to name
tables commonly referred to by users in this way, since non-standard naming of tables and column
identifiers will require that they be double-quoted whenever they are used in a query.

When the table is imported into R using rpostgis reading functions (dbReadDataFrame or pgGetGeom),
these metadata are applied to the resulting data frame. Currently (rpostgis version 1.4.0), the only data
type attributes which are stored and re-created using data frame mode are time zones of "POSIXct" ob-
jects, and levels of factors (including ordered factors). However, handling of specific attributes for other
data types can be added in a modular way to the main data frame mode functions (dbWriteDataFrame
and dbReadDataFrame).

We can demonstrate the utility of data frame mode with a simple example on the dataset meuse,
this time as a data frame. To further demonstrate the utility of data frame mode, we first add a
date-time ("POSIXct") column to meuse:

> data("meuse")
> meuse$example_time <- seq(as.POSIXct("2010-01-01 12:00", tz = "Europe/Amsterdam"),
+ by = "1 day", length.out = nrow(meuse))
> head(meuse$example_time)

[1] "2010-01-01 12:00:00 CET" "2010-01-02 12:00:00 CET"
[3] "2010-01-03 12:00:00 CET" "2010-01-04 12:00:00 CET"
[5] "2010-01-05 12:00:00 CET" "2010-01-06 12:00:00 CET"

First, we can demonstrate the base writing and reading of this table using RPostgreSQL, in
particular the functions dbWriteTable and dbReadTable:

> RPostgreSQL::dbWriteTable(conn, "meuse_base", meuse)

[1] TRUE

> meuse.base <- RPostgreSQL::dbReadTable(conn, "meuse_base")
> all.equal(meuse, meuse.base)

[1] "Component \"ffreq\": 'current' is not a factor"
[2] "Component \"soil\": 'current' is not a factor"
[3] "Component \"lime\": 'current' is not a factor"
[4] "Component \"landuse\": 'current' is not a factor"
[5] "Component \"example_time\": Mean absolute difference: 21274.84"

The comparison with all.equal indicates that four of the columns that were factors in meuse
are no longer factors, and there is a time difference between the example_time columns in the two
data frames. In this case, times in meuse were set to the time zone “Europe/Amsterdam”, while
our database (and R base) time zone is “America/New_York”. The functions dbWriteTable and
dbReadTable ignore time zone specifications in a "data.frame", assuming all timestamps are in the
local computer’s time zone. In case of mismatch between the data and the user time zone, this results
in incorrect timestamps in both the database table (‘meuse_base’), and the recreated R data frame
(meuse.base), as is the case here.

Using data frame mode methods, meuse can be sent to the database, and re-created in R, with no
alterations:

> dbWriteDataFrame(conn, "meuse_df", meuse)

New R data frame definitions table created ("public".".R_df_defs").

[1] TRUE
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> meuse.df <- dbReadDataFrame(conn, "meuse_df")
> all.equal(meuse, meuse.df)

[1] TRUE

Since data frame mode writes column attributes (e.g., factor levels) based on the data exactly
as it appears in an R "data.frame", dbWriteDataFrame can only be used for new database tables (or
overwrite of existing ones). Data frame mode is also available for "Spatial" data using pgInsert, with
df.mode = TRUE (the default is set to FALSE). pgGetGeom will automatically use "data.frame" defini-
tions (when they exist) for importing "Spatial*" datasets. For example, we can again remake meuse as
a "SpatialPointsDataFrame", and send it to the database, overwriting the previous ‘meuse_df’ table:

> meuse <- SpatialPointsDataFrame(meuse[, 1:2], data = meuse[,
+ 3:length(meuse)], proj4string = sp::CRS("+init=epsg:28992"))
> pgInsert(conn, "meuse_df", meuse, df.mode = TRUE, overwrite = TRUE)

Using writeWKB from wkb package...

Query executed:

DROP TABLE IF EXISTS "public"."meuse_df";

Data inserted into table "public"."meuse_df"

[1] TRUE

> meuse_df <- pgGetGeom(conn, "meuse_df")

Returning Point types in SpatialPoints*-class.

> all.equal(meuse, meuse_df)

[1] TRUE

Using “data frame mode” with a "Spatial*" class object with pgInsert also saves the projection
(as a proj4string attribute) of the spatial object in the database. This allows for equivalent re-creation
of the meuse dataset in this example, since pgGetGeom re-applies this proj4string when importing the
table ‘meuse_df’.

SQL wrappers for database management

A collection of “db”-prefixed functions are available to add, remove, alter, and manage objects in the
database, and SQL users will be familiar with the keywords in the function and attribute names. These
functions share several common features:

• The previously discussed conn, name, display, and exec arguments;
• Each returns TRUE when the statement was successfully executed on the database.

In the following section, we present a short discussion of each function’s purpose and a usage
example.

Check and create schema: dbSchema

> dbSchema(conn, name, display = TRUE, exec = TRUE)

Special privileges: dbSchema requires ‘CREATE’ privileges in the database.

As previously mentioned, schemas are named storage partitions of a database, containing collec-
tions of other database objects. The function dbSchema creates a new schema name, or checks if it exists
in the database:

> dbSchema(conn, "rpostgis_demo")

Query executed:

CREATE SCHEMA "rpostgis_demo";

[1] TRUE
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Note that all schema, table, and column names are applied in the database exactly as they are
given in the rpostgis functions, including capitalization, special characters, digits, etc. In PostgreSQL,
however, object identifiers need to start with a lowercase letter (a-z) or an underscore (_), and contain
letters, underscores, and digits (0-9). Any object that does not follow these rules must be quoted (using
double quotation marks) when used in SQL queries. For that reason, all object names used in rpostgis
(as well as RPostgreSQL) are quoted by default in the SQL queries that it builds. Despite this, it is
good practice to use object names that do not require quoting, including column names in any data
frames sent to the database; using this approach facilitates SQL query writing.

To demonstrate the use of schemas, we insert meuse into the ‘rpsostgis_demo’ schema, only with
a slight modification of the time variable: example_time is converted to character as to avoid incorrect
specification of the time zone, and is stored as text type in the database.

To work in the ‘rpostgis_demo’ schema, we need to specify the schema name as the first argument
in name. We can also utilize the new.id argument to add a sequential number column ‘meuse_id’ to the
new table, and alter.names to make sure all column names do not require quoting:

> meuse$example_time <- as.character(meuse$example_time)
> pgInsert(conn, c("rpostgis_demo", "meuse"), meuse, new.id = "meuse_id",
+ alter.names = TRUE)

Creating new table...

Making column names DB-compliant (lowercase and replacing special characters with '_').

Using writeWKB from wkb package...

Data inserted into table "rpostgis_demo"."meuse"

[1] TRUE

Comment on table/view/schema: dbComment

> dbComment(conn, name, comment, type = c("table", "view", "schema"),
+ display = TRUE, exec = TRUE)

Commenting is essential to maintaining a well-documented database, and comments can be
applied to any database object. Here we apply comments to both the new schema and table we just
created:

> dbComment(conn, "rpostgis_demo",
+ comment = "Schema storing example data for the 'rpostgis' paper.",
+ type = "schema")

Query executed:

COMMENT ON SCHEMA "rpostgis_demo" IS 'Schema storing example data for the ''rpostgis'' paper.';

[1] TRUE

> dbComment(conn, c("rpostgis_demo", "meuse"),
+ comment = "Meuse river example dataset from R 'sp' package.",
+ type = "table")

Query executed:

COMMENT ON TABLE "rpostgis_demo"."meuse" IS 'Meuse river example dataset from R ''sp'' package.';

[1] TRUE

Add or remove a column: dbColumn

> dbColumn(conn, name, colname, action = c("add", "drop"), coltype = "integer",
+ cascade = FALSE, display = TRUE, exec = TRUE)

Adding or dropping a table column can be achieved with the dbColumn function: to demonstrate,
we drop the ‘dist’ column, so as not to confuse it with ‘dist_m’:
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> dbColumn(conn, c("rpostgis_demo", "meuse"), "dist", action = "drop")

Query executed:

ALTER TABLE "rpostgis_demo"."meuse" DROP COLUMN "dist" ;

[1] TRUE

Add a primary or foreign key: dbAddKey

> dbAddKey(conn, name, colname, type = c("primary", "foreign"),
+ reference, colref, display = TRUE, exec = TRUE)

Keys are an important element of a database, and are part of a broader group of elements used
to maintain integrity of table data called constraints . Using dbAddKey, we can add a primary key
(specifying a non-null column acting as the unique identifier of a single table) or a foreign key
(specifying a column referencing a column in another “foreign” table, where all values must have a
match). Note that dbAddKey can build keys on multiple columns (or refer to foreign keys on multiple
columns) using the form colname = c("id1","id2","id3"). Since we applied a new sequential ID
column when we inserted meuse, we can now designate it as a primary key:

> dbAddKey(conn, c("rpostgis_demo", "meuse"), "meuse_id", type = "primary")

Query executed:

ALTER TABLE "rpostgis_demo"."meuse" ADD PRIMARY KEY ("meuse_id");

[1] TRUE

Create an index: dbIndex

> dbIndex(conn, name, colname, idxname, unique = FALSE, method = c("btree",
+ "hash", "rtree", "gist"), display = TRUE, exec = TRUE)

Indexes are another important database element, as they can store information which helps
queries run efficiently on data which are commonly referenced (e.g., using a foreign key), sorted (e.g.,
timestamps), or compared to other columns (e.g., geometries). As one would expect, they are especially
important for large tables, and geometry types (e.g., polygons representing complex boundaries or
lines), and are essential for to efficiently retrieve data with pgGetGeom and a ‘WHERE’ clause. Note
that, similarly to keys, dbIndex can build indexes on multiple columns. We can add an index on our
point geometry using the preferred indexing method for ‘GEOMETRY’ in PostGIS: GIST (generic index
structure):

> dbIndex(conn, c("rpostgis_demo", "meuse"), "geom", method = "gist")

Query executed:

CREATE INDEX "meuse_geom_idx" ON "rpostgis_demo"."meuse" USING GIST ("geom");

--

[1] TRUE

Convert to timestamp: dbAsDate

> dbAsDate(conn, name, date = "date", tz = NULL, display = TRUE,
+ exec = TRUE)

The function dbAsDate allows us to convert a time stored as ‘TEXT’ column into a ‘TIMESTAMP WITH
TIME ZONE’ type. We can demonstrate this with the ‘example_time’ column, which we know was
added in R to represent times in the “Europe/Amsterdam” time zone:

> dbAsDate(conn, c("rpostgis_demo", "meuse"), "example_time", tz = "Europe/Amsterdam")

Query executed:
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ALTER TABLE "rpostgis_demo"."meuse"
ALTER COLUMN "example_time" TYPE timestamptz
USING

"example_time"::timestamp AT TIME ZONE 'Europe/Amsterdam';

[1] TRUE

Garbage-collect and analyze a database (VACUUM): dbVacuum

> dbVacuum(conn, name, full = FALSE, verbose = FALSE, analyze = TRUE,
+ display = TRUE, exec = TRUE)

Vacuuming a table is a maintenance operation that cleans out unused space in the database
structure, generally due to recent changes to a table (adding or deleting rows, updating data, etc.).
Another operation (analyze) is often performed along with a vacuum, and is used to update statistics
about the table, which PostgreSQL uses to optimize queries. Both vacuum and analyze are optional
operations, but recommended for tables that are frequently modified, as they can greatly improve query
speeds. Note that PostgreSQL automatically vacuums (and analyze) databases with the autovacuum
daemon. It is generally preferable to tune the daemon for automatic use, but dbVacuum provides a way
to run the operation manually. The default behavior for dbVacuum is to both vacuum and analyze a
table:

> dbVacuum(conn, c("rpostgis_demo", "meuse"))

Query executed:

VACUUM ANALYZE "rpostgis_demo"."meuse";

[1] TRUE

Drop table/view/schema: dbDrop

> dbDrop(conn, name, type = c("table", "schema", "view", "materialized view"),
+ ifexists = FALSE, cascade = FALSE, display = TRUE, exec = TRUE)

The dbDrop function can be used to remove tables or schemas—just remember that this process is
irreversible! Here we drop a table from the ‘public’ schema, which we created in previous examples:

> dbDrop(conn, "meuse_base")

Query executed:

DROP TABLE "public"."meuse_base";

[1] TRUE

Get information about table columns: (dbTableInfo)

> dbTableInfo(conn, name, allinfo = FALSE)

Finally, another “db*” function, dbTableInfo, returns a set of descriptive information about an
existing database table, notably column names and types. This may be useful for reference prior to
importing a table into R:

> dbTableInfo(conn, c("rpostgis_demo", "meuse"))

column_name data_type is_nullable
1 meuse_id integer NO
2 cadmium double precision YES
3 copper double precision YES
4 lead double precision YES
5 zinc double precision YES
6 elev double precision YES
7 om double precision YES
8 ffreq text YES
9 soil text YES
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10 lime text YES
11 landuse text YES
12 dist_m double precision YES
13 example_time timestamp with time zone YES
14 geom USER-DEFINED YES

character_maximum_length
1 NA
2 NA
3 NA
4 NA
5 NA
6 NA
7 NA
8 NA
9 NA
10 NA
11 NA
12 NA
13 NA
14 NA

Summary

Linking R with data storage services such as relational databases has become essential for sound data
and project management. However, some users may be hesitant to adopt them for their projects, as
databases (and SQL) can present a significant learning curve, translating data between R and databases
is not always straightforward, or users may simply be unaware of free and open-source software such
as PostgreSQL. In this paper, we presented rpostgis, an extension of the package RPostgreSQL, which
we hope will provide a gateway to databases for current users of R, especially those working with
spatial datasets. To summarize, rpostgis provides methods for transferring spatial data (vector and
raster) between R and PostgreSQL/PostGIS, introduces a “data frame mode” for storing attributes
of "data.frame" columns, and provides “SQL wrapper” functions for database management and
maintenance, which can be also useful as learning tools for users unfamiliar with SQL and databases.

While we consider the base functionalities of rpostgis to be complete, we do foresee further
development and evolution in several areas, and welcome collaboration to develop these. Providing a
user-friendly R interface to the large library of PostGIS functions would be one area of great usefulness
for spatial analysis. The “data frame mode” implementation is another area where progress could
be made: for example, handling of R type attributes beyond "factor" and "POSIX*" types could
be implemented in a modular fashion in dbWriteDataFrame and dbReadDataFrame, and requests and
contributions are welcome. Likewise, more specific translations between R data types and PostgreSQL
data types would be helpful improvement on current methods (e.g., translating R "integer" or
"numeric" types to any of 10 PostgreSQL numeric data types); note that this work may be better suited
for a generic package such as RPostgreSQL.

We also encourage users working with customized data classes for potentially large data sets
in R to consider writing translations to a corresponding database model. For example, a related
“extension” package of rpostgis is rpostgisLT (Dukai et al., 2017). This package specifically translates
animal trajectory data objects stored as "ltraj" from the package adehabitatLT (Calenge, 2006) into
a customized data model ("pgtraj") built and managed by rpostgisLT. This not only provides a
useful storage option for potentially large animal tracking datasets; it also opens up the world of
PostgreSQL/PostGIS to scientists working with trajectory datasets, who may previously have only
used R and/or desktop GIS.

These solutions also allow R users to better share data with other users or applications, since
databases provide a common data location and format for interoperabilty with other software. While it
is beyond the scope of this paper, there are many other attractive aspects of databases (functions/trig-
gers, automated backup and restore, multi-user control, user-friendly data sharing and visualizations
through front-end server applications) which not only can make R users more efficient, but help
broaden the reach of their projects. Finally, for scientists interested in reproducible science and re-
search, databases provide a framework to script and automate a variety of data cleaning, summary,
and analysis processes, as well as a stable, long-term storage solution.

To conclude this paper, we can let our example database speak, to show all GEOMETRY and
RASTER columns created in the examples, and finally close the database connection by using
RPostgreSQL::dbDisconnect, as it is good practice to discard all pending work and free up database
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resources for other users:

> pgListGeom(conn)

schema_name table_name geom_column geometry_type type
1 public meuse geom POINT GEOMETRY
2 public meuse_buff geom GEOMETRY GEOMETRY
3 public meuse_df geom POINT GEOMETRY
4 rpostgis_demo meuse geom POINT GEOMETRY

> pgListRast(conn)

schema_name table_name raster_column
1 public meuse_rast rast
2 public rlogo rast

> RPostgreSQL::dbDisconnect(conn)

[1] TRUE
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lba: An R Package for Latent Budget
Analysis
by Enio G. Jelihovschi and Ivan Bezerra Allaman

Abstract The latent budget model is a mixture model for compositional data sets in which the entries,
a contingency table, may be either realizations from a product multinomial distribution or distribution
free. Based on this model, the latent budget analysis considers the interactions of two variables; the ex-
planatory (row) and the response (column) variables. The package lba uses expectation-maximization
and active constraints method (ACM) to carry out, respectively, the maximum likelihood and the least
squares estimation of the model parameters. It contains three main functions, lba which performs
the analysis, goodnessfit for model selection and goodness of fit and the plotting functions plotcorr
and plotlba used as a help in the interpretation of the results.

Introduction

The idea of latent budget was first proposed by Goodman (1974) in which he wanted to show a method
to analyse the relationship between a set of qualitative variables, when some of them are manifested
variables and other are non observable or latent variables. These ideas were later elaborated by Clogg
(1981) by interpreting a simple latent class model in an asymmetric way. Independently, de Leeuw
and van der Heijden (1988) introduced the model and named it latent budget analysis because they
used it to analyse time-budget data. The model was also introduced independently in geology by
Renner (1988), where it is known as the endmember model.

LBA is an analysis method for compositional data which is basically an I × J matrix where the row
variable with I categories is called the explanatory variable and the column variable with J categories
is called the response variable. In compositional data each row is considered a J dimensional vector of
conditional probabilities so that, for every row, they add up to one. LBA is used to understand the
relationship between those two variables.

LBA allows us to find out which categories of the response variables are related to different
groups of the explanatory categories. If the table has a product multinomial distribution we can
understand the latent budget model (LBM) as explaining the relationship between the explanatory
and the response variables. It is done by assuming that conditioned on the latent variable they are
independent. In that sense, the latent budgets, which are categories of a latent variable, are hidden
values which explain the relationship between the explanatory and response variables. LBA reduces
the dimensionality of the original problem, thus making it easier to understand its hidden relations.

Examples of latent budget models in sociological research, political sciences and other areas where
categorical variables are used can be found in Van der Ark (1999a). Generalizations of the LBA method
may be found in Siciliano and Heijden (1994), Siciliano and Mooijaart (2001) and Aria (2008). However,
we found few articles in our literature search that used LBA in their data analyses. Larrosa (2005)
shows how to use LBA in applications to economics. Tambrea and Siciliano (1999) proposed an LBA
approach for three-way tables in a business field. We can also cite Aquilia et al. (2015) in geology,
Ros-Freixedes and Estany (2014) in biology, and Aria et al. (2003) in food engineering.

In our point of view, the reason why the use of LBA is not more widespread is due to the lack of
available software. The software “A freeware computer program to perform latent budget analysis”
written by L. Andries van der Ark (Van der Ark, 1999b) in Borland Pascal 7.0 only runs under MS-
DOS. Unfortunately, it is no longer available at http://come.to/lba/software. The only software
we could find that performs LBA analysis is CoDaPack http://ima.udg.edu/codapack/, which until
recently only ran in the Windows operational system. Therefore, because of the importance LBA has
in categorical data analysis, the authors decided to write the lba package.

This is the first package for this type of analysis in R. The package is available from both the
Comprehensive R Archive Network at http://cran.r-project.org/web/packages/lba/index.html
and the lba project web site at https://github.com/ivanalaman/lba.

Latent budget model

LBM is a mixture model for compositional data. A row of compositional data is called a composition or
a budget and its elements are the components. We will follow the notation of Van der Ark (1999a). He
says: “by performing LBA we approximate I observed budgets, which may represent persons, groups
or objects by a small number of latent budgets, consisting of typical characteristics of the sample.” See
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also de Leeuw et al. (1990) and van der Heijden et al. (1992).

Terminology and model definition

The original contingency table is N(I, J). Let us also define:

• row total: ni+ = ∑j nij.

• column total: n+j = ∑i nij.

• total: n = ∑j ∑i nij.

The compositional data matrix P is formed by dividing the raw data by their corresponding row
total. Let us call the observed components pi|j(i = 1, . . . , I; j = 1, . . . , J) then, pi|j =

nij
ni+

, pi+ = ni+
n and

p+j =
n+j
n . Each row vector pi of P is called an observed budget and is approximated by the expected

budget πi which is a mixture of K, (K ≤ min(I, J)) latent budgets.

The row vectors πi, (i = 1, . . . , I) form the expected matrix π which has a lower rank and, in LBM,
approximates P.

The latent budgets are represented by βk, (k = 1, . . . , K) and the model is written as

πi = α1|iβ1 + . . . + αk|iβk + . . . + αK|iβK ,

where αk|i are the mixing parameters.

The elements of π are πj|i and are called expected components. The elements of βk, β j|k are called

latent components. In scalar notation, πj|i = ∑K
k=1 αk|iβ j|k, and in matrix notation Π = AB> where Π is

an I × J matrix whose rows are the expected budgets. A is an I × K matrix of mixing parameters and
B is a J × K matrix whose columns are the latent budgets. LBM(K) is then the latent budget model
with K latent budgets. Similar to the observed components, the parameters of LBM are subject to
the sum constraints ∑J

j=1 πj|i = ∑K
k=1 αk|i = ∑J

j=1 β j|k = 1 and the non-negativity constraints 0 ≤
πj|i, αk|i, β j|k ≤ 1. In this way, all parameters are proportions that further facilitate the interpretation of
the model.

Quoting Van der Ark (1999a)

The latent budgets can be characterized by being compared to the latent budgets of
LBM(1). LBM(1) is the independence model with α1|i = 1 and β j|1 = p+j, in this case
πi = β1. Hence, if latent component β j|k ≥ p+j, then βk is characterized by the j-th
category. On the other hand, if β j|k ≤ p+j, then the j-th category is of lesser importance.
The relative importance of each latent budget, in terms of how much of the expected data
they account for, is expressed by the budget proportions πk = ∑i pi+αk|i.

The πk parameter also denotes the probability of latent budget k when there is no
information about the level of the row variable. To understand how the expected budgets
are constructed to form the latent budgets, we must compare the mixing parameters to
πk. If αk|i ≥ πk then the expected budget π is characterized more than average by latent
budget βk, otherwise, if αk|i ≤ πk then the expected budget π is characterized less than
average by latent budget βk. In practice, the mixture model interpretation is easier to
carry out when we first characterize the latent budgets and then interpret the expected
budgets in terms of them.

Compositional data that follows the product multinomial sampling scheme may be estimated by
the maximum likelihood estimation method (MLE) which is estimated by using the EM algorithm
(Dempster et al., 1977). On the other hand, if the data cannot be assumed to follow that distribution,
using MLE is not recommended. Following Van der Ark (1999a) we opted to estimate by using
weighted least squares (WLS) estimators since it is a distribution free method, that is, one which does
not assume any probability configuration on the data, see Mooijaart et al. (1999).

Unconstrained parameter estimation: maximum likelihood estimator (MLE)

In de Leeuw et al. (1990) they describe the MLE for compositional data under a product-multinomial
distribution. The log likelihood is:

ln L(πj|i; pj|i, nij) =
I

∑
i=1

ni+

J

∑
j=1

pj|i ln(πj|i) + C. (1)
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In this case, πj|i is dependent on a latent variable with K categories, where the observations on
that latent variable are missing. Therefore the complete data loglikelihood function is:

ln L(πijk; n++) =
I

∑
i=1

J

∑
j=1

K

∑
k=1

nijk ln
(

πijk

πi+

)
+ C. (2)

The πijk parameters are the unknown joint probabilities of the two manifest variables and the

latent variable where ∑I
i=1 ∑J

j=1 ∑K
k=1 πijk = 1 and πijk

πi+
= πjk|i = αK|iβ j|k. nijk are the unknown joint

frequencies of the three variables where nijk = πijkn++. In that paper, de Leeuw et al. (1990) use an
EM-algorithm to maximize the complete data loglikelihood.

The EM algorithm proceeds iteratively. Beginning with arbitrary initial values of αk|i and β j|k,
which may be set either by the user or randomly generated by the package function, and labelling
them α̂0

k|i and β̂0
j|k∀i, j, k to meet the sum and the no-negativity constraints. In the expectation (E) step,

calculate π̂0
ijk from the initial estimates and find the estimator for nijk which is:

n̂0
ijk = nij

π̂0
ijk

∑k π̂0
ijk

. (3)

In the maximization (M) step, given π̂new
ijk and n̂new

ijk , the complete data loglikelihood is maximized.
In de Leeuw et al. (1990) they show that this yields the following estimates for the next iteration:

α̂new
k|i =

∑j n̂0
ijk

∑j,k n̂0
ijk

=
n̂0

i+k

n̂0
i++

(4)

and

β̂new
j|k =

∑i n̂0
ijk

∑i,j n̂0
ijk

=
n̂0
+jk

n̂0
++k

. (5)

Unconstrained parameter estimation: weighted least squares (WLS)

The WLS function to be minimized is:

Lαk|i ,β j|k = ∑
i,j
(viwj)(pj|i −∑

k
αk|iβ j|k)

2. (6)

The weights viwj may be chosen freely. If they are chosen to equal one, the WLS becomes the
ordinary least squares (OLS).

The lba package follows the algorithm completely described in Van der Ark (1999a) and Mooijaart
et al. (1999) called the active constraints method (ACM). The method is a minimization with constraints.
The equality constraints are the row sums of matrix A and column sums of matrix B, and the inequality
constraints are the values of all elements of A and which must be greater than zero.

Identifiability: K = 2

In general, the LBM is not identifiable, meaning that there could be various sets of parameters
yielding the same goodness of fit (van der Ark et al., 1999). In fact, as de Leeuw et al. (1990) show,
Π = AB> = AT−1TB> = A∗B∗> where A∗ = AT−1 and B∗> = TB>.

T is a matrix of order K× K with elements τcd. To ensure that the rows of A∗ and the columns of
B∗ add up to one, de Leeuw et al. (1990) proved that T is subject to the constraints that all elements of
T must be nonnegative and

∑
d

τcd, c = 1, . . . , K.

We follow van der Ark et al. (1999) in which he shows that T can be chosen such that the latent
budget solution is optimal in a specific sense.

The lba package follows the solutions proposed by de Leeuw et al. (1990) for LBM(2), as described
in Van der Ark (1999a) Chapter 2, when discussing the geometry of LBM(2).

In LBM(2), the unidentified latent budgets β1 and β2 can be viewed as two vectors
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in a J-dimensional space. The heads of any two vectors can be connected by a line
segment, denoted by V, which is a subset of a line S. The expected budgets π1, . . . , πI are
J-dimensional vectors and convex combinations of β1 and β2. Therefore, the heads of
π1, . . . , πI lie on V, and the relative distance from π1, . . . , πI to β1 and β2 is expressed by
the mixing parameters. The unidentified latent budgets β1 and β2, collected in B, can be
transformed into B∗ .

The region of budgets is denoted by U. The vectors that bound U are called outer extreme budgets,
and have one component equal to zero. LBM(2) always has two outer extreme budgets. Not every
b ∈ U is a feasible latent budget. A latent budget cannot lie between two expected budgets, because
this would result in negative mixing parameters. Hence a latent budget cannot lie within the space
spanned by the expected budgets that take the most extreme position on S. This space is denoted by
W. The most extreme expected budgets are called inner extreme budgets.

The matrices T to get the transformations into B∗ are found in both the outer extreme solution and
the inner extreme solution. They are used to get the respective A∗ matrices.

In the outer extreme solution the latent budgets are as different as possible, simplifying their
interpretation in most cases. In the inner extreme solution, the latent budgets are as similar as possible.
At the same time, the mixing parameters will be as different as possible.

Identifiability: K ≥ 3

Van der Ark (1999a) uses the following criteria to identify the solutions: minimize ∑Q
q=1 δχ2

q
for an

identified inner extreme solution and maximize 1/ ∑Q
q=1 δχ2

q
for an identified outer extreme solution.

Where Q = (n
k), i.e., the number of distances among the K latent budgets, and

δχ2 =

√√√√ J

∑
j=1

(pj|i − pj|i′ )
pj+

.

In order to find those minimal solutions, the lba package uses the constrOptim.nl function from
the alabama package (Varadhan, 2015). In this case the “BFGS” algorithm is used .

Constrained parameter estimation

Parameters in LBM may be subject to optional constraints, which can be imposed by a researcher,
either to test specific hypotheses about the model to facilitate its interpretation, or to build complex
models.

There are three different types of optional constraints, namely fixed value constraints , equality
constraints , and multinomial logit constraints .

Fixed value constraints have the form αk|i = c or β j|k = c′, where 0 ≤ c ≤ 1 and 0 ≤ c′ ≤ 1 are
constants.

Equality constraints have the form αk1|i1
= αk2|i2

= . . . = αkL |iL
when equalities are placed on

the mixing parameters and β j1|k1
= β j2|k2

= . . . = β jM |kM
when equalities are placed on the latent

components.

The multinomial logit constraints were introduced in LBA by van der Heijden et al. (1992), and
have the following form:

αk|i =
exp(∑S

s=1 xisγsk)

∑K
n=1 exp(∑S

s=1 xisγsn)
,

for the mixing parameters, where γsk are the multinomial logit parameters; and

β j|k =
exp(∑T

t=1 yjtψtk)

∑J
n=1 exp(∑T

t=1 yntψtk)
,

for the latent components, where ψtk are the multinomial logit parameters. For a detailed discussion
see Van der Ark (1999a) Chapter 3.

The S variables that contain the additional information about the mixing parameters, are called
row covariates and the I × S matrix X is called the row design matrix . Similarly, the T variables that
contain the additional information about the latent components, are called column covariates and the
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J × T matrix Y is called the column design matrix . Both the sum constraints and the non-negativity
constraints are satisfied by the multinomial logit constraints.

The degrees of freedom, according to de Leeuw et al. (1990), is the number of independent cells
minus the number of independent parameters, For compositional data the number of independent
cells is always I(J − 1) due to the sum constraints on the observed budgets. For the unconstrained
LBM(K), we have I(K− 1) free mixing parameters, and K(J − 1) free latent components. However,
the model is not identifiable and K(K− 1) parameters should be fixed. Hence the number of degrees
of freedom is I(J − 1)− I(K− 1)− K(J − 1) + K(K− 1) = (I − K)(J − K).

The lba package only runs the identifiability function when there are no optional constraints in
the model. This is due to the fact that it is not possible to maintain the constraints while running that
function. Therefore users who use optional constraints should use K(K− 1) fixed parameters or an
adequate number of other constraints in order to attain identifiability.

The maximum likelihood estimation is adjusted for fixed value constraint according to van der
Heijden et al. (1992).

Let αl|r = c, then the new adjusted value of Equation 4 for the free mixing parameters is:

α̂new
k|i =

∑j n̂0
ijk

∑j,k 6=l n̂0
ijk

=
n̂0

i+k

(n̂0
i++ − n̂0

i+l)

and, if βs|r = c′, then the new adjusted value of Equation 5 for the free latent components is:

β̂new
j|k =

∑i n̂0
ijk

∑i,j 6=s n̂0
ijk

=
n̂0
+jk

(n̂0
++k − n̂0

+sk)
.

Optional equality constraints for parameter estimates obtained with the EM algorithm are de-
scribed in Mooijaart and van der Heijden (1992); see also van der Heijden et al. (1992). For the mixing
parameters, if αk|i = αk′ |i′ the new adjusted values of Equation 4 are:

α̂new
k|i = α̂new

k′ |i′ =
(n̂0

i+k + n̂0
i′+k′ )

(n̂0
i++ + n̂0

i′++)

and, for β j|k = β j′ |k′ , the new adjusted values of Equation 5 are:

β̂new
j|k = β̂new

j′ |k′ =
(n̂0

+jk + n̂0
+j′k′ )

(n̂0
+j+ + n̂0

+j′+)
.

The remaining parameters should be updated by using quations 4 and 5.

In van der Heijden et al. (1992) they warn that the estimation of optional equality constraints (in
combination with fixed value constraints) by the EM-algorithm is not always correct. The lba package
takes it into account automatically and uses the alabama package to estimate the parameters when
necessary.

The estimation of the parameters under multinomial logit constraints is described in van der
Heijden et al. (1992). The complete data log likelihood function can be split into two parts where one
depends only on row covariates and the other only on the column covariates; therefore, the E-step of
the EM algorithm is the same as in the unconstrained LBM. The M-step is implemented by making
use of the optim function and the alabama package.

Depending on the values of the matrices X and Y, the exponential values of the row and column
covariates might become infinity. They are replaced by 1e6. Also, whenever the values of the row or
column covariates are not supplied, lba creates random values from the standard normal distribution.

Note:

• Depending on the starting parameters, all algorithms cited above may only locate a local, rather
than global, maximum or minimum. This becomes more and more of a problem as K, the
number of latent budgets, increases. It is therefore highly advisable to run lba a few times until
you are relatively certain that you have located the global maximum log-likelihood, the global
minimum least squares, or the identification minimization.

• Some times it a label switching may occur. Usually the interpretation remains the same but
the label of the budgets might not be the same. The lba package does try to minimize those
occurrences, nevertheless they still may occur.
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Model selection and goodness of fit criteria

Latent budget analysis has a great variety of tools available for assessing model fit and determining
an appropriate number of latent budgets K for a given data set. In some applications, the number
of latent budgets will be selected for primarily theoretical reasons. In other cases, however, the
analysis may be of a more exploratory nature, with the objective being to locate the best fitting or most
parsimonious model. The researcher may then begin by fitting an independence LBM(1), and then
iteratively increasing the number of latent budgets one by one until a suitable fit has been achieved.

Adding an additional budget to a latent budget model will increase the fit of the model, but at
the risk of fitting too much noise, and at the expense of estimating further I + J model parameters.
Parsimony criteria seeks to strike a balance between over and under-fitting the model to the data by
penalizing the log-likelihood for a function of the number of parameters being estimated. Usually,
the researcher must take into account that parsimony is the best help in order to achieve a good
interpretation of the model, that means a close resemblance between the observed and expected data,
with as few parameters as possible. See de Leeuw and van der Heijden (1988), de Leeuw et al. (1990),
and Van der Ark (1999a).

The most used criteria can be found in the Table 1.

Statistics Formula

Likelihood ratio statistic G2 = 2 ∑i,j nij log
( nij

πj|ini+

)
Pearson chi-squared statistic X2 = ∑i,j

(
(nij−πj|ini+)

2

πj|ini+

)
Residual sum of squares RSS = ∑i,j(πj|i − pj|i)2

Weighted residual sum of squares wRSS = ∑i,j v2
i w2

j (πj|i − pj|i)2

Akaike information criterion AIC = G2 − 2d f

Corrected AIC CAIC = G2 − d f × [log(N) + 1]

Bayesian information criterion BIC = G2 − d f × log(N)

Table 1: Goodness of fit calculated by the lba package.

RSS and wRSS must be compared to the RSS’s of other models in order to be meaningful.

The lba package calculates a great variety of goodness of fit statistics (GFS). Some can only be used
with the data following the product multinomial distribution; others, on the other hand, may be used
with distribution free data. A few have an asymptotic chi-square distribution, called exact GFS, but
most have an unknown distribution.

Computation time as a function of the data matrix dimension and the
number of latent budgets

Every numerical method performing an estimation of many parameters which depends on a optimiza-
tion algorithm is going to be computationally time consuming. The lba package in particular uses
a maximization with constraints in order to identify the parameters being estimated. The alabama
package is used in this case and furthermore the restrictions, which are row sums of matrix A and
column sums of matrix B must be one, is programmed in alabama in a very complex way. All those
conditions tend to make alabama somewhat computationally time consuming, nevertheless, in our
experience, those times are not too long. Figure 1 shows that the most important time consuming
parameter is the number of latent budgets, K, the size of the data matrix is not very significant in
increasing computation time while keeping K constant.

The lba package

The main function of package lba is lba. This function input may be an object of class "formula",
"matrix" or "table". The lba function can be called by:
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Figure 1: Computation time as a function of the data matrix dimensions and the number of latent
budgets.

lba(obj, ...)

If the object is from class "formula", the method lba.formula will be called:

lba(formula, data, A = NULL, B = NULL, K = 1L, cA = NULL,
cB = NULL, logitA = NULL, logitB = NULL, omsk = NULL, psitk = NULL,
S = NULL, T = NULL, row.weights = NULL, col.weights = NULL,
tolG = 1e-10, tolA = 1e-05, tolB = 1e-05, itmax.unide = 1000,
itmax.ide = 1000, trace.lba = TRUE, toltype = "all", method = c("ls",

"mle"), what = c("inner", "outer"), ...)

Objects of class "formula" follow the same logic of linear models, that is, dependent variables as
a function of independent variables. The argument data must have objects of class "data.frame" as
input. Objects of class matrix are executed by method lba.matrix:

lba.matrix(obj, A = NULL, B = NULL, K = 1L, cA = NULL, cB = NULL,
logitA = NULL, logitB = NULL, omsk = NULL, psitk = NULL,
S = NULL, T = NULL, row.weights = NULL, col.weights = NULL,
tolG = 1e-10, tolA = 1e-05, tolB = 1e-05, itmax.unide = 1000,
itmax.ide = 1000, trace.lba = TRUE, toltype = "all", method = c("ls",

"mle"), what = c("inner", "outer"), ...)

Objects of class "table" are executed by the method lba.table:

lba.table(obj, A = NULL, B = NULL, K = 1L, cA = NULL, cB = NULL,
logitA = NULL, logitB = NULL, omsk = NULL, psitk = NULL,
S = NULL, T = NULL, row.weights = NULL, col.weights = NULL,
tolG = 1e-10, tolA = 1e-05, tolB = 1e-05, itmax.unide = 1000,
itmax.ide = 1000, trace.lba = TRUE, toltype = "all", method = c("ls",

"mle"), what = c("inner", "outer"), ...)

The default method of estimation is weighted least squares with the row weights (
√

ni+/n++) and

column weights (1/
√

nj+/n++). The user who wants to use weighted least squares differently from the

default should give values to either one or both parameters row.weights and col.weights. If all those
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values equal one, then we get the ordinary least squares. The other available method is the maximum
likelihood estimator.

The arguments A and B are used whenever the user wants to set the initial values of the mixing
parameters or latent components respectively. If the user has no initial values to set, those matrices are
randomly set by using a Dirichlet distribution. For matrix A the distribution parameters are I and
alphavec where I is the row number of the compositional data matrix and alphavec is randomly generated
from a uniform distribution with parameter K (number of latent budgets) as for B the parameters are K
and alphavec which is randomly generated from a uniform distribution with parameter J where J is the
column number of the compositional data matrix.

The arguments cA,cB must be used whenever the estimation process is done with constraints on
the parameters α or β respectively. For fixed value constraints, they must give values between zero
and one. For equality constraints, they must be integers greater or equal to two where the parameters
with the same value will be considered equal.

Use help(lba) for the remaining parameters.

The lba package can produce plots of the mixing parameters and latent components matrices.
For K = 3, lba performs two different kinds of plots. One is the triangular (or ternary) coordinate
system, suggested by Van der Ark (1999a) and de Leeuw et al. (1990), the other is the correspondence
analysis (CA) plot suggested by Jelihovschi et al. (2011), which can also be made for any K ≥ 3. It is
important to note that the CA plots are applied to the indentified mixing parameters and identified
latent components matrices; in lba they are respectively the matrices Aoi and Boi. For K = 2, lba does,
as suggested by Van der Ark (1999a) page 41, also use the correspondence analysis result. The function
which creates the correspondence analysis plot is called plotcorr, the other one is called plotlba.

It should be noted that when plotting the latent components using the triangular coordinate

system, lba uses the rescaled latent components matrix whose values are: βk|j =
β j|kπk

p+j
. Note that in

this case the row sums equal one, not column sums as in the latent components matrix.

The functions plotlba and plotcorr use the generic functions plot, axis, text, points, segments
and legend for K = 2. For K = 3, the function plotlba uses the functions triax.plot, triax.points
and thigmophobe.labels from package plotrix and also segments and legend. The function plotcorr
uses the generic functions for K = 2. Whenever K ≥ 4, only the function plotcorr is used. In this case
the function scatterplot3d from package scatterplot3d is internally called. Finally, if the argument
rgl = TRUE is used, then the function plot3d from package rgl will be called.

The goodness of fit results can be obtained by making use of the function goodnessfit(obj,...)
where obj is an object of class "lba".

Examples

Main et al. (2015) studied pregnancy related maternal deaths in California. They examined five distinct
clinical conditions that account for nearly 70 of all pregnancy related deaths,

• cardiovascular diseases, CVD

• preeclampsia/eclampsia, Pre.E

• obstetric hemorrhage, OH

• deep vein thrombosis - pulmonary embolism, DVTPE

• amniotic fluid embolism, AFE

together, they also collected data about

• maternal age,

• parity,

• gestational age at delivery,

• maternal race and country of birth,

• body mass index - BMI.

which will be the rows or budgets of the data matrices.

Example 1; BMI

Table 2 shows the number of deaths related to the five conditions for women with BMI less than 30,
between 30 and 40 and above 40.

The lba function was performed on data matrix bmi, as shown below.
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Pre.E OH CVD DVTPE AFE

<30b 29 14 28 8 18
30-40b 4 2 15 6 0
>40b 1 2 6 5 0

Table 2: Number of deaths related to the five conditions for women with BMI less than 30, between 30
and 40 and above 40

> library(lba)
> data(pregnancy)
> bmi <- pregnancy[5:7,]
> set.seed(1)
> bmilba <- lba(bmi, K = 2, method = "mle", what = 'outer',
+ trace.lba = FALSE)

Since all rows of the BMI matrix are independent, the product multinomial model can be used
and the maximum likelihood estimation (MLE) method applies. We will also use K = 2 because the
number of rows is 3 (and so, K = 3 is the saturated model). We used the function set.seed so that the
user who wishes to replicate the analysis may get the same results as the ones shown below.

> goodnessfit(bmilba)
Likelihood ratio statistic:

K budget Baseline
G2 value 1.809 2.95e+01
P-value 0.613 2.63e-04

The goodness of fit result shows that the likelihood ratio statistic (G2) used to test the model gave a
p-value of 0.613 and thus accepting the model with K = 2. The summary of both lba and goodnessfit
functions gives complete results. The only other possible model is the independence model, or baseline
model, which has a p-value of 0.000263 and so, it is rejected. The interpretation of the model is easily
done by using the correspondence analysis plot, which is created using the function plotcorr.
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Figure 2: Example 1: Mixing parameters (left); latent components (right).

The plot has just one dimension, so that the points are spread only along the horizontal axis;
see documentation of function plotcorr. The first latent budget (LB1) is composed of CVD and
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DVTPE, which could be considered as pregnancy-related conditions; the second latent budget (LB2) is
composed of AFE and Pre.E, which are more general conditions. The OH condition can be considered
neutral. The mixing parameter BMI less than 30 is related to LB2 and the more obese women to LB1 as
is expected since obese people are more affected by the general conditions.

Example 2; parity, maternal age, gestational age at delivery in weeks

In this example, we consider three other explanatory variables connected to pregnancy-related death:
parity, maternal age and gestational age at delivery/fetal demise. The resulting data matrix is:

Pre.E OH CVD DVTPE AFE

1 16 3 13 3 3
2-4 16 13 31 14 10
5+ 4 4 5 3 5

<30a 12 5 25 11 4
30-40a 18 13 22 8 13
>40a 6 2 2 1 1
<32w 6 5 8 0 0

32-36w 16 5 8 8 1
>37w 14 10 33 12 17

Table 3: Relation between, parity, maternal age, gestational age at delivery with five cause of pregnancy
related death

Unlike the Example 1, the matrix rows are not independent since the same women are counted in
each one of the row variables. Therefore the MLE method does not apply here and we use the least
squares method in order to estimate the model parameters. The functions to call are:

> mcd <- pregnancy[8:16,]
> set.seed(1)
> mcdlba <- lba(mcd, K = 2, method = 'ls', what = 'outer', trace.lba = FALSE)
> set.seed(1)
> mcdlba1 <- lba(mcd, K = 3, method = 'ls', what = 'outer', trace.lba = FALSE)
> set.seed(1)
> mcdlba2 <- lba(mcd, K = 4, method = 'ls', what = 'outer', trace.lba = FALSE)

In order to get the values of Table 4, the function goodnessfit is used as follows.

> summary(goodnessfit(mcdlba))
> summary(goodnessfit(mcdlba1))
> summary(goodnessfit(mcdlba2))

Number of
Latent budgets df wRSS Actual

decrease
Required
decrease

Fit
improved?

1 32 0.31 NA NA NA
2 21 0.14 0.17 0.11 yes
3 12 0.06 0.11 0.09 yes
4 05 0.02 0.04 0.07 no

Table 4: Goodness of fit of LBM using least squares and K = 1, 2, 3, and 4.

The weighted residual sum of squares between the observed components and the expected
components (wRSS) were used as a goodness of fit statistic, and the independence model, LBM(1) as a
baseline model.

We followed Van der Ark (1999a) for the following guidelines in order to make a decision on the
number of latent budgets to be used:

• The proportion of lack of fit with respect to the baseline model should be the largest one.
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• the improvement of adding an extra latent budget should be large enough to justify the in-
creased effort of interpreting the extra set of parameter estimates. In order to achieve this we
use the criterion that the average improvement of fit per degree of freedom as shown in the
summary(goodnessfit) times the number of the difference of degrees of freedom between two
values of K being calculated.

• The results should be interpretable.

Both the models with K = 2 and K = 3 improve the previous model. We decide for K = 3 and try
to interpret it.

−2 −1 0 1 2

−
2

−
1

0
1

2
3

4

●
●

●

●

●

●

●

●

●

1
2

3

4

5

6

7

8

9

●

●

●

LB1

LB2

LB3

1 1
2 2−4
3 5+

4 <30a
5 30−40a
6 >40a

7 <32w
8 32−36w
9 >37w

−2 −1 0 1 2

−
2

−
1

0
1

2
3

D
im

 2
 (

47
.3

%
)

●

●
●

●

●

1

2 3

4

5●

●

●

LB1

LB2

LB3

1 Pre.E
2 OH

3 CVD
4 DVTPE

5 AFE

Figure 3: Example 2: Mixing parameters (left); latent components (right).

The interpretation of the latent budgets goes as follows: LB2 is explained by pre-eclampsia/eclampsia,
which is a condition that occurs only in pregnant women, which is characterized by high blood pres-
sure. LB1 has two conditions: AFE, which is a pregnancy condition; and DVTPE, which is a more
general condition, and LB3 is explained by CVD. Unlike the first example, it does not put together
CVD and DVTPE (Figure 3).

The mixing parameters connected to LB2 are gestational age at delivery of 32 to 36 weeks and
maternal age older than 40 years. Pre.E may occur any time after the twentieth week. The LB1 is
connected to women with more than 5 children, and age from 30 to 40 years. LB3 is connected to
younger women with 2 to 4 children and early delivery (Figure 3).

Example 3; maternal race and country of birth

In this example we consider as explanatory variables, maternal age and country of birth in connection
to pregnancy related death. The resulting data matrix is in Table 5.

This matrix has independent rows so that the product multinomial model and the MLE method
are used to estimate the mixing parameters and latent components.

Table 6 shows the results of goodness of fit. Both K = 2 and K = 3 are accepted. We interpret both.
Figure 4 is the default plot of lba for K = 2.

> set.seed(1)
> mrd2 <- pregnancy[1:4,]
> rownames(mrd2) <- c("Hispanic,foreign-born", "Hispanic, us-born",

"White, non-hispanic", "Black, non-hispanic")
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Pre.E OH CVD DVTPE AFE

Hispanic,foreign-born 18 5 8 4 5
Hispanic, us-born 6 4 9 5 1

White, non-hispanic 6 7 11 6 4
Black, non-hispanic 5 2 19 5 5

Table 5: Relation between maternal race and country of birth with five causes of pregnancy related
death

Number of
latent budgets df G2 p-value

1 12 20.5 0.06
2 6 6.8 0.34
3 2 1.61 0.45

Table 6: Goodness of fit of LBM using MLE and K= 1, 2 and 3.

> mrd2lbaa <- lba(mrd2, K = 2, method = "mle", what = 'outer', trace.lba = FALSE)

> par(mfrow = c(1,2))
> plotcorr(mrd2lbaa, pch.points = 20, xlim = c(-3,2.5),
+ labels.points = rownames(mrd2lbaa$Aoi), col.budget = 'gray20',
+ args.legend = list(plot = FALSE))
> plotcorr(mrd2lbaa, with.ml = 'lat', pch.points = 20,
+ labels.points = rownames(mrd2lbaa$Boi), col.budget = 'gray20',
+ args.legend = list(plot = FALSE))
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Figure 4: Mixing parameters (left); latent components (right).

The Figure 4 graphs are both one dimensional. What is important is the position at the horizontal
axis. The default of the plotcorr function lays the numbered points out of the line so that they do
not overlap, which often happens when the number of parameters increases. The latent components
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show that the LB2 is composed of CVD and DVTPE which are the more general conditions, and LB1
is composed of Pre.E and OH, which are conditions more specific to pregnancy. AFE is around the
origin and does not affect either one of the budgets. It should be noted that CVD and Pre.E are the
ones with the strongest influence on their respective budgets because they are farther away from the
origin. Looking at the mixing parameters we can see that Black women belong to LB2,that is Black
women have a strong connection to more general conditions, and Hispanic foreign-born women are
mostly affected by specific pregnancy conditions.

> set.seed(1)
> mrd2lba <- lba(mrd2, K = 3, method = "mle", what = 'outer', trace.lba = FALSE)

> par(mfrow = c(1,2))
> plotcorr(mrd2lba, with.ml = 'mix', xlim = c(-4, 3.5), ylim = c(-1.5, 2),
+ pch.points = 20, col.points = 4, pos.points = c(3, 2, 4, 3),
+ labels.points = rownames(mrd2lba$Aoi),
+ col.budget = 'gray20',
+ args.legend = list(plot = FALSE))
> plotcorr(mrd2lba, with.ml = 'lat', xlim = c(-2,2), ylim = c(-1.5,2.5),
+ pch.points = 20, col.points = 4, pos.points = c(1, 3, 3, 3, 3),
+ labels.points = rownames(mrd2lba$Boi),
+ col.budget = 'gray20',
+ args.legend = list(plot = FALSE))
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Figure 5: Example 4: Mixing parameters (left); latent components (right).

The three budgets model is shown in Figure 5. CVD and Pre.E each form a budget, LB1 and LB3
respectively; LB2 is composed of DVTPE and OH. Most important is to see that Hispanic foreign born
women are strongly connected to Pre.E and Black women to CVD. This gives more emphasis to the
K = 2 model results.

Example 4; post-materialism data

One theory of post-materialism states that political values change with the industrial and economic
growth of a society. It says that people can be classified into two major groups with respect to their
political values, namely materialistic, who seek security and materialistic supply, and post-materialistic,
who try to bring about idealistic goals. Those two views, according to the theory, could be regarded as
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the extremes of a continuum. The dataset consists of seven categories ranking from materialism (m..)
to post-materialism (pm..) from a survey across Europe coded in a contingency table with 13 countries
(rows) and the 7 levels of the in depth post-materialism index.

The countries included in the survey are:

• B=Belgium, D=Germany, DK=Denmark, E=Spain, F=France, GB=Great Britain,

• GR=Greece,I=Italy, IRL=Ireland, L=Luxembourg, NIRL=Northern Ireland, NL=Netherlands,
P=Portugal.

The complete table is part of the postmater dataset contained in package lba. In order to find out
how many typical societies are needed to explain the data, four models for K = 1, 2, 3, and 4 were
estimated using the MLE method and the outer extreme solution so that the latent budgets representing
the materialistic and post-materialistic concepts become as clear as possible. The goodness of fit results
by using the goodnessfit using the G2 function are displayed in Table 7.

Number of
latent budgets df G2 p-value

1 72 855.6 0.00
2 55 93.7 0.00
3 40 66.3 0.01
4 27 36.9 0.03

Table 7: Goodness of fit of LBM using MLE and K = 1, 2, 3, and 4.

We will now discuss the graphical results from the function plotcorr.

> data(postmater)
> new_post <- as.matrix(postmater[,-1])
> row.names(new_post) <- postmater[,1]
>
> set.seed(1)
> ex4 <- lba(new_post, method = "mle", what = 'outer', K = 4, tolG = 1e-5,
+ itmax.unide = 1e4, trace.lba = FALSE)

> par(mfrow = c(1,2))
> plotcorr(ex4, main = "Mixing Parameters", ylim = c(-1.5,2.5), zlim = c(-3,3),
+ pch.points = 20, col.points = 4, labels.points = rownames(ex4$Aoi),
+ col.budget = 'gray20', args.legend = list(plot = FALSE))
> plotcorr(ex4, with.ml = "lat", main = "Latent Components", pch.points = 20,
+ col.points = 4, labels.points = rownames(ex4$Boi), col.budget = 'gray20',
+ args.legend = list(plot = FALSE))

In the first graph shown in Figure 6, K = 4 and the plot has 3 dimensions. In both plots, mixing
parameters and latent components (the third dimension principal component) explain a negligible
percentage of the inertia. This means that a two dimensional plot explains as much of the total
information as the three dimensional one.

Should the user wish to use a dynamic visualization of 3D graphics, the function plotcorr has the
argument rgl = TRUE.

> tex4 <- ex4
> class(tex4) <- c("lba.2d", "lba.mle", "lba.matrix", "lba")
> par(mfrow=c(1,2))
> plotcorr(tex4, main = "Mixing Parameters", xlim = c(-2,2), ylim = c(-1.5,4),
+ pch.points = 20, col.points = 4, labels.points = rownames(tex4$Aoi),
+ col.budget = 'gray20', args.legend = list(plot = FALSE))
> plotcorr(tex4, with.ml = "lat", main = "Latent Components", xlim = c(-1.5,2.5),
+ ylim = c(-2,2.5), pch.points = 20, col.points = 4,
+ labels.points = rownames(tex4$Boi), col.budget = 'gray20',
+ args.legend = list(plot = FALSE))

The graph shown in Figure 7 shows, for K = 4, a plot with 2 dimensions where the two princi-
pal components explain almost all the information contained in the mixing parameters and latent
components matrices. By inspecting the latent components matrix we can readily see that LB1 and
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Figure 6: Example 5: Mixing parameters (left); latent components (right).

LB2 represent exactly the same budget, therefore there is no need for four budgets, which makes
sense since the rule of parsimony of LBM is required to better explain the model. Considering that,
we continue by interpreting the model with three latent budgets. As we did above we look at the
correspondence analysis plot of the results.

> set.seed(1)
> ex3 <- lba(new_post, method = "mle", what = 'outer', K = 3, tolG = 1e-5,
+ itmax.unide = 1e4, trace.lba = FALSE)

> par(mfrow = c(1,2))
> plotcorr(ex3, xlim = c(-2.5,2), ylim = c(-2,2), main = "Mixing Parameters",
+ pch.points = 20, col.points = 4, labels.points = rownames(ex3$Aoi),
+ col.budget = 'gray20', args.legend = list(plot = FALSE))
> plotcorr(ex3, with.ml = "lat", main = "Latent Components", xlim = c(-2,2.5),
+ ylim = c(-1.5,2.5), pch.points = 20, col.points = 4,
+ labels.points = rownames(ex3$Boi), col.budget = 'gray20',
+ args.legend = list(plot = FALSE))

In figure 8 we have two graphs. Looking at the latent component part we clearly see three latent
budgets. These are:

• LB1 consisting of m.. that means the clearly materialistic countries.

• LB2 consisting of pm, pm. and pm.. which means the most post-materialistic countries.

• LB3 consisting of m., m and mpm which means materialistic countries leaning to post-materialism.

The mixing parameters show that:

• The materialistic countries, belonging to LB1, are: Greece, Northern Ireland and Ireland.

• Those in midway, belonging to LB3, are: Belgium and Italy.

• The post-materialistic countries, belonging to LB2, are: France, Germany and Netherlands.

• We could say that Great Britain and Luxembourg are in a group and Spain is also in a group
apart. Portugal is midway between LB1 and LB3.
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Figure 7: Example 6: Mixing parameters (left); latent components (right).

Finally, it becomes very interesting when we look at Figure 9, only the mixing parameters for
K = 2.

In this case there are two budgets; LB1 representing the post-materialism and LB2 representing the
materialism. The graph shows a clear continuum from materialistic to post-materialistic countries
where some groups, as we go from one end to another, become clear. They are:

• Greece, Ireland, Northern Ireland, and Portugal the most materialistic,

• Belgium and Spain,

• Great Britain, Italy, and Luxembourg

• Denmark, France, and Germany,

• Netherlands the most post-materialistic.

> set.seed(1)
> ex2 <- lba(new_post, method = "mle", what = 'outer', tolG = 1e-5,
+ itmax.unide = 1e4, K = 2, trace.lba = FALSE)

> plotcorr(ex2, pch.points = 20, labels.points = rownames(ex2$Aoi),
+ col.budget = 'gray20', args.legend = list(plot = FALSE))

For more details see Van der Ark (1999a) page 172.

The lba package permits different approaches in latent budget analysis, much more than we could
possibly bring to this article, and we strongly suggest the reading of Van der Ark (1999a) to get a full
idea of them.

Conclusion

We have presented the lba package for latent budget analysis, which is derived from “A freeware
computer program to perform latent budget analysis” (Van der Ark, 1999b). All unconstraint and
constraint methods found in Van der Ark (1999a) were implemented.

We added some new features, such as the possibility to assign any value between zero and one as
a fixed value constraint for both mixing parameters and latent components, and the implementation
of two types of plots, which greatly facilitates the interpretation of the model.
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Figure 8: Example 7: Mixing parameters (left); latent components (right).

The lba package does not have the capability to analyze longitudinal data and neural networks
yet. It is part of our plan to add those features to the package’s capabilities.

Our next goal is to implement a new algorithm to perform identification to to replace the alabama
package. This might be less computationally time consuming.

All the programming in R was done through the Tinn-R interface (Faria et al., 2015).

The package depends on the packages; MASS (Venables and Ripley, 2002), alabama (Varadhan,
2015), plotrix (Lemon, 2006), scatterplot3d (Ligges and Mächler, 2003), and rgl (Adler et al., 2016).
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Semiparametric Generalized Linear
Models with the gldrm Package
by Michael J. Wurm and Paul J. Rathouz

Abstract This paper introduces a new algorithm to estimate and perform inferences on a recently
proposed and developed semiparametric generalized linear model (glm). Rather than selecting a
particular parametric exponential family model, such as the Poisson distribution, this semiparametric
glm assumes that the response is drawn from the more general exponential tilt family. The regression
coefficients and unspecified reference distribution are estimated by maximizing a semiparametric like-
lihood. The new algorithm incorporates several computational stability and efficiency improvements
over the algorithm originally proposed. In particular, the new algorithm performs well for either small
or large support for the nonparametric response distribution. The algorithm is implemented in a new
R package called gldrm.

Introduction

Rathouz and Gao (2009) introduced the generalized linear density ratio model (gldrm), which is a
novel semiparametric formulation of the classical glm. Although Rathouz and Gao did not use the
term gldrm, we refer to it as such because it is a natural extension of the density ratio model (see e.g.
Lovric (2011)). Like a standard glm, the gldrm relates the conditional mean of the response to a linear
function of the predictors through a known link function g. To be specific, let the random variable Y
be a scalar response, and let X be a p× 1 covariate vector for a particular observation. The model for
the mean is

E(Y|X = x) = g−1(xT β) . (1)

Because Equation 1 holds for both gldrm and glm, the regression coefficients have the same inter-
pretation for both models. The gldrm relaxes the standard glm assumption that the distribution of
Y|X comes from a particular exponential family model. Instead, assume that Y|X comes from an
exponential tilt model of the form

f (y|X = x) = f0(y) exp{θy− b(θ)} , (2)

where
b(θ) = log

∫
f0(y) exp(θy) dλ(y) , (3)

and θ is defined implicitly as the solution to

g−1(xT β) =
∫

y exp{θy− b(θ)} dλ(y) . (4)

Here f0 is an unspecified probability density with respect to a measure λ. We call f0 the reference
distribution. Measure λ is Lebesgue if Y|X is continuous, a counting measure if Y|X is discrete, or a
mixture of the two if Y|X has a mixture distribution. Note that E(Y|X) = b′(θ) and Var(Y|X) = b′′(θ),
which are standard glm properties.

The regression coefficients β and reference distribution f0 are estimated by maximizing a semi-
parametric likelihood function, which contains a nonparametric representation of f0 that has point
mass only at values of Y observed in the data. The quantity θ is not a parameter in this model, but
rather a function of the free parameters β and f0, as well as of X. This work was fully developed
by Huang and Rathouz (2012), who first focused on the case where the covariate vector takes one
of finitely many values, drawing on theoretical arguments advanced in the empirical likelihood
literature (e.g. Owen et al. (2001)). Drawing on semiparametric profile likelihood methods, Huang
(2014) went on to fully generalize the asymptotic arguments, proving consistency and asymptotic
normality of the regression coefficient estimators, and deriving the asymptotic variance matrix using
the profile likelihood. Huang also proved pointwise asymptotic normality of the reference cumulative
distribution function estimator.

Despite these important theoretical advances, computation for this model has remained a practical
challenge. The original algorithm in Rathouz and Gao (2009) is somewhat rudimentary and applies
mostly to cases with finite support. It does not scale well, and stability and speed are challenges.
This paper proposes a new algorithm to address these challenges and render the model more widely
applicable.

In particular, the issue of optimizing the semiparametric likelihood over the f0 point masses is
improved with application of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique (Broyden, 1970;
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Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). Because the number of parameters in the semiparametric
likelihood associated with f0 is equal to the number of unique points in the response vector, the rank of
the Hessian matrix can become unwieldy, especially for continuous response data. The BFGS method
uses an easily-computed rank-two approximate Hessian matrix that has an inverse which is much less
computationally intensive to calculate.

The optimization techniques in this paper have been incorporated into the R package gldrm
(Wurm and Rathouz, 2018), the first CRAN package for gldrm. This package estimates the gldrm
model and provides coefficient standard errors. In addition, since the publication of Rathouz and Gao
(2009), Huang (2014) developed likelihood ratio tests and likelihood ratio-based confidence intervals
for regression coefficients and demonstrated their strong properties. The gldrm package provides
utilities for likelihood ratio tests of nested models, as well as confidence intervals.

We present our optimization algorithm in Section 2. In Section 3, we present simulation experi-
ments to check the finite sample performance of the gldrm estimators and the accuracy of estimated
standard errors using this algorithm. In Section 4, we discuss methods for inference. Section 5, we
present a simulation that benchmarks the computational time and how it scales with the number of
observations and number of covariates. In Section 6, we present a summary of the functions in the
gldrm package. In Section 7, we demonstrate the functionality of the gldrm package with an example
in R. In Section 8, we make concluding remarks.

Optimization algorithm

Suppose we have an observed sample (x1, y1), . . . , (xn, yn) generated by the model specified in Equa-
tions 1-4. The xi can be fixed or random, and the yi are conditionally independent given the covariates.
Let S = (s1, . . . , sK) be the observed support, i.e. a vector containing the unique values in the set
{y1, . . . , yn}. If the response follows a continuous distribution, then K will equal n. Otherwise K may
be less than n due to ties. Let the vector f̃0 = ( f1, . . . , fK) represent probability mass at the points
(s1, . . . , sK). This is a nonparametric representation of f0 because the true reference density may be
continuous or have probability mass at values not contained in S .

The semiparametric log-likelihood is

`(β, f̃0) =
n

∑
i=1

{
θiyi − log

K

∑
k=1

fk exp(θisk) +
K

∑
k=1

I(yi = sk) log fk

}
, (5)

where each θi is defined implicitly as the solution to

g−1(xT
i β) =

K
∑

k=1
sk fk exp{θisk}

K
∑

k=1
fk exp{θisk}

. (6)

There exists a θi that satisfies Equation 6 as long as g−1(xT
i β) ∈ (m, M) for all i, where m ≡ min(S)

and M ≡ max(S).
We obtain parameter estimates from this likelihood as arg max

(β, f̃0)

`(β, f̃0), subject to the following

constraints:

C1. g−1(xT
i β) ∈ (m, M) for all i

C2. fk > 0 for all k = 1, . . . , K

C3.
K
∑

k=1
fk = 1

C4.
K
∑

k=1
sk fk = µ0 for some chosen µ0 ∈ (m, M)

Constraint (C4) is necessary for identifiability because for any nonparametric density f̃0 = ( f1, . . . , fk)
T ,

the “exponentially tilted” density f̃ (α)0 = ( f1eαs1 , . . . , fKeαsK )T/
K
∑

k=1
fkeαsk has the same semiparametric

log-likelihood for any α ∈ R, i.e. `(β, f̃0) = `(β, f̃ (α)0 ) for all β. We can set µ0 to be any value within the
range of observed response values, but choosing a value too extreme can lead to numerical instability

in estimating f̃0. It usually works well to choose µ0 = 1
n

n
∑

i=1
yi.
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To perform the optimization, we take an iterative approach, alternating between optimizing over
f̃0 and over β (Rathouz and Gao, 2009). Each optimization step marginally optimizes the log-likelihood
over one set of parameters, holding the other fixed. Neither optimization step has a closed form
solution, so iterative procedures must be used. To update f̃0, we propose using the BFGS technique. To
update β, we use Fisher scoring, which is equivalent to iteratively re-weighted least squares (IRLS). We
propose iterating BFGS until convergence for each f̃0 update, while only using a single IRLS iteration
to update β in between f̃0 updates; this is tantamount to a profile likelihood approach to estimation
of β.

Although the log-likelihood in Equation 5 is a function of (β, f̃0), we have expressed it in terms of
(θ1, . . . , θn); each θi is implicitly a function of (β, f̃0). The score function is also best expressed in terms
of the θi’s (see Equations 12 and 15). Consequently, our optimization algorithm requires the θi’s to be
computed each time β or f̃0 is updated. To do this, we use an iterative Newton-Raphson procedure
after each iteration of the β update or the f̃0 update procedures.

In what follows, we detail updates of the θi’s, of f̃0, and of β. We use the notation b(θ) to denote
the function defined in Equation 4 with respect to the discrete probability distribution specified by f̃0,

i.e. b(θ) = log
K
∑

k=1
fk exp(θsk). We also define µi ≡ g−1(xT

i β).

θ update procedure

θi is defined implicitly as the solution to Equation 6, which can be written as

µi = b′(θi) . (7)

To calculate θi, we use the Newton-Raphson procedure provided in Appendix C of Rathouz and Gao
(2009). To satisfy equation 7, we need to find θ such that µi = b′(θ), or equivalently gl(µi) = gl{b′(θ)},
where gl(s) = logit

( s−m
M−m

)
= log

( s−m
M−s

)
. (The transformation, gl , stabilizes the solution.)

We use Newton-Raphson to find the root of t(θ) = gl{b′(θ)} − gl(µi). Let θ(r) denote the ap-
proximate solution at the rth Newton-Raphson iteration. The Newton-Raphson update is given by

θ(r+1) = θ(r) −
{

t′(θ(r))
}−1

t(θ(r)) , (8)

where
t′(θ) =

M−m
{b′(θ)−m}{M− b′(θ)} b′′(θ) , (9)

and

b′′(θ) =
K

∑
k=1

{
sk − b′(θ)

}2 fk exp {θsk − b(θ)} . (10)

We typically initialize θ(0) to be the value obtained from the previous θ update procedure. The
first time θ is updated, we initialize θ(0) to zero for every observation. We define convergence when
|t(θ(r))| < ε, where ε is a small threshold such as 10−10.

As µi → M from the left, θi → +∞. Likewise, as µi → m from the right, θi → −∞. To prevent
numerical instability when µi is at or near these boundaries, we cap |θi| at a maximum value (500
by default). The appropriateness of this threshold would depend on the scale of response variable.
Rather than adjust the threshold, we center and scale the response variable to the interval [-1, 1] (see
the subsequent section on “response variable transformation”).

f̃0 optimization procedure

Holding β fixed at its current estimate, we need to marginally optimize the log-likelihood `(β, f̃0)
over f̃0, subject to constraints (C2)-(C4). The linear constraints (C3) and (C4) could be enforced using
constrained optimization techniques such as Lagrange multipliers or reducing the dimension of the
parameter space by two. Huang and Rathouz (2012) used the former technique, while Rathouz and
Gao (2009) used the latter. We propose a different method, based on the BFGS technique, that is
more computationally efficient. At each iteration, we apply a BFGS update to f̃0 to improve the
unconstrained log-likelihood and then transform f̃0 to satisfy constraints (C3) and (C4). Application
of the constraints does not affect the log-likelihood of the estimate, as the constraints are only required
for identifiability (i.e. uniqueness of the optimal f̃0). For any set of positive f̃0 values, there exists a
unique set of values with equal log-likelihood that satisfies both constraints (C3) and (C4).

We define the transformation g̃0 = (g1, . . . , gk) = (log f1, . . . , log fK) and consider the log-
likelihood as a function of g̃0 only, with β held fixed. Working on the log scale enforces constraint (C2)
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and also improves numerical stability. Specifically, numerical stability is improved by working with
the score and Hessian as a function of g̃0 rather than f̃0.

BFGS is a quasi-Newton procedure, which makes iterative updates using an approximate Hessian

matrix along with the exact score function. Let g̃(t)0 be the estimate at the tth iteration. The updates
take the form

g̃(t+1)
0 ← g̃(t)0 − H−1

t S(g̃(t)0 ; β) . (11)

Here, S(g̃0; β) is the score as a function of g̃0 only, holding β fixed. It has kth element

{S(g̃0; β)}k =
n

∑
i=1

{
I(yi = sk)−

exp(gk + θisk)

exp{b(θi)}
− exp(gk + θisk)

exp{b(θi)}
sk − µi
b′′(θi)

(yi − µi)

}
(12)

for k = 1, . . . , K (derivation in Appendix A). Note that this score function ignores constraints (C3)
and (C4). The matrix Ht is an approximation to the Hessian of the log-likelihood as a function of g̃0

only, holding β fixed. This estimate is updated with each iteration. Letting ut = g̃(t)0 − g̃(t−1)
0 and

vt = S(g̃(t)0 ; β)− S(g̃(t−1)
0 ; β), we can write the BFGS estimate of the Hessian recursively as

Ht = Ht−1 +
vtvT

t
uT

t vt
− Ht−1utuT

t Ht−1

uT
t Ht−1ut

. (13)

Ht is a rank-2 update to Ht−1 that satisfies the secant condition: Htut = vt. Furthermore, Ht is
guaranteed to be symmetric and positive definite, even though the true Hessian is not full rank. (The
true Hessian is not full rank because without imposing constraints (C3) and (C4), the log-likelihood
does not have a unique optimum.) The BFGS update in Equation 11 requires the inverse of Ht, which
can be calculated efficiently and directly, without calculating Ht. By the Sherman-Morrison-Woodbury
formula,

H−1
t = H−1

t−1 +
(uT

t vt + vT
t H−1

t−1vt)(utuT
t )

(uT
t vt)2

−
H−1

t−1vtuT
t + utvT

t H−1
t−1

uT
t vt

. (14)

For an initial estimate, we propose H−1
0 = αIK , where IK is the K× K identity matrix. We perform a

line search along the gradient to choose an appropriate value for α such that `(β, f̃ (1)0 ) > `(β, f̃ (0)0 ).

As previously mentioned, constraints (C3) and (C4) are only required for identifiability. After each
BFGS iteration, we impose these constraints on the f̃0 estimate, which does not affect the log-likelihood
of the estimate. Specifically, we apply (C3) by scaling our estimate of f̃0 to sum to one. We then
“exponentially tilt” the estimate to enforce constraint (C4). In other words, we compute θ such that

K
∑

j=1
sj f jeθsj /

K
∑

j=1
f jeθsj = µ0, and set our final estimate for the iteration to be fk ← fkeθsk /

K
∑

j=1
f jeθsj for

all k.

We initialize g̃(0)0 to the log of the f̃0 estimate obtained from the previous f̃0 update procedure. We
suggest using the empirical response distribution as an initial estimate of f̃0. We define convergence
using the relative change in the log-likelihood. Our default convergence threshold is 10−10. If the log-

likelihood decreases after any iteration, we backtrack by half steps, setting g̃(t+1)
0 ← 1

2

(
g̃(t+1)

0 + g̃(t)0

)
until the log-likelihood improves. In our experience, we have found that the log-likelihood improves
after most iterations without taking half steps, but log-likelihood decreases can occur sporadically
(both at early and late iterations).

β optimization procedure

Holding f̃0 fixed at its current estimate, we could marginally optimize the log-likelihood over β using
iteratively re-weighted least squares (IRLS). Rather than iterating until convergence, however, we
propose using a single IRLS iteration to update β in between f̃0 updates. The IRLS algorithm is simply
the Newton-Raphson algorithm, but using the Fisher information in place of the negative Hessian
matrix. This technique is commonly referred to as Fisher Scoring. As we now show, the Fisher Scoring
update minimizes a weighted least squares expression, which is why we can refer to the algorithm as
IRLS. The score function is given by

S(β; f̃0) =
n

∑
i=1

xi

(
1

g′(µi)

)(
1

b′′(θi)

)
(yi − µi) = XTWr , (15)
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(derivation in Appendix C) and the Fisher information is

I(β; f̃0) = E
(

S(β; f̃0)S(β; f̃0)
T
∣∣∣∣X1 = x1, . . . , Xn = xn

)
=

n

∑
i=1

xi

(
1

g′(µi)

)2 ( 1
b′′(θi)

)
xT

i

= XTWX ,

(16)

where X is an n× p matrix with rows xT
i , W is an n× n diagonal matrix with entries

(
1

g′(µi)

)2 1
b′′(θi)

,

and r is an n× 1 vector with entries g′(µi)(Yi − µi).

Let β(0) be the estimate obtained from the previous β update procedure. The IRLS step between
β(0) and the updated estimate, β(1), is

β(1) − β(0) =
{
I(β(0); f̃0)

}−1
S(β(0); f̃0)

=
(

XTWX
)−1

XTWr .
(17)

This is the solution to a weighted least squares expression, which can be computed efficiently using
QR decomposition.

Response variable transformation

Numerical stability issues can occur if the exp{θisk} terms become too large or small during op-
timization. To prevent these terms from exceeding R’s default floating-point number range, we
transform the response vector to the interval [-1, 1]. Specifically, the response values are transformed
to y∗i = (yi − m+M

2 ) · 2
M−m . It turns out the semiparametric log-likelihood function with the trans-

formed response and modified link function g∗(µ) = g(m+M
2 + M−m

2 µ) is equivalent to the original
log-likelihood. The parameters β and f̃0 that optimize the modified log-likelihood also optimize the
original log-likelihood (proof in Appendix D).

As mentioned in the “θ update procedure” section, we choose to cap |θ| for each observation at
500 by default, thereby restricting the rescaled θisk terms to the interval [-500, 500]. Note that the
optimization function in the gldrm R package returns the estimated θi values for each observation,
and these values are on the original scale of the response variable.

Inference

The gldrm R package (Wurm and Rathouz, 2018) can perform inference on the regression coefficients
using likelihood ratio tests for nested models. It can also calculate likelihood ratio, Wald, or score
confidence intervals. All three confidence intervals should yield similar results for large samples, but
the Wald form may be preferred for its computational simplicity. Likelihood ratio and score confidence
intervals are more computationally expensive to calculate. Huang (2014) recommends likelihood ratio
tests for small samples.

The Wald asymptotic variance estimate for the β estimator can be obtained from the inverse of
the information matrix given in Equation 16. Recall this information matrix is calculated with the f̃0
parameters held fixed. Its inverse is a valid asymptotic variance matrix because the full information
matrix is block diagonal; i.e., the β and f̃0 estimators are asymptotically independent. The gldrm
optimization function returns standard error estimates for each coefficient, which are displayed by the
print method along with p-values. Wald confidence intervals are straightforward to calculate from the
standard errors and can be obtained from the gldrmCI function. For these single-coefficient hypothesis
tests and confidence intervals, we approximate the null distribution by a t-distribution with n− p
degrees of freedom, where n is the number of observations and p is the rank of the covariate matrix.

Likelihood ratio tests for nested models are based on the usual test statistic: 2 times the log-
likelihood difference between the full and reduced model. Following Huang (2014), we approximate
the null distribution by an F-distribution with q and n− p degrees of freedom, where q is the difference
in the number of parameters between the full and reduced models. This test can be performed by the
gldrmLRT function.

Likelihood ratio and score confidence intervals for a single coefficient can be obtained from
the gldrmCI function. These confidence intervals are more computationally expensive than Wald
confidence intervals because an iterative method is required to search for the interval boundaries. We
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use the following bisection method.

Suppose we want to obtain the lower boundary of a confidence level 1− α interval for a single
coefficient β∗, and that the gldrm estimate of this coefficient is β̂∗. For the lower boundary, we need to
find β∗lo such that β∗lo < β̂∗ and the one-sided likelihood ratio test has a p-value equal to α/2 under
the null hypothesis H0 : β∗ = β∗lo. As explained in the next paragraph, we can compute the p-value
for any guess of β∗lo. We begin by finding a guess that is too low (p-value less than α/2) and a guess
that is too high (p-value greater than α/2). We then obtain the p-value of the midpoint. If the p-value
is less than α/2 then the midpoint becomes the new low guess, and if it is greater than α/2 then the
midpoint becomes the new high guess. We iterate this process, each time halving the distance between
the low guess and high guess, until we have a guess of β∗lo that has a p-value arbitrarily close to α/2.
The same procedure can be used to solve for β∗hi.

Let β0 be any constant. To calculate the likelihood ratio or score test p-value of H0 : β∗ = β0, we
need to optimize the log-likelihood over f̃0 and all other β values, holding β∗ fixed at β0. This can be
done by multiplying β0 with the column of the X matrix corresponding to β∗ and treating this vector
as an offset to the linear predictor. In other words, this vector contains a fixed component of the linear
predictor for each observation. The β∗ column is dropped from X, and the model is optimized with
the offset term.

Goodness of fit

To check the model fit, we calculate the randomized probability inverse transform (Smith, 1985). This
is done by evaluating the fitted conditional cdf (i.e., the cumulative distribution function, conditional
on the covariates) of each observed response value. If the model fit is good, the probability inverse
transform values should roughly follow a uniform distribution on the interval (0, 1). Because the
gldrm fitted cdf is discrete, we use randomization to make the distribution continuous as follows.

Let F̂(y|X = x) denote the fitted cdf conditional on a covariate vector x evaluated at y, and let

y−i = max
(
{yj : yj < yi}

⋃{−∞}
)

. For each observation, we draw a random value from a uniform

distribution on the interval
(

F̂(yi|X = xi), F̂(y−i |X = xi)
)
.

To illustrate a good gldrm fit, we generate 1,000 independent pairs (x, y) where x ∼ Normal(mean
= 0, sd = 1) and y|x ∼Normal(mean = x, sd = 1). The mean of y|x is linear in x, and the data generating
mechanism is an exponential tilt family, so we expect the gldrm fit to be good. We fit the model and
then do a visual check by plotting the histogram and uniform QQ plot of the randomized probability
inverse transform values (Figure 1).

Figure 1: Scatterplot and probability inverse transform histogram and QQ plot for a good gldrm
model fit.

To illustrate a poor gldrm fit, we generate 1,000 independent pairs (x, y) where x ∼ Normal(mean
= 0, sd = 1) and y|x ∼ Normal(mean = x, sd = x2). The mean of y|x is again linear in x, but this data
generating mechanism is not an exponential tilt family. The diagnostic plots (Figure 2) confirm that
the gldrm fit is not ideal. The probability inverse transform values are concentrated near the center of
the interval (0, 1) rather than being uniformly distributed. The gldrm still provides a good estimate of
the regression coefficients and the mean of y|x, but it is not the correct model for the cdf of y|x. .
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Figure 2: Scatterplot and probability inverse transform histogram and QQ plot for a poor gldrm model
fit.

Simulation experiments

Under four different simulation scenarios, we check the finite sample performance of the regression
coefficient estimators, β̂, as well as the reference distribution cdf estimator F̂0(). For β̂, we also check
the accuracy of the estimated standard errors.

For each simulation, the data generating mechanism is a gamma glm. The covariates are the
same under each simulation setting, and their values are fixed, not random. The covariate vector is
x = (x0, x1, x2, x3). Variable x0 is an intercept column of ones. Variable x1 is an indicator with exactly
20% ones in each sample (observations 5, 10, 15, 20, . . . have x1 = 1, and the rest have x1 = 0). Variable
x2 is a continuous variable that follows a uniform sequence between zero and one in each sample (the
first observation has x2 = 0, and the last observation has x2 = 1). Lastly, x3 = x1 · x2.

The coefficient values were (β1, β2, β3) = (1, 1,−2) for all simulation scenarios. The intercepts
were β0 = 0 for simulations 1 & 2, and β0 = 1 for simulations 3 & 4. These values were selected so the
mean response values were centered close to one and, for the identity link scenarios, guaranteed to be
positive.

The log link was used for simulations 1 & 2, and the identity link was used for simulations 3 & 4.
For all four simulations, the response was drawn from a gamma distribution with Var(y|x) = φE(y|x)2,
where φ varies by simulation to achieve different R2 values. R2 is defined as the squared correlation
between the response and linear combination of predictors.

1. Simulation 1: log link and high R2 (φ = 0.5, R2 ≈ 0.13)

2. Simulation 2: log link and low R2 (φ = 4, R2 ≈ 0.019)

3. Simulation 3: identity link and high R2 (φ = 0.25, R2 ≈ 0.13)

4. Simulation 4: identity link and low R2 (φ = 2, R2 ≈ 0.018)

A gldrm was fit to each data set with correct link function and with f̃0 constrained to have mean
µ0 = 1. If we had followed our usual practice of choosing µ0 to be the sample mean of the observed
response values, then the reference distribution would have a different mean for each simulation
replicate. By choosing µ0 = 1 for all replicates, the true f0 always follows a gamma distribution
with mean one and variance φ, where φ varies by simulation scenario. The value µ0 = 1 was chosen
because, by design, it fell within the range of observed response values for all 2,000 replicates of each
simulation scenario. The cumulative reference distribution estimate, denoted as F̂0(·), was computed
at percentiles 0.1, 0.25, 0.5, 0.75, 0.9.

For each simulation scenario, we display four tables. The first table (Tables 1, 5, 9, and 13) contains
the sample mean of each β estimator. For comparison, we also calculated the gamma glm coefficient
estimates for each simulated data set and display the sample mean alongside in parentheses.

The second table (Tables 2, 6, 10, and 14) contains the root mean squared error (rmse) of each

β estimator. The rmse is calculated as
√

1
2000 ∑2000

i=1 (β̂i − β)2, where β̂i is the estimator of the ith

simulation replicate, and β is the true parameter value. For comparison, we also show the relative
efficiency compared to the gamma glm estimator. Relative efficiency is calculated as mseglm/msegldrm,
where mse is the mean squared error (not rmse).

The third table (Tables 3, 7, 11, and 15) contains Wald confidence interval coverage rates for each
β estimator. Confidence intervals were calculated based on a t-distribution with n− 4 degrees of
freedom.

The fourth table (Tables 4, 8, 12, and 16) contains the mean of F̂0(), calculated at the true 10th, 25th,
50th, 75th, and, 90th percentiles.
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To summarize the results, the gldrm estimators perform as expected. In all four simulation
scenarios, the bias of β̂ and F̂0() goes to zero as the sample size increases. For the high R2 scenarios,
there is very little bias even at n = 25. Also, the relative efficiency of the β estimators compared to the
gamma glm estimators goes to one as the sample size increases. This is expected because, as Rathouz
and Gao (2009) demonstrated, the β and f0 estimators are asymptotically orthogonal, so gldrm and
glm have equal asymptotic efficiency when the glm model is correctly specified. For the high R2

scenarios, the relative efficiency is close to one even at n = 25. For the low R2 scenarios, the gldrm
estimator is actually more efficient than the glm estimator for small sample sizes.

The standard error estimates for gldrm β estimators are consistently low for small sample sizes,
as demonstrated by low Wald confidence interval coverage rates. The coverage rates improve with
increasing sample size, demonstrating good asymptotic properties of the standard error estimators.
Likelihood ratio confidence intervals can be calculated with the gldrm R package and may have better
small sample performance, as demonstrated by Huang (2014).

Simulation 1

Simulation 1 uses log link with β = (0, 1, 1,−2) and φ = 0.5. This results in an R2 of approximately
0.13. The simulation was replicated 2,000 times.

β̂ mean (gamma glm mean)
n = 25 n = 100 n = 400

β0 = 0 -0.02 (-0.02) 0.00 (0.00) 0.00 (0.00)
β1 = 1 0.93 (0.92) 0.98 (0.99) 0.99 (0.99)
β2 = 1 0.99 (1.00) 0.99 (1.00) 1.00 (1.00)

β3 = −2 -2.00 (-2.00) -2.00 (-2.01) -1.99 (-1.99)

Table 1: Sample mean of β̂. For comparison, the gamma glm sample mean is shown in parentheses.

β̂ rmse (relative efficiency)
n = 25 n = 100 n = 400

β0 0.31 (0.99) 0.16 (1.00) 0.08 (1.00)
β1 0.81 (0.96) 0.38 (1.01) 0.18 (1.00)
β2 0.54 (1.00) 0.27 (1.00) 0.14 (0.99)
β3 1.27 (0.96) 0.63 (1.00) 0.30 (1.00)

Table 2: Root mean squared error (rmse) of β̂. In parentheses is the relative efficiency compared to the
gamma glm estimator.

80% C.I. 90% C.I. 95% C.I.
n = 25 n = 100 n = 400 n = 25 n = 100 n = 400 n = 25 n = 100 n = 400

β0 0.755 0.799 0.805 0.870 0.896 0.899 0.920 0.945 0.944
β1 0.677 0.764 0.800 0.782 0.860 0.900 0.837 0.919 0.949
β2 0.742 0.784 0.810 0.853 0.883 0.896 0.910 0.940 0.950
β3 0.681 0.767 0.806 0.800 0.869 0.907 0.867 0.920 0.948

Table 3: Wald confidence interval coverage rate for β.

F̂0(y) mean
F0(y) y n = 25 n = 100 n = 400

0.10 0.27 0.082 0.097 0.099
0.25 0.48 0.222 0.244 0.249
0.50 0.84 0.487 0.498 0.499
0.75 1.35 0.759 0.751 0.750
0.90 1.94 0.911 0.902 0.900

Table 4: Sample mean of F̂0 at selected true percentiles.
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Simulation 2

Simulation 2 uses log link with β = (0, 1, 1,−2) and φ = 4. This results in an R2 of approximately
0.019. The simulation was replicated 2,000 times.

β̂ mean (gamma glm mean)
n = 25 n = 100 n = 400

β0 = 0 -0.16 (-0.19) -0.05 (-0.06) -0.02 (-0.02)
β1 = 1 0.21 (0.29) 0.80 (0.84) 0.96 (0.97)
β2 = 1 0.90 (0.96) 0.99 (1.01) 1.00 (1.00)

β3 = −2 -1.74 (-1.98) -1.93 (-2.01) -1.99 (-2.00)

Table 5: Sample mean of β̂. For comparison, the gamma glm sample mean is shown in parentheses.

β̂ rmse (relative efficiency)
n = 25 n = 100 n = 400

β0 0.94 (1.14) 0.45 (1.04) 0.23 (1.00)
β1 2.83 (1.43) 1.12 (1.09) 0.51 (1.02)
β2 1.62 (1.19) 0.78 (1.05) 0.39 (1.01)
β3 4.18 (1.59) 1.88 (1.14) 0.89 (1.02)

Table 6: Root mean squared error (rmse) of β̂. In parentheses is the relative efficiency compared to the
gamma glm estimator.

80% C.I. 90% C.I. 95% C.I.
n = 25 n = 100 n = 400 n = 25 n = 100 n = 400 n = 25 n = 100 n = 400

β0 0.704 0.770 0.782 0.806 0.877 0.888 0.869 0.933 0.945
β1 0.626 0.724 0.781 0.732 0.832 0.883 0.794 0.897 0.935
β2 0.680 0.755 0.774 0.795 0.862 0.881 0.869 0.925 0.939
β3 0.633 0.722 0.762 0.750 0.829 0.879 0.819 0.895 0.935

Table 7: Wald confidence interval coverage rate for β.

F̂0(y) mean
F0(y) y n = 25 n = 100 n = 400

0.10 0.00 0.093 0.100 0.101
0.25 0.01 0.230 0.247 0.250
0.50 0.17 0.465 0.496 0.499
0.75 1.04 0.727 0.747 0.749
0.90 3.00 0.903 0.899 0.900

Table 8: Sample mean of F̂0 at selected true percentiles.

Simulation 3

Simulation 3 uses identity link with β = (1, 1, 1,−2) and φ = 0.25. This results in an R2 of approxi-
mately 0.13. The simulation was replicated 2,000 times.

β̂ mean (gamma glm mean)
n = 25 n = 100 n = 400

β0 = 1 1.00 (1.00) 0.99 (0.99) 1.00 (1.00)
β1 = 1 1.01 (1.01) 1.00 (1.00) 0.99 (0.99)
β2 = 1 1.01 (1.01) 1.01 (1.01) 1.00 (1.00)

β3 = −2 -2.02 (-2.01) -2.01 (-2.01) -1.99 (-1.99)

Table 9: Sample mean of β̂. For comparison, the gamma glm sample mean is shown in parentheses.
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β̂ rmse (relative efficiency)
n = 25 n = 100 n = 400

β0 0.25 (0.99) 0.13 (0.99) 0.07 (1.00)
β1 0.88 (0.96) 0.40 (0.99) 0.20 (1.00)
β2 0.55 (0.98) 0.28 (0.99) 0.14 (1.00)
β3 1.26 (0.98) 0.63 (0.98) 0.32 (1.00)

Table 10: Root mean squared error (rmse) of β̂. In parentheses is the relative efficiency compared to
the gamma glm estimator.

80% C.I. 90% C.I. 95% C.I.
n = 25 n = 100 n = 400 n = 25 n = 100 n = 400 n = 25 n = 100 n = 400

β0 0.735 0.793 0.802 0.830 0.888 0.892 0.888 0.939 0.947
β1 0.670 0.789 0.799 0.785 0.875 0.892 0.847 0.931 0.949
β2 0.737 0.782 0.796 0.849 0.885 0.893 0.916 0.941 0.943
β3 0.667 0.773 0.792 0.800 0.876 0.896 0.872 0.937 0.942

Table 11: Wald confidence interval coverage rate for β.

F̂0(y) mean
F0(y) y n = 25 n = 100 n = 400

0.10 0.44 0.077 0.095 0.098
0.25 0.63 0.219 0.244 0.249
0.50 0.92 0.492 0.498 0.499
0.75 1.28 0.769 0.753 0.751
0.90 1.67 0.913 0.903 0.901

Table 12: Sample mean of F̂0 at selected true percentiles.

Simulation 4

Simulation 4 uses identity link with β = (1, 1, 1,−2) and φ = 2. This results in an R2 of approximately
0.018. The simulation was replicated 2,000 times.

β̂ mean (gamma glm mean)
n = 25 n = 100 n = 400

β0 = 1 1.02 (1.02) 1.01 (1.01) 1.00 (1.00)
β1 = 1 0.91 (0.89) 0.97 (1.00) 0.99 (0.99)
β2 = 1 0.99 (1.02) 0.97 (0.98) 0.99 (1.00)

β3 = −2 -1.86 (-1.85) -1.92 (-1.95) -1.98 (-1.99)

Table 13: Sample mean of β̂. For comparison, the gamma glm sample mean is shown in parentheses.

β̂ rmse (relative efficiency)
n = 25 n = 100 n = 400

β0 0.73 (1.17) 0.39 (1.02) 0.19 (1.00)
β1 2.35 (1.05) 1.16 (1.09) 0.58 (1.02)
β2 1.58 (1.18) 0.81 (1.03) 0.40 (1.00)
β3 3.27 (1.18) 1.83 (1.11) 0.92 (1.02)

Table 14: Root mean squared error (rmse) of β̂. In parentheses is the relative efficiency compared to
the gamma glm estimator.
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80% C.I. 90% C.I. 95% C.I.
n = 25 n = 100 n = 400 n = 25 n = 100 n = 400 n = 25 n = 100 n = 400

β0 0.661 0.761 0.794 0.754 0.845 0.893 0.802 0.893 0.938
β1 0.595 0.718 0.767 0.692 0.822 0.868 0.741 0.870 0.921
β2 0.665 0.769 0.779 0.777 0.864 0.895 0.847 0.910 0.943
β3 0.666 0.711 0.777 0.789 0.824 0.877 0.871 0.892 0.932

Table 15: Wald confidence interval coverage rate for β.

F̂0(y) mean
F0(y) y n = 25 n = 100 n = 400

0.10 0.02 0.085 0.097 0.100
0.25 0.10 0.223 0.246 0.249
0.50 0.45 0.474 0.493 0.499
0.75 1.32 0.741 0.749 0.750
0.90 2.71 0.907 0.902 0.900

Table 16: Sample mean of F̂0 at selected true percentiles.

Likelihood ratio and score confidence intervals

To support our claim that likelihood ratio confidence intervals may have better small sample perfor-
mance, we compared the Wald, likelihood ratio, and score 95% confidence interval coverage rates
under the settings of Simulation 1 with n = 25. The coverage rates are shown in Table 17. The Wald
coverage rates are similar to those in Table 3, but not identical because this experiment used a new set
of 2,000 replicates.

While the Wald confidence intervals tend to be too narrow, the score confidence intervals tend
to be a bit too wide. The likelihood ratio intervals have coverage rates much closer to 0.95 than the
corresponding Wald or score intervals. This is consistent with the findings of Huang (2014).

β0 β1 β2 β3
Wald 0.918 0.823 0.909 0.859

Likelihood ratio 0.969 0.939 0.958 0.944
Score 0.976 0.966 0.967 0.967

Table 17: Coverage rates for 95% confidence intervals under the settings of Simulation 1.

Computational time and scaling

The following simulation explores the computation time of gldrm and how it scales with the number
of observations n and number of covariates p. For each value of n and p, we fit gldrm to 100 randomly
generated data sets. A gldrm was fit once to each data set.

Covariates were drawn independently from a standard normal distribution, and coefficients were
drawn independently from a uniform distribution on the interval (-1, 1). Simulation 1 used an identity
link function with response drawn from a normal distribution with variance function V(µ) = 1.
Simulation 2 used a log link function with response drawn from an exponential distribution, i.e. a
gamma distribution with variance function V(µ) = µ2.

Iteration limits were set at 100 per θ update, 1,000 per f0 update, and 100 for the outer loop (for
which each iteration consists of a single-iteration β update, followed by an f0 update). Convergence
thresholds were set at 10−10 for the θ update, f0 update, and outer loop update. This experiment was
run using a 2.2 GHz AMD Opteron 6174 processor. Figures 3 and 4 show the average CPU seconds for
Simulations 1 and 2, respectively.

We also repeated this experiment with the number of support points fixed at 25. To do this, we
generated n response values from the model. The first 25 values were designated as the support, and
the remaining response values were matched to the nearest support value and set to that value. This
discrete data generating model is not actually a gldrm model, but we are only using it to evaluate
computation time. Figures 5 and 6 show the average CPU seconds for Simulations 1 and 2, respectively,
with support size fixed at 25.
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In summary, the computation time scales roughly linearly with n when the support is fixed at 25.
When the support grows with n, the computation time grows faster than linearly. Computation time
increases with p, but there is not a consistent pattern, especially with fixed support.
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Figure 3: Mean computation time for Simulation 1. Error bars represent ±2 standard errors over 100
replicates.
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Figure 4: Mean computation time for Simulation 2. Error bars represent ±2 standard errors over 100
replicates.
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Figure 5: Mean computation time for Simulation 1 with support size fixed at 25. Error bars represent
±2 standard errors over 100 replicates.
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Figure 6: Mean computation time for Simulation 2 with support size fixed at 25. Error bars represent
±2 standard errors over 100 replicates.

R package: gldrm

The gldrm package (Wurm and Rathouz, 2018) was written entirely in the R programming language.
Its primary functions are the following.

• gldrm is the main function for fitting gldrm models.

• gldrmLRT performs a likelihood ratio test between nested gldrm models. The test statistic is
calculated as 2× (llik− llik0)/r, where r is the difference is the number of parameters between
the full and null models. Under the null hypothesis, the test statistic follows an asymptotic F
distribution with degrees of freedom r and n− p, where n is the number of observations and p
is the number of parameters in the full model.

• gldrmCI calculates Wald or likelihood ratio confidence intervals for a single coefficient.

• predict.gldrmFit is a predict method, which is modeled after the print.glm method in the
stats package. Predictions can be obtained on the scale of the response or linear predictor, or the
tilted nonparametric density for each observation can be returned.

• gldrmPIT Returns a set of randomized probability inverse transform values and plots the
histogram and uniform QQ plot.

R example: iris data

We demonstrate the gldrm package using the Iris data set from the datasets package. This is a data
set of n = 150 observations. We choose sepal length to be the response variable. This variable has
35 unique values, so the support is K = 35. We first demonstrate how to fit a gldrm model with the
optimization function, which is simply called gldrm. We demonstrate how to perform inference on
the regression coefficients. We check the goodness of fit using the randomized probability inverse
transform. Finally we show how to obtain predictions for a set of observations, including the predicted
mean and nonparametric estimate of the distribution function.

Fit gldrm model

The gldrm optimization function takes a formula and data argument, similar to R’s glm function.
Instead of passing both an error distribution and link function through a family argument, the gldrm
only requires a link function. The link argument will accept the name of a link function (any function
supported by make.link in the stats package is accepted). Alternatively, a custom link function can
be passed as a list containing three items:

1. linkfun A vectorized link function.

2. linkinv The corresponding inverse link function, also vectorized.

3. mu.eta The derivative of the inverse link function, also vectorized.

This list structure is the same as that of link-glm class objects, which are constructed by the make.link
function. The custom link option allows great flexibility, but it is imperative that the user correctly
specifies the inverse link and its derivative.
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R> ### Load gldrm package and Iris data from datasets package
R> library(gldrm)
R> data(iris, package = "datasets")

R> ### Fit gldrm with all variables
R> fit <- gldrm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species,
R+ data = iris, link = "log")
R> fit

Summary of gldrm fit

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.1832 0.0369 32.10 < 2e-16 ***
Sepal.Width 0.0788 0.0128 6.17 6.4e-09 ***
Petal.Length 0.1128 0.0102 11.04 < 2e-16 ***
Petal.Width -0.0350 0.0248 -1.41 0.162
Speciesversicolor -0.0561 0.0395 -1.42 0.157
Speciesvirginica -0.0994 0.0557 -1.79 0.076 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Likelihood ratio test against null model:
F-statistic: 57.4
Numerator degrees of freedom: 5
Denominator degrees of freedom: 144
P-value: < 2e-16

Inference

The gldrmLRT function performs a semiparametric likelihood ratio test between two nested models. We
demonstrate this on the Iris data by fitting a sub-model that excludes "Species", which is a categorical
variable with three levels and two degrees of freedom. We also obtain Wald and likelihood ratio
confidence intervals for the petal width coefficient.

R> ### Fit gldrm without the categorical variable "Species"
R> fit0 <- gldrm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
R+ data = iris, link = "log")

R> ### Likelihood ratio test for the nested models
R> gldrmLRT(fit, fit0)

Likelihood ratio test:

F-statistic: 2.03
Numerator degrees of freedom: 2
Denomicator degrees of freedom: 144
P-value: 0.135

R> ### Wald 95% confidence interval for Petal.Width
R> gldrmCI(fit, term = "Petal.Width", test = "Wald", type = "2-sided", level = .95)

95% Wald confidence interval for Petal.Width:
(-0.084, 0.014)

R> ### Likelihood ratio 95% confidence interval for Petal.Width
R> gldrmCI(fit, term = "Petal.Width", test = "LRT", type = "2-sided", level = .95)

95% likelihood ratio confidence interval for Petal.Width:
(-0.094, 0.025)
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Goodness of fit

The gldrmPIT function produces goodness of fit plots using the probability inverse transform. In
addition to plotting, this function also returns the inverse transform values as a vector.

R> pit <- gldrmPIT(fit)

Prediction

We obtain predictions for three selected observations in the data set: one from each Species. These
observations were contained in training data, but we could obtain predictions for out-of-sample
observations in the same way. Using the predict method, we obtain the fitted mean response value
for each observation, which is the estimate of E(Y|X = x).

We also use the predict method to obtain the nonparametric estimate of the conditional density
f (y|X = x). This is obtained by setting the argument type = "fTilt", which returns an n× K matrix
with (i, k)th entry f̃k exp{θisk − b(θi)}. Each row contains the nonparametric conditional density
estimate for a given observation and sums to one. We use this matrix to calculate the conditional
probabilities for the form P(y1 < Y ≤ y2|X = x) for each observation. Note that all observed support
values (sepal length values) fall between four and eight, so all probability mass falls within this
interval.

R> ### Select three observations; one from each Species
R> newdata <- iris[c(1, 51, 101), ]

R> ### Fitted mean Sepal.Length
R> fitted_mean <- predict(fit, newdata = newdata, type = "response")
R> fitted_mean <- round(fitted_mean, 2)

R> ### Estimated Sepal.Length distribution of each observation
R> ### Note: all Sepal.Length values are between 4 and 8
R> fTilt <- predict(fit, newdata = newdata, type = "fTilt")
R> spt <- fit$spt
R> F4 <- rowSums(fTilt[ , spt <= 4])
R> F5 <- rowSums(fTilt[ , spt <= 5])
R> F6 <- rowSums(fTilt[ , spt <= 6])
R> F7 <- rowSums(fTilt[ , spt <= 7])
R> F8 <- rowSums(fTilt[ , spt <= 8])
R> Ftilt <- cbind(F5-F4, F6-F5, F7-F6, F8-F7)
R> Ftilt <- round(Ftilt, 3)
R> colnames(Ftilt) <- c("P(4=Y<=5)", "P(5<Y<=6)", "P(6<Y<=7)", "P(7<Y<=8)")
R> cbind(newdata, fitted_mean, Ftilt)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species fitted_mean
1 5.1 3.5 1.4 0.2 setosa 5.00
51 7.0 3.2 4.7 1.4 versicolor 6.43
101 6.3 3.3 6.0 2.5 virginica 6.91

P(4<Y<=5) P(5<Y<=6) P(6<Y<=7) P(7<Y<=8)
1 0.625 0.375 0.000 0.000
51 0.000 0.136 0.832 0.032
101 0.000 0.006 0.649 0.344
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Discussion

We introduced a new optimization algorithm for gldrm, which computationally scales better with the
number of unique observed response values. This is especially useful for estimation of continuous
response data where the number of parameters in the f̃0 parameter equals the sample size. In particular,
the BFGS technique dramatically speeds up the f̃0 optimization step, and makes gldrm much more
computationally feasible for either discrete or continuous response data. The new algorithm is
implemented in the gldrm package. Simulation results show that the algorithm and software obtain
accurate estimates and standard errors. Computational time was shown to be feasible for support
sizes well over one thousand.

Future research directions could include the incorporation of random effects into the gldrm
framework. Optimization techniques for generalized linear mixed models, such as adaptive Gaussian
quadrature, may be useful for model estimation (Pinheiro and Chao, 2006; Pinheiro and Bates, 1995).

Acknowledgments

Research reported in this publication was supported by the National Heart, Lung, and Blood Institute
of the National Institutes of Health under award number T32 HL083806 (for MJW) and R01 HL094786-
05A1 (for PJR). The content is solely the responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health.

We thank Dr. Alan Huang, University of Queensland, for suggesting the use of probability inverse
transform diagnostic plots, as well as providing the corresponding code, which we have incorporated
into the gldrm package.

Bibliography

C. G. Broyden. The convergence of a class of double-rank minimization algorithms. IMA Journal of
Applied Mathematics, 6(3):222–231, 1970. URL https://doi.org/10.1093/imamat/6.3.222. [p288]

R. Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13(3):317–322, 1970.
URL https://doi.org/10.1093/comjnl/13.3.317. [p289]

D. Goldfarb. A family of variable-metric methods derived by variational means. Mathematics of
Computation, 24(109):23–26, 1970. URL https://doi.org/10.1090/S0025-5718-1970-0258249-6.
[p289]

A. Huang. Joint estimation of the mean and error distribution in generalized linear models. Journal
of the American Statistical Association, 109(505):186–196, 2014. URL https://doi.org/10.1080/
01621459.2013.824892. [p288, 289, 292, 295, 298]

A. Huang and P. J. Rathouz. Proportional likelihood ratio models for mean regression. Biometrika, 99
(1):223–229, 2012. URL https://doi.org/10.1093/biomet/asr075. [p288, 290]

M. Lovric. International Encyclopedia of Statistical Science. Springer, 2011. ISBN 3642048986. [p288]

A. B. Owen, H. Crc, B. Raton, L. New, Y. Washington, A. A. B, and A. Owen. Empirical Likelihood. CRC
Press, 2001. ISBN 1584880716. [p288]

J. C. Pinheiro and D. M. Bates. Approximations to the log-likelihood function in the nonlinear
mixed-effects model. Journal of Computational and Graphical Statistics, 4(1):12–35, 1995. URL https:
//doi.org/10.1080/10618600.1995.10474663. [p303]

J. C. Pinheiro and E. C. Chao. Efficient laplacian and adaptive gaussian quadrature algorithms for
multilevel generalized linear mixed models. Journal of Computational and Graphical Statistics, 15(1):
58–81, 2006. URL https://doi.org/10.1198/106186006X96962. [p303]

P. J. Rathouz and L. Gao. Generalized linear models with unspecified reference distribution. Biostatistics,
10(2):205–218, 2009. URL https://doi.org/10.1093/biostatistics/kxn030. [p288, 289, 290, 295,
306]

D. F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of
Computation, 24(111):647–656, 1970. URL https://doi.org/10.1090/S0025-5718-1970-0274029-X.
[p289]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1093/imamat/6.3.222
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1080/01621459.2013.824892
https://doi.org/10.1080/01621459.2013.824892
https://doi.org/10.1093/biomet/asr075
https://doi.org/10.1080/10618600.1995.10474663
https://doi.org/10.1080/10618600.1995.10474663
https://doi.org/10.1198/106186006X96962
https://doi.org/10.1093/biostatistics/kxn030
https://doi.org/10.1090/S0025-5718-1970-0274029-X


CONTRIBUTED RESEARCH ARTICLES 304

J. Smith. Diagnostic checks of non-standard time series models. Journal of Forecasting, 4(3):283–291,
1985. URL https://doi.org/10.1002/for.3980040305. [p293]

M. Wurm and P. Rathouz. gldrm: Generalized Linear Density Ratio Models, 2018. URL https://CRAN.R-
project.org/package=gldrm. R package version 1.5. [p289, 292, 300]

Michael J. Wurm
Department of Statistics
University of Wisconsin–Madison
1300 University Avenue
Madison, WI 53706
USA
wurm@uwalumni.com

Paul J. Rathouz
Department of Biostatistics & Medical Informatics
University of Wisconsin School of Medicine and Public Health
K6/446 CSC, Box 4675
600 Highland Avenue
Madison, WI 53792-4675
USA
rathouz@biostat.wisc.edu

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1002/for.3980040305
https://CRAN.R-project.org/package=gldrm
https://CRAN.R-project.org/package=gldrm
mailto:wurm@uwalumni.com
mailto:rathouz@biostat.wisc.edu


CONTRIBUTED RESEARCH ARTICLES 305

Appendix

Notation

In this appendix, we use ∂ to denote the partial derivative and d to denote the total derivative. We
require this notation for chain rule derivatives, specifically to derive the score function with respect
to β and f̃0. Each θi is implicitly a function of (β, f̃0) and hence should not be held fixed when
differentiating the log-likelihood with respect to either β or f̃0. We also let

`i = θiyi − log
K

∑
k=1

fk exp(θisk) +
K

∑
k=1

I(yi = sk) log fk (18)

denote the contribution of the ith observation to the log-likelihood.

A. Score function for f̃0

We derive Equation 12, which gives the score function with respect to f̃0, holding β fixed. Using the
definition of `i in Equation 18 and applying the chain rule, the kth element of the score function is

{S( f̃0; β)}k =
d`(β, f̃0)

d fk
=

n

∑
i=1

d`i
d fk

=
n

∑
i=1

(
∂`i
∂ fk

+
dθi
d fk

∂`i
∂θi

)
. (19)

The first term on the RHS of Equation 19 is

∂`i
∂ fk

=
I(yi = sk)

fk
− exp{θisk}

K
∑

m=1
fm exp{θism}

. (20)

The second term on the RHS of Equation 19 is

∂`i
∂θi

= yi −

K
∑

k=1
sk fk exp{θsk}

K
∑

k=1
fk exp{θsk}

= yi − µi . (21)

Recall that µi = g−1(xT
i β), which does not vary with f̃0. Therefore,

0 =
d

d fk
µi =

∂µi
∂ fk

+
dθi
d fk

∂µi
∂θi

, (22)

and the third term on the RHS of Equation 19 is

dθi
d fk

= − ∂µi
∂ fk

/
∂µi
∂θi

= − exp{θisk}(sk − µi)

exp{b(θi)}

/
b′′(θi) . (23)

Plugging the results of Equations 20, 21, and 23 into Equation 19, we obtain

{S( f̃0; β)}k =
n

∑
i=1

{
I(yi = sk)

fk
− exp(θisk)

exp{b(θi)}
− exp(θisk)

exp{b(θi)}
sk − µi
b′′(θi)

(yi − µi)

}
. (24)

We obtain the result of Equation 12 by applying the Jacobian transformation {S(g̃0; β)}k = fk{S( f̃0; β)}k.
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B. Information matrix for f̃0

The f̃0 information matrix is not used during the BFGS optimization routine. However, we derive it
here to correct a missing term in the Rathouz and Gao (2009) derivation. Each matrix element is

{
I( f̃0; β)

}
(k,m) = E

({
S( f̃0; β)

}
k
{

S( f̃0; β)
}

m

∣∣∣∣Xk = xk, Xm = xm

)
=

n

∑
i=1

E {Ak Am − 2AkBm + BkBm|Xk = xk, Xm = xm} ,
(25)

where

Ak =
I(yi = sk)

fk
− exp(θisk)

exp{b(θi}
and

Bk =
exp(θisk)

exp{b(θi)}
− exp(θisk)

exp{b(θi)}
sk − µi
b′′(θi)

(yi − µi) .

From here on, all expectations are conditional on Xk = xk, Xm = xm, but we suppress the conditional
expression. The first term on the RHS of Equation 25 is

E(Ak Am) =
exp(θisk)I(k = m)

fk exp{b(θi)}
− exp(θisk + θism)

exp{2b(θi)}
. (26)

The second term on the RHS of Equation 25 is

E(BkBm) =
exp(θisk + θism)

exp{2b(θi)}
(sk − µi)(sm − µi)

b′′(θi)
, (27)

where we use the fact that E{(yi − µi)
2} = Var(yi) = b′′(θi). The third term on the RHS of Equation

25 is

E(AkBm) =
exp(θisk + θism)

exp{2b(θi)}
(sk − µi)(sm − µi)

b′′(θi)
, (28)

where we use the fact that E{I(yi = sk)(yi − µi)} = (yk − µi) fk exp(θisk)/ exp{b(θi)}. Plugging the
results of Equations 26-28 into Equation 25, we obtain

{
I( f̃0; β)

}
(k,m) =

n

∑
i=1

{
exp(θisk)I(k = m)

fk exp{b(θi)}
− exp(θisk + θism)

exp{2b(θi)}
− exp(θisk + θism)

exp{2b(θi)}
(sk − µi)(sm − µi)

b′′(θi)

}
.

(29)

C. Score function for β

We derive Equation 15, which gives the score function with respect to β, holding f̃0 fixed. By the chain
rule, each element is

S(β; f̃0) =
d`(β, f̃0)

dβ
=

n

∑
i=1

d`i
dβ

=
n

∑
i=1

dµi
dβ

dθi
dµi

∂`i
∂θi

(30)

We already derived the first term on the RHS of Equation 30 in Equation 21. Because µi = b′(θi),

dθi
dµi

= 1/
(

dµi
dθi

)
=

1
b′′(θi)

. (31)

Because g(µi) = xT
i β,

dµi
dβ

= xi

(
1

g′(µi)

)
. (32)

Plugging the results of Equations 21, 31, and 32 into Equation 30, we obtain the result of Equation 15.
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D. Proof that transformed response with modified link function has equiv-
alent log-likelihood

Let ν ≡ m+M
2 and ρ ≡ M−m

2 . Let y∗i = (yi − ν)/ρ and s∗k = (sk − ν)/ρ. Equation 18 can be rewritten

`i = θi(ν + ρy∗i )− log
K

∑
k=1

fk exp {θi(ν + ρs∗k )}+
K

∑
k=1

I(y∗i = s∗k ) log fk

= θ∗i y∗i − log
K

∑
k=1

fk exp{θ∗i s∗k}+
K

∑
k=1

I(y∗i = s∗k ) log fk ,

(33)

where θ∗i = θiρ. Equation 6 can be rewritten as

g−1(xT
i β) =

K
∑

k=1
(ν + ρs∗k ) fk exp

{
θi(ν + ρs∗k )

}
K
∑

k=1
fk exp{θi(ν + ρs∗k )}

= ν + ρ


K
∑

k=1
s∗k fk exp

{
θ∗i s∗k

}
K
∑

k=1
fk exp{θ∗i s∗k}

 .

(34)

Hence, if we define a modified link function g∗(µ) = g(ν+ ρµ) with inverse g−1∗ (η) = (g−1(η)− ν)/ρ,
we can write

g−1
∗ (xT

i β) =


K
∑

k=1
s∗k fk exp{θ∗i s∗k}

K
∑

k=1
fk exp{θ∗i s∗k}

 . (35)

In other words θ∗i has the same implicit definition as θi when the modified link function and trans-
formed response variable are used in place of the oginal. This shows that, as a function of (β, f̃0), the
log-likelihood with the transformed response and modified link function is equivalent to the original
log-likelihood. Note that θ∗i must be multiplied by 1/ρ if one would like calculate θi on the original
scale.
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LP Algorithms for Portfolio Optimization:
The PortfolioOptim Package
by Andrzej Palczewski

Abstract The paper describes two algorithms for financial portfolio optimization with the following
risk measures: CVaR, MAD, LSAD and dispersion CVaR. These algorithms can be applied to discrete
distributions of asset returns since then the optimization problems can be reduced to linear programs.
The first algorithm solves a simple recourse problem as described by Haneveld using Benders de-
composition method. The second algorithm finds an optimal portfolio with the smallest distance
to a given benchmark portfolio and is an adaptation of the least norm solution (called also normal
solution) of linear programs due to Zhao and Li. The algorithms are implemented in R in the package
PortfolioOptim.

Introduction

The construction of an optimal portfolio of financial instruments is one of primal goals in asset
management. Recent advances in risk measurement advocate using risk measures that take into
account the tail behavior of asset return distributions, such as conditional value-at-risk or lower
semi-absolute deviation. For these risk measures, finding optimal portfolios in risk-return setting leads
to convex programming problems. For a finite discrete distribution of returns and many practically
used risk measures the optimization problem can be solved by LP methods. The portfolio optimization
by LP methods leads to two problems: for distributions with a large number of values (for example,
a large sample from a continuous distribution) one obtains a unique solution but the LP problem is
resource demanding; for distributions with a small number of values one often obtains a non-unique
solution, which is of limited use for asset management. In the latter case, a unique optimal portfolio is
obtained by projecting a benchmark portfolio on the whole set of solutions. In the paper we present
an algorithm that solves efficiently the problem with large distributions and an algorithm that finds an
orthogonal projection of the benchmark portfolio on the space of solutions.

The R language and environment for statistical computing offer a large variety of tools for portfolio
optimization. General purpose optimization tools are reviewed by Theussl and Borchers (2016) (R
packages for solving optimization problems) and Koenker and Mizera (2014) (R packages for convex
optimization). The book by Pfaff (2016) provides an overview of specific functions for portfolio
optimization which are embedded in financial packages. Here we mention a selection of R-packages
dedicated primarily to portfolio optimization. The package fPortfolio by Würtz et al. (2009) offers a
large set of functions for financial data analysis and enables portfolio optimization in mean-variance,
mean-MAD and mean-CVaR settings. For these portfolio problems the package employs existing
optimization tools: LP, QP and NLP solvers. The package PortfolioAnalytics by Peterson and Carl
(2015) uses standard linear and quadratic optimization tools (Rglpk and quadprog) and a number of
new packages: stochastic optimization (DEoptim, GenSA) and particle swarm optimization (psoptim).
The package parma by Ghalanos (2016) offers scenario and moment based optimization of portfolios for
a large class of risk and deviation measures using Rglpk, quadprog and, for non-linear optimization
nloptr. The above mentioned packages are very effective in solving medium-size portfolio problems,
however, due to their use of standard optimization tools they cannot deal with large problems either
in the number of assets or the size of the distribution. Moreover, none of these packages is able to
select an optimal portfolio which is closest to a given benchmark portfolio.

The new package PortfolioOptim overcomes the aforementioned limitations solving portfolio
problems in mean-risk setting with linear portfolio constraints and risk measures that make the
problem reducible to a linear program. Attempts to apply LP solvers to more general portfolio
problems (cf. Mansini et al. (2014) and references therein) are not included in the package. Our first
contribution is an efficient search algorithm for optimal portfolios in stochastic programs with a
very large number of scenarios. A large number of scenarios in portfolio optimization appears often
when a continuous distribution of returns is approximated by a discrete one. The goal is to obtain an
optimal portfolio which approximates the optimal portfolio for the continuous distribution. This can
be achieved by performing optimization on a large discrete sample generated from the continuous
distribution under consideration. A large sample leads to a high dimensional LP problem which can
be difficult to solve by general-purpose LP solvers. This problem has been addressed by Künzi-Bay
and Mayer (2006) who solved the portfolio optimization problem in mean-CVaR setting using Benders
decomposition. They have computed accurately CVaR of the optimal portfolio using samples of order
104. Our extension of this result is twofold. First, we design an algorithm that implements Benders
decomposition for a general class of simple recourse problems. Portfolio optimization problems for
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the risk measures mentioned above are special cases of these simple recourse problems. Second, using
an internal point LP solver from GLPK library and appropriately modifying the stopping criterion we
substantially increase the size of discrete samples which can be used in computations. Our algorithm
can perform computations for samples of order 106 on a standard computer in a few seconds.

Our second contribution relates to portfolio optimization problems when only a small number
of random scenarios is available. Small discrete samples in portfolio optimization appear when the
distribution of returns is an empirical distribution of historical returns. Usually one takes 5 or 10 years
of weekly or monthly returns giving between 120 and 500 samples. Solutions to linear programs of
such dimensions are in many cases non-unique and can occupy a whole face of a multidimensional
simplex. In such cases, a standard software finds only one solution, usually an vertex of the solution
simplex. This is often not the optimal portfolio which asset managers consider as the most appropriate.
Asset managers have usually certain beliefs about the composition of optimal portfolios and those can
be expressed as similarity or vicinity of the desired optimal portfolio to some benchmark portfolio.
Therefore, one wants to find an optimal portfolio which has the smallest distance to a given benchmark,
or, equivalently, the orthogonal projection of the benchmark on the space of optimal portfolios.

In the LP literature a special case of the above projection problem has been discussed for a long
time. This is the problem of the least norm LP solution, also called normal solution (cf. Zhao and Li
(2002) and references cited therein). Unfortunately, the algorithms which find normal solutions cannot
be easily adapted to our problem. The reason is that portfolio weights make up only a fraction of all
coordinates of the LP solution (see the examples in Sections LP computable portfolio problems and
Benders decomposition). Contrary to the normal solution which is the projection of the origin onto the
simplex of optimal solutions, we are looking for a projection onto a subspace of portfolio weights. In
addition, we are not looking for a solution with the least norm but for a solution with the smallest
distance to an arbitrary vector (benchmark portfolio). It appears however, that the regularized central
path algorithm due to Zhao and Li (2002) which solves simultaneously primal and dual LP problems
finding the least norm solutions to both problems, can be modified to our purposes. Our contribution
is the extension of this algorithm to the following problem. Given the set S∗ of optimal solutions to an
LP problem, find x∗ ∈ S∗ such that ‖B(x∗ − x̂)‖ ≤ ‖B(x− x̂)‖ for all x ∈ S∗, where x̂ is a given vector
and B is the operator of projection on a subspace. This general algorithm is then adapted to obtain
an optimal portfolio with the smallest distance to a benchmark (see Section Projection algorithm for
portfolio optimization for details).

The rest of the paper is organized as follows. In Section LP computable portfolio problems, we
describe the portfolio optimization problems that can be reduced to LP problems and are considered as
working examples in the rest of the paper. These portfolio optimization problems are also implemented
in the package PortfolioOptim. Section Benders decomposition analyzes Benders decomposition
algorithm applied to simple recourse problems. As an illustration, we present applications to the
portfolio optimization in mean-CVaR and mean-LSAD settings. Section Projection algorithm for
portfolio optimization describes the adaptation of the path-following algorithm of Zhao and Li (2002)
to the construction of an optimal portfolio with the smallest distance to a benchmark portfolio. We
present also the proof of convergence for the modified algorithm. Computational examples and the
analysis of performance of both algorithms are presented in Section Numerical examples. The paper
ends with short Summary.

LP computable portfolio problems

We consider the portfolio optimization problem in mean-risk setting. The risk is measured by a risk
(or deviation) measureR (for the definitions of risk and deviation measures the reader is advised to
consult the paper by Rockafellar et al. (2006)). Let R be a distribution of returns of J risky assets. We
denote by R̂ centered returns, i.e. R̂ = R−E[R]. Consider the problem of finding an optimal portfolio
u which fulfills the conditions 

R
(
uT R

)
→ min,

uTE [R] ≥ r0,
u ∈ X,

(1)

where X is a polyhedral set (i.e. given by linear constraints) and r0 is the required return of the
portfolio. The set X is usually the whole space (when no limitations on trading positions are imposed)
or the positive orthant (when short-selling of assets is prohibited).

We will assume that at optimum the constraint uTE[R] ≥ r0 is binding. This is the case when r0 is
not smaller than the return for the minimal risk portfolio, i.e. the portfolio which solves the problem
minu∈XR(uT R).

It appears that for a number of risk measures the optimization problem (1) formulated for a discrete
distribution R can be reduced to a linear program. Let the asset returns R be given by a discrete
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distribution placing weights pn at points rn, n = 1, . . . , N. When the distribution is centered points of
R̂ will be denoted by r̂n.

Consider the risk measured by conditional value at risk (CVaR). For a random outcome X we
define VaRα(X) as

VaRα (X) = − inf {z : P (X ≤ z) > α} .

Then the conditional value at risk is defined as

CVaRα (X) =
1
α

∫ α

0
VaRp (X) dp.

Rockafellar and Uryasev (2000) observed that for X = uT R the minimization of CVaR can be formu-
lated as the following nonlinear problem

min
u,ξ

ξ +
1

1− α
E

[(
−uT R− ξ

)+]
, (2)

where the latent variable ξ corresponds to VaRα(uT R). For discrete distributions and the risk measured
by CVaR, the portfolio optimization problem can therefore be reformulated as the linear program

ξ + 1
1−α ∑N

n=1 pnyn → min,
yn ≥ 0, n = 1, . . . , N,
yn + ξ + rT

n u ≥ 0, n = 1, . . . , N,
µTu ≥ r0,
u ∈ X.

(3)

Here µ = E[R], while yn plays a role of the shortfall of return uTrn below ξ: yn = (−ξ − uTrn)+ =
(ξ + uTrn)−. For deviation CVaR we replace rn by r̂n in (3).

Consider now mean-MAD and mean-LSAD optimization problems. MAD (mean absolute devia-
tion) is defined as (cf. Konno and Yamazaki (1991))

MAD
(

uT R
)
= E

[∣∣∣uT R−E[uT R]
∣∣∣] = E

[
|uT R̂|

]
. (4)

For discrete distributions mean-MAD optimization problem reads
∑N

n=1 pn
∣∣r̂T

n u
∣∣→ min,

µTu ≥ r0,
u ∈ X.

(5)

This problem can be formulated as the linear program

∑N
n=1 pnyn → min,

yn ≥ 0, n = 1, . . . , N
yn + r̂T

n u ≥ 0, n = 1, . . . , N,
yn − r̂T

n u ≥ 0, n = 1, . . . , N,
µTu ≥ r0,
u ∈ X.

(6)

For LSAD (lower semi absolute deviation) as defined by Konno (1990) or Konno et al. (2002)

LSAD
(

uT R
)
= E

[∣∣∣uT R−E[uT R]
∣∣∣
−

]
= E

[
|uT R̂|−

]
, (7)

mean-LSAD optimization has the form
∑N

n=1 pn
∣∣r̂T

n u
∣∣
− → min,

µTu ≥ r0,
u ∈ X.

(8)
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This leads to the following linear program

∑N
n=1 pnyn → min,

yn ≥ 0, n = 1, . . . , N,
yn + r̂T

n u ≥ 0, n = 1, . . . , N,
µTu ≥ r0,
u ∈ X.

(9)

Since LSAD(uT R) = 1
2 MAD(uT R), in what follows we shall consider only one of the above optimiza-

tion problems.

Benders decomposition

Algorithm

In this section, we present a solution to a simple linear recourse problem with random technology
matrix when the distribution of stochastic variable is represented by a large number of scenarios. The
simple recourse problem is a special case of two-stage recourse problem{

cT x + Q (x)→ min,
x ∈ X,

(10)

with the following form of the recourse subproblemQ (x) = E [v (x)] ,

v (x) = min
y

{(
q+
)T y+ +

(
q−
)T y− : y+ − y− = b− Ax, y+, y− ∈ Rm

+

}
. (11)

In this framework, q+ and q− are known penalty costs, matrix A = A(ω) and vector b = b(ω) are
random and X is a bounded, convex subset in Rl .

We see that each pair of recourse variables (y+i , y−i ), i = 1, . . . , m , depends only on the i-th row
in the condition b− Ax, so that their optimal values can be determined independently. Thus, the
second-stage value function v(x) is separated into the sum of m functions

v (x) =
m

∑
i=1

min
yi

{
q+i y+i + q−i y−i : y+i − y−i = bi − Aix, y+i , y−i ≥ 0

}
,

where Ai is the ith row of matrix A and bi is the ith element of vector b.

For each optimization problem

min
yi

{
q+i y+i + q−i y−i : y+i − y−i = bi − Aix, y+i , y−i ≥ 0

}
, (12)

the dual problem has the form

sup
λi

{
λi (bi − Aix) : λi ≤ q+i ,−λi ≤ q−i

}
.

The dual problem is feasible only if q+i + q−i ≥ 0. When this condition holds, the solution to the dual
problem is given by

λi =

{
q+i , if bi − Aix > 0,
−q−i , if bi − Aix ≤ 0,

and the optimal solution to problem (12) has the form

y+i = max (0, (bi − Aix)) ,

y−i = max (0,− (bi − Aix)) .

Then the value function Q(x) can be written as

Q (x) =
m

∑
i=1

(
q+i E

[
(bi − Aix)

+
]
+ q−i E

[
(bi − Aix)

−
])

=
m

∑
i=1

(
q+i E

[
(Aix− bi)

−
]
+ q−i E

[
(Aix− bi)

+
])

.
(13)
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Since s+ − s− = s, we have

Q (x) =
m

∑
i=1

(
q−i
(

Āix− b̄i
)
+
(
q+i + q−i

)
E
[
(Aix− bi)

−
])

=
(
q−
)T Āx−

(
q−
)T b̄ + E

[(
q+ + q−

)T
(b− Ax)+

]
,

(14)

where Āi = E[Ai] and b̄i = E[bi].

For a discrete probability space with P(ω = ωn) = pn, n = 1, . . . , N, the simple recourse problem
can be reformulated in the following way

cT x +
(
q−
)T (Āx− b̄

)
+ ∑N

n=1 pnhn → min,
hn ≥

(
q+ + q−

)T
(b (ωn)− A (ωn) x) ,

hn ≥ 0,
x ∈ X.

(15)

This linear program with a large size N of the probability space is difficult to solve due to the number
of constraints. Klein Haneveld and Van der Vlerk (2006) solved it using a special version of the
L-shaped method. Their approach was further extended by Künzi-Bay and Mayer (2006) who applied
directly Benders decomposition (cf., Benders (1962)). In terms of Benders cuts (15) is equivalent to (we
skip (q−)T b̄ which is constant)

minx,w cT x +
(
q−
)T Āx + w,

w ≥ ∑n∈K pn
(
q+ + q−

)T
(b (ωn)− A (ωn) x) , for all K ⊂M,

w ≥ 0,
x ∈ X,

(16)

whereM = {1, . . . , N}.
This problem is even harder than the original linear program (15) as there are 2N constraints, but

Benders (1962) showed that the above problem can be solved through a sequence of expanding relaxed
problems 

minx,w cT x +
(
q−
)T Āx + w,

w ≥ ∑n∈Kk
pn
(
q+ + q−

)T
(b (ωn)− A (ωn) x) , k = 1, . . . , ν,

w ≥ 0,
x ∈ X,

(17)

ν is the number of steps, Kk ⊂ M are constraints added in step k with Kk 6= Kl when k 6= l. Hence,
each successive relaxed problem adds more constraints to those already present in the previous steps.

Let
ηk = ∑

n∈Kk

pn
(
q+ + q−

)T A (ωn) , ζk = ∑
n∈Kk

pn
(
q+ + q−

)T b (ωn) .

Then (17) is written as the linear program
minx,w cT x +

(
q−
)T Āx + w,

w ≥ ζk − ηkx, k = 1, . . . , ν,
w ≥ 0,
x ∈ X.

(18)

The complete algorithm is as follows:

Step 1. Initialization: set K1 = M, η1 = ∑N
n=1 pn(q+ + q−)T A(ωn), ζ1 = ∑N

n=1 pn(q+ + q−)Tb(ωn)
and ν = 1. Choose computation accuracy ε.

Step 2. Solve problem (18) and denote the solution by (x∗, w∗). Put

K∗ =
{

n ∈ M :
(
q+ + q−

)T
(b (ωn)− A (ωn) x∗) ≥ 0

}
,

w∗+ = ∑
n∈K∗

pn
(
q+ + q−

)T
(b (ωn)− A (ωn) x∗) , ŵ∗ = ζν − ηνx∗.

Compute
F = cT x∗ +

(
q−
)T Āx∗ + w∗+, F = cT x∗ +

(
q−
)T Āx∗ + ŵ∗.

Step 3. If (F− F) ≤ ε then stop. x∗ is an optimal solution.
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Step 4. Set ν = ν + 1, Kν = K∗. Compute ην = ∑n∈Kν
pn(q+ + q−)T A(ωn)

and ζν = ∑n∈Kν
pn(q+ + q−)Tb(ωn). Add this new constraint to the set of constraints and go to

Step 2.

The algorithm written as an R script can be seen on Fig. 1.

Set ν = 0 and K1 =M.
Put cmat = (c + (q−)T Ā, 1), Amat = NULL, bmat = NULL

repeat
Put ν = ν + 1
Compute ην = ∑n∈Kν

pn(q+ + q−)T A(ωn) and ζν = ∑n∈Kν
pn(q+ + q−)Tb(ωn)

Put Amat = rbind(Amat, (−ην, ζν,−1)), bmat = c(bmat, 0)
Solve the linear problem min(x,w) cmatT ∗ (x, w) with the constraints

Amat ∗ (x, w)T ≤ bmatT and denote its solution by (x∗, w∗).
Put

K∗ =
{

n ∈ M :
(
q+ + q−

)T
(b (ωn)− A (ωn) x∗) ≥ 0

}
,

w∗+ = ∑
n∈K∗

pn
(
q+ + q−

)T
(b (ωn)− A (ωn) x∗) , ŵ∗ = ζν − ηνx∗.

Set Kν+1 = K∗

Compute

F = cTx∗ +
(
q−
)T Āx∗ + w∗+, F = cTx∗ +

(
q−
)T Āx∗ + ŵ∗.

while (F− F) > ε

Output: x∗

Figure 1: Benders decomposition algorithm for a simple recourse problem

Examples

Conditional value at risk (CVaR)

We begin with an example of mean-CVaR optimization for a discrete distribution of returns. Our goal
is to find portfolio u which solves 

CVaRα
(
uT R

)
→ min,

uTE [R] ≥ r0,
u ∈ X.

(19)

As is shown in Section LP computable portfolio problems, this problem is reduced to the linear
program 

ξ + 1
1−α ∑N

n=1 pnyn → min,
yn ≥ 0, n = 1, . . . , N,
yn + ξ + rT

n u ≥ 0, n = 1, . . . , N,
uTµ ≥ r0,
u ∈ X,

(20)
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where µ = E[R]. Benders decomposition for the above problem leads to the sequence of expanding
relaxed problems 

minu,ξ,w ξ + 1
1−α w,

∑n∈Kk
pn
(
ξ + rT

n u
)
+ w ≥ 0, k = 1, . . . , ν,

uTµ ≥ r0,
u ∈ X.

(21)

Using notation from Section Benders decomposition we identify x = (u, ξ), q− = 0, (q+)T A(ωn) =
(rn, 1), b(ωn) = 0 and c = (0J , 1), where 0J is the zero vector of length J. The algorithm can be readily
applied.

Mean absolute deviation(MAD) and lower semi-absolute deviation (LSAD)

Due to the relation LSAD(uT R) = 1
2 MAD(uT R) it is sufficient to consider only the mean-LSAD

portfolio optimization: 
LSAD

(
uT R

)
→ min,

uTµ ≥ r0,
u ∈ X.

(22)

As before, for a discrete set of returns that problem can be formulated as a linear program (see equation
(9)) and Benders decomposition can be applied leading to a sequence of expanding relaxed problems.
Introducing the new variable

ηk = ∑
n∈Kk

pn r̂n,

we reduce the problem to the linear program
minu,w w,
ηT

k u + w ≥ 0, k = 1, . . . , ν,
µTu ≥ r0,
u ∈ X.

(23)

Similarly as for CVaR, we recognize in that formulation the Benders problem from Section Benders
decomposition.

Projection algorithm for portfolio optimization

Algorithm

As we have discussed earlier, some mean-risk optimization problems can be transformed into linear
programs. Those linear programs can be written down in the standard form

cT x → min,

Ax ≥ b,

x ≥ 0,

x ∈ Rn.

(24)

In practical computations, it appears that solutions to the above linear program are sometimes
non-unique and form a (multidimensional) simplex. A typical linear solver find only one of the
solutions – usually one of the vertices of the solution simplex. In this section our aim is to find a
solution to the above linear program which is closest to a given vector. It often lies in the interior of a
face of the solution simplex.

Let S∗ denote the set of optimal solutions to (24), B be a given invertible matrix in Rn and x̂ a
vector from Rn. We want to find x∗ ∈ S∗ such that

‖B (x∗ − x̂)‖ ≤ ‖B (x− x̂)‖ for all x ∈ S∗. (25)

The least norm solution to linear program mentioned in the Introduction is a special case of
problem (24–25). It corresponds to x̂ = 0 and B being an identity matrix. Finding an optimal portfolio
closest to a given benchmark in the framework of LP problems can also be reduced, after some
modification, to the solution of problem (24–25). To describe this modification observe that for LP
computable portfolio problems the independent variable x in (24) contains more coordinates that only
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portfolio weights. Let x = (x′, u) where u corresponds to portfolio weights and x′ contains all other
coordinates (for CVaR optimization (3) x = (ξ, y, u), hence x′ = (ξ, y), for MAD optimization (6) and
LSAD optimization (9) x = (y, u)). Given the benchmark portfolio û, the objective is to find an optimal
portfolio which minimizes the distance ‖u− û‖. To achieve that goal by solving problem (24–25) we
have to extend û to a vector x̂ = (x̂′, û) on the whole space Rn taking arbitrary x̂′ and projecting the
difference (x − x̂) on the subspace spanned by the portfolio coordinates. Let B∗ be this projection
operator, then the aim is to minimize ‖B∗(x− x̂)‖. Matrix B∗ is diagonal with entries 1 on the diagonal
positions corresponding to portfolio weights and 0 otherwise. Since B∗ is not invertible the considered
portfolio problem cannot be reduced to the solution of problem (24–25). Hence we introduce a matrix
B replacing in B∗ zero diagonal entries with some small positive number ε. Then B is invertible and
an optimal portfolio close to a benchmark can be found by solving problem (24–25). One can further
improve the accuracy of the computation by redoing the optimization with x̂ = (x′∗, û), where x′∗ is
the solution obtained in the first optimization.

To solve problem (24–25) we follow the approach by Zhao and Li (2002) based on the path-
following algorithm. We begin with the reformulation of (24) as the logarithmic barrier problem

cT x− ρ

(
n

∑
i=1

log xi +
m

∑
i=1

log zi

)
→ min,

Ax− z = b,

x, z > 0,

x ∈ Rn, z ∈ Rm,

(26)

where z is introduced to replace the inequality Ax ≥ b by equality and ρ > 0 is a regularizing
parameter.

The Lagrangian for this problem reads

L (x, y, z) = cT x + yT (z− Ax + b)− ρ

(
n

∑
i=1

log xi +
m

∑
i=1

log zi

)

and the Kuhn-Tucker solvability conditions are

diag (x) s = ρe,

diag (z) y = ρe,

s + ATy− c = 0,

z− Ax + b = 0,

(27)

where diag(u) denotes the diagonal matrix with vector u on diagonal; the new variable s=ρ diag(x)−1e
is introduced to obtain the canonical representation of the central path approach; and e = (1, . . . , 1) (of
an appropriate dimension).

To find the solution to (26) which fulfills the condition ‖B(x− x̂)‖2 → min for a given vector x̂
and matrix B, we modify the Lagrangian

LP (x, y, z) = cT x + yT (z− Ax + b)− ρ

(
n

∑
i=1

log xi +
m

∑
i=1

log zi

)
+

1
2

θ
(
‖B (x− x̂)‖2 − ‖y‖2

)
.

The stationary point of this Lagrangian gives the primal solution for which ‖B(x − x̂)‖2 achieves
minimal value and the dual solution which has minimal norm. The Kuhn-Tucker conditions give

diag (x) s = ρe,

diag (z) y = ρe,

s + ATy− c = θBT B (x− x̂) ,

z− Ax + b = θy.

(28)

To simplify the problem we assume that θ = κρp for given constants κ ∈ (0, 1] and p ∈ (0, 1). We
define the nonlinear mapping

Fρ (x, y, s, z) =


diag (x) s− ρe
diag (z) y− ρe

s + ATy− c− κρpBT B (x− x̂)
z− Ax + b− κρpy

 . (29)
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The problem is now to find (x∗, y∗, s∗, z∗) ≥ 0 which solve the equation

F0 (x∗, y∗, s∗, z∗) = 0. (30)

The solution to this equation is searched by the Newton iterative method

Fρk (xk, yk, sk, zk) +∇Fρk (xk, yk, sk, zk) (∆x, ∆y, ∆s, ∆z) = 0, (31)

where ∇Fρ(x, y, s, z) denotes the gradient of function Fρ given by the expression

∇Fρ (x, y, s, z) =


diag (s) 0 diag (x) 0

0 diag (z) 0 diag (y)
−κρpBT B AT 1 0
−A −κρp1 0 1

 . (32)

These iterative solutions form the path-following algorithm in a neighborhood of the regularized
central path

Nβ (ρ) =
{
(x, y, s, z) :

∥∥Fρ (x, y, s, z)
∥∥

∞ ≤ βρ
}

,

with β ∈ (0, 1).

The complete algorithm is as follows:

Central path projection algorithm

Step 1. Initialization. Set β ∈ (0, 1) and assign scalars b1, b2 and σ in (0, 1). Select (x0, y0, s0, z0) > 0,
κ ∈ (0, 1), p ∈ (0, 1) and ρ0 ∈ (1, ∞) such that (x0, y0, s0, z0) ∈ Nβ(ρ0).

Step 2. Newton’s iterates. If Fρk (xk, yk, sk, zk) = 0 put

(xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk)

and go to Step 3.
Otherwise, find (∆x, ∆y) which solve the following linear system(

diag (sk) + κ (ρk)
p BT B diag (xk) −diag (xk) AT

diag (yk) A diag (zk) + κ (ρk)
p diag (yk)

) (
∆x
∆y

)

=

(
ρke− diag (xk) sk
ρke− diag (zk) yk

)
−
(

c diag (xk)
(
κ (ρk)

p BT B (xk − x̂)− ATyk − sk + c
)

diag (yk)
(

Axk + κ (ρk)
p yk − zk − b

) )
.

(33)

Then set (
∆s
∆z

)
=

(
κ (ρk)

p BT B −AT

A κ (ρk)
p 1

) (
∆x
∆y

)
+

(
κ (ρk)

p BT B (xk − x̂)− ATyk − sk + c
Axk + κ (ρk)

p yk − zk − b

)
.

(34)

Find α such that (xk + λ∆x, yk + λ∆y, sk + λ∆s, zk + λ∆z) > 0 for all λ ∈ (0, α). Then find the
maximal improvement step for λ by the Armijo rule: find the smallest j such that λj = αbj

1 and∥∥∥Fρk

(
xk + λj∆x, yk + λj∆y, sk + λj∆s, zk + λj∆z

)∥∥∥
∞

≤
(

1− σλj

)
‖Fρk (xk, yk, sk, zk) ‖∞

(35)

Set
(xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk) + λj (∆x, ∆y, ∆s, ∆z)

and go to Step 3.

Step 3. Reduction of ρ. Find the maximal improvement step for ρk by the Armijo rule: find the smallest
j such that γj = bj

2 and∥∥∥F(1−γj)ρk
(xk+1, yk+1, sk+1, zk+1)

∥∥∥
∞
≤ β

(
1− γj

)
ρk.

Set ρk+1 = (1− γj)ρk and go to Step 2.

We prove now that starting from the initial iterate defined in Step 1, we obtain a convergent
sequence of iterates. The estimate of the norm F creates a difficulty because of the term ρ

p
k which for
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ρk < 1 cannot be estimated by the first power of ρk. That requires such a choice of the starting point
which cancels the terms with ρp. This goal is achieved by a proper choice of constant κ. The following
lemma is an adaptation of Lemma 4.1 from Zhao and Li (2002).

Lemma B.4.1. The central path projection algorithm is well-defined. The sequence ρk is monotonically
decreasing and (xk, yk, sk, zk) ∈ Nβ(ρk) for all k ≥ 0.

Proof. The proof goes along the lines of the original proof of Zhao and Li (2002). We have only to
remark that the nonsingularity of matrix ∇Fρ follows from the fact that the matrix(

κρpBT B −AT

A κρp1

)
is positive semidefinite for ρ > 0.

For the correctness of Step 3 of the algorithm, we have to show that point (xk+1, yk+1, sk+1, zk+1)
belongs to Nβ(ρk+1). To this end, we have to prove the estimate∥∥Fρk (x, y, s, z)− Fρl (x, y, s, z)

∥∥
∞ ≤ (ρl − ρk) +

(
(ρl)

p − (ρk)
p) ‖(x− x̂, y)‖∞ ,

for ρl ≥ ρk and (x, y, s, z) > 0. Taking into account that κ ≤ 1 that estimate follows from the definition
of F ∥∥Fρk (x, y, s, z)− Fρl (x, y, s, z)

∥∥
∞

≤ (ρl − ρk) + κ
(
(ρl)

p − (ρk)
p) ‖y‖∞ + κ

(
(ρl)

p − (ρk)
p) ∥∥∥BT B (x− x̂)

∥∥∥
∞

≤ (ρl − ρk) +
(
(ρl)

p − (ρk)
p) ‖(x− x̂, y)‖∞ .

The rest of the proof is similar as in Zhao and Li (2002). The boundedness of (xk, yk) follows from
Lemma B.4.2 below.

The proof of the convergence of the iterative sequence requires some modification of the proof by
Zhao and Li (2002). The modification is formulated in the following lemma.

Lemma B.4.2. When the solution set to equation (30) is nonempty, then the sequence (xk, yk, sk, zk) obtained
by the central path projection algorithm is bounded.

Proof. We follow the line of the proof of Theorem 4.1 in Zhao and Li (2002). Let (uk, vk, wk, qk) be
defined as

(uk, vk, wk, qk) =
1
ρk

Fρk (xk, yk, sk, zk) .

Then ‖(uk, vk, wk, qk)‖∞ ≤ β by the definition of Nβ(ρk) and the following system of equations holds

diag (xk) sk = ρk (e + uk) ,

diag (yk) zk = ρk (e + vk) ,

sk = −ATyk + c + κ (ρk)
p BT B (xk − x̂) + ρkwk,

zk = Axk − b + κ (ρk)
p yk + ρkqk.

(36)

Let (x∗, y∗, s∗, z∗) be an optimal solution, i.e. a solution to equation (30). Then (x∗, y∗, s∗, z∗) ≥ 0
and (s∗, z∗) is given by the expression(

s∗

z∗

)
=

(
0 −AT

A 0

) (
x∗

y∗

)
+

(
c
−b

)
. (37)

Due to (28) (x∗)Ts∗ = 0 and (y∗)Tz∗ = 0.

In what follows, we use the positive semidefiniteness(
x
y

)T (
κρpBT B −AT

A κρp1

) (
x
y

)
= κρp ‖Bx‖2

2 + κρp ‖y‖2
2 . (38)
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Then we have

0 ≤
(

x∗

y∗

)T (sk
zk

)
+

(
s∗

z∗

)T (xk
yk

)
=

(
x∗ − xk
y∗ − yk

)T ((
κ (ρk)

p BT B −AT

A κ (ρk)
p 1

) (
xk
yk

)
+

(
c
−b

)
+ ρk

(
wk
qk

)
−
(

κ (ρk)
p BT Bx̂
0

))
+

(
s∗

z∗

)T (xk
yk

)
+

(
xk
yk

)T (sk
zk

)
=−

(
xk − x∗

yk − y∗

)T (
κ (ρk)

p BT B −AT

A κ (ρk)
p 1

) (
xk − x∗

yk − y∗

)
−
(

xk − x∗

yk − y∗

)T ((
κ (ρk)

p BT B −AT

A κ (ρk)
p 1

) (
x∗

y∗

)
+

(
c
−b

)
+ ρk

(
wk
qk

)
−
(

κ (ρk)
p BT Bx̂
0

))
+

(
xk
yk

)T (s∗

z∗

)
+

(
xk
yk

)T (sk
zk

)
=− κ (ρk)

p
∥∥∥∥B (xk − x∗)

yk − y∗

∥∥∥∥2

2
− κ (ρk)

p
(

xk − x∗

yk − y∗

)T
(

BT Bx∗ + (ρk)
1−p κ−1wk − BT Bx̂

y∗ + (ρk)
1−p κ−1qk

)

+

(
xk
yk

)T (sk
zk

)
.

(39)

From equation (36) we obtain

(xk)
T sk = ρkeT (e + uk) , (yk)

T zk = ρkeT (e + vk)

and the estimate ∣∣∣∣∣
(

xk
yk

)T (sk
zk

)∣∣∣∣∣ ≤ ρkc

for some positive constant c.

Finally we obtain∥∥∥∥B (xk − x∗)
yk − y∗

∥∥∥∥2

2
≤
∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥
2

∥∥∥∥∥BT B (x∗ − x̂) + (ρk)
1−p κ−1wk

y∗ + (ρk)
1−p κ−1qk

∥∥∥∥∥
2

+ (ρk)
1−p κ−1c. (40)

Since matrix B is invertible, we have

‖x‖2 ≤
∥∥∥B−1

∥∥∥ ‖Bx‖2 .

Taking into account the above estimates and the estimate ρk ≤ ρ0, we obtain∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥
2
≤ c. (41)

The boundedness of (sk, zk) follows from the above estimate and equation (36).

The complete algorithm is presented on Fig. 2. This algorithm requires an appropriate initial
step: ρ0 and a starting point (x0, y0, s0, z0) ∈ Nβ(ρ0). Hence we choose (x0, y0, s0, z0) > 0 such that
‖Fρ0 (x0, y0, s0, z0)‖∞ ≤ βρ0, which guarantees that (x0, y0, s0, z0) ∈ Nβ(ρ0).

The choice of (x0, y0, s0, z0) starts with y0 = e and z0 = κρ
p
0 e. We choose x0 and s0 so that the

term κρ
p
0 BT B(x0 − x̂) is canceled. Taking x0 = max(e, e + x̂) makes x0 > 0. On the other hand,

κρ
p
0 BT B(x0 − x̂) is a vector with nonzero components bounded from above by κρ

p
0 (1 + ‖x̂−‖). Hence

we define s0,init = BT B(x0 − x̂) and compute κ = 1/‖diag(x0)s0,init‖∞. Then we take s0 = κρ
p
0 s0,init.

That procedure eliminates from ‖Fρ0‖∞ the terms with ρ
p
0 and replaces them by constants. We can

now describe the construction of the initial point step-by-step:

1. Set y0 = e.

2. Set x0 = max(e, e + x̂).

3. Take ρ0 = max
(

1,
∥∥∥∥cATy0 − c
−Ax0 + b

∥∥∥∥
∞

)
+ δ
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Input: Select positive constants: p, β, b1, b2, σ ∈ (0, 1). Select initial values ρ0,
κ ∈ (0, 1] and (x0, y0, s0, z0) > 0 such that (x0, y0, s0, z0) ∈ Nβ(ρ0)

Step 1
If Fρk (xk, yk, sk, zk) = 0
set (xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk) and go to Step 3
Otherwise solve the linear system

(
diag (sk) + κρ

p
k diag (xk) BT B −diag (xk) AT

diag (yk) A diag (zk) + κρ
p
k diag (yk)

) (
∆x
∆y

)

=

ρke− diag (xk)
(

κρ
p
k diag (xk) BT B (xk − x̂)− ATyk + c

)
ρke− diag (yk)

(
Axk + κρ

p
k yk − b

) 
and set

(
∆s
∆z

)
=

(
κρ

p
k BT B −AT

A κρ
p
k 1

) (
∆x
∆y

)
+

(
κρ

p
k BT B (xk − x̂)− ATyk − sk + c

Axk + κρ
p
k yk − zk − b

)
.

Step 2
Find the step size λk such that
(xk+1, yk+1, sk+1, zk+1) = (xk + λk∆x, yk + λk∆y, sk + λk∆s, zk + λk∆z) ∈ Nβ(ρk)
This is achieved in 2 substeps
substep 1
Find α such that ∀λ ∈ (0, α) (xk + λ∆x, yk + λ∆y, sk + λ∆s, zk + λ∆z) > 0
substep 2

Let λk = αbj
1, where j is the smallest integer such that∥∥Fρk (xk + λk∆x, yk + λk∆y, sk + λk∆s, zk + λk∆z)

∥∥
∞

≤ (1− σλk)
∥∥Fρk (xk, yk, sk, zk)

∥∥
∞ .

Step 3
Find the smallest ρk+1 < ρk such that (xk+1, yk+1, sk+1, zk+1) ∈ Nβ(ρk+1).

Let ρk+1 = (1− bj
2)ρk where j is the smallest integer for which we have∥∥Fρk+1 (xk+1, yk+1, sk+1, zk+1)

∥∥
∞ ≤ βρk+1.

Stopping criterion: ρk+1 ≤ tol or ‖Fρk+1(xk+1, yk+1, sk+1, zk+1)‖∞ ≤ tol.

Figure 2: Regularized central path algorithm with projection
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4. Set s0,init = BT B(x0 − x̂).

5. Compute κ = 1/‖diag(x0)s0,init‖∞.

6. Set z0 = κρ
p
0 e.

7. Set s0 = κρ
p
0 s0,init.

8. Compute

ξ =

∥∥Fρ0 (x0, y0, s0, z0)
∥∥

∞
ρ0

.

9. Set β ∈ (ξ, 1).

Remark B.4.3. Due to the above choice of the initial point we have the estimates

‖diag (x0) s0 − ρ0e‖∞ ≤
∣∣∣ρ0 − ρ

p
0

∣∣∣ ≤ ρ0,

‖diag (z0) y0 − ρ0e‖∞ ≤ κ
∣∣∣ρ0 − ρ

p
0

∣∣∣+ (1− κ) ρ0 ≤ ρ0,∥∥∥s0 + ATy0 − c− κρ
p
0 BT B (x0 − x̂)

∥∥∥
∞
≤
∥∥∥ATy0 − c

∥∥∥
∞

,∥∥∥z0 − Ax0 + b− κρ
p
0 y0

∥∥∥
∞
≤ ‖−Ax0 + b‖∞ .

Hence ∥∥Fρ0 (x0, y0, s0, z0)
∥∥

∞ ≤ ρ0

and for a properly chosen δ > 0 the above inequality is sharp and ξ < 1. Then taking β ∈ (ξ, 1) we
obtain the desired estimate ‖Fρ0 (x0, y0, s0, z0)‖∞ ≤ βρ0.

The computational complexity of our algorithm arises from the solution of the (n+m)-dimensional
system (33). We can reduce the dimension of this system observing that it can be written as(

diag (sk) + κ (ρk)
p BT B diag (xk)

)
∆x− diag (xk) AT∆y

= ρke− diag (xk)
(

κ (ρk)
p BT B (xk − x̂)− ATyk + c

)
,

diag (yk) A∆x +
(
diag (zk) + κ (ρk)

p diag (yk)
)

∆y

= ρke− diag (yk)
(

Axk + κ (ρk)
p yk − b

)
.

(42)

When n ≥ m eliminating ∆x gives the equation

Hk∆y =ρke− diag (yk)
(

Axk + κ (ρk)
p yk − b

)
− diag (yk) A

×
(

diag (sk) + κ (ρk)
p diag (xk) BT B

)−1

×
(

ρke− diag (xk)
(

κ (ρk)
p BT B (xk − x̂)− ATyk + c

))
,

(43)

where

Hk =diag (zk) + κ (ρk)
p diag (yk)

+ diag (yk) A
(

diag (sk) + κ (ρk)
p diag (xk) BT B

)−1
diag (xk) AT .

(44)

For ∆x we obtain then

∆x =
(

diag (sk) + κ (ρk)
p diag (xk) BT B

)−1

×
(

diag (xk) AT∆y + ρke− diag (xk)
(

κ (ρk)
p BT B (xk − x̂)− ATyk + c

))
.

(45)

For m > n we can eliminate ∆y to obtain

Mk∆x =ρke− diag (xk)
(

κ (ρk)
p BT B (xk − x̂)− ATyk + c

)
+ diag (xk) AT

×
(
diag (zk) + κ (ρk)

p diag (yk)
)−1 (

ρke− diag (yk)
(

Axk + κ (ρk)
p yk − b

))
,

(46)

where

Mk =diag (sk) + κ (ρk)
p BT B diag (xk)

+ diag (xk) AT (diag (zk) + κ (ρk)
p diag (yk)

)−1 diag (yk) A.
(47)
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For ∆y we obtain then

∆y =
(
diag (zk) + κ (ρk)

p diag (yk)
)−1

×
(
−diag (yk) A∆x + ρke− diag (yk)

(
Axk + κ (ρk)

p yk − b
))

.
(48)

Examples

We show now how the general projection algorithm described above can be used to find an optimal
portfolio with the smallest distance to a given benchmark portfolio. We begin with the mean-CVaR
optimization of Section LP computable portfolio problems. For simplicity, we take X = {u : u ≥ 0}.
Then the linear program corresponding to this problem reads

ξ + 1
1−α ∑N

n=1 pnyn → min,
yn ≥ 0, n = 1, . . . , N,
yn + ξ + rT

n u ≥ 0, n = 1, . . . , N,
uTµ ≥ r0,
u ≥ 0.

(49)

Given the benchmark portfolio wb, we are looking for a solution of the above linear program with the
additional constraint

‖u− wb‖2 → min . (50)

A solution to this problem can be obtained by the central path projection algorithm. To this end,
we define x = (u, ξ, y), c = (0J , 1, p), where 0J is the zero vector of length J and p is the N dimensional
vector with entries pn. Matrix A and vector b are given by the expressions

A =

(
r 0T

N diag (eN)
µ 0 0N

)
, b =

(
c0T

N
r0

)
, (51)

where r is the N× J matrix of discrete returns, 0N denotes the row vector of length N with zero entries
and eN – the row vector of length N with all entries equal 1. We take x̂ = (wb, 0, 0N) and

B =

(
diag

(
eJ
)

0
0 diag (εN+1)

)
, (52)

where εk is the row vector of length k with all entries equal ε.

With the above definitions, the solution obtained by the central path projection algorithm is an
optimal solution to problem (49) with constraint (50).

For the mean-LSAD problem with X = {u : u ≥ 0}, the linear program is

∑N
n=1 pnyn → min,

yn ≥ 0, n = 1, . . . , N,
yn + r̂T

n u ≥ 0, n = 1, . . . , N,
uTµ ≥ r0,
u ≥ 0.

(53)

To reduce this problem to the standard form appropriate for the central path projection algorithm, we
define x = (u, y), c = (0J , p), x̂ = (wb, 0N) and matrices

A =

(
r̂ diag (eN)
µ 0N

)
, b =

(
0T

N
r0

)
, B =

(
diag

(
eJ
)

0
0 diag (εN)

)
, (54)

where r̂ is the N × J matrix of discrete centered returns. Running the central path projection algorithm
with the above defined vectors and matrices, we obtain an optimal solution to problem (53) with
constraint (50).

Numerical examples

The algorithms described in Sections Benders decomposition and Projection algorithm for portfolio
optimization are implemented in R in the package PortfolioOptim. The package offers two public
functions:

• BDportfolio_optim – which performs portfolio optimization using Benders decomposition;
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• PortfolioOptimProjection – which implements the projection algorithm described in Section
Projection algorithm for portfolio optimization.

For solving LP subproblems in BDportfolio_optim, we use function Rglpk_solve_LP from the
R-package Rglpk. All computations are carried out on a computer with Intel Core i5-5200U processor
with 8 GB RAM running Linux operating system.

Benders decomposition algorithm

It has been already observed by Künzi-Bay and Mayer (2006) that a good discrete approximation of a
continuous distribution of returns requires large samples. The size of the sample depends on the goal
of optimization procedure. It has been shown in Künzi-Bay and Mayer (2006) that the value of the
objective function is accurately estimated with samples of size 10 000–20 000. Our experience shows
that estimation of the optimal portfolio weights requires much larger samples.

Consider first the model used in Künzi-Bay and Mayer (2006): they provide the vector of mean µ
and the covariance matrix Σ for monthly returns of 5 assets (MSCI.CH, MSCI.E, MSCI.W, Pictet.Bond
and JPM.Global), and assume that the asset returns have joint normal distribution. We represent
this distribution by a random sample of size N and solve the optimization problem (21) in which we
impose additional constrains taking X = {u : ∑K

k=1 uk = 1, u ≥ 0}. In all computations we take the
target portfolio return r0 = 0.005 and the CVaR confidence level α = 0.95.

First we initialize computations with Künzi-Bay and Mayer (2006) data.

library(mvtnorm)
library(PortfolioOptim)

generate_data_normal <- function (means, covmat, num)
{

k <- ncol(covmat)
sim_data <- rmvnorm (n=num, mean = means, sigma=covmat)
sim_data <- matrix(num, k, data = sim_data)
colnames(sim_data) <- colnames(covmat)
prob <- matrix(1/num,num,1)
mod_returns <- cbind(sim_data, prob)
return (mod_returns)

}

prepare_data_KM <- function ()
{
sample_cov <- matrix(5,5, data = c( 0.003059 , 0.002556 , 0.002327 , 0.000095 , 0.000533,
0.002556 , 0.003384 , 0.002929 , 0.000032 , 0.000762,
0.002327 , 0.002929 , 0.003509 , 0.000036 , 0.000908,
0.000095 , 0.000032 , 0.000036 , 0.000069 , 0.000048 ,
0.000533 , 0.000762 , 0.000908 , 0.000048 , 0.000564))
sample_mean <- c( 0.007417, 0.005822, 0.004236, 0.004231, 0.005534)
colnames(sample_cov) <- c("MSCI.CH", "MSCI.E", "MSCI.W", "Pictet.Bond", "JPM.Global")
return(list( sample_mean = sample_mean, sample_cov = sample_cov))
}

We perform two tests (both tests are run simultaneously). In the first test, we compare computa-
tional time for different sample sizes. In the second test, we compare the accuracy of the obtained
optimal portfolios. We perform computations for different sample sizes; for each sample size we
generate 10 independent samples and assess the mean and the variance of the running time and
portfolio weights. The R code for these tests is as follows.

data_nA <- prepare_data_KM()
sample_cov <- data_nA$sample_cov
sample_mean <- data_nA$sample_mean
k <- ncol(sample_cov)
a0 <- rep(1,k)
Aconstr <- rbind(a0,-a0)
bconstr <- c(1+1e-8, -1+1e-8)
lbound <- rep(0,k)
ubound <- rep(1,k)
R0 = 0.005
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ET <- NULL
weights <- NULL
repetition = 10
sample_size = 10 000 # also run for 100 000 and 1 000 0000

ptm <- proc.time()[3]
for (i in 1:repetition ){
mod_returns <- generate_data_normal (sample_mean, sample_cov, sample_size)
res <- BDportfolio_optim (mod_returns, R0, risk = "CVAR", alpha = 0.95,

Aconstr, bconstr,lbound, ubound, maxiter = 200, tol = 1e-10 )
ET <- c(ET, proc.time()[3] - ptm)
ptm <- proc.time()[3]
weights <- rbind(weights, t(res$theta))

}

cat(''running time and its standard deviation \n'')
print(mean(ET))
print(sqrt(var(ET)))

cat(''optimal portfolio and confidence intervals of its weights \n'')
print((colMeans(weights))*100)
print(sqrt(apply(weights, 2, var))*100*4/sqrt(repetition))

Since standard LP solvers (used for comparison by Künzi-Bay and Mayer (2006)) are too memory
demanding to run on our hardware, we report computational time only for our BDportfolio_optim
function. Table 1 contains the average running times for 10 different realizations together with the
standard deviations.

sample size mean st. dev.

10 000 0.0663 0.0085
100 000 0.4953 0.0363
1 000 000 4.518 0.1086

Table 1: Averaged running time (in sec.) and its standard deviation for computations with different
sample sizes.

The average running time for samples of size 10 000 is slightly smaller than the value reported by
Künzi-Bay and Mayer (2006) (they give the value 0.088 sec.) but it can be attributed to a slightly faster
CPU. It is also visible from Table 1 that even for samples of size 1 000 000 the computational time is
small enough for such sample sizes to be used in practical computations.

The estimates of optimal portfolio weights for different sample sizes are collected in Table 2. The
95% confidence intervals of portfolio weights are reported in brackets. If the difference between
portfolio weights is larger that two standard deviations we conclude that the difference is statistically
significant (this corresponds to 95% two-sided Student-t test whose critical value for the sample of
size 10 is 2.228). The results of Table 2 show that samples of size 10 000 are much to small to produce
reliable portfolio weights. The values for that sample size are statistically significantly different from
the values for 1 000 000 samples. From the values of confidence intervals of portfolio weights we
can conclude that the computation of optimal portfolio weights from samples of size 10 000 can give
values with an error up to 50% (for all non-zero weights and the sample of size 10 000 the confidence
intervals are of order of one half of the corresponding weights). This is a clear indication that to obtain
reliable values of portfolio weights we have to use samples of size 1 000 000 or take the average of a
large number of repetitions, which is computationally equivalent.

We analyze now the effect of the number of assets in portfolio on the accuracy of computations. To
this end, we use the data-set etfdata from the R-package parma. For comparison we take two subsets:
etfdata[1:500,1:5](with 5 assets) and etfdata[1:500,1:10] (with 10 assets). We add to our code a
new function computing the vector of means and covariance matrix for a data set with k assets and
perform computations with k = 5 and k = 10.

library(parma)
library(xts)
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sample size
assets 10 000 100 000 1 000 000

MSCI.CH 9.6 11.2 10.9
(4.33) (1.45) (0.39)

MSCI.E 0.0 0.0 0.0
(0.00) (0.00) (0.00)

MSCI.W 0.0 0.0 0.0
(0.00) (0.00) (0.00)

Pictet.Bond 53.6 56.2 56.8
(13.24) (2.33) (0.83)

JPM.Global 36.8 32.6 32.3
(11.41) (2.37) (0.74)

Table 2: Optimal portfolios for different sample sizes. 95% confidence intervals of portfolio weights
given in parentheses (all values are in percentage points).

library(quantmod)

data(etfdata)
prepare_data <- function (k)
{

quotData <- as.xts(etfdata[1:500, 1:k])
retData = NULL
for (i in 1:k)
retData <- cbind(retData,weeklyReturn(quotData[,i], type='arithmetic'))

colnames(retData) <- colnames(quotData)
sample_cov <- cov(retData)
sample_mean <- colMeans(retData)
return(list(sample_mean = sample_mean, sample_cov = sample_cov))

}

data_nA <- prepare_data(5) # also run with prepare_data(10)
sample_cov <- data_nA$sample_cov
sample_mean <- data_nA$sample_mean
k <- ncol(sample_cov)
a0 <- rep(1,k)
Aconstr <- rbind(a0,-a0)
bconstr <- c(1+1e-8, -1+1e-8)
lbound <- rep(0,k)
ubound <- rep(1,k)

R0 = 0.004
sample_size = 10 000 # also run for 100 000 and 1 000 0000
repetition = 100
weights <- NULL
for (i in 1:repetition ){

returns <- generate_data_normal(sample_mean, sample_cov, sample_size)
res <- BDportfolio_optim (returns, R0, risk = "CVAR", alpha = 0.95,

Aconstr, bconstr, lbound, ubound, maxiter = 200, tol = 1e-10 )
weights <- rbind(weights, t(res$theta))

}
print(sum(sqrt(apply(weights, 2, var))*100*4/sqrt(repetition))/k)

For each data set we generate samples of size 10 000, 100 000 and 1 000 000. For each sample size
and data set we compute optimal portfolios. These computations are repeated 100 times and the
empirical variances of portfolio weights are calculated. Using these results we compute widths of
95% confidence intervals of portfolio weights. To facilitate comparison of results between 5 and 10
assets we report in Table 3 the average width of 95% confidence interval per asset, i.e. the sum of
widths for each asset divided by the number of assets. Notice that there is no significant difference in
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accuracy between portfolios of 5 and 10 assets. It can be interpreted as a kind of robustness of Benders
decomposition algorithm. The results fit almost perfectly to the theoretical picture of the square root
dependence of confidence intervals on sample size. The values in Table 3 for 1 000 000 samples confirm
that with that sample size we can get almost perfect estimate of portfolio weights with the average
confidence interval of 0.1–0.2% which is more than sufficient for practitioners.

sample size
assets number 10 000 100 000 1 000 000

5 0.97 0.29 0.09
10 1.18 0.42 0.15

Table 3: The average width of 95% confidence interval of portfolio weights (values are in percentage
points).

Projection algorithm

In testing the projection algorithm described in Section Projection algorithm for portfolio optimization
the following values of parameters are used δ = 0.5, p = 0.8, σ = 10−3, b1 = 0.9 and b2 = 0.9.
The starting point in all computations is calculated by the procedure described in that Section. The
algorithm is tested on simulated data generated from a normal distribution using the vectors of
means and covariance matrices estimated from the previously used data sets etfdata[1:500,1:5] and
etfdata[1:500,1:10] from the package parma. Samples of 125, 250 and 500 returns are generated
assuming they are weekly returns (the vector of means and covariance matrix appropriately scaled)
which corresponds to 2.5, 5 and 10 years of weekly data. For each sample we compute the vector
of portfolio weights using the function PortfolioOptimProjection with tol = 1e-6 and taking as the
benchmark the portfolio 1/J, i.e. the portfolio with all weights equal to 1/J, where J is the number of
assets in the portfolio. The computation for each sample size and asset set is repeated 10 times.

The code is as follows

data_nA <- prepare_data(5) # also run with prepare_data(10)
sample_cov <- data_nA$sample_cov
sample_mean <- data_nA$sample_mean
k <- ncol(sample_cov)
a0 <- rep(1,k)
Aconstr <- rbind(a0,-a0)
bconstr <- c(1+1e-8, -1+1e-8)
lbound <- rep(0,k)
ubound <- rep(1,k)

w_m = rep(1/k,k)
R0 = 0.005
returns_size =125 # also run for 250 and 500
ET <- NULL
ptm <- proc.time()[3]
for (i in 1:10 ){
mod_returns <- generate_data_normal(sample_mean, sample_cov, returns_size )
res <- PortfolioOptimProjection (mod_returns, R0 , risk = "CVAR", alpha = 0.95,

w_m, Aconstr, bconstr,lbound, ubound, 800, tol = 1e-6 )
ET <- c(ET, proc.time()[3] - ptm)
ptm <- proc.time()[3]
}
cat(''Mean running time and its standard deviation \n'')
print(c( mean(ET), sqrt(var(ET))))

The average running time per one computation and its standard deviation is reported in Table 4.

Taking into account that the sample of size n corresponds to the matrix A of approximate dimension
n× n the results of Table 4 are compatible with the results reported in Table 6.1 of Zhao and Li (2002).
The observation which is missed in Zhao and Li (2002) is the standard deviation of the running time.
This standard deviation is of the same order of magnitude as the average running time. We can
conclude that the computational time depends not only on the size of matrix A but also on the entries,
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number of assets sample size mean sd. deviation

5
125 6.8618 5.7377
250 35.1910 30.2499
500 134.9312 95.2407

10
125 3.1451 1.6976
250 30.0261 22.5226
500 125.1935 104.7991

Table 4: Average running time and its standard deviation for the computation of optimal portfolios
by the central path projection algorithm for different number of assets and different sample sizes (all
values in sec. of CPU time).

which is particularly surprising since samples are drawn from the same distribution. Of course, the
sample of size 125 can be considered as small even for returns of 5 assets. But the sample of size 500 is
already quite large. In addition, the averaged running time is increasing with the sample size, however
that increase is very irregular. At the same time, the standard deviation behaves also irregularly
(similarly as for the averaged running time). All these observations show that the computation time
is very sensitive not only to the dimensionality of the problem but also to a particular realization of
the data. However we can still conclude that on average the algorithm is efficient for moderate-size
portfolio optimization problems. Indeed, Zhao and Li (2002) already observed that the convergence
rate of their algorithm was slow. The same is valid for our extension of their algorithm, which makes
the algorithm not practically applicable for portfolio optimization problems when the size of the
discrete distribution of returns is larger than 103. There is no clear indication which part of the
algorithm has the main effect on slowing down the convergence.

Summary

We presented two optimization algorithms for financial portfolios. These algorithms find optimal
portfolios in problems when the nonlinear optimization in mean-risk setting can be reformulated as a
linear programming problem. The algorithm implementing Benders cuts allows for large samples.
Our experience with very large data samples obtained by simulation from a given distribution shows
that the algorithm is robust and estimated optimal portfolios are very stable (the standard deviation of
portfolio weights is below 0.5 %). The second algorithm based on the central path projection can be
useful for small data samples where solutions are not unique and form a multidimensional simplex.
Extracting from this simplex a point with the smallest distance to a given benchmark portfolio can be
used to improve the decision process in asset management. However, the second algorithm which
implements the central path projection requires further analysis. In particular, we would like to make
the algorithm’s performance and running time less dependent on the realization of the data.
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Welfare, Inequality and Poverty Analysis
with rtip: An Approach Based on
Stochastic Dominance
by Angel Berihuete, Carmen D. Ramos and Miguel A. Sordo

Abstract Disparities in economic welfare, inequality and poverty across and within countries are
of great interest to sociologists, economists, researchers, social organizations and political scientists.
Information about these topics is commonly based on surveys. We present a package called rtip that
implements techniques based on stochastic dominance to make unambiguous comparisons, in terms
of welfare, poverty and inequality, among income distributions. Besides providing point estimates
and confidence intervals for the most commonly used indicators of these characteristics, the package
rtip estimates the usual Lorenz curve, the generalized Lorenz curve, the TIP (Three I’s of Poverty)
curve and allows to test statistically whether one curve is dominated by another.

Introduction

Surveys of income provide policy makers, researchers, social organizations and general public with a
rich source of data to address and understand the topics of welfare, income inequality and poverty. In
one approach, income differences among states, populations or groups are summarised by univariate
indices. The most popular aggregate inequality and poverty indices (such as the Gini index and
the at-risk-of-poverty rate) summarize inequality or poverty by a univariate index. Such an index
is easy to compare over time, across regions or countries but may be insufficient for more detailed
research and refined decision making. Increasing availability of data sets from a variety of statistical
sources (including national and international statistical offices) allows scientists and policy-makers to
carry out detailed comparisons by developing and applying more sophisticated tools and graphical
representations from real data sets.

This paper presents an R package, called rtip, that implements methods and techniques based on
stochastic dominance to make unambiguous comparisons, in terms of welfare, poverty and inequality,
of income distributions. Stochastic dominance requires unanimity in rankings for large classes of
indices (rather than simpler rankings based on a single index). We regard one income distribution
as dominating another only if the same ranking is obtained for them with an entire family of indices.
Stochastic dominance rules for income distributions can be easily implemented by seeking a dominance
relation between three graphical representations: the Lorenz curve, the generalized Lorenz curve
and the TIP (Three I’s of Poverty) curve (also called the cumulative poverty gap (CPG) curve or the
poverty profile curve, see Barrett et al. (2016) for other names). Two income distributions can be
unambiguously ranked in terms of inequality if their Lorenz curves do not intersect (see Atkinson,
1970). Similarly, two income distributions can be unambiguously ranked with respect to a wide class
of reasonable social welfare functions (see Shorrocks, 1983, for details) if their respective generalized
Lorenz curves do not intersect. The literature also contains results (see Jenkins and Lambert, 1998a,b;
Sordo and Ramos, 2011) connecting unambiguous poverty rankings by general classes of poverty
measures with non-intersections of TIP curves. The package rtip estimates these curves directly from
data sets and implements some tests to assess any statistical significance.

We can find some functions, in different software languages, addressing the analysis of income
distributions via generalized Lorenz curves and their associated indices of inequality. For example,
the Stata commands1 glcurve (Jenkins and Van Kerm, 2004; Van Kerm and Jenkins, 2001), svylorenz
(Jenkins, 2006), clorenz (Araar, 2005), alorenz (Azevedo and Franco, 2006) and lorenz (Jann, 2016),
estimate, draw and provide variance estimates for generalized Lorenz curves. The command povdeco
(Jenkins, 1999) estimates the poverty indices from the Foster et al. (1984) family. With rtip, we want
to make these methods available to R users 2. We can find some packages in the R environment
to analyse inequality and poverty of income distributions. For example, various indices of poverty
and inequality are included in the packages IC2 (Plat, 2012) and ineq (Zeileis, 2014), which also
provide some graphical tools, including the Lorenz curve. A comprehensive collection of indicator
methodology is included in the package laeken (Alfons and Templ, 2013), which implements functions
and generalized Lorenz curves to estimate a wide set of social inclusion and poverty indicators in

1user-written functions in Stata are called commands.
2This code was developed in the context of a project undertaken by the authors (Sordo et al., 2014) to compare,

by using stochastic dominance techniques, inequality and poverty in Andalusia with other European regions. rtip
has been also applied to the study of inequality by using tax return data (Sordo et al., 2017).
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complex surveys. An interesting book combining EU-SILC surveys (the survey on income and living
conditions conducted by Eurostat, the statistical office of the EU) and R is Longford (2015).

Some strengths of using the package rtip presented in this paper compared with others are the
following:

(a) rtip provides functions to load microdata having EU-SILC format (see Datasets section).

(b) rtip evaluates income distributions on several equivalence scales and with adjustment for dif-
ferences in household composition. The choice of the equivalence scale is important and can
considerably affect the results (see, for example, Buhmann et al. (1988); Jenkins and Cowell
(1994); De Vos and Zaidi (1997), who showed that the choice of the equivalence scale is not
innocuous). Although the package rtip employs by default the OECD-modified scale used by
Eurostat, it also allows to use the parametric scale in Buhmann et al. (1988), which covers almost
all equivalence scales used in practice.

(c) Besides providing point estimates and confidence intervals for the most commonly used indica-
tors for inequality, welfare and poverty, the package rtip implements estimation of the usual
Lorenz curve, the generalized Lorenz curve and the TIP curve and provides a way, based on the
distribution-free test for generalized Lorenz and deprivation dominance suggested by Xu (1997)
and Xu and Osberg (1998), respectively, to test statistically whether a curve is dominated by
another.

The remainder of this paper is organized as follows. First, we explain the processes of loading data
and setting up the surveys. Then, we briefly describe the indices and curves included in the package,
explaining how to estimate them with rtip. Description of the statistical procedures implemented to
test dominance of these curves is also presented and illustrated with examples. Finally we provide
conclusions as well as a section to explain to users how to load their own datasets.

Datasets

The rtip package offers the possibility to load data extracted from EU-SILC using the loadEUSILC
function. Users can modify loadEUSILC in order to load their own datasets. For instance, loadLCS
function is a modification of loadEUSILC to load data from the Spanish Living Conditions Survey (see
the Appendix). Note that rtip is not restricted to datasets with EU-SILC format and users can load
their own datasets.

The rtip package contains two datasets: eusilc2 and LCS2014.

library(rtip)
data(eusilc2)
data(LCS2014)

The eusilc2 dataset is a modification of the synthetic eusilc dataset in the package laeken
(see Alfons and Templ, 2013). The aim of this modification3 is to set up the variables according to
expectations of the rtip package (see Table 1). The eusilc dataset is related to Austrian EU-SILC data
from 2006, and was generated to comply with EU-SILC confidentiality rules. The LCS2014 dataset4 is a
data frame containing a selection of variables from the living conditions survey released in 2014 by the
Spanish National Statistics Institute (INE in Spanish).

Both datasets, eusilc2 and LCS2014, have seven variables which are briefly described in Table
1 (for further information see Eurostat, 2007). The records in these datasets are households, not
individuals. Thus the 14,827 individual-level records in the eusilc dataset are condensed to 6,000
household-level records in the eusilc2 dataset.

Setting up the surveys

The income variable most commonly studied for the inequality and poverty assessment is the dispos-
able household income. Most official statistics (and rtip) use the equivalised disposable household
income, which is the total disposable income of the household adjusted by taking into account its

3The code used to modify the eusilc dataset can be found at https://github.com/AngelBerihuete/rtip/
blob/master/data-raw/eusilc_eusilc2.R.

4The dataset can be obtained at http://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&
cid=1254736176807&menu=ultiDatos&idp=1254735976608.
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Name of the variable Meaning

DB010 Year of the survey
DB020 Country
DB040 Region
DB090 Household cross-sectional weight
HX040 Household size
HX050 Equivalised household size
HX090 Equivalised disposable income

Table 1: Variables needed before setting up the dataset. Variables HX050 and HX090, provided by
Eurostat, are calculated using the OECD-modified scale.

composition (number of adults and children). The adjustment is made by dividing the disposable
household income by the equivalised household size, which is defined as the number of household
members converted into equivalent adults by using a specific equivalence scale. The equivalisation
factor employed by Eurostat is the OECD-modified scale, which gives a weight of 1.0 to the first
person aged 14 or more, a weight of 0.5 to other persons aged 14 or more and a weight of 0.3 to
persons aged 0-13. rtip uses this equivalisation factor by default, but can also use the parametric scale
of Buhmann et al. (1988). In this case, the equivalised household size is given by ns, where n is the
number of members of the household and s is a parameter known as elasticity of equivalence, with
0 ≤ s ≤ 1. The value s = 0.5 is frequently used to make comparisons between countries (when s = 0
the composition is irrelevant).

The information is held in two files: basic household register (H-file) and household data (D-file).
These files are loaded by functions loadEUSILC or loadLCS from EU-SILC or INE surveys, respectively.
Next, the data is set up by using the function setupDataset which has one mandatory argument
(dataset) and five optional arguments: the country to be analysed (country), the region of the country
(region), the equivalence scale (s), a deflator (deflator) and the purchasing power parity rate (pppr).
All optional arguments have NULL default value, except for country = ’ES’.

The country and the region are expressed using the nomenclature of territorial units for statistics5.
All regions of the country will be selected by default (region = NULL) but it is possible to select one or
more regions using a character string. Income is expressed in current monetary units. If deflator is
not NULL the value assigned will be used as a deflator. Finally, by setting up the ratio of the purchasing
power parity conversion factor to market exchange rate (pppr) we can compare the income across
countries.

dataset <- setupDataset(eusilc2, country = "AT", region = NULL,
s = NULL, deflator = NULL, pppr = NULL)

Next, we form a data frame with a new variable ipuc. The ipuc variable is the income per unit of
consumption6 (or equivalised disposable income) which also takes into account the deflator and the
purchasing power parity rate. If deflator = NULL, pppr = NULL and s = NULL, ipuc is set to HX090
(see Table 1).

Indicators and curves

In this section we briefly describe some indicators and curves that are widely used in the study of
poverty, inequality and welfare. The eusilc2 dataset contains all the data necessary for estimating
them.

Let X be a random variable7 with cumulative distribution function F, and let ζp = F−1(p) be the
quantile function with 0 ≤ p ≤ 1. Let n be the number of observations in the sample, let x := {xi}n

i=1
be individual incomes sorted into ascending order so that x1 ≤ x2 ≤ · · · ≤ xn, and let ω := {ωi}n

i=1
denote the corresponding sample weights8. Weighted quantiles for the estimation of the population
values are given by ζ̂p(x, ω) = x(r), where x(r) is the r-th order statistic such that r = [p ∑n

i=1 ωi] is the
closest integer not greater than p ∑n

i=1 ωi. ζ̂p(x, ω) is the sample quantile level such that 100p percent

5Nomenclature of territorial units can be found at http://ec.europa.eu/eurostat/web/nuts/overview.
6The number of units of consumption is the number of household members converted into equivalent adults by

using a specific equivalence scale.
7Unless otherwise stated it refers to equivalised disposable household income.
8Following indications in Alfons and Templ (2013), we take into account sample weights in the estimation of

indices and curves.
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of the weighted sample of observations is less than or equal to ζ̂p(x, ω) and 100(1− p) percent of the
weighted observations is greater (Beach and Kaliski, 1986).

Indicators of poverty, inequality and welfare

Poverty curves and indicators are based on the poverty threshold that distinguishes between poor
and non-poor households. The median income, ζ0.5, is frequently used for this purpose. On the
recommendation of Eurostat this threshold, called the at-risk-of-poverty threshold, is set at 60% of the
national median equivalised disposable income (arpt = 0.6 · ζ0.5) and is estimated by

ârpt = 0.6 · ζ̂0.5(x, ω), (1)

using the function arpt(). The default setting of 60% can be easily changed via the argument pz.
Optional variable names can be set up for the income per unit of consumption (ipuc), the household
cross-sectional weight (hhcsw) and the household size (hhsize). Default values correspond to EU-SILC
names. For the sake of clarity we use the default variable names in the following examples. A sample
call to arpt would look like:

arpt(dataset, ipuc = "ipuc", hhcsw = "DB090", hhsize = "HX040", pz = 0.6)

The indicator called at-risk-of-poverty rate, defined as the proportion of persons with an equivalised
disposable income below the at-risk-of-poverty threshold, is estimated using the function arpr() (see
Table 2). A sample call to arpr would look like:

arpr(dataset, arpt.value = arpt(dataset, pz = 0.6))

Using the function arpr() and changing the argument pz to 40%, 50% and 70% in arpt(), we
obtain the dispersion around the at-risk-of-poverty threshold (percentage of persons with an equivalised
disposable income below 40%, 50% and 70% of the national median equivalised disposable income,
respectively). For example:

arpr(dataset, arpt.value = arpt(dataset, pz = 0.4))

Table 2 contains a brief description of some other well-known poverty indicators such as the Foster,
Greer and Thorbecke (FGT1) poverty index (Foster et al., 1984). This index is calculated by the function
s1(). Its normalized version, also called the poverty gap ratio, is obtained by setting norm = TRUE.
In this case, the index provides the average of the ratio of the poverty gaps9 to the at-risk-of-poverty
threshold.

s1(dataset, arpt.value = arpt(dataset), norm = TRUE)

The rtip package also provides the function s2() to calculate the Sen-Shorrocks-Thon (SST) poverty
index (Shorrocks, 1995; Zheng, 1997). It is estimated as twice the area below the TIP curve (see TIP
curve in next section).

For income inequality, we calculate the most commonly used indices of inequality, the Gini index,
and the quintile share ratio (see Table 2). The mean income per person, per household and per unit of
consumption are estimated by the respective functions mip(), mih() and miuc().

Confidence intervals can be obtained for all the indicators in rtip package by a bootstrap method.
We use the boot package (Canty and Ripley, 2016) to generate bootstrap replicates. The user can
change the number of replicates with the parameter rep which, by default, is set to 500. If verbose =
TRUE we obtain a plot showing the histogram of the indicator estimations (replicates) and the Standard
Normal quantile-quantile plot of bootstrap estimates. For instance, in case of the arpt function and
98% confidence interval, a typical call would look like:

arpt(dataset, pz = 0.6, ci = 0.98, rep = 500, verbose = TRUE)

Curves for inequality, welfare and poverty

Lorenz and generalized Lorenz curve

The Lorenz curve (Gastwirth, 1971) is defined as

9A poverty gap is the difference between the at-risk-of-poverty threshold and the equivalised disposable income,
with the non-poor being given a difference of zero.
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L(p) =
1
µ

∫ p

0
ζqdq,

and the generalized Lorenz (GL) curve is given by GL(p) = µL(p) (Shorrocks, 1983) where µ denotes
the mean income. The values of the GL curve are estimated on a regular grid of K points selected
such that pi = i/K, and their population quantiles denoted by ζpi = F−1(pi) with i = 1, 2, ..., K. The
conditional mean of income less than or equal to ζpi is denoted as γi = IE

[
X|X ≤ ζpi

]
, for i = 1, 2, ..., K

( γK = µ ). The K× 1 vector of GL ordinates at p1, p2, . . . , pK is given by θ = [p1γ1, p2γ2, . . . , pKγK ]
′

and can be estimated consistently by

θ̂ = [p1γ̂1, p2γ̂2, . . . , pKγ̂K ]
′, (6)

where the sample counterpart of γi is

γ̂i =

ri

∑
j=1

ωjxj

ri

∑
j=1

ωj

,

and ri = [pi ∑n
j=1 ωj] (the closest integer not greater than pi ∑n

j=1 ωj) is an integer such that ζ̂pi (x, ω) =

x(ri) is the ri-th sample quantile level such that 100pi percent of the weighted sample of observations is
less than or equal to ζ̂pi (x, ω), i = 1, 2, ..., K (Beach and Davidson, 1983; Beach and Kaliski, 1986). In the
package rtip, the function lc() is implemented to estimate both Lorenz and GL curve ordinates. This
function calculates the Lorenz curve for the number of abscissae pi given by the argument samplesize.
Following the examples in Beach and Davidson (1983), Beach and Kaliski (1986) and Xu (1997), we set
samplesize = 10 by default. If samplesize = complete, ordinates are computed in each value along
the whole distribution. By setting generalized = TRUE, the GL curve is calculated. The left-hand
panel of Figure 1 shows the Lorenz curve for income distribution of the Burgenland region. It is
produced with:

Burgenland <- setupDataset(eusilc2, country = "AT", region = "Burgenland")
lorenz_curve <- lc(Burgenland, samplesize = 10, generalized = FALSE, plot = FALSE)

p1 <- ggplot(lorenz_curve, aes(x.lg, y.lg)) + geom_line() +
geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),

linetype = "dotted", color = "grey") +
scale_x_continuous(expression(p)) +
scale_y_continuous(expression(L(p))) + theme_bw()

print(p1)

The variable lorenz_curve contains the abscissae pi and Lorenz curve ordinates. A less elaborate
plot is obtained by setting plot=TRUE in lc function.

TIP curve

For an individual (or household-level) measure of deprivation Y, with distribution function FY , the
deprivation profile for FY is (Shorrocks, 1995, 1998)

D(FY , p) =
∫ ∞

F−1
Y (1−p)

ydFY(y) =
∫ 1

1−p
F−1

Y (q)dq, p ∈ [0, 1].

Let z > 0 be a poverty threshold and let X be an income random variable. If we consider the
poverty gap Y = (z− X)+ as the measure of deprivation, where x+ = max{x, 0}, the TIP (Three I’s of
Poverty) curve is obtained and denoted TIP(p, z). Alternatively, we can write (Jenkins and Lambert,
1998a,b)

TIP(p, z) =
∫ rX

z

0

(
z− F−1(t)

)
dt, p ∈ [0, 1],

where rX
z = sup {F(x) : x < z} is the proportion of people with income below z. Scaling by z the

poverty gap, that is, using Y = (z− X)+/z as the measure of deprivation, we obtain the normalized
TIP curve, which is simply TIP(p, z)/z.

For its estimation, let the observations of poverty gaps y := {yi}n
i=1 be ordered in increasing order

so that y1 ≤ y2 ≤ · · · ≤ yn with ẑ = ârpt given by equation (1) and let ω := {ωi}n
i=1 denote the
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Figure 1: Lorenz curve for Burgenland region (left). Dotted diagonal represents the benchmark for a
perfectly equal income distribution. Normalized TIP curve for Burgenland region (right).

corresponding sampling weights. Using the relation between deprivation profile and the GL curve,
D(FY , p) = µ(FY)−GL(FY , 1− p) for p ∈ [0, 1], the K× 1 vector of TIP curve ordinates corresponding
to [p1, p2, . . . , pK ]

′ is estimated consistently by

φ̂ = [(γ̂K − pK−1γ̂K−1), (γ̂K − pK−2γ̂K−2), . . . , (γ̂K − p1γ̂1), γ̂K ]
′, (7)

where the sample counterpart of γi is

γ̂i =
∑ri

j=1 ωjyj

∑ri
j=1 ωj

,

and ri = [pi ∑n
j=1 ωj] (the closest integer not greater than pi ∑n

j=1 ωj) is an integer for which ζ̂pi (y, ω) =

y(ri) is the ri-th sample quantile level such that 100pi percent of the weighted sample of poverty gaps
is less than or equal to ζ̂pi (y, ω), i = 1, 2, ..., K (Beach and Kaliski, 1986; Xu and Osberg, 1998). The
function tip() estimates both the unnormalized and normalized TIP curve ordinates. Normalization
is established by setting norm = TRUE and the estimated poverty threshold, ẑ, is computed by the
function arpt. The number of ordinates computed is given by the the argument samplesize, and
following the example in Xu and Osberg (1998), we set samplesize = 50 by default. If samplesize
= complete, tip ordinates are computed in each value along the whole distribution. The right-hand
panel of Figure 1 shows the normalized TIP curve for income distribution of Burgenland region. It is
produced with:

tip_curve <- tip(Burgenland, arpt(Burgenland), samplesize = 50, norm = TRUE)
p2 <- ggplot(tip_curve, aes(x.tip, y.tip)) + geom_line() +

scale_x_continuous(expression(p)) +
scale_y_continuous(expression(TIP(p, z))) +
theme_bw()

print(p2)

As in the previous example, a less elaborate plot is obtained by setting plot=TRUE in the call to the
tip function.

Dominance tests

Given two income distributions X1 and X2, X1 is said to Lorenz dominate X2 if the Lorenz curve of
X1 lies everywhere above that of X2, which is interpreted as less inequality in X1 than in X2. The
normative aspects of Lorenz dominance have been studied by Atkinson (1970) and its relationship to
other dominance criteria may be found in Arnold (1987). Similarly, X1 is said to dominate X2 in the
generalized Lorenz sense if the generalized Lorenz curve of X1 lies everywhere above that of X2, which
is interpreted in terms of welfare (see Shorrocks, 1983). For the relationship of generalized Lorenz
dominance to other dominance criteria, see Ramos et al. (2000). Given a poverty threshold z > 0, X1
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is said to TIP dominate X2 if TIPX1 (p, z) ≥ TIPX2 (p, z) for all p ∈ (0, 1), which means that there is
less poverty in X2 than in X1 according to various wide classes of poverty indices, see Jenkins and
Lambert (1998a,b) and Sordo et al. (2007). If we use different poverty thresholds for different income
distributions, that is, z1 in X1 and z2 in X2, non-intersection of normalized TIP curves is equivalent to
unanimous poverty orderings by different classes of poverty indices based on normalized poverty
gaps.

Since the initial papers by Beach and Davidson (1983) and Bishop et al. (1989) focussing on
statistical tests for Lorenz dominance and generalized Lorenz dominance, respectively, many studies
have been conducted to implement these ranking criteria empirically (see Chapter 17 in Duclos and
Araar (2006) for a review). Some tests in the literature are based on a two-stage testing strategy
including multiple pairwise sub-tests. Xu (1997) offers an alternative to this approach by providing a
joint and simpler procedure to test for generalized Lorenz dominance directly, which is adapted to
testing for deprivation dominance in Xu and Osberg (1998). We have implemented Xu (1997) and Xu
and Osberg (1998) procedures in rtip.

Generalized Lorenz dominance

To make statistical inference about GL dominance from sample GL curve estimates we have imple-
mented the asymptotically distribution-free statistical inference procedure in Xu (1997). This article
provides one test based on Theorem 1 in Beach and Davidson (1983) which derives the asymptotic
joint variance-covariance matrix of GL curve ordinates. EU-SILC surveys involve sampling weights.
We implemented an extension of the methodology in Beach and Davidson (1983) to samples which
involve weighted observations (see Beach and Kaliski, 1986).

Given two income distributions, X1 and X2, let θ1 and θ2 be the K× 1 vectors of GL curve ordinates
for X1 and X2, respectively. The dominance relation tested by the null hypothesis is H0 : θ1 − θ2 ≥ 0
against the alternative hypothesis H1 : θ1 − θ2 6≥ 0. The test statistic, T, for the GL dominance is (see
Xu, 1997)

T = ∆̃′
[

Σ̂1
n1

+
Σ̂2
n2

]−1

∆̃, (8)

where ∆̃ = [(θ̂1 − θ̂2)− (θ̃1 − θ̃2)]; ni is the size of a random sample from Xi; Σ̂i is the estimated K× K
covariance matrix for the unrestricted vector of GL ordinates θ̂i given by (6) while θ̃i is the restricted
estimate minimizing (i = 1, 2)

∆′
[

Σ̂1
n1

+
Σ̂2
n2

]−1

∆ (9)

s.t. (θ1 − θ2) ≥ 0

with ∆ = [(θ̂1− θ̂2)− (θ1− θ2)]. The auxiliary function OmegaGL() computes the empirical unrestricted
vector of GL curve ordinates, θ̂i, and its corresponding covariance matrix, Σ̂i, i = 1, 2. The function
for testing generalized Lorenz dominance between two income distributions is testGL(). For both
functions the number of ordinates, K, estimated by rtip and employed for testing dominance is
controlled by the argument samplesize. Following the example in Xu (1997) the default value is
samplesize=10. The upper-and lower-bounds of critical values (at the α significance level) for testing
inequality restrictions are provided by Kodde and Palm (1986). If the value of the T statistic (called
Tvalue) falls into an inconclusive region (between the lower- and upper-bounds) the simulated p-value
is estimated following Wolak (1989), otherwise the p-value is set to NA. For instance, to test the null
hypothesis that the income distribution of Burgenland dominates the income distribution of Carinthia
in the generalized Lorenz sense we use the following procedure:

Burgenland <- setupDataset(eusilc2, country = "AT", region = "Burgenland")
Carinthia <- setupDataset(eusilc2, country = "AT", region = "Carinthia")
testGL(Burgenland, Carinthia, generalized = TRUE, samplesize = 10, alpha = 0.05)

The output produced is:

$Tvalue
[,1]

[1,] 7723.701

$p.value
[1] NA
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Figure 2: Generalized Lorenz curves for Burgenland and Carinthia (left). Lorenz curves for Burgenland
and Carinthia Dotted diagonal represents the benchmark for a perfect equality (right).

$decision
[1] "Reject null hypothesis"

In this example, the null hypothesis of dominance is rejected with a significance level of 5%. The
left-hand panel of Figure 2 displays the two estimated GL curves.

To test the null hypothesis that the income distribution of Carinthia dominates the income distri-
bution of Burgenland in the Lorenz sense we use the function testGL() as follows:

testGL(Carinthia, Burgenland, generalized = FALSE)

This results in:

$Tvalue
[,1]

[1,] 4.049037e-12

$p.value
[1] NA

$decision
[1] "Do not reject null hypothesis"

In this case we do not have evidence to reject the null hypothesis with a significance level of 5%.
The right-hand panel of Figure 2, which displays the two estimated Lorenz curves, suggests (without
statistical significance) that Carinthia may dominate Burgenland in the Lorenz sense.

TIP dominance

To make statistical inference about TIP dominance we have implemented the asymptotically distribution-
free statistical procedure in Xu and Osberg (1998). As in the case of GL dominance, we have followed
the methodology suggested by Beach and Davidson (1983) and Beach and Kaliski (1986).

Let’s consider two poverty thresholds z1, z2 > 0; two income distributions, X1 and X2, and the
corresponding poverty gaps Yi = (zi − Xi)

+, i = 1, 2. Let φ1 and φ2 be the K × 1 vectors of TIP
curve ordinates for X1 and X2, respectively. The dominance relation tested on the null hypothesis is
H0 : φ1 − φ2 ≥ 0 against the alternative hypothesis H1 : φ1 − φ2 6≥ 0. Following the methodology in
Xu and Osberg (1998) to test for TIP dominance between two TIP curves, the test-statistic implemented
is such that

T = ∆̃′
[

Ω̂1
n1

+
Ω̂2
n2

]−1

∆̃, (10)

where ∆̃ = [(φ̂1 − φ̂2)− (φ̃1 − φ̃2)]; ni is, for i=1 ,2, the size of a random sample from Xi; Ω̂i = RΣ̂iR′,
Σ̂i is the estimated K× K covariance matrix for the unrestricted vector of GL ordinates and R is the

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 337

K× K differencing matrix10 according to



0 · · · 0 −1 1
0 · · · −1 0 1
0 · · · 0 0 1
...

. . .
...

...
...

−1 · · · 0 0 1
0 · · · 0 0 1


The matrix Ω̂i is, for i = 1, 2, the estimated K× K covariance matrix for the unrestricted vector of

TIP ordinates φ̂i given by (7) while φ̃i is the restricted estimate minimizing

∆′
[

Ω̂1
n1

+
Ω̂2
n2

]−1

∆ (11)

s.t. (φ1 − φ2) ≥ 0

with ∆ = [(φ̂1 − φ̂2)− (φ1 − φ2)]. Since the TIP curve becomes horizontal at p equals to the at-risk-
of-poverty rate (arpr), the test has only been implemented over the interval [0, max{arpr1, arpr2}]
where arpri is the at-risk-of-poverty rate for Xi, i = 1, 2. Therefore, φ̂i are truncated with the same
dimension k = max{arpr1, arpr2} < K and the dimension of Ω̂i is k× k, for i = 1, 2. The auxiliary
function OmegaTIP() computes the empirical unrestricted vector of TIP curve ordinates, φ̂i, and its
corresponding covariance matrix, Ω̂i, i = 1, 2. The function for testing TIP dominance between two
income distributions is testTIP(). Following the practical example in Xu and Osberg (1998) the
default value is samplesize=50. The rules of rejection and non-rejection based on the value of the
statistic T (called Tvalue) are in Xu and Osberg (1998). By setting the argument norm equal to TRUE,
the function testTIP() uses normalized TIP curves. For example, to test the null hypothesis that the
normalized TIP curve of Carinthia dominates the normalized TIP curve of Burgenland we use the
following procedure:

testTIP(Carinthia, Burgenland, norm = TRUE, samplesize = 50, alpha = 0.05)

This yields:

$Tvalue
[,1]

[1,] 11939.99

$p.value
[1] NA

$decision
[1] "Reject null hypothesis"

The null hypothesis of dominance is rejected with a significance level of 5%. Figure 3 displays the
two estimated normalized TIP curves.

Conclusions

The package rtip presented in this paper compares income distributions in terms of welfare, poverty
and inequality. Besides providing point estimates and confidence intervals for some commonly used
indicators, rtip implements the methodology and techniques based on the stochastic dominance to
compare income distributions. In particular, we can estimate with rtip the usual Lorenz curve, the
generalized Lorenz curve, the TIP curve of income distributions and test statistically whether one
curve is dominated by another. Although potential users of rtip may have their own data, the package
allows to load microdata from EU-SILC survey and Spanish Living Conditions survey and offers
different equivalence scales to adjust measures of income for differences in household composition. A
development version of the rtip package can be found at GitHub11.

10Recall that the deprivation profile D(FY , ·) for FY is related to the GL curve GL(FY , ·) of the deprivation measure
for FY as follows: D(FY , p) = µ(FY)− GL(FY , 1− p), for p ∈ [0, 1].

11https://github.com/AngelBerihuete/rtip.
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Figure 3: Normalized TIP curves for Burgenland and Carinthia regions (the normalization factors are
the respective poverty thresholds).
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Appendix

Users can create their own load function using the loadLCS function as a template (see the example
below). The load function must produce a data frame with the following variable names: DB010,
DB020, DB040, DB090, HX040, HX050, HX090 (see Table 1 to set properly the variables). In the case of
the Spanish Living Conditions Survey, for instance, the Spanish Statistical Office delivers four files
with many variables. We only require some of them to work with rtip:

• ‘lcs_d_file.csv’:

– DB010: a numeric vector containing the year of the survey.

– DB020: a factor with one level which is the country considered.

– DB030: a numeric vector containing the household ID.

– DB040: a factor with as many levels as there are regions in the country.
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– DB090: a numeric vector containing information about household cross-sectional weight.

• ‘lcs_hfile.csv’:

– HB010: a numeric vector containing the year of the survey.

– HB030: a numeric vector containing the household ID.

– HX040: an integer vector containing information about the household size.

– HX240: a numeric vector containing information about the equivalised household size.
The scale employed is the modified OECD scale.

– vhRentaa: a numeric vector containing the total disposable household income.

A function to load these files and variables is the following:

loadLCS <- function(lcs_d_file, lcs_h_file){

dataset1 <- read.table(lcs_d_file, header=TRUE, sep= ',')
dataset2 <- read.table(lcs_h_file, header=TRUE, sep= ',')

check1 <- identical(dataset1$DB010, dataset2$HB010)
check2 <- identical(dataset1$DB030, dataset2$HB030)

if (!check1) {
stop('Different years!')

} else if (!check2) {
stop('You do not have the same identification for homes')

} else {
subdataset1 <- subset(dataset1, select = c("DB010", "DB020","DB030",

"DB040", "DB090"))
subdataset2 <- subset(dataset2, select = c("HB010", "HB030", "HX040",

"HX240", "vhRentaa"))

subdataset2$HX050 <- subdataset2$HX240
subdataset2$HX090 <- subdataset2$vhRentaa/subdataset2$HX240

dataset <- cbind(subdataset1, subdataset2)
dataset <- subset(dataset, select = c("DB010", "DB020","DB040",

"DB090", "HX040", "HX050",
"HX090"))

return(dataset)
}

}

The code required to reproduce the examples in this paper can be downloaded from: https:
//gist.github.com/AngelBerihuete/7e88d55845044ce04a9e61edcd5954f2.
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dimRed and coRanking—Unifying
Dimensionality Reduction in R
by Guido Kraemer, Markus Reichstein, and Miguel D. Mahecha

Abstract “Dimensionality reduction” (DR) is a widely used approach to find low dimensional and
interpretable representations of data that are natively embedded in high-dimensional spaces. DR can be
realized by a plethora of methods with different properties, objectives, and, hence, (dis)advantages. The
resulting low-dimensional data embeddings are often difficult to compare with objective criteria. Here,
we introduce the dimRed and coRanking packages for the R language. These open source software
packages enable users to easily access multiple classical and advanced DR methods using a common
interface. The packages also provide quality indicators for the embeddings and easy visualization of
high dimensional data. The coRanking package provides the functionality for assessing DR methods
in the co-ranking matrix framework. In tandem, these packages allow for uncovering complex
structures high dimensional data. Currently 15 DR methods are available in the package, some of
which were not previously available to R users. Here, we outline the dimRed and coRanking packages
and make the implemented methods understandable to the interested reader.

Introduction

Dimensionality Reduction (DR) essentially aims to find low dimensional representations of data
while preserving their key properties. Many methods exist in literature, optimizing different crite-
ria: maximizing the variance or the statistical independence of the projected data, minimizing the
reconstruction error under different constraints, or optimizing for different error metrics, just to name
a few. Choosing an inadequate method may imply that much of the underlying structure remains
undiscovered. Often the structures of interest in a data set can be well represented by fewer dimensions
than exist in the original data. Data compression of this kind has the additional benefit of making the
encoded information better conceivable to our brains for further analysis tasks like classification or
regression problems.

For example, the morphology of a plant’s leaves, stems, and seeds reflect the environmental
conditions the species usually grow in (e.g., plants with large soft leaves will never grow in a desert
but might have an advantage in a humid and shadowy environment). Because the morphology of
the entire plant depends on the environment, many morphological combinations will never occur in
nature and the morphological space of all plant species is tightly constrained. Díaz et al. (2016) found
that out of six observed morphological characteristics only two embedding dimensions were enough
to represent three quarters of the totally observed variability.

DR is a widely used approach for the detection of structure in multivariate data, and has applica-
tions in a variety of fields. In climatology, DR is used to find the modes of some phenomenon, e.g., the
first Empirical Orthogonal Function of monthly mean sea surface temperature of a given region over
the Pacific is often linked to the El Niño Southern Oscillation or ENSO (e.g., Hsieh, 2004). In ecology
the comparison of sites with different species abundances is a classical multivariate problem: each
observed species adds an extra dimension, and because species are often bound to certain habitats,
there is a lot of redundant information. Using DR is a popular technique to represent the sites in few
dimensions, e.g., Aart (1972) matches wolfspider communities to habitat and Morrall (1974) match soil
fungi data to soil types. (In ecology the general name for DR is ordination or indirect gradient analysis.)
Today, hyperspectral satellite imagery collects so many bands that it is very difficult to analyze and
interpret the data directly. Resuming the data into a set of few, yet independent, components is one
way to reduce complexity (e.g., see Laparra et al., 2015). DR can also be used to visualize the interiors
of deep neural networks (e.g., see Han et al., 2017), where the high dimensionality comes from the
large number of weights used in a neural network and convergence can be visualized by means of DR.
We could find many more example applications here but this is not the main focus of this publication.

The difficulty in applying DR is that each DR method is designed to maintain certain aspects
of the original data and therefore may be appropriate for one task and inappropriate for another.
Most methods also have parameters to tune and follow different assumptions. The quality of the
outcome may strongly depend on their tuning, which adds additional complexity. DR methods can
be modeled after physical models with attracting and repelling forces (Force Directed Methods),
projections onto low dimensional planes (PCA, ICA), divergence of statistical distributions (SNE
family), or the reconstruction of local spaces or points by their neighbors (LLE).

As an example for how changing internal parameters of a method can have a great impact, the
breakthrough for Stochastic Neighborhood Embedding (SNE) methods came when a Student’s t-
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distribution was used instead of a normal distribution to model probabilities in low dimensional
space to avoid the “crowding problem”, that is, a sphere in high dimensional space has a much larger
volume than in low dimensional space and may contain too many points to be represented accurately
in few dimensions. The t-distribution, allows medium distances to be accurately represented in few
dimensions by larger distances due to its heavier tails. The result is called in t-SNE and is especially
good at preserving local structures in very few dimensions, this feature made t-SNE useful for a wide
array of data visualization tasks and the method became much more popular than standard SNE
(around six times more citations of van der Maaten and Hinton (2008) compared to Hinton and Roweis
(2003) in Scopus (Elsevier, 2017)).

There are a number of software packages for other languages providing collections of methods:
In Python there is scikit-learn (Pedregosa et al., 2011), which contains a module for DR. In Julia
we currently find ManifoldLearning.jl for nonlinear and MultivariateStats.jl for linear DR methods.
There are several toolboxes for DR implemented in Matlab (Van Der Maaten et al., 2009; Arenas-
Garcia et al., 2013). The Shogun toolbox (Sonnenburg et al., 2017) implements a variety of methods
for dimensionality reduction in C++ and offers bindings for a many common high level languages
(including R, but the installation is anything but simple, as there is no CRAN package). However, there
is no comprehensive package for R and none of the former mentioned software packages provides
means to consistently compare the quality of different methods for DR.

For many applications it can be difficult to objectively find the right method or parameterization for
the DR task. This paper presents the dimRed and coRanking packages for the popular programming
language R. Together, they provide a standardized interface to various dimensionality reduction
methods and quality metrics for embeddings. They are implemented using the S4 class system of R,
making the packages both easy to use and to extend.

The design goal for these packages is to enable researchers, who may not necessarily be experts in
DR, to apply the methods in their own work and to objectively identify the most suitable methods for
their data. This paper provides an overview of the methods collected in the packages and contains
examples as to how to use the packages.

The notation in this paper will be as follows: X = [xi]
T
1≤i≤n ∈ Rn×p, and the observations xi ∈ Rp.

These observations may be transformed prior to the dimensionality reduction step (e.g., centering
and/or standardization) resulting in X′ = [x′i ]

T
1≤i≤n ∈ Rn×p. A DR method then embeds each vector

in X′ onto a vector in Y = [yi]
T
1≤i≤n ∈ Rn×q with yi ∈ Rq, ideally with q� p. Some methods provide

an explicit mapping f (x′i) = yi. Some even offer a inverse mapping f−1(yi) = x̂′i , such that one
can reconstruct a (usually approximate) sample from the low-dimensional representation. For some
methods, pairwise distances between points are needed, we set dij = d(xi, xj) and d̂ij = d(yi, yj),
where d is some appropriate distance function.

When referring to functions in the dimRed package or base R simply the function name is men-
tioned, functions from other packages are referenced with their namespace, as with package::function.

Dimensionality Reduction Methods

In the following section we do not aim for an exhaustive explanation to every method in dimRed but
rather to provide a general idea on how the methods work. An overview and classification of the most
commonly used DR methods can be found in Figure 1.

In all methods, parameters have to be optimized or decisions have to be made, even if it is just
about the preprocessing steps of data. The dimRed package tries to make the optimization process
for parameters as easy as possible, but, if possible, the parameter space should be narrowed down
using prior knowledge. Often decisions can be made based on theoretical knowledge. For example,
sometimes an analysis requires data to be kept in their original scales and sometimes this is exactly
what has to be avoided as when comparing different physical units. Sometimes decisions based on the
experience of others can be made, e.g., the Gaussian kernel is probably the most universal kernel and
therefore should be tested first if there is a choice.

All methods presented here have the embedding dimensionality, q, as a parameter (or ndim as a
parameter for embed). For methods based on eigenvector decomposition, the result generally does
not depend on the number of dimensions, i.e., the first dimension will be the same, no matter if we
decide to calculate only two dimensions or more. If more dimensions are added, more information is
maintained, the first dimension is the most important and higher dimensions are successively less
important. This means, that a method based on eigenvalue decomposition only has to be run once if
one wishes to compare the embedding in different dimensions. In optimization based methods this is
generally not the case, the number of dimensions has to be chosen a priori, an embedding of 2 and 3
dimensions may vary significantly, and there is no ordered importance of dimensions. This means
that comparing dimensions of optimization-based methods is computationally much more expensive.
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Figure 1: Classification of dimensionality reduction methods. Methods in bold face are implemented
in dimRed. Modified from Van Der Maaten et al. (2009).

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 345

We try to give the computational complexity of the methods. Because of the actual implementation,
computation times may differ largely. R is an interpreted language, so all parts of an algorithm that
are implemented in R often will tend to be slow compared to methods that call efficient implemen-
tations in a compiled language. Methods where most of the computing time is spent for eigenvalue
decomposition do have very efficient implementations as R uses optimized linear algebra libraries.
Although, eigenvalue decomposition itself does not scale very well in naive implementations (O(n3)).

PCA

Principal Component Analysis (PCA) is the most basic technique for reducing dimensions. It dates
back to Pearson (1901). PCA finds a linear projection (U) of the high dimensional space into a low
dimensional space Y = XU, maintaining maximum variance of the data. It is based on solving the
following eigenvalue problem:

(CXX − λk I)uk = 0 (1)

where CXX = 1
n XT X is the covariance matrix, λk and uk are the k-th eigenvalue and eigenvector, and

I is the identity matrix. The equation has several solutions for different values of λk (leaving aside the
trivial solution uk = 0). PCA can be efficiently applied to large data sets, because it computationally
scales as O(np2 + p3), that is, it scales linearly with the number of samples and R uses specialized
linear algebra libraries for such kind of computations.

PCA is a rotation around the origin and there exist a forward and inverse mapping. PCA may
suffer from a scale problem, i.e., when one variable dominates the variance simply because it is in a
higher scale, to remedy this, the data can be scaled to zero mean and unit variance, depending on the
use case, if this is necessary or desired.

Base R implements PCA in the functions prcomp and princomp; but several other implementations
exist i.e., pcaMethods from Bioconductor which implements versions of PCA that can deal with
missing data. The dimRed package wraps prcomp.

kPCA

Kernel Principal Component Analysis (kPCA) extends PCA to deal with nonlinear dependencies
among variables. The idea behind kPCA is to map the data into a high dimensional space using
a possibly non-linear function φ and then to perform a PCA in this high dimensional space. Some
mathematical tricks are used for efficient computation.

If the columns of X are centered around 0, then the principal components can also be computed
from the inner product matrix K = XT X. Due to this way of calculating a PCA, we do not need to
explicitly map all points into the high dimensional space and do the calculations there, it is enough to
obtain the inner product matrix or kernel matrix K ∈ Rn×n of the mapped points (Schölkopf et al.,
1998).

Here is an example calculating the kernel matrix using a Gaussian kernel:

K = φ(xi)
Tφ(xj) = κ(xi, xj) = exp

(
−
‖xi − xj‖2

2σ2

)
, (2)

where σ is a length scale parameter accounting for the width of the kernel. The other trick used is
known as the “representers theorem.” The interested reader is referred to Schölkopf et al. (2001).

The kPCA method is very flexible and there exist many kernels for special purposes. The most
common kernel function is the Gaussian kernel (Equation 2). The flexibility comes at the price that
the method has to be finely tuned for the data set because some parameter combinations are simply
unsuitable for certain data. The method is not suitable for very large data sets, because memory scales
with O(n2) and computation time with O(n3).

Diffusion Maps, Isomap, Locally Linear Embedding, and some other techniques can be seen as
special cases of kPCA. In which case, an out-of-sample extension using the Nystöm formula can be
applied (Bengio et al., 2004). This can also yield applications for bigger data, where an embedding is
trained with a sub-sample of all data and then the data is embedded using the Nyström formula.

Kernel PCA in R is implemented in the kernlab package using the function kernlab::kpca,
and supports a number of kernels and user defined functions. For details see the help page for
kernlab::kpca.

The dimRed package wraps kernlab::kpca but additionally provides forward and inverse meth-
ods (Bakir et al., 2004) which can be used to fit out-of sample data or to visualize the transformation of
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the data space.

Classical Scaling

What today is called Classical Scaling was first introduced by Torgerson (1952). It uses an eigenvalue
decomposition of a transformed distance matrix to find an embedding that maintains the distances of
the distance matrix. The method works because of the same reason that kPCA works, i.e., classical
scaling can be seen as a kPCA with kernel xTy. A matrix of Euclidean distances can be transformed
into an inner product matrix by some simple transformations and therefore yields the same result as a
PCA. Classical scaling is conceptually more general than PCA in that arbitrary distance matrices can
be used, i.e., the method does not even need the original coordinates, just a distance matrix D. Then it
tries to find and embedding Y so that d̂ij is as similar to dij as possible.

The disadvantage is that is computationally much more demanding, i.e., an eigenvalue decomposi-
tion of a n× n matrix has to be computed. This step requires O(n2) memory and O(n3) computation
time, while PCA requires only the eigenvalue decomposition of a d× d matrix and usually n� d. R
implements classical scaling in the cmdscale function.

The dimRed package wraps cmdscale and allows the specification of arbitrary distance functions
for calculating the distance matrix. Additionally a forward method is implemented.

Isomap

As Classical Scaling can deal with arbitrarily defined distances, Tenenbaum et al. (2000) suggested
to approximate the structure of the manifold by using geodesic distances. In practice, a graph is
created by either keeping only the connections between every point and its k nearest neighbors to
produce a k-nearest neighbor graph (k-NNG), or simply by keeping all distances smaller than a value
ε producing an ε-neighborhood graph (ε-NNG). Geodesic distances are obtained by recording the
distance on the graph and classical scaling is used to find an embedding in fewer dimensions. This
leads to an “unfolding” of possibly convoluted structures (see Figure 3).

Isomap’s computational cost is dominated by the eigenvalue decomposition and therefore scales
with O(n3). Other related techniques can use more efficient algorithms because the distance matrix
becomes sparse due to a different preprocessing.

In R, Isomap is implemented in the vegan package. vegan::isomap calculates an Isomap embed-
ding and vegan::isomapdist calculates a geodesic distance matrix. The dimRed package uses its
own implementation. This implementation is faster mainly due to using a KD-tree for the nearest
neighbor search (from the RANN package) and to a faster implementation for the shortest path search
in the k-NNG (from the igraph package). The implementation in dimRed also includes a forward
method that can be used to train the embedding on a subset of data points and then use these points
to approximate an embedding for the remaining points. This technique is generally referred to as
landmark Isomap (De Silva and Tenenbaum, 2004).

Locally Linear Embedding

Points that lie on a manifold in a high dimensional space can be reconstructed through linear combina-
tions of their neighborhoods if the manifold is well sampled and the neighbohoods lie on a locally
linear patch. These reconstruction weights, W, are the same in the high dimensional space as the
internal coordinates of the manifold. Locally Linear Embedding (LLE; Roweis and Saul, 2000) is a
technique that constructs a weight matrix W ∈ Rn×n with elements wij so that

n

∑
i=1

∥∥∥∥xi −
n

∑
j=1

wijxj

∥∥∥∥2
(3)

is minimized under the constraint that wij = 0 if xj does not belong to the neighborhood and the
constraint that ∑n

j=1 wij = 1. Finally the embedding is made in such a way that the following cost
function is minimized for Y,

n

∑
i=1

∥∥∥∥yi −
n

∑
j=1

wijyj

∥∥∥∥2
. (4)

This can be solved using an eigenvalue decomposition.

Conceptually the method is similar to Isomap but it is computationally much nicer because the
weight matrix is sparse and there exist efficient solvers. In R, LLE is implemented by the package lle,
the embedding can be calculated with lle::lle. Unfortunately the implementation does not make
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use of the sparsity of the weight matrix W. The manifold must be well sampled and the neighborhood
size must be chosen appropriately for LLE to give good results.

Laplacian Eigenmaps

Laplacian Eigenmaps were originally developed under the name spectral clustering to separate
non-convex clusters. Later it was also used for graph embedding and DR (Belkin and Niyogi, 2003).

A number of variants have been proposed. First, a graph is constructed, usually from a distance
matrix, the graph can be made sparse by keeping only the k nearest neighbors, or by specifying an ε
neighborhood. Then, a similarity matrix W is calculated by using a Gaussian kernel (see Equation
2), if c = 2σ2 = ∞, then all distances are treated equally, the smaller c the more emphasis is given to
differences in distance. The degree of vertex i is di = ∑n

j=1 wij and the degree matrix, D, is the diagonal
matrix with entries di. Then we can form the graph Laplacian L = D−W and, then, there are several
ways how to proceed, an overview can be found in Luxburg (2007).

The dimRed package implements the algorithm from Belkin and Niyogi (2003). Analogously
to LLE, Laplacian eigenmaps avoid computational complexity by creating a sparse matrix and not
having to estimate the distances between all pairs of points. Then the eigenvectors corresponding to
the lowest eigenvalues larger than 0 of either the matrix L or the normalized Laplacian D−1/2LD−1/2

are computed and form the embedding.

Diffusion Maps

Diffusion Maps (Coifman and Lafon, 2006) take a distance matrix as input and calculates the transition
probability matrix P of a diffusion process between the points to approximate the manifold. Then the
embedding is done by an eigenvalue decompositon of P to calculate the coordinates of the embedding.
The algorithm for calculating Diffusion Maps shares some elements with the way Laplacian Eigenmaps
are calculated. Both algorithms depart from the same weight matrix, Diffusion Map calculate the
transition probability on the graph after t time steps and do the embedding on this probability matrix.

The idea is to simulate a diffusion process between the nodes of the graph, which is more robust
to short-circuiting than the k-NNG from Isomap (see bottom right Figure 3). Diffusion maps in R
are accessible via the diffusionMap::diffuse() function, which is available in the diffusionMap
package. Additional points can be approximated into an existing embedding using the Nyström
formula (Bengio et al., 2004). The implementation in dimRed is based on the diffusionMap::diffuse
function.

non-Metric Dimensional Scaling

While Classical Scaling and derived methods (see section Classical Scaling) use eigenvector decomposi-
tion to embed the data in such a way that the given distances are maintained, non-Metric Dimensional
Scaling (nMDS, Kruskal, 1964a,b) uses optimization methods to reach the same goal. Therefore a
stress function,

S =

√√√√∑i<j (dij − d̂ij)
2

∑i<j d2
ij

, (5)

is used, and the algorithm tries to embed yi in such a way that the order of the dij is the same as the
order of the d̂ij Because optimization methods can fit a wide variety of problems, there are very loose
limits set to the form of the error or stress function. For instance Mahecha et al. (2007) found that nMDS
using geodesic distances can be almost as powerful as Isomap for embedding biodiversity patterns.
Because of the flexibility of nMDS, there is a whole package in R devoted to Multidimensional Scaling,
smacof (de Leeuw and Mair, 2009).

Several packages provide implementations for nMDS in R, for example MASS and vegan with
the functions MASS::isoMDS and vegan::monoMDS. Related methods include Sammons Mapping which
con be found as MASS::sammon. The dimRed package wraps vegan::monoMDS.

Force Directed Methods

The data X can be considered as a graph with weighted edges, where the weights are the distances
between points. Force directed algorithms see the edges of the graphs as springs or the result of
an electric charge of the nodes that result in an attractive or repulsive force between the nodes, the
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algorithms then try to minimize the overall energy of the graph.

E = ∑
i<j

kij(dij − d̂ij)
2
, (6)

where kij is the spring constant for the spring connecting points i and j.
Graph embedding algorithms generally suffer from long running times (though compared to other

methods presented here they do not scale as badly) and many local optima. This is why a number
of methods have been developed that try to deal with some of the shortcomings, for example, the
Kamada-Kawai (Kamada and Kawai, 1989), the Fruchtermann-Reingold (Fruchterman and Reingold,
1991), or the DrL (Martin et al., 2007) algorithms.

There are a number of graph embedding algorithms included in the igraph package, they can
be accessed using the igraph::layout_with_* function family. The dimRed package only wraps the
three algorithms mentioned above; there are many others which are not interesting for dimensionality
reduction.

t-SNE

Stochastic Neighbor Embedding (SNE; Hinton and Roweis, 2003) is a technique that minimizes the
Kullback-Leibler divergence of scaled similarities of the points i and j in a high dimensional space, pij,
and a low dimensional space, qij:

KL(P‖Q) = ∑
i 6=j

pij log
pij

qij
. (7)

SNE uses a Gaussian kernel (see Equation 2) to compute similarities in a high and a low dimensional
space. The t-Distributed Stochastic Neighborhood Embedding (t-SNE; van der Maaten and Hinton,
2008) improves on SNE by using a t-Distribution as a kernel in low dimensional space. Because of
the heavy-tailed t-distribution, t-SNE maintains local neighborhoods of the data better and penalizes
wrong embeddings of dissimilar points. This property makes it especially suitable to represent
clustered data and complex structures in few dimensions.

The t-SNE method has one parameter, perplexity, to tune. This determines the neighborhood size
of the kernels used.

The general runtime of t-SNE isO(n2), but an efficient implementation using tree search algorithms
that scales asO(n log n) exists and can be found in the Rtsne package in R. The t-SNE implementation
in dimRed wraps the Rtsne package.

There exist a number of derived techniques for dimensionality reduction, e.g., NeRV (Venna et al.,
2010) and JNE (Lee et al., 2013), that improve results but for which there do not yet exist packages on
CRAN implementing them.

ICA

Independent Component Analysis (ICA) interprets the data X as a mixture of independent signals,
e.g., a number of sound sources recorded by several microphones, and tries to “un-mix” them to
find the original signals in the recorded signals. ICA is a linear rotation of the data, just as PCA, but
instead of recovering the maximum variance, it recovers statistically independent components. A
signal matrix S and a mixing matrix A are estimated so that X = AS.

There are a number of algorithms for ICA, the most widely used is fastICA (Hyvarinen, 1999)
because it provides a fast and robust way to estimate A and S. FastICA maximizes a measure for non-
Gaussianity called negentropy J (Comon, 1994). This is equivalent to minimizing mutual information
between the resulting components. Negentropy J is defined as follows:

H(u) = −
∫

f (u) log f (Y)du, (8)

J(u) = H(ugauss)− H(u), (9)

where u = (u1, . . . , un)T is a random vector with density f (·) and ugauss is a Gaussian random variable
with the same covariance structure as u. FastICA uses a very efficient approximation to calculate
negentropy. Because ICA can be translated into a simple linear projection, a forward and an inverse
method can be supplied.

There are a number of packages in R that implement algorithms for ICA, the dimRed package
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wraps the fastICA::fastICA() function from fastICA.

DRR

Dimensionality Reduction via Regression is a very recent technique extending PCA (Laparra et al.,
2015). Starting from a rotated (PCA) solution X′ = XU, it predicts redundant information from the
remaining components using non-linear regression.

y·i = x′·i − fi(x′·1, x′·2, . . . , x′·i−1) (10)

with x·i and y·i being the loading of observations on the i-th axis. In theory, any kind of regression
can be used. the authors of the original paper choose Kernel Ridge Regression (KRR; Saunders et al.,
1998) because it is a flexible nonlinear regression technique and computational optimizations for a
fast calculation exist. DRR has another advantage over other techniques presented here, because it
provides an exact forward and inverse function.

The use of KRR also has the advantage of making the method convex, here we list it under
non-convex methods, because other types of regression may make it non-convex.

Mathematicaly, functions are limited to map one input to a single output point. Therefore, DRR
reduces to PCA if manifolds are too complex; but it seems very useful for slightly curved manifolds.
The initial rotation is important, because the result strongly depends on the order of dimensions in
high dimensional space.

DRR is implemented in the package DRR. The package provides forward and inverse functions
which can be used to train on a subset.

Quality criteria

The advantage of unsupervised learning is that one does not need to specify classes or a target variable
for the data under scrutiny. Instead the chosen algorithm arranges the input data. For example,
arranged into clusters or into a lower dimensional representation. In contrast to a supervised problem,
there is no natural way to directly measure the quality of any output or to compare two methods by an
objective measure like for instance modeling efficiency or classification error. The reason is that every
method optimizes a different error function, and it would be unfair to compare t-SNE and PCA by
means of either recovered variance or KL-Divergence. One fair measure would be the reconstruction
error, i.e., reconstructing the original data from a limited number of dimensions, but as discussed
above not many methods provide forward and inverse mappings.

However, there are a series of independent estimators on the quality of a low-dimensional embed-
ding. The dimRed package provides a number of quality measures which have been proposed in the
literature to measure performance of dimensionality reduction techniques.

Co-ranking matrix based measures

The co-ranking matrix (Lee and Verleysen, 2009) is a way to capture the changes in ordinal distance.
As before, let dij = d(xi, xj) be the distances between xi and xj, i.e., in high dimensional space and
d̂ij = d(yi, yj) the distances in low dimensional space, then we can define the rank of yj with respect to
yi

r̂ij = |{k : d̂ik < d̂ij or (d̂ik = d̂ij and 1 ≤ k < j ≤ n)}|, (11)

and, analogously, the rank in high-dimensional space as:

rij = |{k : dik < dij or (dik = dij and 1 ≤ k < j ≤ n)}|, (12)

where the notation |A| denotes the number of elements in a set A. This means that we simply replace
the distances in a distance matrix column wise by their ranks. This means, that rij is an integer which
indicates that xi is the rij-th closest neighbor of xj in the set X.

The co-ranking matrix Q then has elements

qkl = |{(i, j) : r̂ij = k and rij = l}|, (13)

which is the 2d-histogram of the ranks. That is, qij is an integer which counts how many points of
distance rank j became rank i. In a perfect DR, this matrix will only have non-zero entries in the
diagonal, if most of the non-zero entries are in the lower triangle, then the DR collapsed far away
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points onto each other; if most of the non-zero entries are in the upper triangle, then the DR teared
close points apart. For a detailed description of the properties of the co-ranking matrix the reader is
referred to Lueks et al. (2011).

The co-ranking matrix can be computed using function coRanking::coranking() and can be vi-
sualized using coRanking::imageplot(). A good embedding should scatter the values around the
diagonal of the matrix. If the values are predominantly in the lower triangle, then the embedding col-
lapses the original structure causing far away points to be much closer; if the values are predominantly
in the upper triangle the points from the original structure are torn apart. Nevertheless this method
requires visual inspection of the matrix. For an automated assessment of quality, a scalar value that
assigns a quality to an embedding is needed.

A number of metrics can be computed from the co-ranking matrix. For example:

QNX(k) =
1

kn

k

∑
i=1

k

∑
j=1

qij, (14)

which is the number of points that belong to the k-th nearest neighbors in both high- and low-
dimensional space, normalized to give a maximum of 1 (Lee and Verleysen, 2009). This quantity can be
adjusted for random embeddings, giving the Local Continuity Meta Criterion (Chen and Buja, 2009):

LCMC(k) = QNX(k)−
k

n− 1
(15)

The above measures still depend on k, but LCMC has a well defined maximum at kmax. Two measures
without parameters are then defined:

Qlocal =
1

kmax

kmax

∑
k=1

QNX(k) and (16)

Qglobal =
1

n− kmax

n−1

∑
k=kmax

QNX(k). (17)

These measure the preservation of local and global distances respectively. The original authors advised
using Qlocal over Qglobal, but this depends on the application.

LCMC(k) can be normalized to a maximum of 1, yielding the following measure for a quality
embedding (Lee et al., 2013):

RNX(k) =
(n− 1)QNX(k)− k

n− 1− k
, (18)

where a value of 0 corresponds to a random embedding and a value of 1 to a perfect embedding into
the k-ary neighborhood. To transform RNX(k) into a parameterless measure, the area under the curve
can be used:

AUCln k (RNX(k)) =

(
n−2

∑
k=1

RNX(k)

)/(
n−2

∑
k=1

1/k

)
. (19)

This measure is normalized to one and takes k at a log-scale. Therefore it prefers methods that
preserve local distances.

In R, the co-ranking matrix can be calculated using the the coRanking::coranking function. The
dimRed package contains the functions Q_local, Q_global, Q_NX, LCMC, and R_NX to calculate the above
quality measures in addition to AUC_lnK_R_NX.

Calculating the co-ranking matrix is a relatively expensive operation because it requires sorting
every row of the distance matrix twice. It therefore scales with O(n2 log n). There is also a plotting
function plot_R_NX, which plots the RNX values with log-scaled K and adds the AUCln K to the legend
(see Figure 2).

There are a number of other measures that can be computed from a co-ranking matrix, e.g., see
Lueks et al. (2011); Lee and Verleysen (2009), or Babaee et al. (2013).

Cophenetic correlation

An old measure originally developed to compare clustering methods in the field of phylogenetics
is cophenetic correlation (Sokal and Rohlf, 1962). This method consists simply of the correlation
between the upper or lower triangles of the distance matrices (in dendrograms they are called cophe-
netic matrices, hence the name) in a high and low dimensional space. Additionally the distance
measure and correlation method can be varied. In the dimRed package this is implemented in the
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cophenetic_correlation function.

Some studies use a measure called “residual variance” (Tenenbaum et al., 2000; Mahecha et al.,
2007), which is defined as

1− r2(D, D̂),

where r is the Pearson correlation and D, D̂ are the distances matrices consisting of elements dij and
d̂ij respectively.

Reconstruction error

The fairest and most common way to assess the quality of a dimensionality reduction when the method
provides a inverse mapping is the reconstruction error. The dimRed package includes a function to
calculate the root mean squared error which is defined as:

RMSE =

√
1
n

n

∑
i=1

d(x′i , xi)
2 (20)

with x′i = f−1(yi), f−1 being the function that maps an embedded value back to feature space.

The dimRed package provides the reconstruction_rmse and reconstruction_error functions.

Test data sets

There are a number of test data sets that are often used to showcase a dimensionality reduction
technique. Common ones being the 3d S-curve and the Swiss roll, among others. These data sets
have in common that they usually have three dimensions, and well defined manifolds. Real world
examples usually have more dimensions and often are much noisier, the manifolds may not be well
sampled and exhibit holes and large pieces may be missing. Additionally, we cannot be sure if we can
observe all the relevant variables.

The dimRed package implements a number of test datasets that are being used in literature to
benchmark methods with the function dimRed::loadDataSet(). For artificial datasets the number of
points and the noise level can be adjusted, the function also returns the internal coordinates.

The dimRed Package

The dimRed package collects DR methods readily implemented in R, implements missing methods
and offers means to compare the quality of embeddings. The package is open source and available
under the GPL3 license. Released versions of the package are available through CRAN (https:
//cran.r-project.org/package=dimRed) and development versions are hosted on GitHub (https:
//github.com/gdkrmr/dimRed). The dimRed package provides a common interface and convenience
functions for a variety of different DR methods so that it is made easier to use and compare different
methods. An overview of the packages main functions can be found in Table 1.

Function Description

embed Embed data using a DR method.
quality Calculate a quality score from the result of embed.
plot Plot a "dimRedData" or "dimRedResult" object, col-

ors the points automatically, for exploring the data.
plot_R_NX Compares the quality of various embeddings.
dimRedMethodList Returns a character vector that contains all imple-

mented DR methods.
dimRedQualityList Returns a character vector that contains all imple-

mented quality measures.

Table 1: The main interface functions of the dimRed package.

Internally, the package uses S4 classes but for normal usage the user does not need to have any
knowledge on the inner workings of the S4 class system in R (cf. table 2). The package contains
simple conversion functions from and to standard R-objects like a data.frame or a matrix. The
"dimRedData" class provides an container for the data to be processed. The slot data contains a matrix
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with dimensions in columns and observations in rows, the slot meta may contain a data frame with
additional information, e.g., categories or other information of the data points.

Class Name Function

"dimRedData" Holds the data for a DR. Fed to embed(). An
as.dimRedData() methods exists for "data.frame",
"matrix", and "formula" exist.

"dimRedMethod" Virtual class, ancestor of all DR methods.
"dimRedResult" The result of embed(), the embedded data.

Table 2: The S4 classes used in the dimRed package.

Each embedding method is a class which inherits from "dimRedMethod" which means that it
contains a function to generate "dimRedResult" objects and a list of standard parameters. The class
"dimRedResult" contains the data in reduced dimensions, the original meta information along with
the original data, and, if possible, functions for the forward and inverse mapping.

From a user-perspective the central function of the package is embed which is called in the form
embed(data,method,. . . ), data can take standard R objects such as instances of "data.frame",
"matrix", or "formula", as input. The method is given as a character vector. All available methods can
be listed by calling ‘dimRedMethodList()’. Method-specific parameters can be passed through ...;
when no method-specific parameters are given, defaults are chosen. The embed function returns an
object of class "dimRedResult".

For comparing different embeddings, dimRed contains the function quality which relies on the
output of embed and a method name. This function returns a scalar quality score; a vector that contains
the names of all quality functions is returned by calling ‘dimRedQualityList()’.

For easy visual examination, the package contains plot methods for "dimRedData" and "dimRedResult"
objects in order to plot high dimensional data using parallel plots and pairwise scatter plots. Automatic
coloring of data points is done using the available metadata.

Examples

The comparison of different DR methods, choosing the right parameters for a method, and the
inspection of the results is simplified by dimRed. This section contains a number of examples to
highlight the use of the package.

To compare methods of dimensionality reduction, first a test data set is loaded using loadDataSet,
then the embed function is used for DR (embed can also handle standard R types like matrix and
data.frame). This makes it very simple to apply different methods of DR to the same data e.g., by
defining a character vector of method names and then iterating over these, say with lapply. For
inspection, dimRed provides methods for the plot function to visualize the resulting embedding
(Figure 2 b and d), internal coordinates of the manifold are represented by color gradients. To visualize
how well embeddings represent different neighborhood sizes, the function plot_R_NX is used on a list
of embedding results (Figure 2 c). The plots in figure 2 are produced by the following code:

## define which methods to apply
embed_methods <- c("Isomap", "PCA")
## load test data set
data_set <- loadDataSet("3D S Curve", n = 1000)
## apply dimensionality reduction
data_emb <- lapply(embed_methods, function(x) embed(data_set, x))
names(data_emb) <- embed_methods
## figure 2a, the data set
plot(data_set, type = "3vars")
## figures 2b (Isomap) and 2d (PCA)
lapply(data_emb, plot, type = "2vars")
## figure 2c, quality analysis
plot_R_NX(data_emb)

The function plot_R_NX produces a figure that plots the neighborhood size (k at a log-scale) against
the quality measure RNX(k) (see Equation 18). This gives an overview of the general behavior of
methods: if RNX is high for low values of K, then local neighborhoods are maintained well; if RNX is
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Figure 2: Comparing PCA and Isomap: (a) An S-shaped manifold, colors represent the internal
coordinates of the manifold. (b) Isomap embedding, the S-shaped manifold is unfolded. (c) RNX
plotted agains neighborhood sizes, Isomap is much better at preserving local distances and PCA is
better at preserving global Euclidean distances. The numbers on the legend are the AUC1/K . (d) PCA
projection of the data, the directions of maximum variance are preserved.

high for large values of K, then global gradients are maintained well. It also provides a way to directly
compare methods by plotting more than one RNX curve and an overall quality of the embedding by
taking the area under the curve as an indicator for the overall quality of the embedding (see fig 19)
which is shown as a number in the legend.

Therefore we can see from Figure 2c that t-SNE is very good a maintaining close and medium
distances for the given data set, whereas PCA is only better at maintaining the very large distances.
The large distances are dominated by the overall bent shape of the S in 3D space, while the close
distances are not affected by this bending. This is reflected in the properties recovered by the different
methods, the PCA embedding recovers the S-shape, while t-SNE ignores the S-shape and recovers the
inner structure of the manifold.

Often the quality of an embedding strongly depends on the choice of parameters, the interface of
dimRed can be used to facilitate searching the parameter space.

Isomap has one parameter k which determines the number of neighbors used to construct the
k-NNG. If this number is too large, then Isomap will resemble an MDS (Figure 3 e), if the number is
too small, the resulting embedding contains holes (Figure 3 c). The following code finds the optimal
value, kmax, for k using the Qlocal criterion, the results are visualized in Figure 3 a:

## Load data
ss <- loadDataSet("3D S Curve", n = 500)
## Parameter space
kk <- floor(seq(5, 100, length.out = 40))
## Embedding over parameter space
emb <- lapply(kk, function(x) embed(ss, "Isomap", knn = x))
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Figure 3: Using dimRed and the Qlocal indicator to estimate a good value for the parameter k in
Isomap. (a) Qlocal for different values of k, the vertical red line indicates the maximum kmax. (b) The
original data set, a 2 dimensional manifold bent in an S-shape in 3 dimensional space. Bottom row:
Embeddings and k-NNG for different values of k. (c) When k = 5, the value for k is too small resulting
in holes in the embedding, the manifold itself is still unfolded correctly. (d) Choose k = kmax, the best
representation of the original manifold in two dimensions achievable with Isomap. (e) k = 100, too
large, the k-NNG does not approximate the manifold any more.

## Quality over embeddings
qual <- sapply(emb, function(x) quality(x, "Q_local"))
## Find best value for K
ind_max <- which.max(qual)
k_max <- kk[ind_max]

Figure 3a shows how the Qlocal criterion changes when varying the neighborhood size k for Isomap,
the gray lines in Figure 3 represent the edges of the k-NN Graph. If the value for k is too low, the inner
structure of the manifold will still be recovered, but it will be imperfect (Figure 3c, note that the holes
appear in places that are not covered by the edges of the k-NN Graph), therefore the Qlocal score is
lower than optimal. If k is too large, the error of the embedding is much larger due to short circuiting
and we observe a very steep drop in the Qlocal score. The short circuiting can be observed in Figure 3e
with the edges that cross the gap between the tips and the center of the S-shape.

It is also very easy to compare across methods and quality scores. The following code produces
a matrix of quality scores and methods, where dimRedMethodList returns a character vector with all
methods. A visualization of the matrix can be found in Figure 4.

embed_methods <- dimRedMethodList()
quality_methods <- c("Q_local", "Q_global", "AUC_lnK_R_NX",

"cophenetic_correlation")
scurve <- loadDataSet("3D S Curve", n = 2000)
quality_results <- matrix(
NA, length(embed_methods), length(quality_methods),
dimnames = list(embed_methods, quality_methods)

)
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Figure 4: A visualization of the quality_results matrix. The methods are ordered by mean quality
score. The reconstruction error was omitted, because a higher value means a worse embedding, while
in the present methods a higher score means a better embedding. Parameters were not tuned for the
example, therefore it should not be seen as a general quality assessment of the methods.

embedded_data <- list()
for (e in embed_methods) {
embedded_data[[e]] <- embed(scurve, e)
for (q in quality_methods)
try(quality_results[e, q] <- quality(embedded_data[[e]], q))

}

This example showcases the simplicity with which different methods and quality criteria can be
combined. Because of the strong dependencies on parameters it is not advised to apply this kind of
analysis without tuning the parameters for each method separately. There is no automatized way to
tune parameters in dimRed.

Conclusion

This paper presents the dimRed and coRanking packages and it provides a brief overview of the
methods implemented therein. The dimRed package is written in the R language, one of the most
popular languages for data analysis. The package is freely available from CRAN. The package is
object oriented and completely open source and therefore easily available and extensible. Although
most of the DR methods already had implementations in R, dimRed adds some new methods for
dimensionality reduction, and coRanking adds methods for an independent quality control of DR
methods to the R ecosystem. DR is a widely used technique. However, due to the lack of easily
usable tools, choosing the right method for DR is complex and depends upon a variety of factors. The
dimRed package aims to facilitate experimentation with different techniques, parameters, and quality
measures so that choosing the right method becomes easier. The dimRed package wants to enable the
user to objectively compare methods that rely on very different algorithmic approaches. It makes the
life of the programmer easier, because all methods are aggregated in one place and there is a single
interface and standardized classes to access the functionality.
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GrpString: An R Package for Analysis of
Groups of Strings
by Hui Tang, Elizabeth L. Day, Molly B. Atkinson, and Norbert J. Pienta

Abstract The R package GrpString was developed as a comprehensive toolkit for quantitatively
analyzing and comparing groups of strings. It offers functions for researchers and data analysts to
prepare strings from event sequences, extract common patterns from strings, and compare patterns be-
tween string vectors. The package also finds transition matrices and complexity of strings, determines
clusters in a string vector, and examines the statistical difference between two groups of strings.

Introduction

In domains such as psychology and social science, participants’ actions can be listed as sequences of
events. These event sequences can be recorded as strings in which a single character represents an
event or a state. For example, in an eye-tracking study, the eye gazes on some regions in the order
of "Question-Figure-Answer1-Answer2-Answer3-Answer4-Figure-Answer3" can be recorded as a
string "QF1234F3" (also called a scanpath in eye-tracking studies). Another example is using the log
files of an online learning system to generate event sequences from student actions. Processing and
analyzing strings helps researchers explore the features of event sequences. In R, a string is a sequence
of characters. It is generated using single or double quotes, and can contain zero or more characters.
The R base package offers various functions for string operations including character count, case
conversion, pattern detection, substring extraction and replacement, and string split and concatenation.
These methods are also provided by packages stringr (Wickham, 2010, 2017), stringb (Meissner, 2016),
and stringi (Gagolewski and Tartanus, 2017), which are built for the purpose of string manipulation.
In addition, other packages, such as gsubfn (Grothendieck, 2014) and uniqtag (Jackman, 2015), focus
on particular functionalities of handling strings. Despite a number of packages for string manipulation,
there are few packages designed for the analysis of strings, especially groups of character strings. A
common method for string analysis in the existing packages is string comparison by using distances
between two strings. For example, the function adist() in the R utils package calculates a generalized
Levenshtein distance between two strings, and the function stringdist() in package stringdist (van
der Loo, 2014, 2016) provides options of computing ten different types of distances.

Broadly speaking, the text of natural language and DNA sequences are also strings. How-
ever, these two types of strings differ from simple character strings, which are continuous and
generally short (at most several hundred characters in a string). Compared to simple character
strings, DNA sequences usually are much longer while natural language text may be segmented
by spaces or punctuation. There has been a relatively large collection of packages for processing
and analyzing these two complex types of sequences (https://cran.r-project.org/web/views/
NaturalLanguageProcessing.html; https://www.bioconductor.org/). Other packages for manipu-
lating and analyzing event or text sequences include TraMineR (Gabadinho et al., 2011, 2017) and
informR (Marcum and Butts, 2015). On the other hand, there is no package built specifically for
analyzing groups of typical character strings from the quantitative perspective. Therefore, a compre-
hensive R package will fill this gap by providing functions to deal with one or multiple groups of
simple character strings, including quantitatively describing and statistically examining differences
between groups of strings ("string groups" or "string vectors" are also used in this paper).

Package GrpString (Tang and Pienta, 2017) is developed with this purpose, and it emphasizes
quantifying the features of a string group as well as the differences between two string groups. First,
the package provides functions for the users to convert raw event sequences to strings and then to
“collapsed” strings. Next, there are functions that extract common patterns shared by the strings in a
vector. The functions return the frequency of each pattern, as well as the number and starting position
of each pattern in each string. When patterns from two string vectors are compared, featured patterns
for each vector are listed to distinguish the two vectors of strings. The package also contains functions
for finding the transition matrices of a single string or a group of strings and for calculating the com-
plexity of strings based on transitions. A transition is a two-character sub-sequence within a string or
group of strings. A transition matrix in this package is a two-dimensional matrix that lists the numbers
of transitions. Cluster analysis is also included with both hierarchical and k-means methods. Lastly,
users can employ a permutation test to statistically compare and visualize the difference between
two string vectors. Figure 1 shows the main functions in the current version (0.3.2) with a detailed
description for each function.
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Figure 1: Flow chart of the main functions in the package GrpString. There are alternatives for some
functions in the flow chart. For example, EveStr() can be replaced with EveString(), CommonPatt()
can be replaced with CommonPattern(), and StrHclust() and StrKclust() are interchangeable. The
cutoff 60% is chosen as an example showing how to obtain common patterns and then featured patterns.
In practice, the users may select different cutoffs when using CommonPatt() or CommonPattern().

Functions in GrpString

Converting event sequences to strings

Encoding each event name to its corresponding character is often a necessary step before string
analysis. Automatic and simultaneous conversion of event names to string vectors can reduce the
users’ workload, especially when multiple sequences of event names need to be converted repeatedly.
The GrpString package offers three functions to accomplish this task, based on a conversion key
created by the user. The first function, EveS(), converts a sequence of event names to a single
string. Here, the two input vectors, eve.names and labels, which must have the same length, form a
conversion key. An element in labels can be a letter, digit, or a special character.

> event.vec <- c("aoi_1", "aoi_2", "aoi_3", "aoi_2", "aoi_1")
> eve.names <- c("aoi_1", "aoi_2", "aoi_3")
> labels <- c("a", "b", "c")
> EveS(event.vec, eve.names, labels)

[1] "abcba"

The second function, EveStr(), is applicable when event names are stored in a data frame in which
each row has the same number of event names, and hence each converted string has the same length
in the exported vector. In this example, event.name.vec and label.vec form a conversion key.

> event.df <- data.frame(c("aoi_1", "aoi_2"),
c("aoi_1", "aoi_3"),
c("aoi_3", "aoi_5"))

> event.name.vec <- c("aoi_1", "aoi_2", "aoi_3", "aoi_4", "aoi_5")
> label.vec <- c("a", "b", "c", "d", "e")
> EveStr(event.df, event.name.vec, label.vec)
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[1] "aac" "bce"

The third function, EveString(), is a generalized version of EveStr(). It deals with the situation
when the user stores event names in a file (e.g., ‘.txt’ or ‘.csv’) in which different rows may have
different numbers of elements. It is generally not convenient to read such a file into a data frame.
Thus, a ‘.txt’ or ‘.csv’ file for event names is used directly in the function to save the user’s effort. The
following command converts an array of event names to a vector containing 45 strings with different
lengths. The conversion key is stored in data frame eventChar.df, in which the first column contains
event names and the second column contains the characters to be converted. The object event1d holds
the directory of file ‘eve1d.txt’ (located in the user’s R library in this example), which has 45 rows, each
with different numbers of event names. Note that it is common to use a file name (and its file path if
the file is not in the current directory) directly instead of an object (like event1d) in the function, and
the users should not forget the quote sign.

> data(eventChar.df)
> event1d <- paste(path.package("GrpString"), "/extdata/eve1d.txt", sep = "")
> EveString(event1d, eventChar.df$event, eventChar.df$char)

[1] "D02F0E20DEDC0C30BDC0E45G050A0B5050A06BG0BA5607BA"
[2] "A1ABC21EF0230E03G032C30CBABGBA5G5A7G"
[3] "B1G1GEG10CEF2BAC3DEBA404B5G6F6A"
. . .
[45] "DCB010A0Q1EF21F0FGF0G0GF0B0BC20D0D0303DF04030CF45050B0CBCB05607B0"

After the event-string conversion, a string may contain consecutive repeating characters, but
sometimes the users are only interested in "collapsed" strings in which successively duplicated
characters are removed. Function DupRm() allows users to obtain collapsed strings.

> dup1 <- "000<<<<<DDDFFF333333qqqqqKKKKK33FFF"
> dup3 <- "aaBB111^^~~~555667777!!!###$$$$$$&&&(((((***)))))@@@@@>>>>99"
> dup13 <- c(dup1, dup3)
> DupRm(dup13)

[1] "0<DF3qK3F" "aB1^~5670!#$&(*)@>9"

Detecting patterns

In GrpString, a pattern (also called a common pattern) is defined as a substring with a minimum
length of three that occurs at least twice among a group of strings. For a single string of length m, the
total number of substrings of length 3 or more is n = (m - 1) × (m - 2) / 2. Note that a string itself is also
considered as a substring. By using exhaustive search of substrings in the string vector, this package
provides two functions to detect and organize patterns. The simplified version, CommonPatt(), returns
one data frame. Because there could be thousands of substrings in a string vector, the function utilizes
a cutoff to display more frequent or important patterns. The cutoff is the minimum percentage of the
occurrence of patterns or substrings and is selected by the user. If the number of strings in a group
is num, and the cutoff is selected as c, then only patterns with the minimum number of occurrence
fmin = num× c% will be returned by function CommonPatt(). In the following example, num = 6,
c = 30. Thus, fmin = 6× 30% = 1.8. Patterns with frequency (i.e., number of occurrence) ≥ 2 are
displayed in column Freq_grp.

> strs.vec <- c("ABCDdefABCDa", "def123DC", "123aABCD", "ACD13", "AC1ABC",
"3123fe")

> CommonPatt(strs.vec, low = 30)

Pattern Freq_grp Percent_grp Length Freq_str Percent_str
ABCD 3 50.00% 4 2 33.33%
ABC 4 66.67% 3 3 50.00%
123 3 50.00% 3 3 50.00%
BCD 3 50.00% 3 2 33.33%
def 2 33.33% 3 2 33.33%

The exported data frame is sorted by the pattern length and then by the frequency or percentage
of the pattern. Note that the result contains two sets of pattern frequencies and percentages; one
is of the overall occurrence (Freq_grp and Percent_grp) in a string group and the other excludes
duplicated occurrences in the same string (Freq_str and Percent_str). As a consequence, in some
cases Percent_grp can be larger than 100%, while Percent_str will not exceed 100%. The full version of
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this pair, CommonPattern(), offers more options. In addition to the lowest minimum cutoff as described
in function CommonPatt(), the user can select the highest minimum cutoff and the interval between
the two cutoffs. Furthermore, the user can choose using a conversion key to convert patterns back
to sequences of event names, which makes it easier to interpret the patterns. This function exports
a set of ‘.txt’ files in the current directory instead of a data frame.This is because the number of files
and the numbers of rows in some files could be large, which might be difficult for the user to view
the results in R directly. The names of these ‘.txt’ files consist of the name of the input string vector
and the percentages resulted from the cutoffs and the interval in the function. Patterns that occur at
least twice are exported in a separate ‘.txt’ file with "_f2up" appended to the name of the input string
vector. For example, the following command exports three files: ‘strs.vec_30up.txt’, ‘strs.vec_50up.txt’,
and ‘strs.vec_f2up.txt’. Each file contains a table that has the same columns as shown in the above result
from function CommonPatt().

> strs.vec <- c("ABCDdefABCDa", "def123DC", "123aABCD", "ACD13", "AC1ABC",
"3123fe")

> CommonPattern(strs.vec, low = 30, high = 50, interval = 20)

Pattern information and featured patterns

The first function in this pair, PatternInfo(), lists some basic information about patterns in each
string. The information includes the length of each string and the starting position of each pattern in a
string. If a pattern does not appear in a string, "-1" will be returned. If a pattern occurs at least twice
in a string the default position is for the first occurrence, although there is an option for the users to
choose the last occurrence of duplicated patterns in the same string.

> strs.vec <- c("ABCDdefABCDa", "def123DC", "123aABCD", "ACD13", "AC1ABC",
"3123fe")

> patts <- c("ABC", "123")
> PatternInfo(patts, strs.vec)

length ABC 123
ABCDdefABCDa 12 1 -1
def123DC 8 -1 4
123aABCD 8 5 1
ACD13 5 -1 -1
AC1ABC 6 4 -1
3123fe 6 -1 2

The second function in this pair, FeaturedPatt(), is developed to distinguish the pattern character-
istics of two string groups. It compares two groups of strings and discovers featured patterns in each
of the groups. It also lists basic information about the featured patterns in each string. In this function,
“featured” means patterns in a resulting pattern group can only exist in one of the two input-pattern
groups. Note that “featured patterns” shared by strings in both string groups are allowed. This is be-
cause, in practice, it is difficult to find a pattern that is exclusively present in all the strings within only
one group. As a result, in this function, “featured patterns” are probably obtained from two pattern
vectors, each of which contains patterns that are shared by a certain percentage of strings in a group.
The following simple example uses two groups (or vectors) of strings, s_grp1 and s_grp2, which are
very similar to those in Figure 1. The two pattern vectors, p1 and p2, are obtained from s_grp1 and
s_grp2, respectively by applying function CommonPatt() with cutoff = 60%. Thus, p1 contains patterns
that are shared by at least 60% of the strings in s_grp1 and p2 contains patterns that are shared by
at least 60% of the strings in s_grp2. To apply FeaturedPatt(), the first two arguments are p1 and
p2, which serve as the “input-pattern groups”, and the last two arguments are the original string
groups s_grp1 and s_grp2. The function exports five text files: ‘uni_p1-p2.txt’, ‘p1-vs-p2_in_s_grp1.txt’,
‘p1-vs-p2_in_s_grp2.txt’, ‘p2-vs-p1_in_s_grp1.txt’, and ‘p2-vs-p1_in_s_grp2.txt’. Figure 2 shows the content
of the first three files. The resulting featured patterns are listed in File 1 (‘uni_p1_p2.txt’). It can be seen
that “ABC” (featured pattern group 1) does not appear in p2 (input-pattern group 2), but can be found
in s_grp2 (20% of string group 2); “xyz” (featured pattern group 2) does not appear in p1 (input-pattern
group 1), but can be found in s_grp1 (40% of string group 1). In File 2 (‘p1-vs-p2_in_s_grp1.txt’) and File
3 (‘p1-vs-p2_in_s_grp2.txt’), the four columns are (original) string group, length of string, number of
featured patterns in string, and the starting position of featured pattern in string. If p1 had n patterns
instead of one, the number of columns in File 2 and File 3 should have 3 + n columns; starting from
the 4th column, each column lists the starting position of a featured pattern.

> s_grp1 <- c("ABC123", "123ABC", "ABCx123", "123xyz", "xyz123")
> s_grp2 <- c("xyz123", "xyzA123", "123xyz", "ABC123", "x123")
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#File 1. 'uni_p1_p2.txt'
onlyIn_s_grp1 onlyIn_s_grp2

1 ABC xyz

#File 2. 'p1-vs-p2_in_s_grp1.txt'
s_grp1 Length numPattern ABC

1 ABC123 6 1 1
2 123ABC 6 1 4
3 ABCx123 7 1 1
4 123xyz 6 0 -1
5 xyz123 6 0 -1

#File 3. 'p1-vs-p2_in_s_grp2.txt'
s_grp2 Length numPattern ABC

1 xyz123 6 0 -1
2 xyzA123 7 0 -1
3 123xyz 6 0 -1
4 ABC123 6 1 1
5 x123 4 0 -1

Figure 2: Three of the five files exported using function featuredPatt(). File 1. ‘uni_p1_p2.txt’:
featured patterns in the original string groups. File 2. ‘p1-vs-p2_in_s_grp1.txt’: information of featured
pattern "ABC" (which is from original pattern group p1) in original string group s_grp1. File 3. ‘p1-vs-
p2_in_s_grp2.txt’: information of featured pattern "ABC" (which is from original pattern group p1) in
original string group s_grp2.

> p1 <- c("123", "ABC")
> p2 <- c("123", "xyz")

> FeaturedPatt(p1, p2, s_grp1, s_grp2)

Ideally, a featured pattern presents in 100% of the strings of one string group but in none of the
strings of the other group. However, obtaining featured patterns based on cutoffs smaller than 100% as
described above still has significance. If two groups of strings are different, then patterns in featured
pattern vector 1 are likely to present more frequently in string group 1 than in string group 2. For
example, although the featured pattern "ABC" exists in both string groups, it can be found in 60% of the
strings in String Group 1, but in only 20% in string group 2 (Figure 1 and Figure 2). Note that Figure 1
and Figure 2 only show a simplified example. In reality, each string may contain multiple featured
patterns. Therefore, featured patterns, including their numbers and positions in a string (Figure 2), in
turn can be used to categorize the string, i.e., to classify or predict to which group the string belongs.

Transition matrix and information

In addition to patterns, transitions are also often reported in string analysis. For example, researchers
in eye-tracking studies may be interested in the gaze transitions within a specific location or between
two different locations. A transition is a substring with length of 2. For a single string of length m,
the total number of transitions n = m - 1. According to the definition of transition, transitions are not
applied to strings with length < 2. The first function in this pair, TransInfo(), returns the numbers
of two types of transitions — letter and digit by default — in a group of strings. Letters and digits
are used as default because they are common components in strings and can represent two different
types of events. The function also reports the number of transitions that do not belong to either of the
two types. To be more flexible, the users can define any two types of transitions (see the following
example).

> strs.vec <- c("ABCDdefABCDa", "def123DC", "123aABCD", "ACD13", "AC1ABC",
"3123fe")

> TransInfo(strs.vec)

transition_name transition_number
1 type1 24
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2 type2 8
3 mixed 7

The second function in this pair, TransMx(), returns grand transition matrices in a group of
strings. The first matrix contains the numbers of transitions between two characters in a string
vector. Normalized transition numbers are stored in the second matrix. A data frame that contains
transitions sorted by frequency is also returned. Moreover, this function provides an option to export
a transition matrix for each individual string into the current directory. The following shows the
usage and results of TransMx(). The results are stored in a list. Only one of the components in the list,
Transition_Matrix, is shown. The matrix of normalized transitions Transition_Normalized_Matrix
and the data frame of the sorted transitions Transition_Organized are not shown. As an example,
the readers can understand transition matrix $Transition_Matrix by looking at the transition "12". In
vector strs.vec, the transition "12" occurs three times (in the 2nd, 3rd and 6th strings). Thus, the value
is 3 in the cell of row 1, column 2 of Transition_Matrix, which is the total number of the transition
"From 1 To 2".

> strs.vec <- c("ABCDdefABCDa", "def123DC", "123aABCD", "ACD13", "AC1ABC",
"3123fe")

> TransMx(strs.vec)

$Transition_Matrix
From/To 1 2 3 a A B C d D e f

1 1 0 3 1 0 1 0 0 0 0 0 0
2 2 0 0 3 0 0 0 0 0 0 0 0
3 3 1 0 0 1 0 0 0 0 1 0 1
4 a 0 0 0 0 1 0 0 0 0 0 0
5 A 0 0 0 0 0 4 2 0 0 0 0
6 B 0 0 0 0 0 0 4 0 0 0 0
7 C 1 0 0 0 0 0 0 0 4 0 0
8 d 0 0 0 0 0 0 0 0 0 2 0
9 D 1 0 0 1 0 0 1 1 0 0 0
10 e 0 0 0 0 0 0 0 0 0 0 2
11 f 1 0 0 0 1 0 0 0 0 1 0

Transition entropy

Transition entropy measures the diversity of the transitions in a string or a group of strings. It can be
used as an estimate of string complexity. Larger entropy reflects more evenly distributed transitions
and smaller entropy reflects more biased distribution of transitions. Entropy in the current version of
package GrpString is calculated using the Shannon entropy formula (Shannon, 1948):

H = −
n

∑
i=1

f reqsi × log2 ( f reqsi) (1)

Here, f reqsi is the ith frequency of a transition in a string or a string vector. These are normalized
transition numbers, which can be obtained in the normalized transition matrix exported by function
TransMx() in this package. The formula is equivalent to the function entropy.empirical() in the
entropy package (Hausser and Strimmer, 2014) when setting unit = ” log2 ”. Strings with length < 2
are not counted for calculating entropies because transitions are not applied to those strings.

One function in this pair, TransEntro(), computes the overall transition entropy for a group of
strings. The other function, TransEntropy(), returns the transition entropy for each of the strings in
a group. Note that the third string ("A") is skipped in the result because the length of this string is
1. This function provides another way to quantitatively and/or statistically compare two groups of
strings. For example, with the entropy values obtained from TransEntropy(), the users can conduct a
t-test to examine whether the difference in complexity of two string groups is statistically significant.

> stra.vec <- c("ABCDdefABCDa", "def123DC", "A", "123aABCD", "ACD13", "AC1ABC",
"3123fe")

> TransEntro(stra.vec)

[1] 4.272331

> TransEntropy(stra.vec)
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String Entropy
1 1 2.913977
2 2 2.807355
3 4 2.807355
4 5 2.000000
5 6 2.321928
6 7 2.321928

Statistical difference between two groups of strings and distribution of differences

StrDif() employs a permutation test to statistically compare the difference between two groups
of strings based on normalized Levenshtein distances (LDs). StrDif() is the main function, and
HistDif() is the auxiliary function that optimizes the histogram generated by the former. A Leven-
shtein distance between two strings is the minimum number of operations to transform one string
into the other by inserting, deleting, or replacing characters. LDs in StrDif() are calculated directly
using R’s adist() function in the package utils. A normalized LD between two strings is the LD value
divided by the length of the longer string. For two groups of strings, there are two types of LDs. One is
within-group LD that is computed by comparing each string with all the others in the same group; the
other is between-group LD that is computed by comparing each string in one group with all strings in
the other group.

When comparing two groups of strings statistically, the null hypothesis is that the average nor-
malized between-group LD is equal to the average normalized within-group LD. Under this null
hypothesis, the difference (d∗) between the two average normalized LDs should be zero. We define
d∗ = dbetween − dwithin as the difference for the original two groups of strings. In a permutation
test, strings are re-allocated randomly between the two new groups, each with the same number of
strings as the original groups. Every new combination of two new groups results in a new distance
d∗
′
= d

′
between − d

′
within. If one group has n strings and the other group has m strings, the total number

of all possible permutations (NP) is

NP =
(n + m)!

n!m!
(2)

The p-value is then calculated using equation:

p =

NP
∑

i=1

(
d∗
′

i ≥ d∗i
)

NP
(3)

In practice, NP can be very large, which will make the running time of computing all d∗
′

values
very long. Therefore, a smaller subset of all the possible re-allocations of two groups of strings (i.e.,
permutations) is usually selected using the Monte Carlo method to reduce the burden of computations.
StrDif() allows the users to choose the number of permutations. The default value is 1000, which has
been proved to be a reasonable number (Tang et al., 2012).

StrDif() prints dbetween, dwithin, d∗, and the p-value. It also returns the d∗
′

(including d∗) vector,
in which the total number of elements is the sample size in the Monte Carlo simulation. The users
should use a vector object to store the d∗

′
values. Furthermore, the function generates a histogram

demonstrating the distribution of d∗
′

(Figure 3). The x-axis is the value of d∗
′

and the y-axis is the
absolute value of the frequency of d∗

′
. In the graph, d∗ will be marked as “Observed Difference” with

the p-value labeled beside. Because the positions of the legend and text in the histogram may vary
due to different distributions and p-values resulted from different string groups, StrDif() provides
options for the users to define these two positions in order to obtain the graph with optimal appearance.
However, since the users usually do not know the ideal positions in advance, they may have to re-run
the function at least once to adjust the positions. To avoid rerunning StrDif(), which can take a long
time, HistDif() allows the users to adjust the positions by directly using the vector containing all d∗

′

generated from StrDif(). This is another reason we suggest that the users save d∗
′

values in a vector
when performing StrDif().

> strs1.vec <- c("ABCDdefABCDa", "def123DC", "123aABCD", "ACD13", "AC1ABC", "3123fe")
> strs2.vec <- c("xYZdkfAxDa", "ef1563xy", "BC9Dzy35X", "AkeC1fxz", "65CyAdC",

"Dfy3f69k")
> ld.dif.vec <- StrDif(strs1.vec, strs2.vec, num_perm = 500, p.x = 0.025)
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For the initial two groups of strings,
the average normalized between-group Levenshtein Distance is: 0.85056
the average normalized within-group Levenshtein Distance is: 0.84306
the difference in the average normalized Levenshtein Distance between

between-group and within-group is: 0.00751.
The p value of the permutation test is: 0.41000

Figure 3: Histogram from function StrDif(): distribution of the differences in the average normalized
Levenshtein Distance between between-group and within-group strings. The original difference
("Observed difference") d∗ is marked in a blue line with the p-value labeled beside. Because a subset
of all the possible permutations are selected randomly, the actual p-value may be slightly different
each time the user runs the function.

Cluster analysis

The pair of functions, StrHclust() and StrKclust(), perform string clustering based on Levenshtein
distance matrices. Function StrHclust() utilizes hierarchical clustering and exports a hierarchical
dendrogram (Figure 4), which may suggest a number of clusters. When the user selects a number of
clusters, the function assigns each string to a corresponding cluster.

> strs3.vec <- c("ABCDdefABCDa", "AC3aABCD", "ACD1AB3", "xYZfgAxZY", "gf56xZYx",
"AkfxzYZg")

> StrHclust(strs3.vec)

Figure 4: Dendrogram from function StrHclust().

Function StrKclust() utilizes k-means clustering and assigns strings to their clusters based on
the number of clusters the user chooses. In addition, a cluster plot is produced to visualize the clusters
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(Figure 5). In the plot, each labelled point represents a string in the input vector. Points are clustered
by ellipses, which are also labelled. Note that by default, the ellipses are not shaded; but the users can
shade the ellipses when setting ”shade = TRUE” in the function.

> strs3.vec <- c("ABCDdefABCDa", "AC3aABCD", "ACD1AB3", "xYZfgAxZY", "gf56xZYx",
"AkfxzYZg")

> StrKclust(strs3.vec)

Cluster Strings
1 1 ABCDdefABCDa
2 1 AC3aABCD
3 1 ACD1AB3
4 2 xYZfgAxZY
5 2 gf56xZYx
6 2 AkfxzYZg

Figure 5: Cluster plot from function StrKclust(). All the points (1 to 6) and ellipses (1 and 2) are
labelled.

Summary

This article describes the GrpString package for analyzing and comparing groups of strings. Most
functions in the package GrpString were initially developed for analyzing groups of scanpaths (i.e.,
sequences of eye gazes) in eye-tracking studies. Nevertheless, as described above, this R package can
be applied in analysis of any type of character strings, and the strings do not have to be associated with
any event or state data. It should be noted that the sole usage of one function may not be sufficient
to draw conclusion when answering a research question. An example is StrDif(). There could be
various factors, such as string lengths, that can affect the p-value of a permutation test for string
comparison. Therefore, when the users claim a statistically significant or non-significant difference
between two string groups, the results from CommonPattern() and/or TransEntropy() may be used to
support the conclusion. One limitation of the current version of GrpString is that it only provides basic
and common options in some functions. For instance, only Levenshtein distance is available when
distances between strings are computed (StrDif(), StrHclust() and StrKclust()); the updated
versions should include an argument for different types of distance. Finally, there are many other
advanced analytical methods that have not been included in this package, such as determining the
centroid or median string in a string vector (de la Higuera and Casacuberta, 2000; Martínez-Hinarejos
et al., 2000) or using Markov chains for string modeling and classification (Krejtz et al., 2014). We plan
to build more functions into GrpString in the future and welcome feedback from the users to improve
this package.
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Epistemic Game Theory: Putting
Algorithms to Work
by Bilge Başer and Nalan Cinemre

Abstract The aim of this study is to construct an epistemic model in which each rational choice under
common belief in rationality is supplemented by a type which expresses such a belief. In practice, the
finding of type depends on manual solution approach with some mathematical operations in scope of
the theory. This approach becomes less convenient with the growth of the size of the game. To solve
this difficulty, a linear programming model is constructed for two-player, static and non-cooperative
games to find the type that is supporting that player’s rational choice is optimal under common
belief in rationality and maximizing the utility of the game. Since the optimal choice would only
be made from rational choices, it is first necessary to eliminate all strictly dominated choices. In
real life, the games are usually large sized. Therefore, the elimination process should be performed
in a computer environment. Since software related to game theory was mostly prepared with a
result-oriented approach for some types of games, it was necessary to develop software to execute
the iterated elimination method. With this regard, a program has been developed that determines
the choices that are strictly dominated by pure and randomized choices in two-player games. Two
functions named “esdc” and “type” are created by using R statistical programming language for the
operations performed in both parts, and these functions are added to the content of an R package after
its creation with the name EpistemicGameTheory.

Introduction

In order to evaluate the possible results of the decision, it is very important to constitute a belief about
opponents’ feasible preferences which can affect their choices. In addition to this, the precondition
of making a good choice requires having a reasonable belief about opponents’ choices. However, in
general each belief of players may not be reasonable according to their opponents. The player should
determine the opponent’s possible idea about his opponent with putting himself into his opponent’s
shoes, to decide which choice is reasonable for his opponent or which choice would not be preferred
by him. In other words, before surmising an idea about opponents’ choices, it is compulsory to reason
their system of thought. Indeed, Oskar Morgenstern who is one of the earliest founders of game
theory, has highlighted this subject in his article “Perfect Foresight and Economic Equilibrium” which
was published in 1935. In his article, Morgenstern has explained the significance of having idea about
beliefs of the opponents, analyzing the opponents’ systems of thought properly and establishing
a reasonable relation to make a good decision (Morgenstern, 1935). However, the importance of
this concept frequently has been underestimated in the studies on game theory, which have been
published in last sixty years. Morgenstern’s bold idea of using the tools of formal logic to talk about
how members of a social system think, about how they think about what other members think, and so
on, was far ahead of its time. However now, in the form of epistemic game theory, it has found a home
(Brandenburger, 2010).

The discipline that studies these patterns of reasoning, and how they influence the eventual choices
of the players, is called epistemic game theory (Perea, 2012).1

Approximately twenty-five years ago, conceptual changes have emerged with the introduction of
epistemic game theory. This new branch of science has brought game theory back to its fundamental
concepts, its background. In other words, it has brought game theory back to reasonable modeling
of players’ beliefs about their opponents. At the core of epistemic game theory, there is the fact that
people have different tendencies to reason under same circumstances in a game. Therefore, it is not
true reasoning in a unique way and claiming that it is the best option. Under such conditions, it can be
said that there are only different reasoning ways, and it should be avoided that claiming on which one
is better. In epistemic approach, the aim is to define the methods of reasoning, which can be used in
the game, and to examine how the method affects the result of the game.

1In this study, (Perea, 2012) is used on a large scale for explaining the concepts of Epistemic Game Theory.
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Concepts Of Epistemic Game Theory

Belief about opponents’ choices

The belief of a player about choices of his opponents is a probability distribution which is defined
over the set C−i = C1 × . . .× Ci−1 × Ci+1 × . . .× Cn where Ci is the set of player i’s choices. The
probability value which is assigned by player i for his opponents’ each choice combination, is obtained
by bi(c1, . . . , ci−1, ci+1, . . . , cn).

Let us symbolize the utility function of player i with ui and the belief about the choices of his
opponents with bi. Accordingly, expected utility of player i from choosing the choice ci is calculated
by the equation below.

ui(ci, bi) = ∑
(c1,...,ci−1,ci+1,...,cn)∈C−i

bi(c1, . . . , ci−1, ci+1, . . . , cn)× ui(c1, . . . , ci−1, ci, ci+1, . . . , cn)

Belief hierarchies and type

The concept of belief hierarchies is the basic element of epistemic approach. In an n-player game, the
belief hierarchies for player i is as follows:

1. The belief that player i has about his opponents’ choice-combinations,

2. The belief that player i has about the beliefs that his opponents have about their opponents’
choice-combinations,

3. The belief that player i has about the beliefs that his opponents have about the beliefs that their
opponents have about the other players’ choice-combinations,

and so on, ad infinitum. The first belief for player i is his first-order belief, the second belief is his
second-order belief, and so on.

The belief hierarchies have some disadvantages both theoretically and practically. In theory, it is
difficult to make a mathematical description of the hierarchy. In practice, it is often impossible to write
and express each stage of the infinite hierarchy (first-order belief, second-order belief, etc.). For this
reason, an approach that can express the hierarchy in a shorter and more formal way is needed.

The concept of infinite belief hierarchy has brought to game theory by John Harsanyi. He has
worked on incomplete information games, also called Bayesian games, where players have incomplete
information about the parameters of the game. It is aimed to model the beliefs of each player about
the unknown parameters of the game, each player’s beliefs about the other players’ beliefs about these
parameters, and so on ad infinitum. This may be called the explicit approach and is in fact feasible.
However, the explicit approach is mathematically rather cumbersome and hardly manageable. Indeed,
this was a major obstacle to the development of the theory of games with incomplete information at
its early stages. The breakthrough was provided by John Harsanyi in a seminal work (Harsanyi, 1982)
that awarded him the Nobel Prize in 1994 after thirty years. While Harsanyi actually formulated the
problem verbally, in an explicit way, he suggested a solution that ‘avoided’ the difficulty of having to
deal with infinite hierarchies of beliefs, by providing a much more workable implicit, encapsulated
model (Zamir, 2013).

The concept of a type is the basis of the Harsanyi model. As a concept, type can be considered as a
precise definition of players’ belief hierarchies about unknown parameters of the game. It is a special
representation of the player’s beliefs about the actual parameters involved and the answers to the types
of other players. This characteristic of the types gives the player the ability to self-reference inevitably
that is, the ability to decide the types of other players through their own types in an interactive
decision-making environment.

The construction that Harsanyi proposed in the context of a game with incomplete information on
the preferences of the players was very simple: For every player, define a set of types, and for every
type define a utility function, together with a probabilistic belief about the opponents’ types (Harsanyi,
1982).

The content of the type in epistemic game theory differs from that of Harsanyi. While Harsanyi
forms belief hierarchies for parameters of the game, epistemic game theory deals with the choices of
the players. In the studies (Armbruster and Boge, 1979) and (Boge and Eisele, 1979), belief hierarchies
have been used to describe the beliefs of players about their opponents’ choices.

Let us denote the belief hierarchy with tc
i which supports player i’s any choice c. In the literature,

belief hierarchy is also used as epistemic type (or briefly type). Therefore, ti represents an epistemic
type of the player i.
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Epistemic model

Let us consider an n-player game. The epistemic model, firstly, indicates possible types for each player.
Let us symbolize the set of all possible types for every player i with Ti. Each type ti stores information
about the beliefs on the choices of player i’s opponents and their types. The problem that arises here is
how this belief can be expressed mathematically.

As it is known, every player i’s belief about choices of his opponents is a probability distribution bi
which has been defined on the set C−i = C1 × . . .× Ci−1 × Ci+1 × . . .× Cn.ti should have information
about not only the belief about choices of his opponents but also information about his opponents’
types. Thus, ti represents the choice-type combinations of player i’s opponents.

The set that contains all possible choice-type combinations of any opponent j of player i is Cj × Tj.
In parallel with this definition, the set of all choice-type combinations of player i’s opponents’ becomes
(C1 × T1) × . . . × (Ci−1 × Ti−1) × (Ci+1 × Ti+1) × . . . × (Cn × Tn). This set includes all possible
combinations ((c1, t1), . . . , (ci−1, ti−1), (ci+1, ti+1), . . . , (cn, tn)).

An epistemic model specifies probability distribution bi(ti) defined on the set of all possible
choice-type combinations (C1 × T1)× . . .× (Ci−1 × Ti−1)× (Ci+1 × Ti+1)× . . .× (Cn × Tn) for every
player i and each type ti ∈ Ti. The probability distribution of bi(ti) represents the belief that type ti
has about the opponents’ choices and types.

Consider a type ti for player i within an epistemic model. The choice ci is rational for type
ti if it maximizes the expected utility for the belief that ti holds about the opponents’ choice-type
combinations.

The entire belief hierarchy can be expressed with an epistemic model. Constructing an epistemic
model is easier than establishing a belief hierarchy. This is an important advantage of epistemic model.
Another advantage of the epistemic model is that it can be defined by a mathematical expression
conveniently.

Deciding Under Common Belief In Rationality

Type ti is said to believe in the opponents’ rationality if for every opponent j, and every choice-type
pair (cj, tj) ∈ Cj × Tj to which ti assigns positive probability, the choice cj is rational for type tj.

In order to define common belief in rationality, firstly, the definition of k-fold belief in rationality is
needed and explained as follows.

k-fold belief in rationality

Consider an epistemic model.

1. Type ti expresses 1-fold belief in rationality if ti believes in the opponents’ rationality.

2. Type ti expresses 2-fold belief in rationality if ti only assigns positive probability to the oppo-
nents’ types that express 1-fold belief in rationality.

3. Type ti expresses 3-fold belief in rationality if ti only assigns positive probability to the oppo-
nents’ types that express 2-fold belief in rationality.

And so on. Thus, k-fold belief in rationality can be recursively defined for every number k.

Rational choice under belief in the opponents’ rationality

The choice c∗1 is the optimal choice for player i, if the expected utility of the choice c∗i is maximum
(ui(c∗i , bi) ≥ ui(ci, bi)).

If the choice c∗i is optimal with reference to player i’s belief about the opponents’ behavior patterns,
then c∗i is called as a rational choice.

Player i believes that his opponents are rational if he assigns positive probability for only his
opponent’s rational choices.

If the choice ci of player i is optimal for some belief bi about the choices of his opponents’ while
believing in the opponents’ rationality, then the choice ci is a rational choice for player i under belief in
the opponents’ rationality.

The concept of rational choice in game theory sometimes causes confusion. In the context of this
study, the word “rational” is used as follows: If a player has built a belief about his opponent’s choices,
and has made the optimal choice for himself under this belief, he has made a rational choice. However,
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this player may have had an unreasonable belief about the opponent, and making rational choice does
not guarantee making the reasonable choice. Reasonability carries a subjective meaning and depends
on the mindset of the person. Something that is reasonable for one may not be reasonable for another.
Therefore, it is impossible to make a single definition of reasonable choice.

The reasonable choice should not only be rational under the belief in the opponents’ rationality, but
at the same time, it should be optimal according to a reasonable belief about the opponents’ choices.
What is open to debate is when does a belief about the opponent be reasonable? Epistemic game
theory examines the answer to this question.

Rational choice under common belief in rationality

In an epistemic model, if the type ti expresses k-fold belief in rationality for every k, it can be said that
ti expresses common belief in rationality. If ti expresses common belief in rationality and the choice ci
is optimal for the type ti, then ci is a rational choice under common belief in rationality.

Common belief in rationality does not only mean that you believe that your opponents choose
rationally, but you also believe that your opponents believe that their opponents will choose rationally,
and that your opponents believe that their opponents believe that the other players will choose
rationally, and so on.

Consider an epistemic model, which contains type sets T1, . . . , Tn. If the player i’s choice ci is not
supported to express common belief in rationality by any type in Ti, this does not mean that the choice
ci cannot be chosen under common belief in rationality. There may be another epistemic model that
has a type supporting the choice ci to express common belief in rationality. The purpose of this work
is to seek an answer to the question that how this epistemic model can be detected.

Algorithm 1 (Choices that can be rationally chosen under common belief in rationality):
An algorithm has been required to use in order to find the choices that can be rationally chosen

under common belief in rationality. Algorithm 1 is based on the following theorem.

Theorem 1: A choice ci is irrational if and only if it is strictly dominated by another pure or
randomized choice. In other words, a choice ci is rational if and only if it cannot be strictly dominated
by another pure or randomized choice 2 (Pearce, 1984).

By Theorem 1, the algorithm is explained as follows.

1) Eliminate all strictly dominated choices in the original game.

2) Eliminate all strictly dominated choices in the reduced game obtained after the step (1).

3) Eliminate all strictly dominated choices in the reduced game obtained after the step (2).
...

Repeat this process until no strategy can be eliminated.

This algorithm ends with a finite number of steps and gives a set of choices that are not empty for
each player if the game is finite. The order of elimination and speed do not affect the result.

Theorem 2: (Brandenburger and Dekel, 1987) and (Tan and Werlang, 1988) proved that, if the
choices can be rationally made under k-fold belief in rationality for each k ≥ 1, then these choices are
also survived (k + 1)-fold elimination. This can be generalized as; the rational choices under common
belief in rationality are the choices that survive the iterated elimination of strictly dominated choices.

Algorithms For Finding Types That Express Common Belief In Rational-
ity For Optimal Choices

In practice, the finding of type depends on non-computer based approach with some mathematical
operations in scope of the theory. This approach becomes less convenient with the growth of the size
of the game. For this reason, we construct a linear programming model for two-player, static and
non-cooperative games to find the type that is supporting that player i’s rational choice ci is optimal
under common belief in rationality and maximizing the utility of the game. Since the optimal choice
would only be made from rational choices, it is first necessary to eliminate all strictly dominated
choices. By the reason of software related to game theory was mostly prepared with a result-oriented
approach for some solution methods and some types of games, it was necessary to develop software
to execute the iterated elimination method. With this regard, we developed a computer program that
determines the choices that are strictly dominated by pure and randomized choices in two-player

2A randomized choice means that a player, before making a choice, uses a randomization device and bases the
actual choice on the outcome of the randomization device.
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games. Başer transformed the operations performed in both parts to software by using R Statistical
Programming Language and created a package with the name EpistemicGameTheory (Baser, 2017a).

The EpistemicGameTheory R package containing functions named esdc and type for both pur-
poses explained above. The package roxygen2 was used to prepare the documentation when the R
package was created (Wickham and et al, 2015).

esdc function

As it is known, since the optimal choice is made only from rational choices, it is first necessary to make
iterated elimination of strictly dominated choices. For this purpose, the steps given in Algorithm 1 for
two-player games need to be coded into software. We developed Algorithm 2 to make the steps of this
algorithm suitable for programming architecture.

Let n be the number of choices of the first player; and m be the number of choices of the second
player; the utility matrix of the first player would be;

A =


a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm


the utility matrix of the second player would be;

B =


b11 b12 . . . b1m
b21 b22 . . . b2m

...
...

. . .
...

bn1 bn2 . . . bnm


Each entry of matrix A represents a utility level of the first player while each entry of matrix B

represents a utility level of the second player. The two subscripts of these entries indicate the strategies
chosen by the two players where the first subscript refers to the strategy chosen by the first player and
the second subscript refers to the strategy chosen by the second player.

Algorithm 2 (Creating the Algorithm to be Used in Comparing the Choices of the First Player):
1) A combination matrix (CA) is generated that contains all combinations of (n, (n− t)) with t = 1

at the initial point. Each row of CA shows how to compare the choices.

It is aimed to obtain a randomized choice for each row by using its elements and then compare with
the utility level of the choice which does not exist in that row. For instance, let c∗1 be the randomized
choice that is obtained by randomization of the choices (c11, c12, . . . , c1(n−t)) . Then the utility level of
c∗1 is compared with the utility level of the choice that does not exist in the first row. The randomization
process is made with the procedures in the following steps.

CA =


c11 c12 . . . c1(n−t)
c21 c22 . . . c2(n−t)
...

...
. . .

...
cn1 cn2 . . . cn(n−t)


2) An index matrix (N) with rows equal to the number of rows of the matrix CA is generated. Each

row of the index matrix is equal and consists of a number sequence of 1 to n.

N =


1 2 . . . n
1 2 . . . n
...

...
. . .

...
1 2 . . . n


3) A comparison is made between the rows of CA and N matrices. The elements existed in N and

not in CA are assigned to the corresponding row of the difference matrix. The purpose of this step is
identifying the choice for each row which is compared with the randomized choice that is obtained in
step 1.
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D =


d11 d12 . . . d1(n−(n−t))
d21 d22 . . . d2(n−(n−t))

...
...

. . .
...

dn1 dn2 . . . dn(n−(n−t))


4) For every row of CA, a probability vector P is generated from a uniform distribution on the

(n− t− 1)− dimensional simplex.

P = (p1, p2, . . . , p(n−t)), p1 + p2 + . . . + p(n−t) = 1

According to this probability vector, the first player chooses the first choice with the probability p1,
the second choice with the probability p2, ..., (n− t)th choice with the probability p(n−t).

5) Using the obtained probability values, the expected utility for the first player as a result of
choosing the randomized choice is calculated and compared with the utility provided by the choice
not existed in the related row of the combination matrix.

If the first player believes that second player will choose his first strategy, the expected utility for
the first player would be;

p1 × a11 + p2 × a21 + . . . + p(n−t)a(n−t)1 = E1,

If the first player believes that second player will choose his second strategy, the expected utility
for the first player is calculated as;

p1 × a12 + p2 × a22 + . . . + p(n−t)a(n−t)2 = E2,

...

If the first player believes that second player will choose his last strategy, the expected utility for
the first player is as below;

p1 × a1m + p2 × a2m + . . . + p(n−t)a(n−t)m = Em,

If all expected utilities (E1, E2, . . . , Em) obtained are greater than the expected utility of the choice
pointed by the element in the corresponding row of matrix D, then the strategy is strictly dominated
by that randomized choice. This process is made for every row of CA.

Two situations can arise here:

Elimination occurs: In this case, the reduced utility matrix is obtained. The new C(n∗, (n∗ − t))
combination matrix is created (where n∗ is the number of rows of the reduced utility matrix) and the
above steps are repeated.

Elimination does not occur: In this case, a new probability vector is generated, and the above steps
are repeated. Here it is very important to decide the number of iterations that determine how many
times the probability vector will be generated and it depends on the dimension of the game. Therefore,
the number of iterations must be sufficiently large to be able to determine the strictly dominated
choices (iteration −→ ∞). If there is no strictly dominated choice according to the utility matrix, the
value of t is increased by “1” to form a new combination matrix C(n, (n− t)) and the above steps are
repeated.

6) When (n∗ − t) < 1 the algorithm ends and the last reduced utility matrix is obtained.

The last reduced utility matrix determined by the above algorithm consists of the rational choices
of the first player. The same steps are performed for the second player. The specified steps are written
in the R statistical programming language, and a function named “esdc” is created. This function
gives the reduced game after the iterated elimination of all strictly dominated choices. The properties
of the function are shown in Figure 1.
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esdc Eliminating strictly dominated choices

Description
This function eliminates strictly dominated choices.

Usage
esdc(n,m,A,choices.A,B,choices.B,iteration)

Arguments
n an integer representing the number of choices of player 1
m an integer representing the number of choices of player 2
A an nxm matrix representing the payoff matrix of player 1
choices.A a vector of length n representing the names of player 1’s choices
B an nxm matrix representing the payoff matrix of player 2
choices.B a vector of length m representing the names of player 2’s choices
iteration an integer representing the iteration number of algorithm

Details
This function works for the games with two players.

Value
This function works for the games with two players.

Figure 1: esdc Function

The esdc function uses seven arguments. These are; the choice number of the first player (n), the
choice number of the second player (m), the utility matrix of the first player (A), the vector consisting
of the choice names of the first player (choices.A), the utility matrix of the second player (B), the vector
consisting of the choice names of the second player (choices.B), and the number of repetitions of the
algorithm (iteration). As a result of the execution of this function, the reduced utility matrices of the
players’ that are obtained after eliminating strictly dominated choices as output.

type function

It is aimed to show that for every player i and every rational choice ci(i = 1, 2, . . . , n), there is a type ti,
which supports that ci is optimal under common belief in rationality.

At the beginning of the game, a type is defined for each element in the player’s choice set. However,
the “type” function generates types only for rational choices because the player do not choose irrational
strategies in practice.

Construction of Epistemic Model:
Let A∗ be the first player’s reduced utility matrix.

A∗ =


a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm


The first player believes that the second player will likely choose the first choice with the probability

q1, the second choice with the probability q2, . . . , and the final choice with the probability qm. In this
case, according to the preferences of the second player, the utilities of the first player can be expressed
by a linear equation system.

Under this belief, first player will get the utility U1, if he chooses his first strategy;

a11q1 + a12q2 + · · ·+ a1mqm = U1,

he will get the utility U2, if he chooses his second strategy;

a21q1 + a22q2 + · · ·+ a2mqm = U2

...

he will get the utility Ui, if he chooses his ith strategy,

ai1q1 + ai2q2 + · · ·+ aimqm = Ui

...
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he will get the utility Un, if he chooses his nth strategy,

an1q1 + an2q2 + · · ·+ anmqm = Un

The first player prefers his ith choice if and only if the inequality Ui ≥ U1, U2, . . . , U(i−1),
U(i+1), . . . , Un is satisfied. Then, when is this inequality satisfied?

Let’s express this inequality in pairwise comparison;

Ui ≥ U1 ⇐⇒ Ui −U1 ≥ 0

Ui ≥ U2 ⇐⇒ Ui −U2 ≥ 0
...

Ui ≥ Un ⇐⇒ Ui −Un ≥ 0

Then the linear equation system is obtained by substitution of the equals of the utilities explicitly,
where q is a uniform distribution on the (m− 1)− dimensional simplex.

(ai1 − a11)q1 + (ai2 − a12)q2 + · · ·+ (aim − a1m)qm = Ui −U1 ≥ 0

(ai1 − a21)q1 + (ai2 − a22)q2 + · · ·+ (aim − a2m)qm = Ui −U2 ≥ 0
...

(ai1 − an1)q1 + (ai2 − an2)q2 + · · ·+ (aim − anm)qm = Ui −Un ≥ 0

Suppose that the first player’s ith strategy is optimal. In this case, all the points located in the
convex region consisting of the intersection of the closed half spaces and the hyperplane are those,
which make the i th strategy optimal under common belief in rationality.

The mathematical model above allows us to find all types that ci is optimal under the common
belief in rationality for every player i and every rational choice ci(i = 1, 2, . . . , n). By solving this
model, an infinite number of points are obtained. Instead of dealing with infinite number of points in
practice, constructing an epistemic model that there is a type ti for each player i and for each rational
choice ci(i = 1, 2, . . . , n) that supports ci to be optimal under the common belief in rationality that
maximizes the utility is making more sense. For this reason, a linear programming model has been
established for each choice. Thus, while showing at least, there is one type making the relevant choice
optimal under common belief in rationality, and it can also be found the type that maximizing the
utility of the player. In this regard, the linear programming model for the ith choice is established as
follows.

Zmax = ai1q1 + ai2q2 + · · ·+ aimqm

(ai1 − a11)q1 + (ai2 − a12)q2 + · · ·+ (aim − a1m)qm ≥ 0

(ai1 − a21)q1 + (ai2 − a22)q2 + · · ·+ (aim − a2m)qm ≥ 0
...

(ai1 − an1)q1 + (ai2 − an2)q2 + · · ·+ (aim − anm)qm ≥ 0

q1 + q2 + · · ·+ qm = 1

q1, q2, . . . , qm ≥ 0

Similar models can be set up for first player’s other choices and for the second player as well. A
function named “type” has been created in R programming language for solving the linear program-
ming model described above. The features of this function are shown in Figure 2.

The “type” function uses four arguments, named A, B, choices.A and choices.B. “A” is the reduced
utility matrix of the first player, and “B” is the reduced utility matrix of the second player. “choices.A”
and “choices.B” represent the name of the choices of players as previously defined. This function uses
the “lp” function from the lpSolve package, which provides the Simplex method for solving linear
programming problems (Berkelaar and et al, 2015). As a result of the execution of the “type” function,
probabilities for the types are obtained, which ensure that a rational strategy is optimal under common
belief in rationality and maximizes the utility of the player.

Since in epistemic game theory, it is important to comprehend why and how a choice is strictly
dominated, the “esdc” function becomes crucial. Indeed, it is advisable that to execute the “esdc”
function before the types are specified. In other words, the “esdc” function should be integrated into
the “type” function as a prepended operation (Baser, 2017b).
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type Finding types that express common belief in rationality for optimal choices

Description
This function takes the reduced payoff matrices and finds out the probabilities for
the types that expresses common belief in rationality for optimal choices.

Usage
type(A,B,choices.A,choices.B)

Arguments
A an nxm matrix representing the reduced payoff matrix of player 1
B an nxm matrix representing the reduced payoff matrix of player 2
choices.A a vector of length n representing the names of player 1’s choices
choices.B a vector of length m representing the names of player 2’s choices

Details
This function works for the games with two players. It returns infeasible solution
for the irrational choices.

Value
Probabilities of the types that expresses common belief in rationality for optimal
choices

Figure 2: type Function

Application of the Traveler’s Dilemma

We applied the two functions to Basu’s well-known The Traveler’s Dilemma (Basu, 1994) game to
underscore the practical usefulness of this work. Each player has 99 strategies between 2 and 100. The
utility matrices for the players are created according to the utility function of the Traveler’s Dilemma
game.

Applying esdc Function
The arguments for esdc function are assigned as given below. For this numerical example, the “itera-
tion” argument is taken as 500. The name of choices of both players (“choices.A” and “choices.B”) are
denominated by the numbers between 2 to 100.

n = 99
m = 99
iteration = 500
esdc(n,m,A,choices. A,B,choices. B,iteration)

The Reduced Utility Matrices
With the execution of “esdc” function the algorithm eliminates all strictly dominated choices from
the utility matrices A and B. For these matrices 196 times elimination occurred. The reduced utility
matrices are displayed below. In the last reduced game, the players have only one choice left, which is
choosing a price of “2”. Therefore, they can only rationally choose a price of “2” under common belief
in rationality.

[1] "ELIMINATION IS OVER."
[1] "The Last Reduced Matrix For Player 1:"

2 3
[1,] 2 4
[1] "The Last Reduced Matrix For Player 2:"

[,1]
[1,] 2

Applying type Function
The type function is executed for finding types for rational choices under common belief in rationality
given in the reduced matrices for both players. The definitions of arguments are shown below.
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A<-matrix(c(2),1,1)
B<-matrix(c(2),1,1)
choices.A = c("2")
choices.B = c("2")
type(A,B,choices. A,choices. B)

The Output of type Function
The output of type function includes the coefficients of the linear equation system, the types that
supports relevant choice under common belief in rationality and the maximum utility of the player.
For this example, the output of type function is displayed below.

type(A,B,choices.A,choices.B)
[1] "The utility matrix of Player 1:"
2
2 2
Player 1's type for the strategy 2 : 1
Success: the objective function is 2
[1] "The utility matrix of Player 2:"
2
2 2
Player 2's type for the strategy 2 : 1
Success: the objective function is 2

The epistemic model of the first player was created as follows using belief probabilities from the
output of type function that make every rational choice of the first player optimal under common
belief in rationality.

Type: T1 ={t2
1}

Belief for the first player:

b1(t2
1) = (2, t2

2)

The epistemic model is constructed by using the values for the second player from the output of
type function as follows:

Type: T2 ={t2
2}

Belief for the second player:

b2(t2
2) = (2, t2

1)

Consequently, the first player will choose his choice “2”, if he believes that second player will
choose “2” with the probability 1. In a similar way, the second player will choose “2”, if he believes
that first player will choose “2” with the probability 1 and they will end up getting two units of money
each.

Conclusion

Game theory has been investigated with epistemic approaches in recent years. Theorists and practi-
tioners do research for analyzing the logic underlying game theory in a broader and more realistic
perspective. Although epistemic game theory has a strong theoretical background, there is a lack of
tools to work on large-scale problems in practice. This study based on common belief in rationality
which can be considered as the heart of epistemic game theory. In two-player games, we developed a
systematic way to find out types that optimize their rational choices under common belief in rationality
for every player together with maximizing their utility. Thus, this study brings flexibility to producing
solutions of large-scale problems within the scope of epistemic game theory. The algorithms which
have been used are transformed into software. R is preferred because of its open-source software
feature, and an R package has been created to bring the program into use. It is thought that this
study will serve as an example for future work in computational epistemic game theory field and it is
planned to adapt this approach to n-person games as well.
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Residuals and Diagnostics for Binary and
Ordinal Regression Models: An
Introduction to the sure Package
by Brandon M. Greenwell, Andrew J. McCarthy, Bradley C. Boehmke, and Dungang Liu

Abstract Residual diagnostics is an important topic in the classroom, but it is less often used in practice
when the response is binary or ordinal. Part of the reason for this is that generalized models for discrete
data, like cumulative link models and logistic regression, do not produce standard residuals that are
easily interpreted as those in ordinary linear regression. In this paper, we introduce the R package
sure, which implements a recently developed idea of SUrrogate REsiduals. We demonstrate the utility
of the package in detection of cumulative link model misspecification with respect to mean structures,
link functions, heteroscedasticity, proportionality, and interaction effects.

Introduction

Categorical outcomes are encountered frequently in practice across different fields. For example,
in medical studies, the outcome of interest is often binary (e.g., presence or absence of a particular
disease after applying a treatment). In other studies, the outcome may be an ordinal variable; that is,
a categorical outcome having a natural ordering. For instance, in an opinion poll, the response may
be satisfaction with categories low, medium, and high. In this case, the response is ordered: low <
medium < high.

Logistic and probit regression are popular choices for modeling a binary outcome. Although
this paper focuses on models for ordinal responses, the surrogate approach to constructing residuals
actually applies to a wide class of general models of the form

Y ∼ Fa (y; X, β) ,

where Fa (·) is a discrete cumulative distribution function, X is an n× p model matrix, and β is a p× 1
vector of unknown regression coefficients. This functional form includes binary regression as a special
case. For example, the probit model has

Y ∼ Bernoulli
[
Φ
(

X>β
)]

,

where Φ (·) is the cumulative distribution function for the standard normal distribution.

The cumulative link model is a natural choice for modeling a binary or ordinal outcome. Consider
an ordinal categorical outcome Y with ordered categories 1 < 2 < · · · < J. In a cumulative link model,
the cumulative probabilities are linked to the predictors according to

G−1 (Pr {Y ≤ j}) = αj + f (X, β) , (1)

where G (·) is a continuous cumulative distribution function, αj are the category-specific intercepts, X
is a matrix of covariates, and β is a vector of fixed regression coefficients. The intercept parameters
satisfy −∞ = α0 < α1 < · · · < αJ−1 < αJ = ∞. We should point out that some authors (and software)
use the alternate formulation

G−1 (Pr {Y ≥ j}) = α?j + f (X, β?) . (2)

This formulation provides coefficients that are consistent with the ordinary logistic regression model.
The estimated coefficients from model (2) will have the opposite sign as those in model (1); see, for
example, Agresti (2010).

Another way to interpret the cumulative link model is through a latent continuous random
variable Z = − f (X, β) + ε, where ε is a continuous random variable with location parameter 0,
scale parameter 1, and cumulative distribution function G (·). We then construct an ordered factor
according to the rule

y = j i f αj−1 < z ≤ αj.

For ε ∼ N (0, 1), this leads to the usual probit model for ordinal responses,

Pr {Y ≤ j} = Pr
{
Z ≤ αj

}
= Pr

{
− f (X, β) + ε ≤ αj

}
= Φ

(
αj + f (X, β)

)
.
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Common choices for the link function G−1 (·) and the implied (standard) distribution for ε are
described in Table 1.

Link Distribution of ε G (y) G−1 (p)

logit logistic exp (y) / [1 + exp (y)] log [p/ (1− p)]
probit standard normal Φ (y) Φ−1 (p)
log-log Gumbel (max) exp [− exp (−y)] − log [− log (p)]
complementary log-log Gumbel (min) 1− exp [− exp (y)] log [− log (1− p)]
cauchit Cauchy π−1 arctan (y) + 1/2 tan (πp− π/2)

Table 1: Common link functions. Note: the logit is typically the default link function used by most
statistical software.

There are a number of R packages that can be used to fit cumulative link models (1) and (2). The
recommended package MASS (Venables and Ripley, 2002) contains the function polr (proportional
odds logistic regression) which, despite the name, can be used with all of the link functions described
in Table 1. The VGAM package (Yee, 2017) has the vglm function for fitting vector generalized linear
models, which includes the broad class of cumulative link models. By default, vglm uses the same
parameterization as in Equation (1), but provides the option of using the parameterization seen in
Equation (2); this will result in the estimated coefficients having the opposite sign. Package ordinal
(Christensen, 2015) has the clm function for fitting cumulative link models. The popular rms package
(Harrell, 2017) has two functions: lrm for fitting logistic regression and cumulative link models
using the logit link, and orm for fitting ordinal regression models. Both of these functions use the
parameterization seen in Equation (2).

The remainder of the paper is organized as follows. In the next section, we discuss the idea of
surrogate residuals (Liu and Zhang, 2017) and talk about some important properties. Next, we briefly
discuss jittering, bootstrapping, and how they apply to the surrogate approach. The Section ”Sur-
rogate residuals in R” introduces the sure package and discusses the various modeling packages it
supports. The sections following demonstrate how sure can be used to detect misspecified mean
structures, heteroscedasticity, misspecified link functions, and interaction effects, as well as check the
proportionality assumption. The Section ”Bitterness of wine” provides a real data analysis example.
We end with a closing summary.

Surrogate residuals

For a continuous outcome Y , the residual is traditionally defined as the difference between the
observed and fitted values. For ordinal outcomes, the residuals are more difficult to define, and few
definitions have been proposed in the literature. Liu et al. (2009) propose using the cumulative sums of
residuals derived from collapsing the ordered categories into multiple binary outcomes. Unfortunately,
this method leads to multiple residuals for the ordinal outcome and therefore is difficult to interpret.
Li and Shepherd (2012) show that the sign-based statistic (SBS)

RSBS = E {sign (y−Y)} = Pr {y > Y} − Pr {y < Y} (3)

can be used as a residual for ordinal outcomes. Though Li and Shepherd refer to these as probability-
based residuals , we will follow Liu and Zhang (2017) and refer to them as SBS residuals. For an
overview of the theoretical and graphical properties of the SBS residual (3), see Liu and Zhang (2017)
and the PResiduals package (Dupont et al., 2016). A limitation with the SBS residuals is that they are
based on a discrete outcome and are discrete themselves, which makes them less useful in diagnostic
plots.

Liu and Zhang (2017) propose a new type of residual that is based on a continuous variable S that
acts as a surrogate for the ordinal outcome Y . This surrogate residual is defined as

RS = S− E (S|X) , (4)

where S is a continuous variable based on the conditional distribution of the latent variable Z given Y .
In particular, given Y = y, Liu and Zhang (2017) show that S follows a truncated distribution obtained
by truncating the distribution of Z = − f (X, β) + ε using the interval

(
αy−1, αy

)
. The benefit of the

surrogate residual (4) is that it is based on a continuous variable S, such that RS is also continuous.

Furthermore, it can be shown (Liu and Zhang, 2017) that if the hypothesized model agrees with
the true model, then RS will have the following properties:
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(a) symmetry around zero E (RS|X) = 0;

(b) homogeneity Var (RS|X) = c, a constant that is independent of X;

(c) reference distribution the empirical distribution of RS approximates an explicit distribution that
is related to the link function G−1 (·). In particular, independent of X, RS ∼ G

(
c +

∫
udG(u)

)
,

where c is a constant.

According to property (a), if
∫

udG (u) = 0, then RS ∼ G (·). Properties (a)–(c) allow for a thorough
examination of the residuals to check model adequacy and misspecification of the mean structure and
link function.

Jittering for general models

The latent method discussed in Section ”Surrogate residuals” applies to cumulative link models for
ordinal outcomes. For more general models, we can define a surrogate using a technique called
jittering . Suppose the true model for an ordinal outcome Y is

Y ∼ Fa (y; X, β) , (5)

where F (·) is a discrete cumulative distribution function. This model is general enough to cover the
cumulative link models (1) and (2), and nearly any parametric or nonparametric model for ordinal
outcomes.

Liu and Zhang (2017) suggest defining the surrogate S using either of the following two ap-
proaches:

1. jittering on the outcome scale: S|Y = y ∼ U [y, y + 1];

2. jittering on the probability scale: S|Y = y ∼ U [Fa (y− 1) , Fa (y)].

Once a surrogate is obtained, we define the surrogate residuals in the same way as Equation (4).
In either case, if the hypothesized model is correct, then symmetry around zero still holds; that is
E (RS|X) = 0. For the latter case, if the hypothesized model is correct then RS|X ∼ U (−1/2, 1/2).
In other words, jittering on the probability scale has the additional property that the conditional
distribution of RS given X has an explicit form which allows for a full examination of the distributional
information of the residual.

Bootstrapping

Since the surrogate residuals are based on random sampling, additional variability is introduced. One
way to account for this sample variability and help stabilize any patterns in diagnostic plots is to use
the bootstrap (Efron, 1979).

The procedure for bootstrapping surrogate residuals is similar to the model-based bootstrap
algorithm used in linear regression. To obtain the b-th bootstrap replicate of the residuals, Liu and
Zhang (2017) suggest the following algorithm:

Step 1 Perform a standard case-wise bootstrap of the original data to obtain the bootstrap sample{(
X?

1b,Y?1b
)

, . . . ,
(
X?

nk,Y?nk
)}

.

Step 2 Using the procedure outlined in the previous section, obtain a sample of surrogate residuals
R?S1b

, . . . , R?Snb
using the bootstrap sample obtained in Step 1.

This procedure is repeated a total of B times. For residual-vs-covariate (i.e., R-vs-x) plots and

residual-vs-fitted value (i.e., R-vs- f
(

X, β̂
)

) plots, we simply scatter all B× n residuals on the same
plot. This approach is valid since the bootstrap samples are drawn independently. For large data sets,
we find it useful to lower the opacity of the data points to help alleviate any issues with overplotting.
For Q-Q plots, on the other hand, Liu and Zhang (2017) suggest using the median of the B bootstrap
distributions, which is the implementation used in the sure package (Greenwell et al., 2017).

Surrogate residuals in R

The sure package supports a variety of R packages for fitting cumulative link and other types of
models. The supported packages and their corresponding functions are described in Table 2.

The sure package currently exports four functions:

• resids—for constructing surrogate residuals;
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Package Function(s) Model Parameterization

stats glm binary regression NA
MASS polr cumulative link Pr {Y ≤ j}
rms lrm cumulative link Pr {Y ≥ j}

lrm logistic regression NA
orm cumulative link Pr {Y ≥ j}

ordinal clm cumulative link Pr {Y ≤ j}
VGAM vglm cumulative link Pr {Y ≤ j}

vgam cumulative link Pr {Y ≤ j}

Table 2: Ordinal regression modeling packages supported by sure and the corresponding param-
eterization they use for fitting cumulative link models. Note: by default, vglm uses the same pa-
rameterization as in Equation (1). This can be reversed by setting reverse = TRUE in the family
argument.

• surrogate—for generating the surrogate response values used in the residuals;

• autoplot—for producing various diagnostic plots using ggplot2 graphics (Wickham, 2009);

• gof—for simulating p-values from various goodness-of-fit tests.

In addition, the package also includes five simulated data sets: df1, df2, df3, df4, and df5. These
data sets are used throughout the paper to demonstrate how the surrogate residual can be useful as a
diagnostic tool for cumulative link models. The R code used to generate these data sets is available on
the projects GitHub page: https://github.com/koalaverse/sure/blob/master/data-raw/data.R.

Detecting a misspecified mean structure

For illustration, the data frame df1 contains n = 2000 observations from the following cumulative link
model:

Pr {Y ≤ j} = Φ
(

αj + β1X + β2X2
)

, j = 1, 2, 3, 4, (6)

where α1 = −16, α2 = −12, α3 = −8, β1 = −8, β2 = 1, and X ∼ U (1, 7). These parameters were
chosen to ensure that 1) the sample from the latent variable Z is spread out, rather than clustering in a
small interval, and 2) each category of Y is well represented in the sample; we follow these guidelines
throughout the simulated examples. The simulated data for this example are available in the df1
data frame from the sure package and are loaded automatically with the package; see ?df1 for details.
Below, we fit a (correctly specified) probit model using the polr function from the MASS package.

# Fit a cumulative link model with probit link
library(sure) # for residual function and sample data sets
library(MASS) # for polr function
fit.polr <- polr(y ~ x + I(x ^ 2), data = df1, method = "probit")

The code chunk below obtains the SBS residuals (3) from the previously fitted probit model
fit.polr using the PResiduals package and constructs a couple of diagnostic plots. The results are
displayed in Figure 1.

# Obtain the SBS/probability-scale residuals
library(PResiduals)
pres <- presid(fit.polr)

# Residual-vs-covariate plot and Q-Q plot
library(ggplot2) # for plotting
p1 <- ggplot(data.frame(x = df1$x, y = pres), aes(x, y)) +
geom_point(color = "#444444", shape = 19, size = 2, alpha = 0.5) +
geom_smooth(color = "red", se = FALSE) +
ylab("Probability-scale residual")

p2 <- ggplot(data.frame(y = pres), aes(sample = y)) +
stat_qq(distribution = qunif, dparams = list(min = -1, max = 1), alpha = 0.5) +
xlab("Sample quantile") +
ylab("Theoretical quantile")

grid.arrange(p1, p2, ncol = 2) # Figure 1
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(Note: the reference distribution for the SBS residual is the U (−1, 1) distribution.) As can be seen in
the left side of Figure 1, the SBS residuals are inherently discrete and often display unusual patterns in
diagnostic plots, making them less useful as a diagnostic tool.
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Figure 1: SBS residual plots for the (correctly specified) probit model fit to the df1 data set. Left:
Residual-vs-covariate plot with a nonparametric smooth (red curve). Right: Q-Q plot of the residuals.

Similarly, we can use the resids function in package sure to obtain the surrogate residuals
discussed in Section ”Surrogate residuals.” This is illustrated in the following code chunk; the results
are displayed in Figure 2. (Note: since the surrogate residuals are based on random sampling, we
specify the seed via the set.seed function throughout this paper for reproducibility.)

# Obtain surrogate residuals
library(sure)
set.seed(101) # for reproducibility
sres <- resids(fit.polr)

# Residual-vs-covariate plot and Q-Q plot
library(ggplot2) # needed for autoplot function
p1 <- autoplot(sres, what = "covariate", x = df1$x, xlab = "x")
p2 <- autoplot(sres, what = "qq", distribution = qnorm)
grid.arrange(p1, p2, ncol = 2) # Figure 2

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

−2

0

2

2 4 6

x

S
ur

ro
ga

te
 r

es
id

ua
l

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

−2

0

2

−2 0 2

Theoretical quantile

S
am

pl
e 

qu
an

til
e

Figure 2: Surrogate residual plots for the (correctly specified) probit model fit to the df1 data set. Left:
Residual-vs-covariate plot with a nonparametric smooth (red curve). Right: Q-Q plot of the residuals.
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The sure package also includes autoplot methods for the various classes of models listed in
Table 2, so that the user can give autoplot the fitted model directly. The benefit of this approach is
that the fitted values and reference distribution (used in Q-Q plots) are automatically extracted. For
example, to reproduce the Q-Q plot in Figure 2, we could have used the following:

set.seed(101) # for reproducibility
autoplot(fit.polr, what = "qq") # same as top right of Figure 1

Suppose that we did not include the quadratic term in our fitted model. We would expect a
residual-vs-x plot to indicate that such a quadratic term is missing. Below, we update the previously
fitted model by removing the quadratic term, then update the residual-vs-covariate plots (code not
shown). The updated residual plots are displayed in Figure 3.

fit.polr <- update(fit.polr, y ~ x) # remove quadratic term

The SBS residuals gives some indication of a misspecified mean structure, but this only becomes more
clear with increasing J, and the plot is still discrete. This is overcome by the surrogate residuals which
produces a residual plot not unlike those seen in ordinary linear regression models.
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Figure 3: Residual-vs-covariate plots with nonparametric smooths (red curves) for a probit model
with a misspecified mean structure fit to the simulated data from model (6). Left: Surrogate residuals.
Right: SBS residuals.

Detecting heteroscedasticty

One issue that often raises concerns in statistical inference is that of heteroscedasticity; that is, when
the error term has non constant variance. Heteroscedasticity can bias the statistical inference and
lead to improper standard errors, confidence intervals, and p-values. Therefore, it is imperative to
identify heteroscedasticity whenever present and take appropriate action (e.g., transformations). In
ordinary linear regression, this topic has been covered extensively. Not much has been proposed in
the literature for categorical models.

As discussed in Section ”Surrogate residuals,” one of the properties of the surrogate residual RS is
that, if the model is specified correctly, then Var (RS|X) = c, where c is a constant.

For this example, we generated n = 2000 observations from the following ordered probit model:

Pr {Y ≤ j} = Φ
{(

αj + βX
)

/σX

}
, j = 1, 2, 3, 4, 5,

where α1 = −36, α2 = −6, α3 = 34, α4 = 64, β = −4, X ∼ U (2, 7), and σX = X2. Notice how the
variability is an increasing function of X. These data are available in the df2 data frame loaded with
the sure package; see ?df2 for details.

The following block of code uses the orm function from the popular rms package to fit a probit
model to the simulated data. Note: we set x = TRUE in the call to orm in order to use the presid
function later.
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# Fit a cumulative link model with probit link
library(rms) # for orm function
fit.orm <- orm(y ~ x, data = df2, family = "probit", x = TRUE)

If heteroscedasticity is present, we would expect this to show up in various diagnostic plots, such
as a residual-vs-covariate plot. Below we obtain the SBS and surrogate residuals as before and plot
them against X. The results are displayed in Figure 4.

set.seed(102) # for reproducibility
p1 <- autoplot(resids(fit.orm), what = "covariate", x = df2$x, xlab = "x")
p2 <- ggplot(data.frame(x = df2$x, y = presid(fit.orm)), aes(x, y)) +
geom_point(color = "#444444", shape = 19, size = 2, alpha = 0.25) +
geom_smooth(col = "red", se = FALSE) +
ylab("Probability scale residual")

grid.arrange(p1, p2, ncol = 2) # Figure 4

In Figure 4, it is clear from the plot of the surrogate residuals (left side of Figure 4) that the variance
increases with X, a sign of heteroscedasticity. As a matter of fact, the plot suggests that the true link
function has a varying scale parameter, σ = σ (X). The plot of the SBS residuals (right side of Figure 4),
on the other hand, gives no indication of an issue with nonconstant variance.
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Figure 4: Residual-vs-covariate plots with nonparametric smooths (red curves) for the simulated
heteroscedastic data. Left: Surrogate residuals. Right: SBS residuals.

As outlined in Section ”Jittering for general models,” the jittering technique is broadly applicable
to virtually all parametric and nonparametric models for ordinal responses. To illustrate, the code
chunk below uses the VGAM package to fit a vector generalized additive model to the same data
using a nonparametric smooth for x.

library(VGAM) # for vgam and vglm functions
fit.vgam <- vgam(y ~ s(x), family = cumulative(link = probit, parallel = TRUE),

data = df2)

To obtain a surrogate residual using the jittering technique, we can set method = "jitter" in
the call to resids or autoplot. There is also the option jitter.scale which can be set to either
"probability", for jittering on the probability scale (the default), or "response", for jittering on the
response scale. In the code chunk below, we use the autoplot function to obtain residual-by-covariate
plots using both types of jittering. The results (Figure 5) indicate that the variance increases with
increasing x.

set.seed(103) # for reproducibility
p1 <- autoplot(fit.vgam, what = "covariate", x = df2$x, method = "jitter",

xlab = "x")
p2 <- autoplot(fit.vgam, what = "covariate", x = df2$x, method = "jitter",

jitter.scale = "response", xlab = "x")
grid.arrange(p1, p2, ncol = 2) # Figure 5
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Figure 5: Residual-vs-covariate plots with nonparametric smooths (red curves) from a vector general-
ized additive model fit to the simulated heteroscedastic data. Left: Jittering on the probability scale
(default). Right: Jittering on the response scale.

Detecting a misspecified link function

For this example, we simulated n = 2000 observations from the following model

Pr (Y ≤ j) = G
(

αj − 8X + X2
)

, j = 1, 2, 3, 4,

where G (·) is the CDF for the Gumbel (max) distribution (see Table 1), α1 = −16, α2 = −12, α3 = −8,
β1 = −8, β2 = 1, and X ∼ U (1, 7). The data are available in the data frame df3 within the package;
see ?df3 for details.

We fit a model with various link functions, where the true link function is log-log. From these
output, we construct Q-Q plots of the residuals using R = 100 bootstrap replicates. The results are
displayed in Figure 6.

# Fit models with various link functions to the simulated data
fit.probit <- polr(y ~ x + I(x ^ 2), data = df3, method = "probit")
fit.logistic <- polr(y ~ x + I(x ^ 2), data = df3, method = "logistic")
fit.loglog <- polr(y ~ x + I(x ^ 2), data = df3, method = "loglog") # correct link
fit.cloglog <- polr(y ~ x + I(x ^ 2), data = df3, method = "cloglog")

# Construct Q-Q plots of the surrogate residuals for each model
set.seed(1056) # for reproducibility
p1 <- autoplot(fit.probit, nsim = 100, what = "qq")
p2 <- autoplot(fit.logistic, nsim = 100, what = "qq")
p3 <- autoplot(fit.loglog, nsim = 100, what = "qq")
p4 <- autoplot(fit.cloglog, nsim = 100, what = "qq")

# Figure 6
grid.arrange(p1, p2, p3, p4, ncol = 2) # bottom left plot is correct model

From the Q-Q plots in Figure 6, it is clear the the model with the log-log link (which corresponds to
Gumbel (max) errors in the latent variable formulation) is the most appropriate, while the other plots
indicate deviations from the hypothesized model.

Alternatively, we could also use the surrogate residuals to make use of existing distance-based
goodness-of-fit (GOF) tests; for example, the Kolmogorov-Smirnov distance. The gof function in sure
can be used to produce simulated p-values from such tests.

Currently, the gof function supports three goodness-of-fit tests: the Kolmogorov-Smirnov test
(test = "ks"), the Anderson-Darling test (test = "ad"), and the Cramer-Von Mises test (test =
"cvm"). Below, we use the gof function to simulate p-values from the Anderson-Darling test for
each of the four models; we also set nsim to 100 to produce smoother plots and reduce the sampling
error induced by the surrogate procedure. The plot method is then used to display the empirical
distribution function (EDF) of the simulated p-values. A good fit would imply uniformly distributed
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Figure 6: Q-Q plots of the residuals for various cumulative link models fit to simulated data with
Gumbel (max) errors. Top left: A model with probit link. Top right: A model with logit link. Bottom left:
A model with log-log link (i.e., the correct model). Bottom right: A model with complementary log-log
link.

p-values; hence, the EDF would be relatively straight with a slope of one. The results in Figure 7 agree
with the Q-Q plots from Figure 6 in that the log-log link is the most appropriate for these data. (Note:
the plotting method for "gof" objects uses base R graphics; hence, we can use the par function to set
various graphical parameters.)

# Figure 7
par(mfrow = c(2, 2), mar = c(2, 4, 2, 2) + 0.1)
set.seed(8491) # for reproducibility
plot(gof(fit.probit, nsim = 100, test = "ad"), main = "")
plot(gof(fit.logistic, nsim = 100, test = "ad"), main = "")
plot(gof(fit.loglog, nsim = 100, test = "ad"), main = "")
plot(gof(fit.cloglog, nsim = 100, test = "ad"), main = "")

Checking the proportionality assumption

An important feature of the cumulative link model (1) is the proportional odds assumption, which
assumes that the mean structure, f (X, β), remains the same for each of the J categories; for the logit
case (see row one of Table 1), this is also referred to as the proportional odds assumption. Harrell
(2001, pp. 334–335) suggests computing each observation’s contribution to the first derivative of
the log likelihood function with respect to β, averaging them within each of the J categories, and
examining any trends in the residual plots, but these plots can be difficult to interpret. Fortunately, it is
relatively straightforward to use the simulated surrogate response values S to check the proportionality
assumption.

To illustrate, we generated 2000 observations from each of the following probit models

Pr (Y ≤ j) = Φ
(

αj + β1X
)

, j = 1, 2, 3, and Pr (Y ≤ j) = Φ
(

αj + β2X
)

, j = 4, 5, 6,

where α1 = −1.5, α2 = 0, α3 = 1, α4 = 3, β1 = 1, β2 = 1.5, and X ∼ U (−3, 3). The data are available
in the data frame df4 within the package; see ?df4 for details.

Checking the proportionality assumption here amounts to checking whether or not β1 − β2 = 0.
As outlined in Liu and Zhang (2017), we can generate surrogates S1 ∼ N (−β1X, 1) and S2 ∼
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Figure 7: EDFs of the simulated p-values from an Anderson-Darling GOF test for various cumulative
link models fit to simulated data with gumbel errors. Top left: A model with probit link. Top right: A
model with logit link. Bottom left: A model with log-log link (i.e., the correct model). Bottom right: A
model with complementary log-log link.

N (−β2X, 1), both conditional on X. We then define the difference D = S2 − S1 which, conditional on
X, follows a N ((β1 − β2) X, 1) distribution. If β1 − β2 = 0, then D should be independent of X. This
can be easily checked by plotting D against X. Below, we use the surrogate function to generate the
surrogate response values directly (as opposed to the residuals) and generate the D-vs-X plot shown
in Figure 8.

# Fit separate models (VGAM should already be loaded)
fit1 <- vglm(y ~ x, data = df4[1:2000, ],

cumulative(link = probit, parallel = TRUE))
fit2 <- update(fit1, data = df4[2001:4000, ])

# Generate surrogate response values
set.seed(8671) # for reproducibility
s1 <- surrogate(fit1)
s2 <- surrogate(fit2)

# Figure 8
ggplot(data.frame(D = s1 - s2, x = df4[1:2000, ]$x) , aes(x = x, y = D)) +
geom_point(color = "#444444", shape = 19, size = 2) +
geom_smooth(se = FALSE, size = 1.2, color = "red")

From Figure 8, it is clear that β1 − β2 6= 0; hence, the proportionality assumption does not hold.

Detecting interaction effects

A common challenge in model building is determining whether or not there are important interactions
between the predictors in the data. Using the surrogate residuals, it is rather straightforward to
determine if such an interaction effect is missing from the assumed model.

For illustration, we generated n = 2000 observations from the following ordered probit model

Pr (Y ≤ j) = Φ
(

αj + β1x1 + β2x2 + β3x1x2

)
, j = 1, 2, 3, 4,

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859
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Figure 8: Scatterplot of D = S1 − S2 vs. x with a nonparametric smooth (red curve).

where α1 = −16, α2 = −12, α3 = −8, β1 = −5, β2 = 3, β3 = 10, x1 ∼ U (1, 7), and x2 is a factor with
levels Treatment and Control. The simulated data are available in the df5 data frame loaded with the
sure package; see ?df5 for details. Below, we fit two probit models using the clm function from the
ordinal package. The first model corresponds to the simulated control group, while the second model
corresponds to the treatment group.

library(ordinal) # for clm function
fit1 <- clm(y ~ x1, data = df5[df5$x2 == "Control", ], link = "probit")
fit2 <- clm(y ~ x1, data = df5[df5$x2 == "Treatment", ], link = "probit")

If the true model contains an interaction term x1x2 but the fitted model does not include it, we
can detect this misspecification using the surrogate residuals. We simply plot RS versus x1 for the
treatment group, and compare it to the plot of RS versus x1 for the controls—or better yet, we can just
use the surrogate response S instead of RS. The trends in these two plots should be different. Below,
we use ggplot along with the sure function to construct such a plot in Figure 9. The plot indicates a
negative association between x1 and the outcome within the control group, and a positive association
between x1 and the treatment group (i.e., an interaction between x1 and x2).

# Figure 9
set.seed(1105) # for reproducibility
df5$s <- c(surrogate(fit1), surrogate(fit2)) # surrogate response values
ggplot(df5, aes(x = x1, y = s)) +
geom_point(color = "#444444", shape = 19, size = 2, alpha = 0.5) +
geom_smooth(se = FALSE, size = 1.2, color = "red2") +
facet_wrap( ~ x2) +
ylab("Surrogate response") +
xlab(expression(x[1]))

Bitterness of wine

Randall (1989) performed an experiment on factors determining the bitterness of wine. Two binary
treatment factors, temperature and contact (between juice and skin), were controlled while crushing
the grapes during wine production. Nine judges each assessed wine from two bottles from each of
the four treatment conditions; for a total of n = 72. The response is an ordered factor with levels
1 < 2 < 3 < 4 < 5. The data are available in the ordinal package; see ?ordinal::wine for details.

data(wine, package = "ordinal") # load wine data set
wine.clm <- clm(rating ~ temp + contact, data = wine, link = "probit")

Since both of the covariates in this model are binary factors, scatterplots are not appropriate
for displaying the residual-by-covariate relationships. Instead, the autoplot function in sure uses
boxplots; a future release is likely to include the additional option for producing nonparametric
densities for each level of a factor. The code chunk below uses autoplot along with grid.arrange to
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Figure 9: Scatterplot of the surrogate response S versus x1 with a nonparametric smooth (red line).
Left: Control group. Right: Treatment group.

produce some standard residual diagnostic plots. The results are displayed in Figure 10. The Q-Q plot
and residual-vs-fitted value plot do not indicate any serious model misspecifications. Furthermore, the
boxplots reveal that the medians of the surrogate residuals are very close to zero, and the distribution
of the residuals within each level appear to be symmetric and have approximately the same variability
(with the exception of a few outliers).

set.seed(1225) # for reproducibility
grid.arrange( # Figure 10
autoplot(wine.clm, nsim = 10, what = "qq"),
autoplot(wine.clm, nsim = 10, what = "fitted", alpha = 0.5),
autoplot(wine.clm, nsim = 10, what = "covariate", x = wine$temp,

xlab = "Temperature"),
autoplot(wine.clm, nsim = 10, what = "covariate", x = wine$contact,

xlab = "Contact"),
ncol = 2

)

Summary

In this paper, we introduce the sure package, which implements the surrogate approach to residuals for
ordinal regression models described in Liu and Zhang (2017). Using simulated data sets, we illustrate
the various properties of these residuals and how they can be used to check assumptions in the ordinal
regression model (e.g., heteroscedasticity, misspecified link functions, etc.) using continuous residuals
which produce diagnostic plots not unlike those seen in ordinary linear regression. This offers a new
way of performing typical diagnostic checks for ordinal regression models that are easily interpreted
by the analyst. Furthermore, this new approach to constructing residuals for ordinal regression models
is still under active development and new functionality will be added to sure in the future.
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Advanced Bayesian Multilevel Modeling
with the R Package brms
by Paul-Christian Bürkner

Abstract The brms package allows R users to easily specify a wide range of Bayesian single-level
and multilevel models which are fit with the probabilistic programming language Stan behind the
scenes. Several response distributions are supported, of which all parameters (e.g., location, scale, and
shape) can be predicted. Non-linear relationships may be specified using non-linear predictor terms
or semi-parametric approaches such as splines or Gaussian processes. Multivariate models can be fit
as well. To make all of these modeling options possible in a multilevel framework, brms provides an
intuitive and powerful formula syntax, which extends the well known formula syntax of lme4. The
purpose of the present paper is to introduce this syntax in detail and to demonstrate its usefulness
with four examples, each showing relevant aspects of the syntax.

Introduction

Multilevel models (MLMs) offer great flexibility for researchers across sciences (Brown and Prescott,
2015; Demidenko, 2013; Gelman and Hill, 2006; Pinheiro and Bates, 2006). They allow modeling of data
measured on different levels at the same time – for instance students nested within classes and schools
– thus taking complex dependency structures into account. It is not surprising that many packages
have been developed to fit MLMs in R. Usually, the functionality of these implementations is limited
insofar as they only predict the mean of the response distribution. Other parameters of the response
distribution, such as the residual standard deviation in linear models, are assumed constant across
observations, an assumption which may be violated in many applications. Accordingly, it is desirable
to allow prediction of all response parameters at the same time. Models that perform simultaneous
estimation are often referred to as distributional models or, more verbosely, as models for location, scale,
and shape (Rigby and Stasinopoulos, 2005).

Another limitation of basic MLMs is that they only allow for linear predictor terms. While linear
predictor terms already offer good flexibility, they are of limited use when relationships are inherently
non-linear. Such non-linearity can be handled in at least two ways: (1) by fully specifying a non-
linear predictor term with corresponding parameters, each of which can be predicted using MLMs
(Lindstrom and Bates, 1990); or (2) estimating the form of the non-linear relationship on-the-fly using
splines (Wood, 2004) or Gaussian processes (Rasmussen and Williams, 2006). The former are often
simply called non-linear models, while models applying splines are referred to as generalized additive
models (GAMs, see Hastie and Tibshirani, 1990).

Combining all of these modeling options into one framework is a complex task, both conceptually
and with regard to model fitting. Maximum likelihood methods, typically applied in classical ’fre-
quentist’ statistics, can reach their limit at some point such that fully Bayesian methods become the
go-to solutions to fit such complex models (Gelman et al., 2014). In addition to being more flexible, the
Bayesian framework comes with other advantages, such as the ability to derive probability statements
for every quantity of interest or explicitly incorporate prior knowledge about parameters into the
model. The former is particularly relevant in non-linear models, for which classical approaches strug-
gle more often than not in propagating all the uncertainty in the parameter estimates to non-linear
functions such as out-of-sample predictions.

Possibly the most powerful program for performing full Bayesian inference available to date
is Stan (Stan Development Team, 2017c; Carpenter et al., 2017), which implements Hamiltonian
Monte Carlo (Duane et al., 1987; Neal, 2011; Betancourt et al., 2014) and its extension, the No-U-
Turn (NUTS) Sampler (Hoffman and Gelman, 2014). These algorithms converge much more quickly
than other Markov-Chain Monte-Carlo (MCMC) algorithms, especially for high-dimensional models
(Hoffman and Gelman, 2014; Betancourt et al., 2014; Betancourt, 2017). An excellent non-mathematical
introduction to Hamiltonian Monte Carlo can be found in Betancourt (2017).

Stan comes with its own programming language, allowing for great modeling flexibility (Stan
Development Team, 2017c; Carpenter et al., 2017). Many researchers may still be hesitant to use Stan
directly, as every model has to be written, debugged, and possibly also optimized, which may be a
time-consuming and error-prone process even for researchers familiar with Bayesian inference. The
brms package (Bürkner, 2017) presented in this paper aims to remove these hurdles for a wide range of
regression models by allowing the user to benefit from the merits of Stan by using extended lme4-like
formula syntax (Bates et al., 2015), with which many R users are familiar. The brms package offers
much more than writing efficient and human-readable Stan code. It comes with many post-processing
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and visualization functions, including functions for posterior predictive checks, leave-one-out cross-
validation, visualization of estimated effects, and prediction of new data. The overarching aim is
to have one general framework for regression modeling, which offers everything required to apply
regression models to complex data. To date, it replaces and extends the functionality of dozens of other
R packages, each of which is restricted to specific regression models. Users may even define their own
response distributions and run them via brms (for details, see vignette("brms_customfamilies")).

The purpose of the present article is to provide an introduction to the advanced multilevel formula
syntax implemented in brms, which fits a wide and growing range of non-linear distributional
multilevel models. A general overview of the package is given in Bürkner (2017). Accordingly, the
present article focuses on more recent developments. We begin by explaining the underlying structure
of distributional models. Next, the formula syntax of lme4 and the extensions implemented in brms
are explained. Four examples that demonstrate the use of the new syntax are discussed in detail.
Afterwards, the functionality of brms is compared with that of rstanarm (Stan Development Team,
2017a) and MCMCglmm (Hadfield, 2010). We end by describing future plans for extending the
package.

Model description

The core model implemented in brms is the prediction of the response y through predicting all
parameters θp of the response distribution D, which is also called the model family in many R
packages. We write

yi ∼ D(θ1i, θ2i, . . . )

to stress the dependency on the ith observation. If desired, every parameter θp may be regressed on
its own predictor term ηp, transformed by the inverse link function fp that is θpi = fp(ηpi). Such
models are typically referred to as distributional models. The models described in Bürkner (2017) are a
sub-class of the models described here. Details about the parameterization of each family are given in
vignette("brms_families").

Suppressing the index p for simplicity, a predictor term η can generally be written as

η = Xβ + Zu +
K

∑
k=1

sk(xk)

where β and u are the respective coefficients at the population-level and group-level, and X, Z are the
corresponding design matrices. The terms sk(xk) symbolize optional smooth functions of unspecified
form based on covariates xk fitted via splines (see Wood, 2011, for the underlying implementation in
the mgcv package) or Gaussian processes (Williams and Rasmussen, 1996). The response y as well as
X, Z, and xk make up the data, whereas β, u, and the smooth functions sk are the model parameters
being estimated. The coefficients β and u may be more commonly known as fixed and random effects,
but we avoid theses terms following the recommendations of Gelman and Hill (2006). Details about
prior distributions for β and u can be found in Bürkner (2017) and under help("set_prior").

As an alternative to the strictly additive formulation described above, predictor terms may also
have any form specifiable in Stan. We call it a non-linear predictor and write

η = f (c1, c2, . . . , φ1, φ2, . . . )

The structure of the function f is given by the user, cr are known or observed covariates, and φs are
non-linear parameters, each having its own linear predictor term ηφs of the form specified above. In
fact, we should think of non-linear parameters as placeholders for linear predictor terms rather than as
parameters themselves. A frequentist implementation of such models, which inspired the non-linear
syntax in brms, can be found in the nlme package (Pinheiro et al., 2016).

Extended multilevel formula syntax

The formula syntax applied in brms builds upon the syntax of the R package lme4 (Bates et al., 2015).
First, we will briefly explain the lme4 syntax used to specify multilevel models and then introduce
certain extensions that allow specifying much more complicated models in brms.

An lme4 formula has the general form

response ~ pterms + (gterms | group)

The pterms contain population-level effects, assumed to be the same across observations. The gterms
contain so called group-level effects, assumed to vary across the grouping variables specified in group.
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Multiple grouping factors each with multiple group-level effects are possible. Usually, group contains
only a single variable name pointing to a factor, but users may also use g1:g2 or g1/g2 if both g1 and
g2 are suitable grouping factors. The : operator creates a new grouping factor that consists of the
combined levels of g1 and g2. The / operator indicates nested grouping structures and expands one
grouping factor into two or more when using multiple / within one term. For instance, if the user
were to write (1 | g1/g2), brms will expand this to (1 | g1) + (1 | g1:g2). Instead of |, users
may use || in grouping terms to prevent group-level correlations from being modeled. This may be
used to reduce model complexity if convergence of the sampler is an issue. One limitation of the ||
operator in lme4 is that it only splits up terms so that columns of the design matrix originating from
the same term are still modeled as correlated (e.g., when coding a categorical predictor; see the mixed
function of the afex package by Singmann et al., 2015, for a way to avoid this behavior).

While intuitive and visually appealing, the classic lme4 syntax is not flexible enough to specify the
more complex models supported by brms. In non-linear or distributional models, multiple parameters
are predicted, each having their own population and group-level effects. Hence, multiple formulas are
necessary to specify such models.1 Specifying group-level effects of the same grouping factor to be
correlated across formulas becomes complicated. The solution implemented in brms (and currently
unique to it) expands the | operator into |<ID>|, where <ID> can be any value. Group-level terms with
the same ID will then be modeled as correlated if they share same grouping factor(s). For instance, if
the terms (x1|ID|g1) and (x2|ID|g1) appear somewhere in the same or different formulas passed to
brms, they will be modeled as correlated.

Further extensions of the classical lme4 syntax refer to the group component. In the lme4 version,
the group component is rather limited in its flexibility since only variable names combined by : or /
are supported. We propose two extensions of this syntax.

The first extension concerns the group element. We propose that group can generally be split up
in its terms so that, for example, (1 | g1 + g2) is expanded to (1 | g1) + (1 | g2). This is fully
consistent with the way / is handled and provides a natural generalization to the existing syntax.

The second extension concerns special grouping structures that cannot currently be expressed by
simply combining grouping variables. For instance, multi-membership models cannot be expressed
this way. To overcome this limitation, we propose wrapping terms in group within special functions
that allow specifying alternative grouping structures: (gterms | fun(group)). In brms, there are
currently two such functions implemented: gr for the default behavior, and mm for multi-membership
terms. To be compatible with the original syntax and to keep formulas short, gr is automatically added
internally if no function is specified.

While some non-linear relationships, such as quadratic relationships, can be expressed within
the basic R formula syntax, more complicated ones cannot. Thus, we have made it possible in brms
to specify non-linear predictor terms. Similar to the implementation in nlme, our extension is fully
compatible with the extended multilevel syntax described above. Suppose, for instance, we want to
model the non-linear growth curve

y = b1(1− exp(−(x/b2)
b3 )

between y and x with parameters b1, b2, and b3 (see Example 3 in this paper for an implementation of
this model with real data). Furthermore, we want all three parameters to vary by a grouping variable
g and wish to model the group-level effects as correlated. Additionally, b1 should be predicted by a
covariate z. We can express this in brms using multiple formulas, one for the non-linear model itself
and one per non-linear parameter:

y ~ b1 * (1 - exp(-(x / b2) ^ b3)
b1 ~ z + (1|ID|g)
b2 ~ (1|ID|g)
b3 ~ (1|ID|g)

The first formula will not be evaluated using standard R formula parsing, but is instead taken literally.
In contrast, the formulas for the non-linear parameters will be evaluated in the usual way and are
compatible with all terms supported by brms. Note that we have used the above described ID-syntax
to model group-level effects correlated across formulas.

There are other syntax extensions implemented in brms that do not directly target grouping terms.
First, there are terms formally included in the pterms part that are handled separately. The most
prominent examples are smooth terms specified using the s and t2 functions of the mgcv package
(Wood, 2011). Other examples are category specific effects cs, monotonic effects mo, noise-free effects

1Actually, it is possible to specify multiple model parts within one formula using interactions terms, as imple-
mented in MCMCglmm (Hadfield, 2010). However, this syntax is limited in flexibility and requires a rather deep
understanding of the way R parses formulas, thus often being confusing to users.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=afex


CONTRIBUTED RESEARCH ARTICLES 398

me, or Gaussian process terms gp. The first is explained in Bürkner (2017), while the latter three
are documented in help(brmsformula). Internally, these terms are extracted from pterms and not
included in the construction of the population-level design matrix.

Second, since the | operator is unused on the left-hand side of ∼ in the formula, additional
information on the response variable may be specified via

response | aterms ~ <predictor terms>

The aterms part may contain multiple terms of the form fun(<variable>), each separated by + and
providing special information on the response variable, including weighting observations, providing
known standard errors for meta-analysis, or modeling censored or truncated data. As it is not the
main topic of the present paper, we refer users to help("brmsformula") and help("addition-terms")
for more details.

To set up the model formulas and combine them into one object, brms defines the brmsformula
function, or bf for short. Its output can then be passed to the parse_bf function, which splits up the
formulas into separate parts and prepares them for the generation of design matrices and related data.
Other packages may re-use these functions in their own routines, making it easier to offer support for
the above described multilevel syntax.

Examples

The idea of brms is to provide one unified framework for multilevel regression models in R. The
above described formula syntax and all of its variations can be applied in combination with all
response distributions supported by brms. Currently about 35 response distributions are supported;
see help("brmsfamily") and vignette("brms_families") for an overview.

In this section, we will discuss four examples in detail, each focusing on certain aspects of the
syntax. These examples are chosen to provide a broad overview of the modeling options. The first
is about the number of fish caught by different groups of people. It does not actually contain any
multilevel structure, but helps to understand how to set up formulas for different model parts. The
second example is about housing rents in Munich. We model the data using splines and a distributional
regression approach. The third example is about cumulative insurance loss payments across several
years, which is fitted using a rather complex non-linear multilevel model. Finally, the fourth example
is about the performance of school children who change school during the year, thus requiring a
multi-membership model.

In addition to the four examples, we wish to discuss briefly a few more modeling options. First,
brms allows fitting of so-called phylogenetic models. These models are relevant in evolutionary
biology when data of many species are analyzed at the same time. Species are not independent if they
come from the same phylogenetic tree, implying that different levels of the same grouping-factor (i.e.,
species) are likely correlated. See vignette("brms_phylogenetics") for an example. Second, there is
a canonical way to handle ordinal predictors without falsely assuming they are either categorical or
continuous. We call them monotonic effects and discuss them in vignette("brms_monotonic"). Last
but not least, it is possible to account for measurement error in both response and predictor variables.
Although often ignored in applied regression modeling (Westfall and Yarkoni, 2016), measurement
error is common in all scientific fields that employ observational data. There is no vignette yet for this
topic, but one will be added in the future. In the meantime, help("brmsformula") is the best place to
start learning about such models as well as about other details of the brms formula syntax.

Example 1: Catching fish

An important application of the distributional regression framework of brms are zero-inflated and
hurdle models. These models are helpful whenever there are more zeros in the response variable than
one would naturally expect. Here, we consider an example dealing with the number of fish caught by
various groups of people. On the UCLA website (https://stats.idre.ucla.edu/stata/dae/zero-
inflated-poisson-regression), the data are described as follows: “The state wildlife biologists want
to model how many fish are being caught by fishermen at a state park. Visitors are asked how long
they stayed, how many people were in the group, were there children in the group and how many fish
were caught. Some visitors do not fish, but there is no data on whether a person fished or not. Some
visitors who did fish did not catch any fish so there are excess zeros in the data because of the people
that did not fish.”

zinb <- read.csv("http://stats.idre.ucla.edu/stat/data/fish.csv")
zinb$camper <- factor(zinb$camper, labels = c("no", "yes"))
head(zinb)
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nofish livebait camper persons child xb zg count
1 1 0 no 1 0 -0.8963146 3.0504048 0
2 0 1 yes 1 0 -0.5583450 1.7461489 0
3 0 1 no 1 0 -0.4017310 0.2799389 0
4 0 1 yes 2 1 -0.9562981 -0.6015257 0
5 0 1 no 1 0 0.4368910 0.5277091 1
6 0 1 yes 4 2 1.3944855 -0.7075348 0

For predictors, we choose the number of people per group, the number of children, and whether or
not the group consists of campers. Many groups may not catch any fish because they do not try and so
we fit a zero-inflated Poisson model. For now, we assume a constant zero-inflation probability across
observations.

fit_zinb1 <- brm(count ~ persons + child + camper, data = zinb,
family = zero_inflated_poisson("log"))

The model is readily summarized via

summary(fit_zinb1)

Family: zero_inflated_poisson (log)
Formula: count ~ persons + child + camper

Data: zinb (Number of observations: 250)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000
WAIC: Not computed

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept -1.01 0.17 -1.34 -0.67 2171 1
persons 0.87 0.04 0.79 0.96 2188 1
child -1.36 0.09 -1.55 -1.18 1790 1
camper 0.80 0.09 0.62 0.98 2950 1

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

zi 0.41 0.04 0.32 0.49 2409 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Figure 1 shows the graphical summary output by

marginal_effects(fit_zinb1)

0

1

2

3

1 2 3 4
persons

co
un

t

0

1

2

3

0 1 2 3
child

co
un

t

●

●

0

1

2

3

no yes
camper

co
un

t

Figure 1: Marginal effects plots of the fit_zinb1 model.

According to the parameter estimates, larger groups catch more fish, campers catch more fish than
non-campers, and groups with more children catch less fish. The zero-inflation probability zi is pretty
large with a mean of 41%. Note that the probability of catching no fish is actually higher than 41%,
since parts of this probability are already modeled by the Poisson distribution itself (hence the name
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zero-inflation). If the user wants to treat all zeros as originating from a separate process, hurdle models
are also supported by brms (not shown here).

Since we expect groups with more children to avoid fishing, we next try to predict the zero-inflation
probability using the number of children. From a purely statistical perspective, zero-inflated and
hurdle distributions are a mixture of two processes. Predicting both parts of the model is natural and
often very reasonable to make full use of the data.

fit_zinb2 <- brm(bf(count ~ persons + child + camper, zi ~ child),
data = zinb, family = zero_inflated_poisson())

To transform the linear predictor zi into a probability, brms applies the logit-link, which takes values
in [0, 1] and returns values on the real line. Thus, it allows the transition between probabilities and
linear predictors.

summary(fit_zinb2)

Family: zero_inflated_poisson (log)
Formula: count ~ persons + child + camper

zi ~ child
Data: zinb (Number of observations: 250)

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000

WAIC: Not computed

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept -1.07 0.18 -1.43 -0.73 2322 1
persons 0.89 0.05 0.80 0.98 2481 1
child -1.17 0.10 -1.37 -1.00 2615 1
camper 0.78 0.10 0.60 0.96 3270 1
zi_Intercept -0.95 0.27 -1.52 -0.48 2341 1
zi_child 1.21 0.28 0.69 1.79 2492 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

According to the model, trying to fish with children decreases the overall number fish caught (as
implied by the Poisson part of the model) and decreases the chance of catching any fish (as implied by
the zero-inflation part).

Next we demonstrate how to comparing model fit via leave-one-out cross validation as imple-
mented in the loo package (Vehtari et al., 2016a,b):

loo(fit_zinb1, fit_zinb2)

LOOIC SE
fit_zinb1 1639.52 363.30
fit_zinb2 1621.35 362.39
fit_zinb1 - fit_zinb2 18.16 15.71

The example above shows that the second model (using the number of children as a predictor) has
better fit. However, when considering the standard error of the LOOIC difference, improvement in
model fit is apparently modest and not substantial. More examples of distributional models can be
found in vignette("brms_distreg").

Example 2: Housing rents

Fahrmeir et al. (2013) use an example about housing rents in Munich. The data contains information on
roughly 3000 apartments, and includes variables such as the absolute rent (rent), rent per square meter
(rentsqm), size of the apartment (area), construction year (yearc), and the district in Munich where
the apartment is located (district). The data can be found in the gamlss.data package (Stasinopoulos
and Rigby, 2016):

data("rent99", package = "gamlss.data")
head(rent99)
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rent rentsqm area yearc location bath kitchen cheating district
1 109.9487 4.228797 26 1918 2 0 0 0 916
2 243.2820 8.688646 28 1918 2 0 0 1 813
3 261.6410 8.721369 30 1918 1 0 0 1 611
4 106.4103 3.547009 30 1918 2 0 0 0 2025
5 133.3846 4.446154 30 1918 2 0 0 1 561
6 339.0256 11.300851 30 1918 2 0 0 1 541

Here, we wish to predict the rent per square meter using the following explanatory variables: size
of the apartment, the construction year, and the district in which the apartment is located. As the
effect of apartment size and construction year predictors is of unknown non-linear form, we model
these variables using a bivariate tensor spline (Wood et al., 2013). The district is accounted for using a
varying intercept.

fit_rent1 <- brm(rentsqm ~ t2(area, yearc) + (1|district), data = rent99,
chains = 2, cores = 2)

We fit the model using just two chains instead of the default of four chains on two processor cores to
reduce the model fitting time for the purpose of the present paper. In general, using the default option
of four chains (or more) is recommended.

summary(fit_rent1)

Family: gaussian(identity)
Formula: rentsqm ~ t2(area, yearc) + (1 | district)

Data: rent99 (Number of observations: 3082)
Samples: 2 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 2000
ICs: LOO = NA; WAIC = NA; R2 = NA

Smooth Terms:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sds(t2areayearc_1) 4.93 2.32 1.61 10.77 1546 1.00
sds(t2areayearc_2) 5.78 2.87 1.58 13.15 1175 1.00
sds(t2areayearc_3) 8.09 3.19 3.66 16.22 1418 1.00

Group-Level Effects:
~district (Number of levels: 336)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 0.60 0.06 0.48 0.73 494 1.01

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 7.80 0.11 7.59 8.02 2000 1.00
t2areayearc_1 -1.00 0.09 -1.15 -0.83 2000 1.00
t2areayearc_2 0.75 0.17 0.43 1.09 2000 1.00
t2areayearc_3 -0.07 0.16 -0.40 0.24 1579 1.00

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 1.95 0.03 1.90 2.01 2000 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

For models including splines, the output of summary gives limited information. First, the credible
intervals of the standard deviations of the coefficients forming the splines (under 'Smooth Terms')
are sufficiently far away from zero to indicate non-linearity in the combined effect of area and yearc.
Second, even after controlling for these predictors, rent per square meter will still vary considerably
by district, as visible under 'Group-Level Effects' in the output. To further understand the effect of
the predictor, we apply graphical methods:

marginal_effects(fit_rent1, surface = TRUE)

In Figure 2, the marginal effect of each predictor is displayed with the other predictor fixed at its mean.
In Figure 3, the combined effect demonstrates the interaction between the variables. In particular,
housing rents appear to be highest for small and relatively new apartments.
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Figure 2: Marginal effects plots of the fit_rent1 model for single predictors.

1920

1940

1960

1980

2000

40 80 120 160
area

ye
ar

c

6
7
8
9
10
11

rentsqm

Figure 3: Surface plot of the fit_rent1 model for the combined effect of area and yearc.

In the above example, we only consider the mean of the response distribution to vary by area and
yearc, but this may not be a reasonable assumption since the variance might vary with these variables
as well. Accordingly, we fit splines and the effects of district for both the location and scale parameter,
which is called sigma in Gaussian models.

bform <- bf(rentsqm ~ t2(area, yearc) + (1|ID1|district),
sigma ~ t2(area, yearc) + (1|ID1|district))

fit_rent2 <- brm(bform, data = rent99, chains = 2, cores = 2)

If not otherwise specified, sigma is predicted on the log-scale to ensure it is positive no matter how the
predictor term looks. Instead of (1|district) as in the previous model, we now use (1|ID1|district)
in both formulas, which results in modeling the varying intercepts of both model parts as correlated
(see the description of the ID-syntax above). The group-level part of the summary output looks like the
following:

Group-Level Effects:
~district (Number of levels: 336)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 0.60 0.06 0.49 0.73 744 1.00
sd(sigma_Intercept) 0.11 0.02 0.06 0.15 751 1.00
cor(Intercept,sigma_Intercept) 0.72 0.17 0.35 0.98 648 1.00

As visible from the positive correlation of the intercepts, districts with overall higher rent per square
meter also have higher variance in the outcome.

Lastly, we want to turn our attention to the splines. While marginal_effects is used to visualize
effects of predictors on the expected response, marginal_smooths is used to show just the spline parts
of the model:
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marginal_smooths(fit_rent2)

The plot on the left-hand side of Figure 4 resembles the one in Figure 3, but the scale is different since
only the spline is plotted. The right-hand side of 4 shows the spline for sigma. Since we apply the
log-link on sigma by default, the spline is on the log-scale as well. As visible in the plot, the variation
in the rent per square meter is highest for relatively small and old apartments, while the variation is
smallest for medium to large apartments build around the 1960s.
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Figure 4: Plots showing the smooth terms of the fit_rent2 model.

Example 3: Insurance loss payments

On his blog, Markus Gesmann predicts the growth of cumulative insurance loss payments over time,
originated from different origin years (see http://www.magesblog.com/2015/11/loss-developments-
via-growth-curves-and.html). We will use a slightly simplified version of his model for demonstra-
tion purposes:

cumAY,dev ∼ N(µAY,dev, σ)

µAY,dev = ultAY

(
1− exp

(
−
(

dev
θ

)ω))
The cumulative insurance payments cum will grow over time, and we model this dependency using
the variable dev. Furthermore, ultAY is the (to be estimated) ultimate loss of accident each year. It
constitutes a non-linear parameter in our framework along with the parameters θ and ω, which are
responsible for the growth of the cumulative loss and are for now assumed to be the same across years.
We load the data

url <- paste0("https://raw.githubusercontent.com/mages/",
"diesunddas/master/Data/ClarkTriangle.csv")

loss <- read.csv(url)
head(loss)

AY dev cum
1 1991 6 357.848
2 1991 18 1124.788
3 1991 30 1735.330
4 1991 42 2182.708
5 1991 54 2745.596
6 1991 66 3319.994

and translate the proposed model into a non-linear brms model.

nlform <- bf(cum ~ ult * (1 - exp(-(dev / theta)^omega)),
ult ~ 1 + (1|AY), omega ~ 1, theta ~ 1, nl = TRUE)

nlprior <- c(prior(normal(5000, 1000), nlpar = "ult"),
prior(normal(1, 2), nlpar = "omega"),
prior(normal(45, 10), nlpar = "theta"))

fit_loss1 <- brm(formula = nlform, data = loss, family = gaussian(),
prior = nlprior, control = list(adapt_delta = 0.9))
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In the above functions calls, quite a few things happen. The formulas are wrapped in bf to combine
them into one object. The first formula specifies the non-linear model and we set argument nl = TRUE
so that brms takes this formula literally, instead of using standard R formula parsing. We specify one
additional formula per non-linear parameter to: (a) clarify which variables are covariates and which
are parameters; and (b) specify the predictor term for the parameters. We estimate a group-level effect
for accident year (variable AY) and ultimate loss ult. This specification nicely shows how a non-linear
parameter is actually a placeholder for a linear predictor, which in the case of ult, contains only a
varying intercept for year. Both omega and theta are assumed to be constant across observations so
we just fit a population-level intercept.

Priors on population-level effects are required and are mandatory to ensure identifiability for
the present model. Otherwise, we may observe that different Markov chains converge to different
parameter regions as multiple posterior distribution are equally plausible. Setting prior distributions
is a difficult task especially in non-linear models because it requires some experience and knowledge
both about the model that is being fitted and about the data at hand. Additionally, there is more
to keep in mind to optimize the sampler’s performance: First, using non- or weakly-informative
priors in non-linear models often leads to problems even if the model is generally identified. For
instance, if a zero-centered and reasonably wide prior such as normal(0,10000) is set for ult, there is
little information about theta and omega for samples of ult being close to zero, which may lead to
convergence problems. Second, Stan works best when parameters are roughly on the same order of
magnitude (Stan Development Team, 2017b). In the present example, ult is three orders larger than
omega. Although the sampler seems to work quite well in this case, it may not work well for other
models. One solution is to rescale parameters before model fitting. For the present example, one could
downscale ult by replacing it with ult * 1000 and correspondingly the normal(5000,1000) prior
with normal(5,1).

In the control argument we increase adapt_delta to get rid of a few divergent transitions (cf. Stan
Development Team, 2017b; Bürkner, 2017). Again the model is summarized via

summary(fit_loss1)

Family: gaussian (identity)
Formula: cum ~ ult * (1 - exp(-(dev / theta)^omega))

ult ~ 1 + (1 | AY)
omega ~ 1
theta ~ 1

Data: loss (Number of observations: 55)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000
WAIC: Not computed

Group-Level Effects:
~AY (Number of levels: 10)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(ult_Intercept) 745.74 231.31 421.05 1306.04 916 1

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

ult_Intercept 5273.70 292.34 4707.11 5852.28 798 1
omega_Intercept 1.34 0.05 1.24 1.43 2167 1
theta_Intercept 46.07 2.09 42.38 50.57 1896 1

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 139.93 15.52 113.6 175.33 2358 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

as well as

marginal_effects(fit_loss1)

which yields Figure 5.

We can also visualize the cumulative insurance loss over time separately for each year, as in Figure
6.
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Figure 5: Marginal effects plots of the fit_loss1 model.

conditions <- data.frame(AY = unique(loss$AY))
rownames(conditions) <- unique(loss$AY)
me_year <- marginal_effects(fit_loss1, conditions = conditions,

re_formula = NULL, method = "predict")
plot(me_year, ncol = 5, points = TRUE)

It is evident that there is some variation in cumulative loss across accident years, for instance due to
natural disasters happening only in certain years. Further, we see that the uncertainty in the predicted
cumulative loss is larger for later years in which there are fewer available data points.

In the above model, we considered omega and delta to be constant across years, which may not
necessarily be true. We can easily investigate this by fitting varying intercepts for all three non-linear
parameters also estimating group-level correlation using the ID syntax:

nlform2 <- bf(cum ~ ult * (1 - exp(-(dev / theta)^omega)),
ult ~ 1 + (1|ID1|AY), omega ~ 1 + (1|ID1|AY),
theta ~ 1 + (1|ID1|AY), nl = TRUE)

fit_loss2 <- update(fit_loss1, formula = nlform2,
control = list(adapt_delta = 0.90))

We could have also specified all predictor terms more conveniently with one formula as

ult + omega + theta ~ 1 + (1|ID1|AY)

because the structure of the predictor terms is identical.

To compare model fit, we perform leave-one-out cross-validation.

loo(fit_loss1, fit_loss2)

LOOIC SE
fit_loss1 715.44 19.24
fit_loss2 720.60 19.85
fit_loss1 - fit_loss2 -5.15 5.34

Since smaller values indicate better expected out-of-sample predictions and thus a better model fit,
the simpler model that has only a varying intercept over parameter ult is preferred. This result
may not be overly surprising, given that modeling three varying intercepts and three group-level
correlations is probably overkill for data containing only 55 observations. Nevertheless, it nicely
demonstrates how to apply the ID syntax in practice. More examples of non-linear models can be
found in vignette("brms_nonlinear").
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Figure 6: Marginal effects plots of the fit_loss1 model separately for each accident year.

Example 4: Performance of school children

Suppose that we want to predict the performance of students in the final exams at the end of the year.
There are many variables to consider, but one important factor will clearly be school membership.
Schools might differ in the ratio of teachers and students, the general quality of teaching, in the
cognitive ability of the students they draw, or other unobserved factors that may induce dependency
among students in the same school. Thus, it is advisable to apply multilevel modeling techniques by
including school membership as a group-level term. We should account for class membership and
other levels of the educational hierarchy as well, but for the purposes of the present example, we will
focus on schools only.

Usually, accounting for school membership is straight-forward; we simply add a varying intercept
to the formula for each school with (1 | school). However, a non-negligible number of students
might change schools during the year, which would result in a situation where one student is a
member of multiple schools, necessitating a multi-membership model. Specifying such a model not
only requires information on the different schools students attend during the year, but also the amount
of time spent at each school. The time spent can be used to weight the influence each school has on
its students, since more time attending a school will likely result in greater influence. For now, let us
assume that students change schools maximally once a year and spend equal time at each school. We
will later see how to relax these assumptions.

Real educational data are usually relatively large and complex so that we simulate our own data
for the purpose of this example. We simulate 1000 students partitioned into 10 schools of 100 students
each. We model 10% of students as changing schools.

data_mm <- sim_multi_mem(nschools = 10, nstudents = 1000, change = 0.1)
head(data_mm)

s1 s2 w1 w2 y
1 8 9 0.5 0.5 16.27422
2 10 9 0.5 0.5 18.71387
3 5 3 0.5 0.5 23.65319
4 3 5 0.5 0.5 22.35204
5 5 3 0.5 0.5 16.38019
6 10 6 0.5 0.5 17.63494
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The code of function sim_multi_mem can be found in the online supplement for this paper. To better
illustrate the multimembership condition, students changing schools appear in the first rows of the
data. Data of students being only at a single school looks as follows:

data_mm[101:106, ]

s1 s2 w1 w2 y
101 2 2 0.5 0.5 27.247851
102 9 9 0.5 0.5 24.041427
103 4 4 0.5 0.5 12.575001
104 2 2 0.5 0.5 21.203644
105 4 4 0.5 0.5 12.856166
106 4 4 0.5 0.5 9.740174

Although school variables s1 and s2 are identical, we still have to specify both in order to pass the
data appropriately. Incorporating no other predictors for simplicity, a multi-membership model is
specified as

fit_mm <- brm(y ~ 1 + (1 | mm(s1, s2)), data = data_mm)

The only new syntax element is that multiple grouping factors s1 and s2 are wrapped in mm. Everything
else remains exactly the same. Note that we did not specify the relative weights of schools for each
student and thus equal weights are assumed by default.

summary(fit_mm)

Family: gaussian (identity)
Formula: y ~ 1 + (1 | mm(s1, s2))

Data: data_mm (Number of observations: 1000)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000
WAIC: Not computed

Group-Level Effects:
~mms1s2 (Number of levels: 10)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.76 0.82 1.69 4.74 682 1.01

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 19 0.93 17.06 20.8 610 1

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 3.58 0.08 3.43 3.75 2117 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

With regard to the assumptions made in the above example, it is unlikely that all children who
change schools stay in both schools equally long. To relax this assumption, we have to specify weights.
First, we amend the simulated data to contain non-equal weights w1 and w2 for students changing
schools:

data_mm[1:100, "w1"] <- runif(100, 0, 1)
data_mm[1:100, "w2"] <- 1 - data_mm[1:100, "w1"]
head(data_mm)

s1 s2 w1 w2 y
1 8 9 0.3403258 0.65967423 16.27422
2 10 9 0.1771435 0.82285652 18.71387
3 5 3 0.9059811 0.09401892 23.65319
4 3 5 0.4432007 0.55679930 22.35204
5 5 3 0.8052026 0.19479738 16.38019
6 10 6 0.5610243 0.43897567 17.63494

Incorporating these weights into the model is straightforward:
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fit_mm2 <- brm(y ~ 1 + (1 | mm(s1, s2, weights = cbind(w1, w2))),
data = data_mm)

The summary output is similar to the previous, so we omit it for parsimony. The second assumption
that students change schools only once a year, may also easily be relaxed by providing more than two
grouping factors in mm (i.e., mm(s1,s2,s3)).

Comparison between packages

Over the years, many R packages have offered implementations for MLMs, each being more or
less general in their supported models. In Bürkner (2017), I compared brms with lme4 (Bates et al.,
2015), MCMCglmm (Hadfield, 2010), rstanarm (Stan Development Team, 2017a), and rethinking
(McElreath, 2017). Since then, quite a few new features have been added to brms and rstanarm.
Accordingly, in the present paper, I will update these comparisons, focusing on brms, rstanarm,
and MCMCglmm. While brms and rstanarm are both based on the Stan probabilistic programming
language, MCMCglmm implements its own custom MCMC algorithm. Modeling options and other
important information for these packages are summarized in Table 1 and will be discussed in detail
below.

Regarding general model classes, all three packages support common types, including linear,
count, and certain survival models. Currently, brms and MCMCglmm provide more flexibility
when modeling categorical and ordinal data. Additionally, they offer support for zero-inflated
and hurdle models to account for zeros in the data (see Example 1 above). For survival or time-
to-event models, rstanarm offers great flexibility via the stan_jm function, which allows for com-
plex association structures between time-to-event data and one or more models of longitudinal co-
variates (for details see https://cran.r-project.org/web/packages/rstanarm/vignettes/jm.html).
Model classes currently specific to brms are robust linear models using Student’s t-distribution (fam-
ily student), response time models via the exponentially modified Gaussian distribution (family
exgaussian), and the Wiener diffusion model (family wiener). The latter simultaneously mod-
els dichotomous outcomes and their corresponding response times (for a detailed example see
http://singmann.org/wiener-model-analysis-with-brms-part-i/).

All three packages offer many additional modeling options, with brms currently having the
greatest flexibility (see Table 1 for a summary). Moreover, the packages differ in the general framework
in which they are implemented: brms and MCMCglmm each come with a single model fitting
function (brm and MCMCglmm respectively) through which all of their models can be specified. Further,
their framework allows seamless combination of most modeling options in the same model. In contrast,
the approach of rstanarm is to emulate existing functions of other packages, which has the advantage
of an easier transition between classical and Bayesian models. Although the syntax used to specify
models is most similar to that of a classical model, rstanarm comes with the main disadvantage that
many modeling options cannot be used in combination in the same model.

Information criteria are available in all three packages. The advantages of WAIC and LOO
implemented in brms and rstanarm are their less restrictive assumptions, and that their standard
errors can be easily estimated to get a better sense of the uncertainty in the criteria. Comparing the
options for prior distributions, brms offers a little more flexibility than MCMCglmm and rstanarm,
as virtually any prior distribution can be applied on population-level effects as well as on the standard
deviations of group-level effects. In addition, we believe that the way priors are specified in brms
is more intuitive as it is directly evident which prior has been applied. In brms, Bayes factors are
available via both Savage-Dickey ratios (Wagenmakers et al., 2010) and bridge-sampling (Gronau and
Singmann, 2017), while rstanarm only allows for the latter option. For a detailed comparison with
respect to sampling efficiency, see Bürkner (2017).

Conclusion

The present paper is meant to introduce R users and developers to the extended lme4 formula syntax
applied in brms. Four examples are presented to illustrate various features in the brms framework.
For some of the more basic models that brms can fit, see Bürkner (2017). Many more examples can
be found in the growing number of vignettes accompanying the package (see vignette(package =
"brms") for an overview).

To date, brms is already one of the most flexible R packages when it comes to regression modeling
and there are more features in the works (see https://github.com/paul-buerkner/brms/issues for
the current list of issues). In addition to smaller, incremental updates, major planned updates include:
(1) latent variables estimated via confirmatory factor analysis; and (2) extended multilevel and residual
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brms rstanarm MCMCglmm

Model classes

Linear models yes yes yes
Robust linear models yes no no
Count data models yes yes yes
Survival models yes yes1 yes
Response times models yes no no
Beta models yes yes no
Categorical models yes yes2 yes
Multinomial models no no yes
Ordinal models various cumulative2 cumulative
Zero-inflated and hurdle models yes no yes

Modeling options

Variable link functions various various no
Multilevel structures yes yes yes
Multi-membership yes no yes
Multivariate responses yes yes3 yes
Non-linear predictors yes limited4 no
Distributional regression yes no no
Finite mixtures yes no no
Splines (additive models) yes yes yes
Gaussian Processes yes no no
Temporal autocorrelation yes yes2,5 no
Spatial autocorrelation yes yes2,5 no
Monotonic effects yes no no
Category specific effects yes no no
Measurement error yes no no
Weights yes yes no
Offset yes yes using priors
Censored data yes yes1 yes
Truncated data yes no no
Customized covariances yes no yes
Missing value imputation yes no no

Bayesian specifics

Population-level priors flexible flexible normal
Group-level priors normal normal normal
Covariance priors flexible restricted6 restricted7

Bayes factors yes yes8 no
Parallelization yes yes no

Other

Estimator HMC, NUTS HMC, NUTS MH, Gibbs9

Information criterion WAIC, LOO WAIC, LOO DIC
C++ compiler required yes no no

Table 1: Comparison of the capabilities of the brms, rstanarm, and MCMCglmm packages. Notes:
(1) Advanced functionality available via stan_jm. (2) No group-level terms and related functionality
allowed. (3) Cannot be combined with other modeling options such as splines. (4) Functionality limited
to linear Gaussian models and certain pre-specified non-linear functions. (5) Functionality available
only on GitHub branches (https://github.com/stan-dev/rstanarm). (6) For details, see Hadfield
(2010). (7) For details, see https://github.com/stan-dev/rstanarm/wiki/Prior-distributions. (8)
Available via the bridgesampling package (Gronau and Singmann, 2017). (9) Estimator consists of a
combination of both algorithms.
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correlation structures. The brms package is under continuous develepment thanks to constructive
user input. Suggestions for future features may be submitted to https://github.com/paul-buerkner/
brms.
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Support Vector Machines for Survival
Analysis with R
by Césaire J. K. Fouodo, Inke R. König, Claus Weihs, Andreas Ziegler and Marvin N. Wright

Abstract This article introduces the R package survivalsvm, implementing support vector machines
for survival analysis. Three approaches are available in the package: The regression approach takes
censoring into account when formulating the inequality constraints of the support vector problem.
In the ranking approach, the inequality constraints set the objective to maximize the concordance
index for comparable pairs of observations. The hybrid approach combines the regression and ranking
constraints in a single model. We describe survival support vector machines and their implementation,
provide examples and compare the prediction performance with the Cox proportional hazards model,
random survival forests and gradient boosting using several real datasets. On these datasets, survival
support vector machines perform on par with the reference methods.

Introduction

Survival analysis considers time to an event as the dependent variable. For example, in the veteran’s
administration study (Kalbfleisch and Prentice, 2002), a clinical trial of lung cancer treatments, the
dependent variable is time to death. The particularity of such a survival outcome is censoring,
indicating that no event occurred during the study. For example, in the veteran’s lung cancer study,
some patients stayed alive until the end of the study such that time to death is censored. Because the
time to event is unknown for censored observations, standard regression techniques cannot be used.
The censoring indicator δ is set to be 0 or 1 for censored and not censored individuals, respectively.
The main interest is to analyze the time T ∈ [0, ∞] until an event occurs, given covariates X ∈ Rd.

The most popular statistical approach for survival analysis is the Cox proportional hazards (PH)
model, which is described in detail in standard textbooks (Kleinbaum and Klein, 2012; Lee and Wang,
2003). The most important advantage of the PH model is that it does not assume a particular statistical
distribution of the survival time. However, the crucial assumption is that the effect of covariates on
the survival variable is time independent. The hazards of two individuals are thus assumed to be
proportional over time (proportional hazards assumption). The general form of the PH model is given
by

h(t|X) = h0(t) exp(β′X) , (1)

where β′ = (β1, β2, . . . , βd) ∈ Rd are parameters to be estimated and h0(t) is the baseline hazard
function, which is independent of the covariates. It does not need to be pre-specified or estimated in
the model.

The proportional hazards assumption can easily be checked in one dimension (X ∈ R), but is
difficult to verify when working in higher dimensions. Another difficulty when fitting a PH model
occurs when the number of covariates d exceeds the number of individuals n, since it uses the partial
likelihood for parameter estimation.

One alternative approach to the PH model is to use support vector machines (SVMs). SVMs
were first proposed by Vapnik (1995) as a learning method for dichotomous outcomes. They are
known for their good theoretic foundations and high classification accuracy on high dimensional
classification problems (Cervantes et al., 2008; Hsu et al., 2003). The formulation of an SVM supposes
a target variable Y ∈ {−1, 1} and covariates X ∈ Rd. Assuming that the two target classes are linearly
separable, there exists a linear function f (x) = ψx + b such that y f (x) > 0. The SVM task is to find
the separating hyperplane H(ψ, b) = {x | 〈x, ψ〉+ b = 0} for the two classes with the maximal margin.
The margin is defined as the smallest distance between any data point and the separating hyperplane.
Data points lying at this distance from the separating hyperplane are called support vectors. They
determine the margin, and must verify either f (x) = 1 or f (x) = −1. If the two classes are not
linearly separable, misclassifications can be allowed. This is done by introducing slack variables
ξi ≥ 0, allowing but penalizing misclassifications. The slack variable for an individual i is defined as
ξi = |yi − f (xi)|. Hence, it is ξi = 0 if i is correctly classified, ξi < 1 if it is inside the margin and on
the correct side of the hyperplane, ξi > 1 if the data point lies on the wrong side of the hyperplane,
and ξi = 1 if observation i lies exactly on the hyperplane. Figure 1 presents an illustration of the SVM
approach for a two dimensional data set. Data points are grouped into the classes y = 1 (circles) and
y = −1 (triangles). The filled and darkened data points are the support vectors defining the margin.
The two red data points lying inside the margin are misclassified. They are penalized depending on
their locations on the wrong or the correct side of the hyperplane, represented by the dashed line. All
the other data points are correctly classified and therefore not penalized.
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Figure 1: Illustration of the SVM approach with a two dimensional data set, split into two classes
y = 1 (circles) and y = −1 (triangles). The filled data points are the support vectors defining the
margin. Data points lying outside of the margin are correctly classified and not penalized (ξ = 0),
contrary to the two misclassified and penalized red points lying inside the margin. These data points
are penalized with the slack variables ξ < 1 or ξ > 1, depending on whether they lie on the correct or
on the wrong side of the separating hyperplane (dashed line). This illustration is inspired by Rhode
(2012) and the SVM problem was solved with the kernlab package (Karatzoglou et al., 2004).

To achieve the goal of the SVM approach described above, the following optimization problem is
posed in primal space:

min
ψ,b,ξ

1
2‖ψ‖2 + γ

n
∑

i=1
ξi

subject to − (yi(〈xi, ψ〉+ b) + ξi − 1) ≤ 0

and ξi ≥ 0, i = 1, . . . , n ,

(2)

where ψ, b and the slack variables ξi are unknown, n is the number of individuals, and γ > 0 is a
regularization parameter controlling the maximal margin and misclassification penalties. Instead of
solving the optimization problem (2) in the primal space, the optimization problem is transformed
to the dual problem, and the Lagrange function is optimized in the dual space. Details can be found
in Bishop (2007). Eitrich and Lang (2006) recommends tuning the model to find the best parameter
for regularization. In the SVM problem posed in (2), it is assumed that the two classes are linearly
separable, but this is usually not the case. Russell and Norvig (2010) demonstrates that a set of n data
points is always separable in an n− 1 dimensional space, which guarantees the existence of a higher
dimensional space in which the two classes are linearly separable. This concept is described in more
detail in the next section.

SVMs were extended to support vector regression, a variant for continuous outcomes by Vapnik
(1998). More recently, several extensions to survival analysis were proposed. Van Belle et al. (2007) and
Evers and Messow (2008) extended the formulation of the SVM problem with the aim to maximize the
concordance index for comparable pairs of observations. This approach, also known as the ranking
approach, was modified in Van Belle et al. (2008) to improve computational performance. Shivaswamy
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et al. (2007) introduced a regression approach to survival analysis, based on the idea of support vector
regression (Vapnik, 1998). Van Belle et al. (2011) combined the ranking and regression approaches in a
single model to build the hybrid approach of SVMs for survival outcomes. The ranking approach, as
proposed by Evers and Messow (2008), is implemented in the R package survpack available on the
authors’ website (Evers, 2009). The approaches of Van Belle et al. (2008) and Van Belle et al. (2011) are
available in a Matlab toolbox (Yang and Pelckmans, 2014).

In the next section, we describe the three approaches for survival SVMs in detail. After that, we
present the implementation of these methods in the R package survivalsvm. Finally, an application of
survival SVMs on real data sets compares their prediction performance and runtime with established
reference methods and other available implementations.

Survival support vector machines

Three approaches have been proposed to solve survival problems using SVMs: the regression (Shiv-
aswamy et al., 2007), the ranking (Van Belle et al., 2007; Evers and Messow, 2008; Van Belle et al., 2008)
and the hybrid approach (Van Belle et al., 2011). The regression approach is based on the support
vector regression (SVR) (Vapnik, 1998) idea and aims at finding a function that estimates observed
survival times as continuous outcome values yi using covariates xi. A naïve variant of this approach
is to ignore all censored observations and just solve the resulting SVR problem. Unfortunately, such a
formulation implies a loss of information, since it does not take the particularity of survival data into
account. Shivaswamy et al. (2007) improved this formulation by including the censoring in the SVM
problem. For censored observations, the time to event after censoring is unknown and thus predictions
greater than the censoring time do not have to be penalized. However, all survival predictions lower
than the censoring time are penalized as usual. For not censored data, the exact survival times are
known and, as in standard SVR, all survival predictions lower or greater than the observed survival
time are penalized. Alternatively, survival predictions from censored and not censored data can be
penalized differently, as proposed by Khan and Zubek (2008). However, this implies more parameters
of regularization when formulating the survival SVR problem, increasing computation times (Van
Belle et al., 2011). In the present work, we implement the survival SVR as proposed by Shivaswamy
et al. (2007) and formulate the problem as follows:

min
ψ,b,ξ,ξ∗

1
2‖ψ‖2 + γ

n
∑

i=1
(ξi + ξ∗i )

subject to yi − 〈ψ, F(xi)〉 − b ≤ ξi ,

δi(〈ψ, F(xi)〉+ b− yi) ≤ ξ∗i

and ξi, ξ∗i ≥ 0 ,

(3)

where i = 1, . . . , n. δ is the censoring indicator and F is a function that maps observed covariates to
the feature space. The feature space, compared with the original space in which data is observed, is a
higher dimensional space in which the training data points are projected to be separated more easily
by a hyperplane. More details about this concept can be found in Vapnik (1995). Since the feature
space implies a higher dimensional space, the inner product 〈ψ, F(xi)〉 is calculated using a kernel
function to reduce runtime (Vapnik, 1995). In the case of no censoring, i.e., δi = 1, the inequality
constraints in (3) are the same as in the classical SVR problem. However, if censoring occurs, the
second constraint is reduced to ξ∗i ≥ 0.

The ranking approach considers survival analysis based on SVMs as a classification problem with
an ordinal target variable (Herbrich et al., 1999). It aims at predicting risk ranks between individuals
instead of estimating survival times (Van Belle et al., 2007; Evers and Messow, 2008). Suppose two
individuals i and j at time t, where an event occurs for j but not necessarily for i. Their predictions based
on the classical SVM idea are 〈ψ, F(xi)〉+ b and 〈ψ, F(xj)〉+ b, respectively. The ranking approach
aims at predicting the correct ranking of yi and yj, meaning (yi − yj)(〈ψ, F(xi)〉 − 〈ψ, F(xj)〉) > 0. If
we further suppose yj < yi, predictions for i and j have to verify 〈ψ, F(xi)〉 − 〈ψ, F(xj)〉 > 0. Therefore,
the ranking approach, as proposed by Van Belle et al. (2007), is equivalent to solving the optimization
problem

min
ψ,ξ

1
2‖ψ‖2 + γ ∑

j<i
δi=1

vijξij

subject to 〈ψ, F(xi)〉 − 〈ψ, F(xj)〉 ≥ 1− ξij

and ξij ≥ 0, i, j = 1, ..., n ,

(4)
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where

vij =

{
1 if i and j are comparable

0 else

is the comparison function for observations i and j. Assuming that individuals are sorted increasingly
by their survival times, two observations i and j (i < j) are comparable if their survival times ti and tj
verify ti < tj and δi = 1, i.e., the shorter observed time is not censored. If we further suppose that
the observation with the shortest survival time is not censored, each observation i = 2, . . . , n will be
comparable to at least one other individual. The problem posed in (4) is equivalent to maximizing
the concordance index (C-index) defined by Van Belle et al. (2007) over comparable pairs for a given
prediction function u as

CIn(u) =
1

n(n− 1) ∑
vij=1

I
[(

u(xi)− u(xj)
) (

ti − tj

)]
,

where I(a) = 1 if a > 0, and I(a) = 0, otherwise. This definition is inspired from those proposed by
Harrell et al. (1984). Given an observation i, we only consider one comparable observation j̄(i) = i− 1.
We denote the first variant of the ranking approach presented in (4) as vanbelle1 . In an alternative
formulation, Van Belle et al. (2011) restrict the comparability effect to the inequality constraints as
follows:

min
ψ,ξ

1
2‖ψ‖2 + γ

n
∑

i=1
ξi

subject to 〈ψ, F(xi)〉 − 〈ψ, F(x j̄(i))〉 ≥ yi − y j̄(i) − ξi

and ξi ≥ 0 ,

(5)

where i = 1, . . . , n. Thereby, the value 1 on the right-hand side of the first constraint in vanbelle1
(4) is replaced by the difference yi − y j̄(i) between the survival times yi and y j̄(i) of data points i
and its nearest comparable neighbor j̄(i). We denote this second variant of the ranking approach
as vanbelle2 . Another variant of the ranking approach was developed by Evers and Messow (2008)
and implemented in the R package survpack, offering the possibility to fit survival SVM models
using either linear or radial basis kernels. In this variant, for a data point i, all comparable pairs are
considered, instead of only the nearest neighbor. The denotation evers is used to refer to this variant.

The hybrid approach (Van Belle et al., 2011) combines the regression and ranking approaches in the
survival SVMs problem. Thus, the constraints of (3) and (5) are included in the optimization problem

min
ψ,b,ε,ξ,ξ∗

1
2‖ψ‖2 + γ

n
∑

i=1
εi + µ

n
∑

i=1
(ξi + ξ∗i )

subject to 〈ψ, F(xi)〉 − 〈ψ, F(x j̄(i))〉 ≥ yi − yj̄(i) − εi ,

yi − 〈ψ, F(xi)〉 − b ≤ ξi ,

δi(〈ψ, F(xi)〉+ b− yi) ≤ ξ∗i ,

and εi, ξi, ξ∗i ≥ 0 ,

(6)

where i = 1, . . . , n. To solve the optimization problems (3), (4), (5) and (6) we consider the correspond-
ing Lagrange function in dual space and solve the quadratic optimization problem. The next section
presents our implementation of these models in R.

Implementation in R

We implemented the four models presented in (3), (4), (5) and (6) in the survivalsvm package. The
function survivalsvm fits a new survival model, and risk ranks are predicted using the generic R
function predict. Common to the four models is that a quadratic optimization problem is solved
when moving to the dual space. In the function survivalsvm, we solve this optimization problem
using two quadratic programming solvers: ipop from the package kernlab (Karatzoglou et al., 2004)
and pracma from the package pracma (Borchers, 2016). The function pracma wraps quadprog from the
package quadprog (Berwin A., 2013), which is implemented in Fortran to solve quadratic problems
as described by Goldfarb and Idnani (1982). Thereby, the kernel matrix is assumed to be positive
semi-definite. If this is not the case, the function nearPD from the Matrix package (Bates and Maechler,
2016) is used to adjust the kernel matrix to the nearest positive semi-definite matrix. In contrast to
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quadprog, ipop is written in pure R. Hence, the runtime of ipop is expected to be greater than that of
quadprog for solving the same optimization problem. However, an advantage of ipop is that the kernel
matrix does not need to be modified when solving the optimization problem. The user of survivalsvm
can choose which solver is used for solving the quadratic optimization problem.

As in the ranking formulations (4) and (5), the hybrid formulation (6) calculates differences between
comparable data points. Three options to define comparable pairs are available in survivalsvm:
makediff1 removes the assumption that the first data point is not censored, makediff2 computes
differences over not censored data points only and makediff3 uses the definition described above.

The R package survivalsvm allows the user to choose one of the four kernels linear, additive (Dae-
men and De Moor, 2009), radial basis, and polynomial, labeled lin_kernel, add_kernel, rbf_kernel
and poly_kernel, respectively. They can be passed to the survivalsvm function using the kernel
parameter.

Example of usage

To exemplify the usage, the implementation is applied to the data set veteran available in the package
survival (Therneau, 2015). The function Surv from the package survival serves to construct a survival
target object.

R> library(survivalsvm)
R> library(survival)
R> data(veteran, package = "survival")

First, we split the data into a training and a test data set

R> set.seed(123)
R> n <- nrow(veteran)
R> train.index <- sample(1:n, 0.7 * n, replace = FALSE)
R> test.index <- setdiff(1:n, train.index)

and next fit a survival support vector regression model

R> survsvm.reg <- survivalsvm(Surv(diagtime, status) ~ .,
+ subset = train.index, data = veteran,
+ type = "regression", gamma.mu = 1,
+ opt.meth = "quadprog", kernel = "add_kernel")

The regularization parameter is passed using the argument gamma.mu. For each of the models (3), (4)
and (5), only one value is required, while two values are needed when fitting a hybrid model. Calling
the print function on the output gives

R> print(survsvm.reg)
survivalsvm result
Call:
survivalsvm(Surv(diagtime, status) ~ ., subset = train.index, data = veteran,
type = "regression", gamma.mu = 1, opt.meth = "quadprog", kernel = "add_kernel")

Survival svm approach : regression
Type of Kernel : add_kernel
Optimization solver used : quadprog
Number of support vectors retained : 39
survivalsvm version : 0.0.4

We can now make the predictions for the observations given by test.index:

R> pred.survsvm.reg <- predict(object = survsvm.reg,
+ newdata = veteran, subset = test.index)

and print the prediction object:

R> print(pred.survsvm.reg)
survivalsvm prediction

Type of survivalsvm : regression
Type of kernel : add_kernel
Optimization solver used in model : quadprog
Predicted risk ranks : 13.89 14.95 11.12 15.6 10.7 ...
survivalsvm version : 0.0.4
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Real data application and comparison to other survival models

To evaluate the survival SVM models and our implementation, four publicly available survival data
sets were used. The first is the data set veteran from the Veteran’s lung cancer trial study (Kalbfleisch
and Prentice, 2002), available in the package survival. It includes 137 individuals and 5 covariates.
Second, we utilized data from the Interpretation of a Trial Stopped Early study (Ermerson and Banks,
1994) in which 130 individuals participated. Two survival outcomes were of interest in this study,
complete remission and death. The corresponding data sets are labeled leuk_cr and leuk_death . For
both data sets, 10 covariates are provided. Third, we used the Germany Breast Cancer Study Group
2 (GBSG2) data (Schumacher et al., 1994) which consists in 686 samples and 8 covariates. Finally,
we considered the Mayo Clinic Lung Cancer (MCLC ) study (Loprinzi et al., 1994) comprising 168
individuals and 8 covariates. Table 1 provides a brief summary of the data sets used.

Data set Sample size #Covariates Status Survival time

veteran 137 5 status time
leuk_cr 130 10 complete_rem data_cr
leuk_death 130 10 status_last_fol_up data_last_fol_up
GBSG2 686 8 cens time
MCLC 168 8 status time

Table 1: Data sets used to compare prediction performance and runtime. The data sets leuk_cr and
leuk_death differ only in the event considered. In leuk_cr, the event is a complete remission while in
leuk_death the event of interest is death. The two last columns give the names of the censoring status
and survival time variables.

For each data set, we fitted the four survival SVM models (3), (4), (5) and (6) using linear, additive
and radial basis function (RBF ) kernels. The ranking approach of survival SVMs implemented in the R
package survpack is applied using linear and RBF kernels, the two kernels offered by the package. The
Cox PH model, random survival forest (RSF ) (Ishwaran et al., 2008) and gradient boosting (Gboost )
for survival analysis Ridgeway (1999) served as reference models.

For RSF, the package randomForestSRC (Ishwaran and Kogalur, 2016) was used. The number of
random variables for splitting and the minimal number of events in the terminal nodes were tuned
when building survival trees. randomForestSRC refers to these parameters as mtry and nodesize,
respectively. For gradient boosting models implemented in mboost (Hothorn et al., 2016), we fitted a
PH model as base learner. The number of boosting iterations and the regression coefficient were tuned.
In mboost, these parameters are named mstop and nu, respectively.

Tuning was conducted using 5× 10-fold nested cross validation: Data sets were randomly divided
into 5 almost equally sized subsamples, and in each iteration, one of the 5 groups was used as test
data set. On the remaining groups, the models were trained after tuning the model parameters with a
10-fold cross validation. The best models were chosen based on the C-index. The mlr package (Bischl
et al., 2016a,b) was employed for parameter tuning.

Experiments were run on a high performance computing platform using 6 cores of Intel Xeon
3.33 GHz CPUs and an available memory of 183 GB. Table 2 summarizes the empirical mean runtime
required by each survival SVM model to run a single resampling operation. As depicted, the runtimes
are influenced by the kernel function used. Compared with linear and additive kernel functions, which
required approximatively equal runtimes, the runtimes of the radial basis function (RBF) are higher.
The reason is that the RBF requires one additional parameter, which has to be optimized via tuning.
The effect of the number of parameters is also observed on the hybrid survival SVM approach, which
required more runtime than the other approaches. Finally, the runtime of the ranking approaches
vanbelle1 and vanbelle2, implemented in survivalsvm, was considerably lower than that of the evers
approach, implemented in the survpack package.

Table 3 and Figure 2 present the performance estimates of the compared models, based on the
C-index. Of the 17 models, the best model received the rank 1, the worst model the rank 17. In case of
ties, all tied models were assigned the mean rank value. On the veteran data set, the hybrid approach
with the additive kernel performed best of all survival SVM models, with only slight differences to the
PH model and SSVR approach. The models based on the ranking approach (vanbelle1 and vanbelle2)
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Data set Kernel Mean runtime in minutes

vanbelle1 vanbelle2 SSVR hybrid evers

veteran linear 0.45 0.44 1.33 16.12 6.57
additive 0.58 0.60 1.41 15.97
RBF 4.79 5.06 14.02 144.03 43.33

leuk_cr linear 0.87 0.90 1.38 26.24 3.56
additive 0.98 0.99 1.54 30.75
RBF 2.98 3.21 8.57 238.97 21.13

leuk_death linear 0.29 0.30 0.96 28.08 4.82
additive 0.33 0.36 0.96 30.84
RBF 2.99 3.10 8.52 269.54 20.04

GBSG2 linear 2.90 3.01 41.89 1064.53 1005.39
additive 3.65 4.21 65.57 374.68
RBF 30.91 35.23 597.77 NA† NA†

MCLC linear 0.47 0.46 1.83 48.07 14.92
additive 0.64 0.62 2.10 17.18
RBF 4.86 5.11 17.98 585.94 81.34

Table 2: Mean runtime for each survival SVM model to run a single resampling operation. This
operation includes tuning of the parameters of regularization for the ranking and regression based
models. Since the RBF, in comparison to linear and additive kernel functions, requires one additional
parameter to be computed, its runtimes were higher. Furthermore, because the hybrid approach uses
two parameters of regularization, it also needs more time to find the best parameters of regularization.
The implementation of the evers approach in survpack does not include the additive kernel.
† Interrupted after 10 days of computation.

performed worse than the other models. The differences between the reference models were small.
For the leuk_cr data set, the evers approach with the RBF kernel was the best SVM approach, followed
by the hybrid approach with the additive kernel. The best reference models were the PH model and
GBoost. For leuk_death, the hybrid approach with the additive kernel performed on par with RSF.
The RSF model also performed better than the other reference models on the GBSG2 data set, while
evers performed worse. The hybrid model was still the best survival SVM model, with almost the
same results for the linear and additive kernel. No results could be obtained for the RBF kernel in 10
days of computation. For the MCLC data set, the survival SVM with the hybrid approach and RBF
kernel performed best, while the PH model was the best reference model. The differences were small,
except for evers, which performed worse. In summary, there are only slight differences between the
best survival SVM models and the best reference models. However, the differences between the SVM
approaches and kernels were substantial.

Conclusion

We presented the R package survivalsvm for fitting survival SVMs. Three approaches are available in
the package. First, in the regression approach, the classical SVR was extended to censored survival
outcomes. Second, in the ranking approach, the ranks between model predictions and the observed
survival times are maximized based on the C-index. The third approach, called the hybrid approach,
combines the two first approaches into a single model. We implemented these three approaches in the
survivalsvm package and used 5 data sets to compare the prediction performance and runtime of our
implementation with the Cox PH model, RSF and gradient boosting. Furthermore, we included an
implementation of a variant of the ranking approach (Evers and Messow, 2008) in the comparison.
Of the survival SVM models, the hybrid approach generally performed best in terms of prediction
performance but was slowest to compute. We observed only small differences between the best SVM
models and the best reference models and could not determine a clear winner.

Comparing the ranking and regression based models, the evers approach always required more
runtime than the approaches implemented in survivalsvm. Although the hybrid approach performed
better than the others survival SVM approaches, its runtime was considerably increased. This was due
to the fact that the formulation of the hybrid approach needs two parameters of regularization, while
the ranking and regression approaches require only one parameter.
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Figure 2: Prediction performance for the five survival support vector models (vanbelle1, vanbelle2,
SSVR, hybrid and evers) and three reference methods (PH, RSF and GBoost) on 5 data sets. The C-index
was computed for each method using nested 5× 10 cross validation. The quadprog optimizer was used
in the package survivalsvm. Plots were generated using the ggplot2 (Wickham, 2009) and tikzDevice
(Sharpsteen et al., 2016) packages.

The best performing kernel functions depended on the data set and the chosen SVM model. For
the ranking approaches, the differences were larger than the regression and hybrid approaches. For the
hybrid approach, the additive and RBF kernels achieved the best results. However, the runtimes for
the RBF kernel were substantially larger. Again, this was due to the tuning of an additional parameter.

Our implementation utilizes quadratic programming and an interior point optimizer to solve
the quadratic optimization problem derived from the primal support vector optimization problem.
When the quadratic programming is used for a non positive semi-definite kernel matrix, this matrix is
slightly modified to the nearest positive semi-definite matrix. Calling the interior point optimizer does
not make any modification on the original matrix, but is computationally slower since the software
is fully implemented in R. Pölsterl et al. (2015) proposed a fast algorithm to train survival SVMs
in primal space. This algorithm is fast in low dimensions, but for high dimensional problems the
authors recommended reducing the dimensions before applying an SVM algorithm. However, some
special and fast algorithms, such as the sequential minimal optimization (SMO ) (Platt, 1998), which
are available for classical SVM optimization problems, were shown to be more accurate (Horn et al.,
2016). The implementation for survival SVMs could possibly be improved by an extension of the SMO
optimization procedure.

Having restrictions on only the nearest neighbor in the ranking approach, as formulated in
vanbelle1 and vanbelle2, can considerably improve the computational performance, but can also reduce
prediction performance. In principle, the number of nearest neighbors is not limited to the choices of
Evers and Messow (2008) and Van Belle et al. (2008). Since the optimal number of neighbors depends
on the dataset and the availability of computational resources, it may be included as a further tuning
parameter.

In conclusion, we have shown that SVMs are a useful alternative for survival prediction. The
package survivalsvm provides a fast and easy-to-use implementation of the available approaches
of survival SVMs. Our results show that the choice of the SVM model and the kernel function is
crucial. In addition to prediction performance, runtime is an important aspect for large data sets. We
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recommend to conduct benchmark experiments using several approaches and available kernels before
analyzing a data set.

Availability

The package survivalsvm is available on CRAN and a development version at https://github.com/
imbs-hl/survivalsvm. The presented examples and R code to reproduce all results in this paper are
available at https://github.com/imbs-hl/survivalsvm-paper.
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Nonparametric Independence Tests and
k-sample Tests for Large Sample Sizes
Using Package HHG
by Barak Brill, Yair Heller, and Ruth Heller

Abstract Nonparametric tests of independence and k-sample tests are ubiquitous in modern applica-
tions, but they are typically computationally expensive. We present a family of nonparametric tests
that are computationally efficient and powerful for detecting any type of dependence between a pair
of univariate random variables. The computational complexity of the suggested tests is sub-quadratic
in sample size, allowing calculation of test statistics for millions of observations. We survey both
algorithms and the HHG package in which they are implemented, with usage examples showing
the implementation of the proposed tests for both the independence case and the k-sample problem.
The tests are compared to existing nonparametric tests via several simulation studies comparing both
runtime and power. Special focus is given to the design of data structures used in implementation of
the tests. These data structures can be useful for developers of nonparametric distribution-free tests.

Introduction

A common question that arises in the analysis of data is whether two random variables, X and Y, are
independent. The null hypothesis is

H0 : FXY(x, y) = FX(x)FY(y) ∀ x, y (1)

where FX and FY are the marginal cumulative distribution functions of X and Y, and FXY is the joint
cumulative distribution function. The case where Y is categorical and X is continuous is the k-sample
problem. An omnibus consistent test will reject the null hypothesis in (1) for any dependence between
X and Y, with probability increasing to one as the sample size tends to infinity.

In recent years, there has been great interest in developing tests of independence that are able
to identify complex dependencies based on N independent observations from FXY . For univariate
random variables, the first omnibus consistent test was based on summation of a score over all N 2× 2
partitions of the sample space where every data point serves as a partition point (Hoeffding, 1948).
This test is available via the function hoeffd from package Hmisc (Harrell Jr et al., 2018). Another
classic approach is based on the measure of mutual information following partitioning of the data into
a 2-dimensional grid (Paninski, 2003). This approach is taken in the R packages minet (Meyer et al.,
2008, 2017), infotheo (Meyer, 2014), and entropy (Hausser and Strimmer, 2009, 2014) with various
extensions to the partitioning schemes used.

Recently, several nonparametric omnibus consistent tests have been suggested that have com-
putational complexity at least quadratic in sample size. Reshef et al. (2011), with CRAN package
minerva (Albanese et al., 2013; Filosi et al., 2017), suggested MIC, which is based on the maximum
of penalized estimated mutual information partitions. Gretton et al. (2008), with CRAN package
dHSIC (Pfister et al., 2018; Pfister and Peters, 2017), suggested HSIC, which is a kernel test based
on the empirical estimate of the Hilbert Schmidt norm of the cross-covariance operator. Székely
et al. (2007, 2009), with CRAN package energy (Rizzo and Szekely, 2017), suggested dCov, which is
based on the joint empirical characteristic function. Both kernel and characteristic function methods
may be implemented in a scenario where X or Y are multivariate. Heller et al. (2016), with CRAN
package HHG, suggested tests which aggregate by maximization or by summation the likelihood
ratio test (LRT) scores over all possible partitions of data, with m partition points for each variable.
The suggested tests aggregate over all partitions of the data of size m×m (i.e., having m×m cells) for
a range of m values.

For the k-sample problem, Székely and Rizzo (2004) suggested a test based on joint empirical
characteristic function, which they implemented in package energy as well. Gretton et al. (2012a)
suggested a family of consistent two sample tests based on kernels. The function kmmd from package
kernlab (Zeileis et al., 2004) implements this family of tests for several kernel choices. Jiang et al.
(2015), with CRAN package dslice, suggested the dynamic slicing test statistic, which aggregates by
maximization the penalized LRT score with a penalty for fine partitions. Heller et al. (2016), with
CRAN package HHG, suggested tests which aggregate by maximization or by summation the LRT
scores over all possible partitions of data.

The potential advantage in power as sample size increases in the state-of-the-art tests listed above

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=Hmisc
http://www.bioconductor.org/packages/release/bioc/html/minet.html
http://CRAN.R-project.org/package=infotheo
http://CRAN.R-project.org/package=entropy
http://CRAN.R-project.org/package=minerva
http://CRAN.R-project.org/package=dHSIC
http://CRAN.R-project.org/package=energy
http://CRAN.R-project.org/package=HHG
http://CRAN.R-project.org/package=kernlab
http://CRAN.R-project.org/package=dslice


CONTRIBUTED RESEARCH ARTICLES 425

is hindered by the computational cost. In practice, many of the state-of-the-art tests cannot be applied
when sample sizes are in the thousands. The computational problem is compounded when multiple
tests are to be carried out in the same analysis, e.g., when the aim is to detect all pairwise associations
among the variables in a dataset.

Modifications to some of the tests listed above can be used for large sample sizes. For the HSIC test
statistic, it was suggested to compute the quadratic time HSIC test statistic for subsets of the data, and
then aggregate the HSIC test statistics towards the test statistic for the null hypothesis in (1) (Gretton
et al., 2012a,b). Two approximate HSIC statistics, the Nyström HSIC test statistic and the random
fourier feature HSIC, have been shown to have reduced computational complexity while enjoying
power comparable to the original HSIC statistic (Zhang et al., 2018). Other computationally efficient
ways to compute HSIC were suggested in Jitkrittum et al. (2016b,a). The three computationally efficient
adaptations of the HSIC test (Nyström, RFF, FSIC) have an intrinsic trade-off between power and
computational complexity given by a resolution parameter of the method. The user is able to ’pay in
runtime’ for more power. A computationally efficient algorithm for computing the univariate dCov
test statistic in O(Nlog(N)) time was developed in Huo and Székely (2016). For the suggested test
in Gretton et al. (2012a), computationally efficient modifications have been considered in Zhao and
Meng (2015) and Chwialkowski et al. (2015). A computationally efficient algorithm for computing
the univariate energy test statistic of Székely and Rizzo (2004) in O(Nlog(N)) time was developed in
Huang and Huo (2017). Jiang et al. (2015) suggested considering only a subset of partition locations for
large sample sizes for their dynamic slicing test. In our present work, we suggest a similar modification
for the tests in Heller et al. (2016).

This paper describes two main contributions. The first is to provide a method and software for
discovering dependence that has reasonable computational time for any sample size. Specifically, we
modify the algorithms for the tests of Heller et al. (2016) , which were shown to have good power in
complex settings, to aggregate only a representative subset of all partitions of the data, thus achieving
a computational complexity which is sub-quadratic in sample size. The suggested tests have power
competitive with state-of-the-art methods, but can be computed at a fraction of the time. Second, we
extend the algorithms for the tests of Heller et al. (2016) to allow partitions with a different number
of partition points on each axis. LRT scores of all partitions of size m × l of the sample space are
aggregated where m and l are the number of partition points of the X and Y variables, respectively.
This generalization does not increase the computational complexity, yet it can result in better power
for alternatives where the optimal number of partition points in each axis is different.

The paper is organized as follows. We introduce the atom based MinP statistic and detail our
novel contributions in the following two sections. Then, in “Usage examples”, we present the work
flow of the package (function calls and outputs). In “k-sample tests” we present the computationally
efficient tests for the K-Sample problem and their work flow. In “Simulation” we compare the novel
tests to other state-of-the-art tests in terms of power and runtime. Finally, in “Discussion” we provide
some final remarks. Other tests available in HHG are detailed in Appendix B.

The atom based test statistics

Suppose we have N sample points, where each sample is a pair (x, y). We split the plane into m parts
along the X axis and into l parts along the Y axis. (Note that for now, m and l are fixed; later we will
show how we choose the best m and l automatically so that the user will not need to fix them.) We
consider the set of all m× l partitions of the data, where a split point is possible only once every A
ordered observations in each variable. The indivisible blocks of observations are called atoms. We
assume for simplicity that the number of atoms NA is an integer multiple of A, NA = N/A. Figure 1
shows an example partition of the sample space based on atoms.

A cell c is defined by four integers, marking its left, right, top and bottom boundaries on an
equidistant grid of NA × NA points. A cell with all four boundaries in the interior of the grid will
be considered a ’center’ cell (cell type 1). A cell with either its top or bottom boundary at the edge
of the grid will be considered a ’top’ or ’bottom’ cell, respectively (cell type 2). A cell with either its
left or right boundary at the edge of the grid will be considered a ’left’ or ’right’ cell, respectively
(cell type 3). A set which has two boundaries at the edge of the grid (e.g., ’left’ and ’top’) will be
called a ’corner’ cell (cell type 4). Let Oc denote the number of samples observed in a cell, and Ec
the expected number of samples when H0 is true. For a cell of width w atoms and height h atoms,
Ec = w

NA

h
NA

N = whA2/N. Let C be the set of all cells and C (w, h, t) the set of all cells of size w× h
atoms and type t, where t ∈ {1, 2, 3, 4}. We define the function n(t, w, h, m, l), returning the number of
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Figure 1: A visualization of a single partition of the atoms plane. The atom size is A = 5, so only
partitions on the dashed black grid lines are allowed at boundary values 5.5, 10.5, 15.5, . . .. For m = 5
and l = 4, a single 5× 4 partition is depicted with blue line boundaries. For N = 50 sample points
(black dots), we have NA = 10 atoms dividing each axis. The cell coloured in blue, which has width
w = 2 atoms and height h = 3 atoms, has Oc = 8 sample points, whereas only Ec = 2× 3× 52/50 = 3
are expected under H0.

m× l partitions a cell of type t and size w, h participates in:

n(t, w, h, m, l) =


(NA−w−2

m−3 ) · (NA−h−2
l−3 ) t=1 (center cell)

(NA−w−2
m−3 ) · (NA−h−1

l−2 ) t=2 (top/bottom cell)
(NA−w−1

m−2 ) · (NA−h−2
l−3 ) t=3 (left/right cell)

(NA−w−2
m−2 ) · (NA−h−1

l−2 ) t=4 (corner cell)

(2)

Let Γ̃m×l be the set of all m× l partitions of the plane, where a split point is possible only between
atoms. For a given m× l partition size, the aggregated by sum test statistic is

Sm×l = ∑
Γ∈Γ̃m×l

∑
c∈Γ

Oc log (Oc/Ec) = ∑
c∈C

∑
Γ∈Γ̃m×l

I (c ∈ Γ)Oc log (Oc/Ec)

=
4

∑
t=1

(NA+1−m)

∑
w=1

(NA+1−l)

∑
h=1

∑
c∈C(w,h,t)

Oc log (Oc/Ec) n (t, w, h, m, l) , (3)

where I(·) is the indicator function. The last equality in (3) demonstrates that for computing
Sm×l , we can iterate over cells instead of partitions, thus achieving a computational complexity

of O
(

NA
4 + NlogN

)
, even though the number of possible partitions is |Γ̃m×l | = (NA−1

m−1 ) · (NA−1
l−1 ).

Since the optimal partition size m× l is unknown, we propose taking the minimum p-value over
the plausible range of partition sizes:

MinP = min
2≤m,l≤m.max

pm×l , (4)

where pm×l is the p-value of the test statistic Sm×l .

In Appendix A we present the full pseudo-code for the algorithm, including the case when N is
not a multiple of A. The pseudo-code also shows how {Sm×l : m = 2, . . . , m.max, l = 2, . . . , m.max}
is computed at the same computational complexity as a single Sm×l . The atom based test in (4) is
consistent as long as NA → ∞ and m.max2/N → 0 (for a proof see Appendix C in Brill, 2016).

The null distribution of MinP and pm×l

In this section, we show how to tabulate the null distribution of our proposed statistic MinP. This
tabulation requires tabulating the null distribution of Sm×l . Fortunately, the test statistics in (3)-(4)
are based on the ranked observations and therefore are distribution free. Consequently, the null
distributions of {Sm×l : 2 ≤ m, l ≤ m.max} can be tabulated off-line (prior to seeing the data) in order
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to evaluate the p-value of any test statistic that combines {pm×l : 2 ≤ m, l ≤ m.max}.
The tabulation of the null distribution of Sm×l and the MinP test statistics is described in the

schematic diagram in Figure 2. The structure of generated null distributions and stored tabula-
tions of null distributions differs. While one generates the vector of Sm×l statistics from a single
sample, the package data structure for a null table is constructed by sorted arrays of the marginal
distributions. Given a null table of size B repetitions, one can compute all marginal p-values for
S2×2, S2×3, S3×2, . . . , Sm.max×m.max in O(m.max2log(B)) time once each of the m× l statistics is com-
puted from data. Then the MinP statistic is simply the minimum of all these p-values. An additional
O(log(B)) search is required for computing the true p-value of the achieved MinP test statistic. Given
the null table, calculating the MinP statistic takes altogether O(N log N + N4

A + m.max2 log B + log B),
and since m.max ≤ NA, this is at most O(N log N + N4

A + N2
A log B). Since typically log B < N2

A, the
complexity is typically O(N log N + N4

A).

Sample B 
Permutations

from
(1:𝑁,𝜋 1:𝑁 )

𝑀𝑖𝑛𝑃 12

𝑀𝑖𝑛𝑃 47

𝑀𝑖𝑛𝑃 32

𝑀𝑖𝑛𝑃 21

𝑀𝑖𝑛𝑃 93

A B C

D
E

𝑆2×2 𝑆2×𝑀 𝑆3×𝑀… 𝑆3×2 … 𝑆𝑀×2…

𝑆2×2 𝑆2×𝑀 𝑆3×𝑀… 𝑆3×2 … 𝑆𝑀×2…

𝑆2×2 𝑆2×𝑀 𝑆3×𝑀… 𝑆3×2 … 𝑆𝑀×2…

𝑆2×2 𝑆2×𝑀 𝑆3×𝑀… 𝑆3×2 … 𝑆𝑀×2…

𝑆2×2 𝑆2×𝑀 𝑆3×𝑀… 𝑆3×2 … 𝑆𝑀×2…

𝑆𝑀×𝑀…

𝑆𝑀×𝑀…

𝑆𝑀×𝑀…

𝑆𝑀×𝑀…

𝑆𝑀×𝑀…

𝑆 1
2×2 𝑆 5

2×𝑀 𝑆 112
3×𝑀… 𝑆 33

3×2 … 𝑆 2
𝑀×2…

𝑆 211
2×2 𝑆 41

2×𝑀 𝑆 58
3×𝑀… 𝑆 24

3×2 … 𝑆 164
𝑀×2…

𝑆 31
2×2 𝑆 32

2×𝑀 𝑆 32
3×𝑀… 𝑆 13

3×2 … 𝑆 78
𝑀×2…

𝑆 35
2×2 𝑆 281

2×𝑀 𝑆 2
3×𝑀… 𝑆 5

3×2 … 𝑆 81
𝑀×2…

𝑆 21
2×2 𝑆 17

2×𝑀 𝑆 42
3×𝑀… 𝑆 52

3×2 … 𝑆 65
𝑀×2…

𝑆 4
𝑀×𝑀…

𝑆 31
𝑀×𝑀…

𝑆 157
𝑀×𝑀…

𝑆 42
𝑀×𝑀…

𝑆 5
𝑀×𝑀…

𝑆 1
2×2

𝑆 𝐵
2×𝑀

𝑆 1
3×𝑀

…

𝑆 3
3×2

…

𝑆 2
𝑀×2

…

𝑆 2
2×2

𝑆 4
2×𝑀

𝑆 𝐵
3×𝑀

…

𝑆 2
3×2

… 𝑆 1
𝑀×2

…

𝑆 3
2×2 𝑆 3

2×𝑀 𝑆 3
3×𝑀

…

𝑆 1
3×2

…

𝑆 3
𝑀×2…

𝑆 4
2×2

𝑆 2
2×𝑀 𝑆 2

3×𝑀

…

𝑆 𝐵
3×2

…

𝑆 𝐵
𝑀×2

…

𝑆 𝐵
2×2

𝑆 1
2×𝑀

𝑆 4
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Figure 2: Schematic for the computation of the p-value for the MinP statistic. In step A, sample N
pairs without replacement from {1, . . . , N} × {1, . . . , N}, B times. In step B, compute all test statistics
for each sample of N pairs, color coded so that we have B rows and (M− 1)2 columns of test statistics.
In step C, compute the within column rank for each test statistic: the rank is in the subscript for each
test statistic, and its p-value is solely determined by the rank and B. In step D, compute MinP for each
sample (row) and its rank in the subscript. In step E, each sorted column along with the sorted MinP
column is stored individually for fast access and computation of p-values.

In practice, one does not need to maintain all marginal null distributions at a fixed resolution.
Only the lower p-values (high Sm×l scores) are used for rejections. Thus, when one simulates a large
null table such as B = 106, marginal ECDFs can be maintained at 0.001 increments of the cumulative
probability distribution function for p-values bigger than some parameter for compression α′ (e.g.,
α′ = 0.05) and at maximum resolution for lower p-values. Using the above parameters as the two
different resolutions and α′, a null table of 106 values is compressed to just over 5 · 104 values. This
data structure makes p-value computation via the null table simple and efficient, with null tables sizes
being maintainable even for large values of B.

In addition, this data structure is utilized as a combination method for statistics with a nominal
false positive rate of α. Importantly, one can utilize this efficient data structure with any set of statistics
and a general combination score which takes into account only marginal p-values. For example, Heller
et al. (2016) propose another type of combination score for their tests, of the form −∑m.max

m=2 log (pm×m).
The combination score makes use of this data structure as well.
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Usage examples

Function calls and input arguments

The test procedure utilizes two function calls. The first function call carries out the tabulation of the
null distributions for both the Sm×l statistics and the MinP combination statistic. The second function
call computes the MinP test statistic and its p-value, given the look-up tables for the distributions of
Sm×l and MinP (see Table 1).

The arguments for the null distribution tabulation are the sample size, the maximal partition size
considered, and the number of atoms. These are denoted by the parameters n, mmax, and nr.atoms,
respectively. The default parameters for the test are mmax = min(10,n) and nr.atoms = min(40,n). In
Section “Simulations”, we discuss these defaults in terms of power, runtime, and the trade-off between
the two. Other parameters include the type of combination score used (MinP or Fisher) and the type
of data partition used (m×m or m× l).

The arguments for computing the MinP test statistic via Fast.independence.test are two vec-
tors of size n for the joint observations of (X, Y), and a null table object produced by the function
Fast.independence.test.nulltable. All test parameters are kept in the null table object.

Table 1: The novel atom-based tests in the HHG package.

Function Name Description

Fast.independence.test.nulltable Function creates null table objects for the atoms
based omnibus distribution-free test of indepen-
dence between two univariate random variables.
Input arguments are the number of atoms, m.max,
and the type of partitioning (all m× l or all m×m
partitions).

Fast.independence.test Performs the atoms based distribution-free test of
independence of two univariate random variables,
which is computationally efficient for large data
sets. Input arguments are two numeric vectors of
data, and optionally a null table object (if a null
table has not been precomputed, one is generated
on the fly).

Output description

The output of the function Fast.independence.test.nulltable is a null table data structure. This
data structure contains the sorted marginal distributions of Sm×l statistics, the sorted distribution of
the MinP test score, and the test parameters as in Figure 2.

The output of Fast.independence.test is an object of class "UnivariateStatistic" containing
the results of both the marginal Sm×l tests performed on the data, along with the results of the MinP
test. The fields m.stats and pvalues.of.single.m contain the test statistics for the tests of fixed
partitions size and their respective P-values, given by (3). The fields MinP and MinP.pvalue contain
the data adaptive test statistic and its P-value, given by (4).

Example code

We begin by computing the a look-up tables of the null distributions. This is done by calling the first
function, with the sample size as a parameter:

# compute null table, using default m.max,
# number of atoms and number of permutations under the null.

nt = Fast.independence.test.nulltable(n)

The number of atoms for the procedure and the maximal partition size are set to their default
values. The object nt now holds a look-up table which is specific for the selected test parameters and
sample size. We will use this object to carry out the test using Fast.independence.test:
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# carry out test, parameters set by null table passed.
res = Fast.independence.test(x,y,nt)

# print results and P-value. P-value given under entry 'MinP.pvalue'.
res

The last line prints the output for the test. The output begins by describing the test parameters:
test statistic chosen, partition sizes considered, and number of atoms:

HHG univariate combined independence statistic
Statistics type combined:
sum of ADP-EQP-ML on Likelihood Ratio scores.

Single m statistics are the sum of scores over All Derived Partitions (ADP) of the data.
Statistics are normalized by the number of possible partitions and sample size.

Minimum partition size: 2 Maximum partition size: 10
Sample size: 1200
Equipartition nr.atoms: 40

The output printed shows the Sm×l test statistics along with their marginal p-values:

Single m (partition size) statistics:
m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

l=2 0.000548 0.00117 0.00180 0.00244 0.00308 0.00369 0.00429 0.00486 0.00541
l=3 0.001165 0.00244 0.00374 0.00505 0.00633 0.00759 0.00881 0.00998 0.01111
... ... ... ... ... ... ... ... ... ...
l=10 0.004584 0.00950 0.01453 0.01962 0.02470 0.02973 0.03468 0.03955 0.04434

Single m (partition size) pvalues:
m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

l=2 0.199 0.1294 0.0995 0.0597 0.05473 0.04478 0.04478 0.03483 0.03483
l=3 0.134 0.0647 0.0398 0.0299 0.02488 0.01493 0.01493 0.01493 0.01493
... ... ... ... ... ... ... ... ... ...
l=10 0.174 0.0846 0.0448 0.0249 0.01493 0.00995 0.00995 0.00995 0.00995

Finally, the output shows the MinP test statistic score along with it’s p-value, which is the p-value
for the test. The selected partition size attaining the smallest p-value is also shown:

MinP Statistic - Test statistic is minimum of above single m pvalues:
0.01
Partition size with minimum p-value: 6X6
p-value for MinP test:0.01

As stated above, the proposed method is distribution free. As such, the look-up table generated
can be used with any data of the same size, as we show in the next example.

# generate data of size n:
x.2 = rnorm(n)
y.2 = x.2 + rnorm(n)

# carry out test using exactly the same null table as before.
res2 = Fast.independence.test(x.2,y.2,nt)

The main advantage of distribution free tests is that while standard permutation based tests
performed on M null hypotheses with B permutations (in each test) require M × B independent
calculations of the test statistics, distribution free tests require only M test statistics and B permutations,
M + B in total. This condition makes them ideal for scenarios where a large number of hypotheses are
examined simultaneously.

For large values of NA and table size B, the computation of the look-up table can still be cumber-
some. The package vignette shows how this process can be parallelized.

k-sample tests

A special case of the independence problem is the k-sample problem: independence testing for
continuous X and categorical Y, where Y has K different categories, 1, . . . , K. The null hypothesis can
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be formulated as:

H0 : FX(x|y = 1) = FX(x|y = 2) = . . . = FX(x|y = k), ∀x (5)

We modify the MinP test statistic in Heller et al. (2016) to consider only partitions at the atom level.
For example, instead of considering all possible partitions, we consider only partition points that are
found on an equidistant grid of NA points. Let pm be the p-value of the test statistic that aggregates by
summation or maximization all the LRT scores with partitions of size m of the real line, where a split
point is possible only every NA points. The atom based test statistic is

MinP = min
2≤m≤m.max

(pm) . (6)

The code snippets below show how to analyze an example. The two vectors X and Y are of size
1000. The entries in Y are the group labels: 500 zeros and 500 ones.

# generate null table
nt = hhg.univariate.ks.nulltable(c(500,500), #group structure

variant = 'KSample-Equipartition', #computationally
# efficient variant of the K-sample test.
mmax = 10, #m.max parameter
nr.atoms = 30, #number of atoms
nr.replicates = 10^4) #number of replicates

# run test
res = hhg.univariate.ks.combined.test(X,Y,nt)

# Shows Average LRT scores: AVG LRT score of
# m = 2,...,10 cell tables
res

As with independence tests in which many k-sample tests with the same sample sizes are carried
out, the same null table can be used. We demonstrate this in the next example:

# generate sample with the same group structure -
# normal deviates with a shift between groups.
X2 = rnorm(length(Y),0,1)+1*Y

# perform test using the same null table.
res2 = hhg.univariate.ks.combined.test(X2,Y,nt)

# view results
res2

Simulations

We used simulations to assess the performance of the atom based tests in terms of both run time
and power. Full source code for reproducing the simulation results, graphs and usage examples is
found in the supplementary material, and at the GitHub repository (https://barakbri.github.io/
HHG_large_sample_framework/).

All run times were measured using the CRAN package rbenchmark (Kusnierczyk, 2012). Run
times were measured separately from power estimation, as simulation for power estimation has been
parallelized via the doRNG package (Gaujoux, 2017). All run time experiments were done serially,
without parallelization.

The test of independence

In order to assess the power of the MinP test statistics along with the actual run time required, we
present four different scenarios of dependence between univariate random variables. Figure 3 shows
the bivariate relationship along with a representative noisy sample: two monotone relationships (left
panels), and two non-monotone relationships (right panels).

The presented methods were run with N = 2500, NA = 5, 10, 15, 30, 45, 60, and with summation
over all m× l or m×m partitions. This allows one to assess the affect of NA on power and run time,
along with the possible affect of summation over tables with a different number of partition points on
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the two axes. Reducing the number of atoms NA, allows one to estimate the breakdown of the method
in terms of power.

The parameter m.max was set to the package default (m.max = 10), except for NA = 5 where
m.max was constrained by the number of atoms to 5. Heller et al. (2016) and Brill (2016) show by
various simulation studies that the power of the test is quite robust to the selection of m.max since it
selects the optimal m, l adaptively; the test considers all partitions of sizes 2× 2 to m.max×m.max
and selects the best partition in the sense that its p-value is minimal.

Methods compared to in the simulation study are dCOV from CRAN package energy, MIC
from CRAN package minerva, and HSIC from CRAN package dHSIC. We note that typically faster
competitive methods are somewhat degenerate variations on these methods and would have much
lower power than the originals.

Figure 4 shows the trade-off between runtime and power. We see that as the number of atoms
increase, the run time increases but power is almost the same for 30 atoms or more. We set the default
value for the number of atoms in the functions given in Table 1 to be the minimum between sample
size and 40, promising the user a result in reasonable time regardless of sample size. Even for a small
number of atoms such as NA = 10, the MinP test power is similar to the MinP test with a high number
of atoms. For the smallest number of atoms considered, NA = 5, power may drop for complex signals
which require fine partitions of the data. For the monotone settings considered, the method maintains
competitive power also for NA = 5.

Figure 5 shows the power as a function of sample size. The power of the test for the monotone
settings is highest for dCov with the atoms based test a close second, similar to the best one achieved
by the competitors. For the Circles setting, power for the m× m and m× l variant is similar. The
setting is symmetric in practice, and the m×m variant enjoys higher power since it needs to account
for fewer possible selections of partition size under the MinP test statistic. Nevertheless, the loss of
power is small when considering all m× l partitions of the data. For the Sine setting, power differs
greatly between m× l and m× m variants. The setting is not symmetric in X and Y. One can see
that the optimal partition of the plane to capture the dependence requires few partitions of the Y
axis but many partitions of the X axis. See Brill (2016) for thorough simulations of different types of
bivariate relationships: in the non-symmetric settings, considering m× l partitions of the data leads to
substantial power gain; in symmetric settings, considering m× l partitions of the data leads to little
power loss over considering only m×m partitions.

This simulation study demonstrated that the presented tests have a power advantage over competi-
tors in settings where the underlying dependence is complex, i.e., settings where in multiple regions
the joint density and the product of the marginal densities differ. For those settings, a fine partition
of the sample space is optimal. Competing tests have tuning parameters, and the choice of tuning
parameter can affect the power of the test. Specifically, tuning parameters in competitor methods
include the degree of the Lp norm in dCOV, the kernel bandwidth in dHSIC, and the maximum
partition size considered in MIC. The low power achieved by alternative methods in the ’Circles’ and
’Sine’ settings could be partially attributed to the use of the package default setting for the tuning
parameters. The MinP procedure does not have a tuning parameter that can materially affect its
performance, since the single best partition size is chosen in a data adaptive manner. For many other
scenarios demonstrating this, see Heller et al. (2016) and Brill (2016).
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Figure 3: Four bivariate relationships (in red), along with a sample of N = 2500 observations in blue.

Figure 6 shows the run-time as a function of sample size and atom size. In the left panel, the
total time to carry out a test with 1000 permutations is computed for 4 methods: MinP (including
null table construction) with Sm×l test statistic (NA = 45), dCov, HSIC, and MIC (including null
table construction). We see that the O

(
N4

A
)

portion of the computation time of MinP takes the
largest portion of the computation, being greater than the O (Nlog (N)) part. As such, computation
time is constant for all N values considered. For other tests considered, computation time might be
shorter for smaller samples, but the computational complexity is quadratic (or above) and hence more
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Figure 4: Power and logarithm of run time for N = 2500. Run times for each method were computed
for a full procedure, including tabulation of the null hypothesis and parameter selection. Specifically,
for dCov and HSIC, the number of permutations was a single run of the test function with 1000
permutations (as computation of kernel distance matrices is done only once for the original data);
for MinP, runtime consists of 1000 computations for the null table and the test statistic (computation
of statistics under the null hypothesis, efficient tabulation of marginal distributions, and MinP,
computation of MinP for the tested dataset, which was then used for computing the P-value); for
MIC, run times consist of 1001 computations of the test statistic for the dataset tested and distribution
under the null. For a pre-computed null table of size N = 2500, running times for MIC and MinP
would be one thousandth of the time shown above, since these two tests are distribution free. Power
computation is based on 10000 datasets for the MinP procedure and 2000 datasets for alternative tests.
Errors bars show 95% confidence intervals.
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the MinP procedure, and 2000 datasets for alternative tests. Error bars show 95% confidence intervals.
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computationally demanding than MinP for larger sample sizes. The right panel presents the run time
versus number of atoms for N = 300 and m.max = 10, 15. The relationship is clearly linear on the log
scale. The linear fit shows that the computational complexity is indeed to the fourth order in terms of
NA. Overall, the algorithm has a computational complexity which is O

(
N log N + N4

A
)
.
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Figure 6: A (Left): Runtime analysis on log scale for different methods for sample sizes N =
500, 1000, . . . , 5000. B (Right): Runtime comparison on log scale, compared with number of atoms.
Number of atoms varied between 100 and 300. Computations performed were Sm×l with mmax = 10
(black) and mmax = 15 (red). Linear fit verifies known computational complexity, O

(
N log N + N4

A
)
.

Time measurements were performed with 100 and 50 repetitions for left and right panels, respectively.

The k-sample test

In order to assess the power of the MinP test statistics, we present a simulation study. Methods
compared were the energy two sample test, given by eqdist.etest from package energy, and the
kernel MMD test, given by kmmd from kernlab.

Let ∑K
i=1 pi N(µi, σ2

i ) denote the mixture distribution of K Gaussian distributions with means µi
and variances σ2

i . We examine the following three settings: the shifted normal, sampling from N
(
0, 12)

and from N
(
0.075, 12); the 2 component normal mixture, sampling from 0.7N

(
0, 12)+ 0.3N

(
0, 82)

and 0.7N
(
0.15, 12)+ 0.3N

(
0, 82); and the 3 component normal mixture, sampling from f (X|Y = 1) =

1
3 N (−4, 1) + 1

3 N (0, 1) + 1
3 N (4, 1), and f (X|Y = 2) = 1

3 N
(
−4, 0.82)+ 1

3 N
(
0, 0.82)+ 1

3 N
(
4, 0.82).

Table 2: A power comparison of the MinP test with a different number of atoms, the energy test, and
the MMD test. For the three data generations, the power is given in rows 1-3, as well as the run time
in row 4. Datasets are samples with two equal groups of size 2500 each to a total of N = 5000. For
each setting, we simulate 10000 datasets for the MinP procedure and 2000 datasets for alternative tests,
with 1000 permutations for each test. Run times are measured over 100 repetitions.

10 Atoms 25 Atoms 50 Atoms ENERGY KMMD

Normal, Shift 0.65 0.70 0.70 0.72 0.53
Mixture, 2 Components 0.72 0.75 0.74 0.21 0.36
Mixture, 3 Components 0.86 0.94 0.94 0.09 0.07

Run time (seconds) 2.96 3.09 3.23 5.22 146.51

Table 2 provides the power result for competitor tests, along with the MinP test statistic for
NA = 10, 25, 50. The MinP test has excellent power in comparison with energy and MMD, and the
run time is lower. For additional simulations that include many additional settings, see Brill (2016). In
general, the proposed k-sample test performs best when the difference between the distributions is
complex and specifically when the density plots of the two distributions intersect multiple times, see
Heller et al. (2016) for details.
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Discussion

We presented computationally fast and powerful novel tests for detecting complex dependencies
among univariate random variables. These tests can be used in the framework suggested in Heller
and Heller (2016) in order to construct computationally-fast, distribution-free multivariate tests
for powerful identification of complex multivariate relationships. Briefly, one may reduce tests of
independence between multivariate X and Y to univariate ones by several methods, such as choosing
a reference point in X and Y and testing whether distances between observations and reference points
are associated in X and Y, or by choosing a direction and projecting X and Y on it. Heller and Heller
(2016) discuss methods of aggregation over several reference points. If the univariate tests utilized are
computationally efficient for large sample sizes and consistent, the resulting multivariate tests will
also be consistent and computationally efficient.

Using our approach for obtaining a look-up table for MinP, the null distribution of any test statistic
that combines individual p-values from distribution-free tests can be efficiently tabulated. Steps A
to E depicted in Figure 2 can be performed with Sm×l columns replaced by other rank based test
statistics T1, . . . , TM, and the MinP can be replaced by any p-value combining function f (p1, . . . , pM).
For example, package coin contains various rank based tests to detect shift or scale differences across
distributions. The null distribution tabulation we presented can be useful for constructing a look-up
table for a distribution-free combined test for shift and scale.

Appendix A

Let N be the number of observations, and NA be the number of atoms such that the size of an atom is
given by an integer A = N/NA. The locations of splits between atoms are thus given by Ti = i · A for
i ∈ {0, 1, 2, . . . , NA}. If N is not a complete multiple of NA, we define the locations of splits between
atoms to be Ti = bi · N/NAc.

Step I (compute ECDF): The empirical CDF can be computed in O(N2
A + N) time for all possible

split locations: F̂(Ti, Tj), 0 ≤ i, j,5 NA. First, execute Algorithm 1 to compute the matrix Ar,s.

Algorithm 2 Compute ECDF at all inter-atoms split points

1: procedure COMPUTEECDF
2: Initialize Ai,j ← 0, for 0 ≤ i, j,≤ NA
3: Initialize Bi,j ← 0, for 0 ≤ i, j,≤ NA
4: for i = 1 to N do
5: AtomRankx ← dNA/N · rank(xi)e
6: AtomRanky ← dNA/N · rank(yi)e
7: BAtomRankx ,AtomRanky ← BAtomRankx ,AtomRanky + 1

8: for s = 0 to NA do
9: for r = 0 to NA do

10: Ar,s ← Br,s−1 + Br−1,s − Br−1,s−1 + Br,s
11: Br,s ← Ar,s

The empirical cumulative distribution function at the split point given by ranks (Ti, Tj) is given by
F̂(Ti, Tj) = Ai,j/N. For a cell of borders

[
Ti1, Ti2

]
×
[
Tj1, Tj2

]
, the expected number of observations is

given by:
E(Ti1, Ti2, Tj1, Tj2) =

(
Ti2 − Ti1

)
·
(
Tj2 − Tj1

)
/N (7)

Once the empirical CDF has been tabulated, the observed counts of the cell can be calculated in
constant time:

O(Ti1, Ti2, Tj1, Tj2) = Ai2,j2 − Ai1,j2 − Ai2,j1 + Ai1,j1 (8)

Step II (Aggregate LRT scores of all cells of given size): A cell of the sample space
[
Ti1, Ti2

]
×
[
Tj1, Tj2

]
is

given by its boundaries i1, i2, j1, j2. We define a cell to be ’top’ or ’bottom’ cell if i2 = N or i1 = 0. A
cell is considered ’right’ or ’left’ if j2 = N or j1 = 0. If a cell is in both categories, it is called ’corner’. If
a cell is not ’top’,’bottom’,’left’, or ’right’, it is called a ’center’ cell. Let Type(i1, i2, j1, j2) be a function
taking the borders of a cell and returning 1 for ’center’ cells, 2 for ’top’ or ’bottom’, 3 for ’left’ or ’right’,
and 4 for ’corner’ cells.

We define the width of the cell to be w(i1, i2) = i2− i1 and the height of the cell to be h(j1, j2) =
j2− j1. For each size and type, we sum up the scores of that size and type.
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Algorithm 2 computes the array St,w,h, which stores the sum of scores of the form O · ln
(

O
E

)
for

all cells of type t, width w, and height h.

Algorithm 3 Aggregate contribution to statistic by cell type and size

1: procedure AGGREGATECELLSCORES
2: Initialize St,w,h ← 0, ∀t ∈ [1, 4], w, h ∈ [1, NA − 1]
3: for i1 = 0 to NA − 1 do
4: for i2 = i1 + 1 to NA do
5: w0 ← w(i2, i1)
6: for j1 = 0 to NA − 1 do
7: for j2 = j1 + 1 to NA do
8: t← Type(i1, i2, j1, j2)
9: h0 ← h(j2, j1)

10: o ← O(i1, i2, j1, j2)
11: e← E(i1, i2, j1, j2)
12: St,w0,h0 ← St,w0,h0 + o · ln

( o
e
)

Step III (Computing Sm×l): Next, we aggregate over St,w0,h0 , over all cell sizes and types, to compute
Sm×l with m, l ∈ [2, m.max].

The number of partitions in which a cell is found is given by the number of possible ways to
select additional partitioning locations around that cell, denoted by n(t, w, h, m, l) (2). For example,
a ’center’ cell requires m− 3 choices of additional X partition points and l − 3 additional Y partition
points to fully define a m× l partition. Hence a ’center’ cell of size w,h is found in (NA−w−2

m−3 ) · (NA−h−2
l−3 )

partitions. Note that the number of tables in which a cell is found does not depend on its edge locations
but only on its size and type. Thus, the contribution for Sm×l of all center cells of size w× h atoms is

given by the sum of their O · ln
(

O
E

)
scores, multiplied by (NA−w−2

m−3 ) · (NA−h−2
l−3 ). The differentiation

by cell type is needed since a cell bordering the edge of the sample space requires only one partition
point, thus allowing the selection of an extra partition point.

The final step is given in algorithm 3. Algorithm 3 computes Sm×l by summing over all values of
the array St,w,h with weights n(t, w, h, m, l).

Algorithm 4 Compute Sm×l for all m, l ∈ [2, m.max]

1: procedure COMPUTESTATISTIC
2: Initialize Sm×l ← 0, ∀m, l ∈ [2, m.max]
3: for m = 2 to m.max do
4: for l = 2 to m.max do
5: for t = 1 to 4 do
6: for w = 1 to NA − 1 do
7: for h = 1 to NA − 1 do
8: Sm×l ← Sm×l + n(t, w, h, m, l) · St,w,h

Appendix B

In Table 3 we list the additional available tests in the HHG package. Specifically, the multivariate tests
of Heller et al. (2013) and the univariate test of Heller et al. (2016).
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Simple Features for R: Standardized
Support for Spatial Vector Data
by Edzer Pebesma

Abstract Simple features are a standardized way of encoding spatial vector data (points, lines,
polygons) in computers. The sf package implements simple features in R, and has roughly the same
capacity for spatial vector data as packages sp, rgeos, and rgdal. We describe the need for this package,
its place in the R package ecosystem, and its potential to connect R to other computer systems. We
illustrate this with examples of its use.

What are simple features?

Features can be thought of as “things” or objects that have a spatial location or extent; they may be
physical objects like a building, or social conventions like a political state. Feature geometry refers to
the spatial properties (location or extent) of a feature, and can be described by a point, a point set,
a linestring, a set of linestrings, a polygon, a set of polygons, or a combination of these. The simple
adjective of simple features refers to the property that linestrings and polygons are built from points
connected by straight line segments. Features typically also have other properties (temporal properties,
color, name, measured quantity), which are called feature attributes. Not all spatial phenomena are
easy to represent by “things or objects:” continuous phenoma such as water temperature or elevation
are better represented as functions mapping from continuous or sampled space (and time) to values
(Scheider et al., 2016), and are often represented by raster data rather than vector (points, lines,
polygons) data.

Simple feature access (Herring, 2011) is an international standard for representing and encoding
spatial data, dominantly represented by point, line, and polygon geometries (ISO, 2004). It is widely
used e.g. by spatial databases (Herring, 2010), GeoJSON (Butler et al., 2016), GeoSPARQL (Perry and
Herring, 2012), and open source libraries that empower the open source geospatial software landscape
including GDAL (Warmerdam, 2008), GEOS (GEOS Development Team, 2017), and liblwgeom (a
PostGIS component, Obe and Hsu (2015)).

The need for a new package

The sf (Pebesma, 2018) package is an R package for reading, writing, handling, and manipulating
simple features in R, reimplementing the vector (points, lines, polygons) data handling functionality
of packages sp (Pebesma and Bivand, 2005; Bivand et al., 2013), rgdal (Bivand et al., 2017) and rgeos
(Bivand and Rundel, 2017). However, sp has some 400 direct reverse dependencies, and a few thousand
indirect ones. Why was there a need to write a package with the potential to replace it?

First of all, at the time of writing sp (2003) there was no standard for simple features, and the
ESRI shapefile was by far the dominant file format for exchanging vector data. The lack of a clear
(open) standard for shapefiles, the omnipresence of “bad” or malformed shapefiles, and the many
limitations of the ways it can represent spatial data adversely affected sp, for instance in the way it
represents holes in polygons, and a lack of discipline to register holes with their enclosing outer ring.
Such ambiguities could influence plotting of data, or communication with other systems or libraries.

The simple feature access standard is now widely adopted, but the sp package family has to make
assumptions and do conversions to load them into R. This means that you cannot round-trip data, e.g.,
loading data in R, manipulating them, exporting them and getting the same geometries back. With sf,
this is no longer a problem.

A second reason was that external libraries heavily used by R packages for reading and writing
spatial data (GDAL) and for geometrical operations (GEOS) have developed stronger support for the
simple feature standard.

A third reason was that the package cluster now known as the tidyverse (Wickham, 2017, 2014),
which includes popular packages such as dplyr (Wickham et al., 2017) and ggplot2 (Wickham, 2016),
does not work well with the spatial classes of sp:

• tidyverse packages assume objects not only behave like data.frames (which sp objects do by
providing methods), but are data.frames in the sense of being a list with equally sized column
vectors, which sp does not do.
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• attempts to “tidy” polygon objects for plotting with ggplot2 (“fortify”) by creating data.frame
objects with records for each polygon node (vertex) were neither robust nor efficient.

A simple (S3) way to store geometries in data.frame or similar objects is to put them in a geometry
list-column, where each list element contains the geometry object of the corresponding record, or
data.frame “row”; this works well with the tidyverse package family.

Conventions

Classes

The main classes introduced by package sf are

"sf": a data.frame (or tbl_df) with one or more geometry list-columns, and an attribute sf_column
indicating the active geometry list-column of class sfc,

"sfc": a list-column with a set of feature geometries

"sfg": element in a geometry list-column, a feature geometry

"crs": a coordinate reference system, stored as attribute of an "sfc"

Except for "sfg", all these classes are implemented as lists. Objects of class "sfg" are subtyped
according to their class, classes have the following storage form:

POINT: numeric vector with a single point

MULTIPOINT: numeric matrix with zero or more points in rows

LINESTRING: numeric matrix with zero or more points in rows

POLYGON: list with zero or more numeric matrices (points as rows); polygon outer ring is followed by
zero or more inner rings (holes)

MULTILINESTRING: list with zero or more numeric matrices, points in rows

MULTIPOLYGON: list of lists following the POLYGON structures

GEOMETRYCOLLECTION: list of zero or more of the (classed) structures above

All geometries have an empty form, indicating the missing (or NA) equivalent for a geometry.

Functions and methods

Category Functions

binary predicates st_contains, st_contains_properly, st_covered_by, st_covers,
st_crosses, st_disjoint, st_equals, st_equals_exact,
st_intersects, st_is_within_distance, st_within, st_touches,
st_overlaps

binary operations st_relate, st_distance
unary operations st_dimension, st_area, st_length, st_is_longlat, st_is_simple,

st_is_valid, st_jitter, st_geohash, st_geometry_type
miscellaneous st_sample, st_line_sample, st_join, st_interpolate_aw,

st_make_grid, st_graticule, sf_extSoftVersion, rawToHex,
st_proj_info

setters st_set_agr, st_set_crs
constructors st_sfc, st_sf, st_as_sf, st_as_sfc, st_point, st_multipoint,

st_linestring, st_multilinestring, st_polygon,
st_multipolygon, st_geometrycollection, st_combine,
st_bind_cols

in- & output st_read, st_read_db, st_write, st_write_db, read_sf, write_sf,
st_drivers, st_layers

plotting st_viewport, st_wrap_dateline, sf.colors

Table 1: Functions provided by package sf, arranged by functional category.

Functions are listed in Table 1. Some functions or methods operate on both attributes and ge-
ometries, e.g. aggregate and summarise compute grouped statistics and group (union) corresponding
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class methods

sfg as.matrix, c, coerce, format, head, Ops, plot, print, st_as_binary, st_as_grob,
st_as_text, st_transform, st_coordinates, st_geometry, st_boundary, st_buffer,
st_centroid, st_convex_hull, st_difference, st_intersection, st_line_merge,
st_make_valid, st_node, st_point_on_surface, st_polygonize, st_segmentize,
st_simplify, st_split, st_sym_difference, st_triangulate, st_union, st_voronoi,
st_cast, st_collection_extract, st_is, st_zm

sfc [, [<-, as.data.frame, c, coerce, format, Ops, print, rep, st_as_binary, st_as_text,
st_bbox, st_coordinates, st_crs, st_crs<-, st_geometry, st_precision,
st_set_precision, str, summary, st_transform, st_boundary, st_buffer,
st_centroid, st_convex_hull, st_difference, st_intersection, st_line_merge,
st_make_valid, st_node, st_point_on_surface, st_polygonize, st_segmentize,
st_simplify, st_split, st_sym_difference, st_triangulate, st_union, st_voronoi,
st_cast, st_collection_extract, st_is, st_zm, obj_sum, type_sum

sf [, [[<-, $<-, aggregate, cbind, coerce, merge, plot, print, rbind, st_agr, st_agr<-,
st_bbox, st_coordinates, st_crs, st_crs<-, st_geometry, st_geometry<-,
st_precision, st_set_precision, st_transform, st_boundary, st_buffer,
st_centroid, st_convex_hull, st_difference, st_intersection, st_line_merge,
st_make_valid, st_node, st_point_on_surface, st_polygonize, st_segmentize,
st_simplify, st_split, st_sym_difference, st_triangulate, st_union, st_voronoi,
st_cast, st_collection_extract, st_is, st_zm, anti_join, arrange, distinct,
filter, full_join, gather, group_by, inner_join, left_join, nest, mutate, rename,
right_join, sample_frac, sample_n, select, semi_join, separate, slice, spread,
summarise, transmute, ungroup, unite

crs $, is.na, Ops, print, st_as_text, st_crs

Table 2: Methods for sf classes: colours indicate geometry operation, class manipulation, tidyverse;
and Ops refers to (a subset of) arithmetical operations.

geometries, and st_interpolate_aw carries out area-weighted interpolation (Do et al., 2015). The
function st_join joins pairs of tables based on a geometrical predicate such as st_intersects.

Generic methods for sf objects are listed in Table 2. Many of them are for creation, extraction, and
conversion, and many of them are not needed for every-day work. Where possible, methods act either
on a geometry (sfg), a geometry set (sfc), or a geometry set with attributes (sf), Methods return an
object of identical class. Coordinate reference systems (CRS) carry through all operations, except for
st_transform, which transforms coordinates from one reference system into another, and hence, the
CRS changes.

Serialisations

The simple feature access defines two serialisation standards: well-known-text (WKT) and well-known-
binary (WKB). Well-known text is the default print form and sfc columns can be read from WKT
character vectors, using st_as_sfc:

> library(sf)
Linking to GEOS 3.5.1, GDAL 2.1.2, proj.4 4.9.3
> (pt <- st_point(c(0,1)))
POINT (0 1)
> (pol <- st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0)))))
POLYGON ((0 0, 1 0, 1 1, 0 1, 0 0))
> st_as_sfc("POINT(0 1)") # returns sfc:
Geometry set for 1 feature
geometry type: POINT
dimension: XY
bbox: xmin: 0 ymin: 1 xmax: 0 ymax: 1
epsg (SRID): NA
proj4string: NA
POINT (0 1)

R native simple feature geometries can be written to WKB using st_as_binary:

> st_as_binary(st_point(c(0,1)))
[1] 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f0 3f
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> st_as_binary(st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0)))))
[1] 01 03 00 00 00 01 00 00 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[26] 00 00 00 00 00 00 00 00 00 00 f0 3f 00 00 00 00 00 00 00 00 00 00 00 00 00
[51] 00 f0 3f 00 00 00 00 00 00 f0 3f 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[76] f0 3f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Similarly, binary encoded geometries can be read back using st_as_sfc.

All communication to and from the underlying libraries GDAL, GEOS and liblwgeom, as well
as direct reading and writing of geometry BLOBs in spatial databases, uses binary serialisation and
deserialisation, written in C++. This makes code not only fast but also robust: for all possible geometry
classes, a single interface is used to communicate to a variety of endpoints.

Spherical geometry

The GEOS library provides a large set of operations for data in a two-dimensional space. For unpro-
jected, geographic data the coordinates are longitude and latitude, and describe points on a sphere (or
ellipsoid), not on a plane. The sf package allows such data to be passed to all geometric operations,
but will emit a message if this happens through GEOS, assuming a flat Earth. For the functions
st_area, st_length, st_distance, st_is_within_distance, and st_segmentize specialized spherical
functions, taken from lwgeom (Pebesma), are used. The advantage of this package e.g. over geosphere
(Hijmans, 2016a) is that it supports simple features for distance calculations, where geosphere only
computes distances between points. Function st_sample has been modified to work for spherical
coordinates when sampling points on an area over a sphere.

It would be nice to get a (more) complete set of functions working for spherical geometry. Potential
candidate libraries to be used for this include s2 (Rubak and Ooms, 2017), liblwgeom (part of PostGIS),
CGAL (Fabri and Pion, 2009), and boost.Geometry.

Tidy tools

During the development of sf, considerable effort was put into making the new data structures work
with the tidyverse. This was done by providing methods for dplyr verbs (Table 2), and by helping
develop a ggplot2 geom function (next section) that plots maps well.

The tidy tools manifesto prescribes four principles, which we will comment on:

1. Reuse existing data structures. We use the simplest R structures (numeric vector for point,
matrix for point set, list for any other set), and fully support two standardized serializations
(WKT, WKB)

2. Compose simple functions with the pipe. functions and methods were designed such that
they can be used easily in pipe-based workflows; replacement functions like st_crs<- were
augmented by st_set_crs to make this look better.

3. Embrace functional programming. Functions were kept type-safe, empty geometries and
empty lists are supported, and operation overloading was done creatively e.g. by providing Ops
for scaling and shifting a polygon:

> pol * 2 + pt
POLYGON ((0 1, 2 1, 2 3, 0 3, 0 1))

Functions like st_join for a spatial join allow the user to pass a join function that is compatible
with st_intersects, making the spatial predicate applied for the join completely customisable.

4. Design for humans. with the experience of having (co-)written and maintained sp for a decade,
we have tried to keep sf simple and lean. Methods were used as much as possible to keep the
namespace small. All functions and methods start with st_ (for “spacetime”, following PostGIS
convention) to keep them recognizable, and searchable using tab-completion.

Plotting

Figure 1 (left) shows the default plot for an "sf" object with more than one attribute: no color keys are
given, default colours depend on whether the variable is numeric (top) or a factor (bottom). Figure 1
was obtained by:
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Figure 1: At left: default plot for sf object with two attributes; on right: plot for a single attribute with
color key, axes and graticule.
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Figure 2: Plot generated with ggplot2::geom_sf, the now curved graticules follow constant long/lat
lines.

> library(sf)
> nc = read_sf(system.file("gpkg/nc.gpkg", package="sf"))
> plot(nc[, c(9,5)])

When we plot a single attribute, a color key is default (unless key.pos=NULL). The following command

> plot(nc[, 9], key.pos = 1, axes = TRUE, graticule = TRUE)

adds axes and a graticule (longitude/latitude grid lines) on the right side of Figure 1.

Figure 2 shows a plot generated by ggplot2 (version 2.2.1 or later):

> library(ggplot2)
> library(tidyr)
> library(dplyr)
> nc2 <- nc %>% st_transform(32119) %>% select(SID74, SID79, geom) %>%
+ gather(VAR, SID, -geom)
> ggplot() + geom_sf(data = nc2, aes(fill = SID)) + facet_wrap( ~ VAR, ncol = 1)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 444

Figure 3: Dependencies of sf on other R packages and external system libraries.

Rasters, time series, and units

For some users, starting with sf feels like closing an old book (sp), and opening a new one. But it is
not as if this new book has a similar content, or size. It is unsure when, or even whether at all, the
hundreds of packages that use sp classes will be modified to use the sf classes.

The most heard question is where raster data are in this new book: sp provides simple classes for
gridded data, raster (Hijmans, 2016b) provides heavy duty classes and a massive number of methods
to work with them, tightly integrated with the sp vector classes. The current version of raster accepts
sf objects in some of its functions by converting them to (the smaller set of) sp objects. At the time of
writing this, we can only say that this is an area of active discussion, exploration and development,
and we will be happy to point interested readers to where the public components of this discussion
are taking place.

Besides raster data, time series for spatial features (e.g. for monitoring stations) are hard to map
onto sf objects: one would either have to put time slices in columns, or add a time column and repeat
the feature geometry for each observation. Raster data, spatial time series, and raster time series are
the focus of the stars project.

A new aspect of the package is the ability to retrieve spatial measures and to set e.g. distance
parameters with explicit measurement units (Pebesma et al., 2016):

> st_area(st_transform(nc[1, ], 2264)) # NC state plane, US foot

12244955726 US_survey_foot^2

> st_crs(2264)$units

[1] "us-ft"

> st_area(st_transform(nc[1, ], 2264)) %>% units::set_units(km^2) # convert:

1137.598 km^2

which might first confuse, but has the potential to prevent a whole category of scientific errors.

Connections to other computer systems and scalability

In many cases, analysing spatial data with R starts with importing data, or ends with exporting data,
from or to a file or database. The ability to do this is primarily given by the well-known text (WKT)
and well-known binary (WKB) serialisations that are part of the simple feature standard, and that
are supported by sf. Communication with the GDAL, GEOS, and liblwgeom libraries uses WKB
both ways. GDAL currently has drivers for 93 different spatial vector data connections (file formats,
data bases, web services). Figure 3 shows the dependencies of sf on other R packages and system
libraries. A reason to build upon these libraries is that they are used and maintained by, and hence
reflect concensus of, the large community of spatial data experts outside R.
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Besides using GDAL, sf can directly read and write from and to spatial databases. This currently
works with PostGIS using RPostgreSQL; making this work with RPostgres and in general with spatial
databases using DBI is under active development. Initial experiments indicate that working with
massive, out-of-memory spatial databases in R is possible using the dbplyr framework. This not
only removes the memory limits of R, but also benefits from the persistent spatial indexes of these
databases.

For planar data, sf builds its spatial indexes on the fly for spatial binary predicates (st_intersects,
st_contains etc.) and its binary operations (st_intersection, st_difference etc). A blog post about
the spatial indexes in sf describes how using indexes makes these operations feasible for larger in-
memory datasets. For spherical data, indexes e.g. provided by liblwgeom or by s2 still need to be
explored.

Summary and further reading

We present a new package, sf, for simple features in R, as a modern alternative for parts of the
sp-family of packages. It provides new foundational classes to handle spatial vector data in R, and
has been received with considerable enthusiasm and uptake. While implementing sf, several well-
proven concepts have been maintained (separation of geometries and attributes, libraries used), new
links have been made (dplyr, ggplot2, spatial databases), and new concepts have been explored and
implemented (units, spatial indexes).

For further reading into the full capabilities of sf and its rationale, the reader is refered to the six
vignettes that come with the package.
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Pstat: An R Package to Assess Population
Differentiation in Phenotypic Traits
by Stéphane Blondeau Da Silva and Anne Da Silva

Abstract The package Pstat calculates PST values to assess differentiation among populations from
a set of quantitative traits and provides bootstrapped distributions and confidence intervals for PST .
Variations of PST as a function of the parameter c/h2 are studied as well. The package implements
different transformations of the measured phenotypic traits to eliminate variation resulting from
allometric growth, including calculation of residuals from linear regression, Reist standardization, and
the Aitchison transformation.

Introduction

Understanding the causes governing patterns of morphological variations in the wild represents
a fundamental goal of evolutionary biology. In particular, the relative importance of selective and
neutral processes behind the observed differentiation remains a crucial question.

Studies comparing differentiation in quantitative traits and neutral markers have significantly
increased over the last ten years (Leinonen et al., 2013). Typically, a set of populations is sampled
and the degree of genetic differentiation is estimated for a set of molecular markers with the Wright’s
FST index (Wright, 1951). For its part, the QST index (Spitze, 1993) assesses the degree of phenotypic
differentiation over a set of quantitative traits. The logic of FST and QST comparison relies on the
assumption that the FST obtained by the consideration of neutral markers reflects the divergence only
induced by genetic drift (Reynolds et al., 1983). Hence, FST provides a null expectation and allows
estimation of the degree of population differentiation that would be reached without selection (Merilä
and Crnokrak, 2001).

As a consequence, the comparison between FST and QST leads to three possibilities: (i) QST > FST
means that quantitative traits show a higher level of differentiation than what would have been
expected under the influence of genetic drift, such that natural selection could induce differentiation
between populations by favoring different phenotypes (i.e., heterogeneous selection); (ii) QST < FST
could indicate the influence of natural selection, but selecting for same optima among populations
(i.e., homogeneous selection); (iii) QST = FST means that no departure from neutral expectations can
be detected and that the degree of differentiation in quantitative traits could have been obtained only
by genetic drift, even if the contribution of natural selection can neither be excluded nor estimated.

Spitze (1993) introduced and defined the QST quantity as follows for diploid species assuming
purely additive gene action:

QST =
σ2

Ab

σ2
Ab

+ 2σ2
Aw

,

where σ2
Ab

and σ2
Aw

are the morphological additive genetic variance components between and within
populations.

In the wild, the estimation of the additive genetic variance components is challenging as breeding
design is impossible. Therefore, QST is often approximated by PST (Leinonen et al., 2006), which is
directly calculated from the total phenotypic variance components with no distinction between the
relative contribution of genetic and environmental variations:

PST =
cσ2

b
cσ2

b + 2h2σ2
w

or PST =
c

h2 σ2
b

c
h2 σ2

b + 2σ2
w

, (1)

where σ2
b and σ2

w are the respective phenotypic variances between and within populations, c is an
estimate of the proportion of the total variance due to additive genetic effects across populations,
and h2 is heritability, the proportion of phenotypic variance due to additive genetic effects (Brommer,
2011). How well PST approximates QST depends on the parameters c and h2, such that if the values of
c and h2 are known, then the phenotypic divergence quantified by PST would equal QST . This implies
caution in the interpretation obtained from PST (Brommer, 2011).

A large number of studies have assessed the potential for natural selection to affect morphological
evolution by comparing phenotypic divergence with neutral genetic divergence via a PST versus FST
approach (e.g., Mobley et al., 2011; Lima, 2012; He et al., 2013; Shinn et al., 2015). While estimation
of FST values are included in various R packages such as diveRsity (Keenan et al., 2013) or hierfstat
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(Goudet, 2005), no R package exists to deal with the PST index. In this study, we present the Pstat
package to handle large datasets of quantitative traits and correct quantitative traits taking into account
allometric growth. The package calculates PST values with their respective bootstrapped confidence
intervals, and offers several options to select individuals, traits, or populations. We also provide
various plotting tools for the visual evaluation of PST and FST values. We will walk through a detailed
example to give an overview of the Pstat package.

An example to get familiar with the main functions

After loading the package with library(Pstat), load the sample data with data(test). This data
frame contains 200 rows, with each row representing an individual in a population of common
wetland plants, Juncus effusus (see Michalski and Durka 2015 and the Dryad Digital Repository,
https://doi.org/10.5061/dryad.bk5hk). The data frame contains the name of the populations (A, B,
C, D, and E) to which each individual belongs and eleven quantitative measures. An excerpt from the
sample data are presented in Table 1.

Populations QM1 QM2 QM3 QM4 . . .

1 A 0.18487253 0.4001979 0.1694021 42 . . .
2 B 0.24023500 0.4718000 0.2178500 46 . . .
3 C 0.23499676 0.4686213 0.2060222 25 . . .
4 B 0.20495223 0.3746026 0.1846816 51 . . .
5 C 0.20739220 0.4866461 0.2131618 19 . . .
6 C 0.22545341 0.3770903 0.1882165 28 . . .
7 C 0.18371681 0.4992361 0.2167194 25 . . .

. . . . . . . . . . . . . . . . . . . . .

Table 1: Sample from the test data frame, containing quantitative measures for individual members
of Juncus effusus (Michalski and Durka, 2015).

The data preparation

The package can be used to transform data to eliminate variation resulting from allometric growth.
Users have the choice between three alternatives:

1. Residuals of a linear regression, with one of the quantitative variables used as the regressor
(Kuhry and Marcus, 1977);

2. The allometric transformation described in Reist (1985); or

3. Aitchison’s log-ratio transform (Aitchison, 1986).

Among a variety of univariate transformations that aim to separate size and shape variations, Reist
(1985) showed that adjustments for size using a regression and residuals (the first option) and allometric
adjustments to a standard size (the second option) are preferred since they allow the complete removal
of size variations and have minimal impact on the correlation and covariance structure of the data.
Unlike the first two options, the third transformation offers the benefit of keeping the same number of
variables. We provide examples of each of the three alternatives below.

Simple linear adjustments

The first adjustment method provided by Pstat is a simple linear regression. Assuming the existence of
linear relationships between the dependent variable and one of the quantitative traits, the Res function
returns a new data frame with the residuals of the regression. The function’s arguments are as follows:

◦ data: the studied data frame to be transformed with as many rows as individuals; the first
column must contain the population to which the individual belongs and the other columns
may contain quantitative variables.

◦ reg: the name or the rank of the variable chosen as the regressor.

◦ Rp: the names of the populations to be deleted. Default value: Rp=0, no population removed.

◦ Ri: the line numbers of individuals to be deleted. Default value: Ri=0, no individuals removed.
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We present sample output from the test data, using one of the quantitative traits as the regressor.
A sample of the transformed data output by Res is presented in Table 2.

## Using the explanatory variable QM3 as the regressor
Res(data=test, reg="QM3")

Populations QM1 QM2 QM4 . . .

1 A 0.0339245264 5.621424e-03 6.23817063 . . .
2 B 0.1001268662 4.497085e-02 8.44522196 . . .
3 C 0.0922422473 4.966613e-02 -12.11705813 . . .
4 B 0.0574228940 -3.014565e-02 14.67271191 . . .
5 C 0.0662351079 6.293798e-02 -18.38127681 . . .
6 C 0.0787149904 -3.001126e-02 -8.45810788 . . .
7 C 0.0433557311 7.315960e-02 -12.51293868 . . .

. . . . . . . . . . . . . . . . . .

Table 2: Sample from the adjusted data frame output by Res, using QM3 as the explanatory variable.

Reist transformation

In the second adjustment method provided by Pstat, all morphometric measurements are standardized
using the transformation proposed by Reist (1985).

Let n be the number of individuals and p the number of quantitative traits such that ∃ k ∈
{1, . . . , p} and the kth trait is the explanatory variable. Let us denote this variable (xi)1≤i≤n and the
other traits as j ∈ {1, . . . , p} \ {k}, (yij)1≤i≤n. The Reist transformation is

∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . , p} \ {k} ,

Yij = log(yij)− bj(log(xi)− log(x)) ,

where Yij is the size adjusted measurement of the jth trait for the ith individual, yij the original
morphometric measurement, x the population mean of the explanatory variable, and xi the value
of the explanatory variable for the ith individual. For all j ∈ {1, . . . , p} \ {k}, the parameter bj is
estimated for the quantitative trait yj (i.e. (yij)1≤i≤n) and represents the slope of the linear regression
of log(yj) on log(x).

The ReistTrans function returns a corrected data frame. Using QM3 as the explanatory variable,
we present a sample of the transformed data frame in Table 3.

## Using QM3 as the explanatory variable (identified by column number)
ReistTrans(test, reg=3)

Populations QM1 QM2 QM4 . . .

1 A -0.7445410 -0.3859875 1.631722 . . .
2 B -0.6004703 -0.3462059 1.648348 . . .
3 C -0.6167708 -0.3421063 1.388608 . . .
4 B -0.6893556 -0.4255755 1.708186 . . .
5 C -0.6669355 -0.3300087 1.266323 . . .
6 C -0.6456670 -0.4250906 1.446049 . . .
7 C -0.7175846 -0.3210021 1.384003 . . .

. . . . . . . . . . . . . . . . . .

Table 3: Sample from the Reist adjusted data frame using QM3 as the explanatory variable.

Aitchison transformation

The third adjustment method provided by Pstat performs the Aitchison log-ratio transformation to
account for individual size-effects (Aitchison, 1986).

Let n be the number of individuals and p the number of morphological traits. For j ∈ {1, . . . , p}, let
(yij)1≤i≤n represent the quantitative variables. The formula formula for the Aitchison transformation
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is as follows:

∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . , p} ,

Yij = log(yij)−
1
p

p

∑
k=1

log(yik) ,

where Yij is the transformed measure of the jth trait for the ith individual, and yij is the original value
for the ith individual and the jth trait.

The AitTrans function returns a corrected data frame. Sample output are included in Table 4.

AitTrans(test)

Populations QM1 QM2 QM3 QM4 . . .

1 A -1.947544 -1.6121417 -1.985498 0.408832854 ...
2 B -1.910214 -1.6170919 -1.952692 0.371908012 . . .
3 C -1.834151 -1.5343910 -1.891299 0.192727037 . . .
4 B -1.901481 -1.6395625 -1.946710 0.494436831 . . .
5 C -1.832709 -1.4622885 -1.820792 0.129251912 . . .
6 C -1.801889 -1.5785008 -1.880288 0.292211929 . . .
7 C -1.938699 -1.5045418 -1.866950 0.195092172 . . .

. . . . . . . . . . . . . . . . . . . . .

Table 4: Sample from the Aitchison adjusted data frame.

Phenotypic differentiation evaluation and confidence intervals

PST values

We are interested in determining the phenotypic differentiation across the five populations for each of
the eleven quantitative traits of the example dataset. The function Pst can determine the PST values
of each trait with the associated bootstrapped confidence intervals (Efron and Tibshirani, 1993). The
arguments to Pst are as follows:

◦ data: the input data frame with as many rows as individuals; the first column must contain the
population label and the others quantitative variables.

◦ ci: if ci=1, the confidence intervals are added to PST values. Default value: ci=0.

◦ csh: the c
h2 value. Default value: csh=1.

◦ va: a vector containing the names or column numbers of the quantitative measures under
consideration. If va=0, all the variables are selected. Default value: va=0.

◦ boot: the number of data frames generated to determine the confidence interval with the
bootstrap method. Default value: boot=1000.

◦ Pw: the names of the two populations considered to obtain pairwise PST . Default value: Pw=0,
no pairwise analysis.

◦ Rp: the names of the populations to be deleted. Default value: Rp=0, no populations removed.

◦ Ri: the line numbers of individuals to be deleted. Default value: Ri=0, no individuals removed.

◦ pe: the confidence level of the calculated interval. Default value: pe=0.95.

Let us apply the Pst function to the test dataset. The output from Pst will be a data frame:

## Example 1: Pairwise Pst values using populations C and D
Pst(test, csh=0.2, Pw=c("C","D"))
[1] "Populations sizes are:"
C D
76 32

Quant_Varia Pst_Values
1 QM1 0.1749659
2 QM2 0.7460913
... ... ...
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4 QM10 0.9800028

## Example 2: Pst for the 2nd variable and QM7 with 99% confidence intervals
Pst(test, va=c(2,"QM7"), ci=1, boot=10000, Ri=c(5,117:121), pe=0.99)
[1] "Populations sizes are:"
A B C D E
12 76 72 30 4
Quant_Varia Pst_Values 99 %_LowBoundCI 99 %_UpBoundCI

1 QM2 0.8561307 0.7826177 0.9198395
2 QM7 0.8851413 0.7722856 0.9376501

Distribution of PST

The bootstrapped PST values output from BootPst form a distribution for the selected quantitative
trait. In addition to arguments that are shared with Pst, the BootPst function has the following
additional arguments specific to the bootstrap procedure:

◦ opt: if opt=0, all the boot values of PST are returned; if opt="ci", the ordered values and the
confidence interval are returned; and if opt="hist", the ordered values and the distribution
histogram of PST are returned. Default value: opt=0.

◦ va: the name or column number of the quantitative measure considered.

◦ bars: the maximum number of bars the histogram may have. On the x-axis, the interval [0, 1] is
divided into bars parts (there may exist unfilled bars). Default value: bars=20.

The output from the BootPst function is a vector with the bootstrapped values.

Let us apply the BootPst function to test dataset:

## Example 1: Bootstrapped 95% confidence intervals for three populations (B, C, and D).
## Note that populations A and E are dropped
BootPst(test, opt="ci", va="Body_length", Rp=c("A","E"))
[1] "The studied quantitative variable is:"
[1] "Body_length"
[1] "Populations sizes are:"
B C D

76 76 32
[1] "95 % confidence interval determined by 1000 bootstrap values:"
[1] 0.8757057 0.9585423

[1] 0.7938426 0.8338286 0.8510682 0.8512374 0.8545911 0.8551115 0.8552097
[8] 0.8637057 0.8641575 0.8644145 0.8659723 0.8671139 0.8671265 0.8676122
[15] 0.8686147 0.8702277 0.8708352 0.8711419 0.8718030 0.8721783 0.8734932
...
[995] 0.9621794 0.9625852 0.9634700 0.9644283 0.9650500 0.9689611

## Example 2: Histogram for the trait in column 3 (output in Figure 1)
BootPst(test, opt="hist", va=3, bars=50)
[1] "The studied quantitative variable is:"
[1] "QM3"
[1] "Populations sizes are:"
A B C D E

12 76 76 32 4
[1] "1000 bootstrap values and Pst distribution:"

[1] 0.1062747 0.1076470 0.1269888 0.1593121 0.1775196 0.2050347 0.2111617
[8] 0.2327508 0.2401064 0.2487401 0.2588179 0.2589942 0.2623706 0.2722956
[15] 0.2827915 0.2860497 0.2935858 0.2947525 0.2954878 0.2995198 0.3003267
...
[995] 0.8211326 0.8253874 0.8293417 0.8318546 0.8420100 0.8635299

Variations of PST values and visual comparison with Wright’s FST index

Brommer (2011) and Lima (2012) offer plots that demonstrate how FST and PST depend on the c
h2

ratio. The Pstat package provides plotting tools to perform these analyses with the function TracePst.
Arguments specific to TracePst include:
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Figure 1: PST distribution histogram of QM3.

◦ va: a vector containing the selected variables names or numbers (i.e. those of the quantitative
measures considered). If va=0, all the variables are selected. Default value: va=0.

◦ ci: if ci=1, the confidence interval of PST is plotted. Default value: ci=1.

◦ Fst: the value of Wright’s FST , if available. Default value: Fst=-1, value of FST is unavailable.

◦ xm: x-axis maximum. Default value: xm=2.

◦ pts: the number of points used to plot the curves. Default value: pts=30.

Let us apply the TracePst function to the test dataset. The plots output are in Figure 2.

# Aitchison adjustment method:
trans_test=AitTrans(test)

# Plots illustrating how comparisons between Fst and Pst depends on c/h^2:
TracePst(trans_test, Fst=0.3, xm=3)
[1] "Populations sizes are:"
A B C D E
12 76 76 32 4

Conclusion

The use of PST versus FST comparison has increased rapidly in the last few years in the field of
evolutionary and ecological genetics. The Pstat package is the counterpart of existing R packages
dealing with F-statistics. It calculates PST values, and also provides bootstrapped confidence intervals,
several graphical tools, as well as three ways of transforming data to remove variation resulting from
allometric growth.
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Collections in R: Review and Proposal
by Timothy Barry

Abstract R is a powerful tool for data processing, visualization, and modeling. However, R is slower
than other languages used for similar purposes, such as Python. One reason for this is that R lacks
base support for collections , abstract data types that store, manipulate, and return data (e.g., sets,
maps, stacks). An exciting recent trend in the R extension ecosystem is the development of collection
packages , packages that provide classes that implement common collections. At least 12 collection
packages are available across the two major R extension repositories, the Comprehensive R Archive
Network (CRAN) and Bioconductor. In this article, we compare collection packages in terms of their
features, design philosophy, ease of use, and performance on benchmark tests. We demonstrate that,
when used well, the data structures provided by collection packages are in many cases significantly
faster than the data structures provided by base R. We also highlight current deficiencies among
R collection packages and propose avenues of possible improvement. This article provides useful
recommendations to R programmers seeking to speed up their programs and aims to inform the
development of future collection-oriented software for R.

Introduction

R is one of the most popular languages used for data analysis due to its rich package ecosystem,
robust user support community, and powerful modeling and graphical capabilities (Muenchen,
2012). However, R is not a fast language. R has an unusual and costly combination of language
features, including lazy function evaluation, extreme dynamism, and pass-by-value to functions
(Morandat et al., 2012). Additionally, R lacks base support for common computer science data
structures (Wickham, 2014), impeding users from selecting efficient data structures for specific tasks
(Cormen, 2009). Some of these limitations are necessary trade-offs of a programming environment
that facilitates sophisticated modeling for practitioners across many fields. However, the general trend
toward larger datasets makes the performance cost of these limitations more acute.

A promising avenue for addressing these difficulties is the development of R packages that
implement collections. In computer science, a collection is an interface for storing, manipulating, and
retrieving a group of like data items (Dale and Walker, 1996). Common examples of collections include
sets, maps, and stacks. Collections are used frequently in programming; the languages Python, Java,
and C++ ship with comprehensive collection frameworks (van Rossum and Drake, 2011; Stroustrup,
2013; Schildt, 2014). The addition of collections to R is an exciting prospect. Collections are (in general)
backed by mathematically optimal algorithms and thus help accelerate program execution times. In
the case of R, collections can be implemented in C++ via Rcpp for increased speed (Eddelbuettel et al.,
2011). An added benefit of collections is that they make programs more abstract and thus easier to
write, read, debug, and revise (Liskov and Zilles, 1974).

In recent years, researchers have developed R packages designed specifically to implement col-
lections. For example, Peng (2006), Brown (2013), and Russell (2017) implemented maps; Meyer and
Hornik (2009) implemented sets; O’Neil (2015), Csárdi (2016), Collier (2016), Schmidt (2016), and
Poncet (2017) implemented stacks and queues; and Bengtsson (2015), Giuliano (2017), and Pagés
et al. (2017) implemented sequences (also known as lists). These packages vary in their features,
performance, memory footprint, design philosophy, and ease of use. Consequently, selecting the
appropriate package for a particular task is challenging. Moreover, these packages have inconsistent
application programming interfaces (APIs), and so switching between them or using several in unison
is awkward or in some cases impossible.

The purpose of this paper is twofold: first, to describe and compare R packages that implement
collections (henceforth called collection packages); second, to propose an avenue for improving the
collection capabilities of R. The former will aid R users in navigating the existing collection package
ecosystem, while the latter will help guide the development of new R collection software. We begin
with a brief review of common computer science data structures and clarify the distinction between
abstract data types and data structures. We then evaluate R collection packages and compare them in
terms of features and performance. We conclude with a discussion of future directions and areas of
potential improvement. In particular, we propose the development of a unified, simple, and efficient R
collection framework.

Background

We briefly review data structures and abstract data types.
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Data structures

A data structure is a way of organizing information in a computer’s memory (Black, 1998). There exist
myriad data structures, each of which has strengths and weaknesses. In this section we review what
we consider to be the three data structures most relevant to R users: arrays, linked lists, and hash
tables. We assume the reader is familiar with big O notation 1. Readers interested in learning more
should refer to, for example, Cormen (2009).

Element
1

Element
2

Element
3

Element
4

Element
5

Figure 1: An example of an array. The circles represent data elements, and the squares represent
locations of storage in memory.

An array is a linear sequence of elements stored contiguously in memory (Figure 1). Retrieving
or modifying an element at a particular index is O(1). Removing an element from the middle or
beginning of an array is O(n) because elements that follow the element that has been removed must
be copied and shifted one position to the left. Checking whether an element is present in an array
(called search) typically requires iterating over each element and in this case is O(n). Finally, assuming
sufficient space has been allocated so as to not require array resizing, appending an element to the end
of an array is O(1). (If resizing is necessary, appending an element is O(n).)
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Element
4

Element
5

Head	reference Tail	reference

NullNull

Figure 2: An example of a doubly-linked list. The circles represent data elements, and the rectangles
represent nodes. The front and rear nodes have references to NULL. The list has both head and tail
references.

A linked list is a linear sequence of objects called nodes (Figure 2). Each node contains a single
data element and a reference to the following node (and, in the case of doubly-linked lists , a reference
to the previous node as well). We focus here on doubly-linked lists because they are most relevant
to the current paper. Insertion or deletion at a node for which a reference exists is O(1). Because the
program must store a reference to the front (or head ) node to access the list, insertion or removal at
the front of a doubly-linked list is O(1). The program can optionally store a reference to the rear (or
tail ) node, in which case insertion or removal at the rear of the list is O(1).
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1

Null Null

Null
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4

Element
3

Element
5

Null Null

Figure 3: An example of a hash table. The circles represent data elements, the connected squares
represent storage locations of an array, and the disconnected rectangles represent linked lists of nodes.

1Briefly, for functions f , g : Z≥0 → R, we say f is O(g) if there exist c, n0 > 0 such that 0 ≤ f (n) ≤ cg(n) for all
n ≥ n0.
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A hash table is a data structure built to support fast insertion, removal, and search (Figure 3). Hash
tables can be implemented in a number different ways, but one common implementation is roughly as
follows: Allocate an array. Define a function that associates data elements to be stored in the hash table
with an index of the array. When adding an element, compute the index with which it is associated
and store it in the appropriate array position. If multiple data elements are mapped to the same array
position, store the elements in a linked list. Hash tables support amortized O(1) insertion, removal,
and search.

Abstract data types

An abstract data type is a collection of objects whose behavior is defined by a set of operations (Dale
and Walker, 1996). Abstract data types are mathematical formalisms rather than concrete objects stored
on a computer’s hardware. They are useful because they allow a programmer to focus on an object’s
functionality rather than its implementation details. A collection is an abstract data type that stores
data elements. Common examples of collections include sets, maps, stacks, queues, and sequences.
We briefly describe each of these collections here:

• A set is a collection that does not contain duplicate elements. Sets support the operations
‘insert’, ‘delete’, ‘search’, and occasionally ‘intersect’ and ‘union’. The operation ‘insert’
adds a given element to the collection; ‘delete’ removes a given element from the collection;
‘search’ checks for the presence of a given element in the collection; and ‘intersect’ and ‘union’
implement standard set intersection and union procedures.

• A map is a set that consists of ordered pairs, called key-value pairs. A key x is said to be
associated with a value y if the ordered pair (x, y) is an element of the collection. Maps impose
the condition that each key be associated with a single value. Maps support the operations
‘put’, ‘get’, and ‘remove’. The operation ‘put’ adds a given key-value pair to the collection; ‘get’
queries the value associated with a given key; and ‘remove’ deletes a given a key-value pair
from the collection.

• A stack is a collection that supports the following two operations: ‘push’ and ‘pop’. The
operation ‘push’ adds a given element to the collection, and ‘pop’ removes the most recently
added element from the collection.

• A queue is a collection that supports the following two operations: ‘enqueue’ and ‘dequeue’.
The operation ‘enqueue’ adds a given element to the collection, and ‘dequeue’ removes the
least-recently added element from the collection.

• A sequence is an ordered collection of elements. The exact functionality of a sequence depends
on its implementation, but typically sequences support the operations ‘append’, ‘replace’,
‘getObjectAtIndex’, ‘getIndexOfObject’, ‘remove’, and ‘search’. The operation ‘append’ adds a
given element to the end of the collection; ‘replace’ replaces a given element or the element
located at a given index with another element; ‘getObjectAtIndex’ returns the element located
at a given index; ‘getIndexOfObject’ returns the index (or indices) at which a given element
is located; ‘remove’ deletes a given element or the element located at a given index from the
collection; and ‘search’ checks for the presence of a given element in the collection. Familiar
examples of sequences include R vectors and lists. Vectors in R are homogeneous sequences
(i.e., can store a single type of object), while lists in R are heterogeneous sequences (i.e., can store
different types of objects).

The names we use to refer to the different collection types are standard (Dale and Walker, 1996), with
the possible exception of sequence. Many programmers prefer the term list to sequence, but we choose
to use the term sequence to avoid confusion with R lists.

Abstract data types and data structures are related in that data structures are used to implement
abstract data types. To illustrate, one could implement a sequence abstract data type using an array
data structure (Figure 1) or a linked list data structure (Figure 2). If using an array, ‘append’, for
instance, involves inserting an element into the memory location following the memory location
of the rightmost element. If using a linked list, on the other hand, ‘append’ involves inserting a
new node at the tail of the linked list. At the level of hardware, these procedures are clearly distinct.
However, at a more abstract level, these procedures both implement the ‘append’ operation for different
implementations of the sequence abstract data type.

Methods

We searched the Comprehensive R Archive Network (CRAN) and Bioconductor for collection packages,
evaluated the API and design of the packages returned by this search, and then ran benchmark tests
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to assess the performance of these packages.

Searching CRAN and Bioconductor

We searched CRAN and Bioconductor for packages that implement one or more of the following
collection types: map, set, stack, queue, or sequence. Table 1 lists the terms used in the search,
the number of packages returned by the search, the number of packages excluded from review
after the search, and the names of the packages ultimately selected for review. We searched CRAN
and Bioconductor because these platforms are the two most popular repositories for R packages,
and because packages must pass a review before publication on these platforms. CRAN packages
published through July 3, 2017, and Bioconductor packages published through March 24, 2018, were
included in the search.

The vast majority of packages we excluded from review were unrelated to either collections or
data structures. For example, the search term “array” returned many packages related to the analysis
of microarray data. Some excluded packages, however, did relate to collections or data structures. We
note those packages here.

• The packages hashr (van der Loo, 2015) and hashFunction (Zhan, 2013) implement functions
that generate hash codes for R objects. While hashing plays an important role in the construction
of hash tables, hashr and hashFunction do not implement complete map classes.

• The package filehashSQLite (Peng, 2012) implements a key-value map using SQLite as the
backend. For the sake of simplicity, we neglected filehashSQLite to focus exclusively on its
more popular companion package, filehash (Peng, 2006).

• The package tictoc (Izrailev, 2014) implements a complete stack class. The primary purpose of
tictoc is to benchmark R code; the stack class is tangential. Moreover, the implementation of the
tictoc stack class is virtually identical to that of a dedicated collection package already selected
for review (namely, liqueueR).

• The package DSL (Bengtsson, 2015) implements a sequence class that can be stored in a dis-
tributed manner. While important, distributed computing is outside the scope of the current
work.

• The packages bit64 (Oehlschlägel, 2017) and bit (Oehlschlägel, 2014) implement sequence
classes that can efficiently store 64-bit integers and 1-bit booleans, respectively. While useful in
certain contexts, bit64 and bit are too specialized for inclusion this article.

• The package Oarray (Rougier, 2013) implements a sequence class that supports 0-based indexing.
This class is too similar to the standard base R vector for inclusion in this review.

Collection Search terms N. packages
returned

N. packages
excluded

Packages kept

Set ‘set,’ ‘hash’ 448 447 sets (Meyer and Hornik,
2009)

Map ‘map,’ ‘associative
array,’ ‘dictionary,’
‘dictionaries,’ ‘hash,’
‘symbol table’

257 254 filehash (Peng, 2006), hash
(Brown, 2013), hashmap
(Russell, 2017)

Stack ‘stack,’ ‘last-in-first-
out,’ ‘LIFO’

14 9 rstackdeque (O’Neil,
2015), rstack (Csárdi, 2016)
liqueueR (Collier, 2016),
dequer (Schmidt, 2016),
flifo (Poncet, 2017)

Queue ‘queue,’ ‘first-in-first-
out,’ ‘FIFO’

7 4 rstackdeque (O’Neil, 2015),
liqueueR (Collier, 2016),
dequer (Schmidt, 2016)

Sequence ‘sequence,’ ‘list,’ ‘vec-
tor,’ ‘array’

449 446 listenv (Bengtsson, 2015),
S4Vectors (Pagés et al.,
2017), stdvectors (Giuliano,
2017)

Table 1: Details of the search for collection packages on CRAN and Bioconductor.
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We selected a total of 11 packages from CRAN (filehash, hash, hashmap, sets, rstackdeque, rstack,
liqueueR, dequer, flifo, listenv, and stdvectors) and one package from Bioconductor (S4Vectors) for
review.

Analysis of packages

We analyzed the design and features of the packages selected for review. For a given package (e.g.,
rstackdeque) and collection class implemented by that package (e.g., “stack”), we determined the
following:

1. API of the class

2. types of R objects that can be stored by the class

3. language in which the class was implemented (e.g., pure R, C++, C, etc.)

4. data structure(s) used to implement the class

5. algorithmic complexity of the operations provided by the class

6. whether the operations provided by the class have side effects or are side effect-free

7. whether the class was implemented using the S3, S4, or R6 object-oriented system

8. any unusual features or limitations of the class.

We conducted this analysis by reading package vignettes and manuals, corresponding with
package authors, and examining package source code.

Benchmark tests

We wrote and ran scripts to measure the execution times of key functions implemented by the packages
selected for review. We refer to these trials of execution times as benchmark tests . For a given collection
type, abstract operation defined on that collection type, and package implementing that collection
type, we measured the execution time of the given function by the given package. We repeated this test
25 times each for collection objects containing different numbers of elements, and then plotted mean
execution time against object size for that collection type, package, and operation. The commands
used to generate the benchmark test results are given in the appendix.

As an example of this procedure, consider the map collection type. For a given package p among
those that implement the map collection type (filehash, hash, and hashmap), for a given operation o
among those defined on the map collection type (‘put’, ‘get’, and ‘remove’), and for a positive integer
n, we measured the median execution time t of 25 calls to method o of a map object from package p
containing n elements. We then plotted the point (n, t) on the graph of median function execution time
vs. number of elements in collection corresponding to package p and operation o. For a given function,
the plot of median function execution time vs. number of elements in collection reflects function scalability
(or lack thereof): plots with shallow growth suggest the function scales well, while plots with steep
growth suggest the function does not scale as well. The values of n we tested ranged from 100 to
100,000, and are similar to the values of n used by other authors for benchmark tests (e.g., O’Neil
(2015), Russell (2017)). Benchmark test result plots are available in the appendix.

To help readers interpret benchmark test results, we developed our own custom implementation of
each collection type using a base R list. For example, we implemented the map abstract data type using
a named list, wherein names served as keys and entries served as values. The ‘put’, ‘get’, and ‘remove’
operations were implemented by appending data to, indexing, and subsetting the list, respectively.
Given the centrality and importance of the list to R programming, our base R list implementation of a
given collection type can be seen as the “control” or “default” implementation of that collection type.

We measured function execution times using the package microbenchmark (Mersmann, 2015).
The microbenchmark package provides a function that measures the execution time of code with
sub-millisecond accuracy. The package uses the operating system-level routine mach_absolute _time
on MacOSX and is more precise than R’s native System.time function. Scripts were run in R version
3.4.1 (2017-06-30) using an Apple computer with an Intel Core i5 CPU (2.5 GHz, 2 cores, 4 logical
processors), 4 GB of RAM, and 500 GB of storage. Additional details on the benchmark tests are
available in the appendix.
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Results

Sets

The only package we located on CRAN that implements the set abstract data type is sets. The sets
package is rich in features and provides broad support for basic sets, generalized sets (i.e., sets in
which elements are mapped to a real number), and customizable sets (i.e., sets in which the user can
specify iteration order and the function used to check for element equality). The basic set class is
called “set.” The “set” class is equipped with a wide variety of methods, including ‘search’, ‘union’,
‘intersection’, ‘complement’, ‘power set’, ‘Cartesian product’, and more. The “set” class does not
have ‘insert’ and ‘delete’ methods per se, but its ‘union’ and ‘complement’ methods implement these
operations in effect. The package is written predominantly in R and partially in C. Objects of type
“set” are S3 objects and operations on “set” objects are side-effect free.

Under the hood, “set” objects are R lists that are ordered to allow for the comparison of nested
sets. The function ‘search’ essentially creates a hash table, inserts the elements of the calling set into
the hash table, and then checks for the existence of the queried element. This procedure is O(n).
The methods ‘insert’ (as implemented by calling ‘union’ on the set and the object to be added) and
‘remove’ (as implemented by calling ‘complement’ on the set and the object to be removed) are more
involved. Ultimately, both methods perform a comparison-based sort and are therefore O(n log(n))
at best. The sets package performed worse than a base R List implementation of the set abstract data
type on all operations and for all set sizes (Figure 5).

Maps

Among the packages selected for review, hash, hashmap, and filehash implement the map abstract
data type.

The map class of the package hash is called “hash.” The “hash” class implements the standard map
API, as well as methods to invert a “hash” object and return the number of key-value pairs in a “hash”
object. Keys stored in “hash” objects must be atomic character vectors, but values can be any R object.
The “hash” class is essentially a convenience wrapper around R environments. Because environments
are implemented internally as hash tables (Wickham, 2014), the ‘put’, ‘get’, and ‘remove’ methods
of the “hash” class are O(1) amortized. The “hash” class is implemented in S4, and its methods (in
general) have side-effects.

The hashmap package provides a map class called “Hashmap.” The “Hashmap” class implements
a number of useful methods in addition to ‘put’, ‘get’, and ‘remove’, such as methods to return a
named vector representation of a “Hashmap” object and merge “Hashmap” objects. “Hashmap” objects
can store a variety of atomic vector types as keys and values, but not general R objects. The hashmap
package is implemented in C++, and the “Hashmap” class is essentially a wrapper around a hash table
class in the C++ Standard Template Library. Accordingly, ‘put’, ‘get’, and ‘remove’ operations are
O(1) amortized. The “Hashmap” class is implemented in S4 and has methods that (in general) operate
via side effects. An interesting feature of hashmap is that the ‘put’, ‘get’, and ‘remove’ methods are
efficiently vectorized.

The map class of the package filehash, called “filehash,” is rather different from “hash” and
“Hashmap.” While “hash” and “Hashmap” store keys and values in working memory, “filehash” stores
keys and values on disk. This allows the user to work with datasets that take up more space than is
available in RAM. The API of filehash includes the standard map operations as well as methods to
test for the existence of a key and return the number of items in a “filehash” object. Keys must be
atomic character vectors, while values can be arbitrary R objects. The “filehash” class is implemented
predominantly in R, but C code powers file input and output. “filehash” objects are S4 objects, and
operations on “filehash” objects (in general) have side effects.

The data structure underlying a “filehash” object is somewhat complex. Essentially, a “filehash”
object is a list containing a reference to a file on disk and a reference to an R environment. The file
on disk stores keys and values in serialized format, and the environment maps each key to the byte
location of its associated value in the file on disk. The ‘put’ and ‘remove’ operations are O(1). The
running time of ‘get’ is proportional to the number of elements inserted into the map object since ‘get’
was last called. Thus, if a user calls ‘get’ twice after inserting a large number of elements, the first call
will be slow while the second will run in constant time. We expect ‘get’ to be a fast operation in most
cases.

The hash, hashmap, and filehash packages all performed well on benchmark tests compared
to a base R list implementation of the map abstract data type. The base list was fastest for small
datasets. However, hash, hashmap, and filehash began outperforming the base list at around 750 -
4,000 elements, 2,000 - 15,000 elements, and 10,000 - 70,000 elements, respectively (Figure 6).
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Stacks

Our search for packages that implement the stack abstract data type returned rstackdeque, dequer,
liqueueR, flifo, and rstack.

The package rstackdeque provides a stack class called “rstack.” The “rstack” class implements
standard ‘push’ and ‘pop’ operations, as well as functions to obtain the length of a stack, reverse the
order of elements in a stack, and inspect the first element of a stack. Internally, an “rstack” object is
a singly linked list of R environments. Accordingly, an “rstack” object can store any R object and
supports O(1) ‘push’ and ‘pop’. “rstack” objects are implemented in S3, and operations on “rstack”
objects are side-effect free. Thus, rstackdeque allows for functional programming, which in fact is one
of its major strengths.

The stack class provided by the package dequer is called “stack.” The “stack” class implements
the standard stack API, as well as a method to print the top element of a stack. Instances of “stacks”
are S3 objects and can store any type of R object. Internally, “stacks” are implemented as doubly-
linked lists in C. Thus, ‘push’ and ‘pop’ are O(1) operations. The dequer package has two limitations
that should be noted. First, the only way to extract elements from a “stack” is to coerce the entire
“stack” into an R list; this procedure isO(n). Second, due to implementation details of the R protection
stack, it is really only possible to instantiate and use a single “stack” object per R session (Schmidt,
personal communication).

The class “Stack” from the package liqueueR is a simple implementation of the stack abstract
data type. “Stack” implements the operations ‘push’ and ‘pop’, as well as methods to query the size
of a “Stack” object and combine “Stack” objects. Internally, “Stack” objects are R lists. The ‘push’
operation is implemented by appending an element to the end of the list, and the ‘pop’ operation
is implemented by removing the last element of the list. Because R lists are copied when modified,
‘push’ and ‘pop’ are O(n) operations. “Stacks” can store any type of R object. The “Stack” class is
implemented using R6, and so ‘push’ and ‘pop’ have side-effects.

The package flifo is similar to liqueueR in that flifo implements the stack abstract data type using
an R list. Moreover, the stack class provided by flifo, called “lifo,” operates via side-effects. There are,
however, several unusual design features of flifo that warrant special attention. First, when pushing a
variable onto a “lifo” object, the variable is deparsed and then deleted from the calling environment.
For example, the following code, if executed in the global environment, will result in the deletion
of the variable myVariable: ‘myStack <-lifo(); myVariable <-1:10; push(myStack,myVariable)’.
Second, flifo implements “lifo” objects using the S3-object oriented system. Because operations on
“lifo” objects are designed to have side-effects, the ‘push’ and ‘pop’ functions must record the calling
“lifo” object’s name and then reassign this object (by name) to the calling environment. This behavior
could be more naturally achieved if “lifo” objects were instead implemented using R6. Due to flifo’s
unusual design features and similarity to liqueueR, we choose not to benchmark flifo.

Finally, the packages rstack and filehash implement stack classes, but we choose not to benchmark
these classes. The stack class from rstack is implemented using the R6 reference system and is
designed to supportO(1) ‘push’ and ‘pop’. However, due to a bug in the R6 reference system, the ‘push’
and ‘pop’ methods of this class are currently O(n) (Csàrdi, personal communication). The package
filehash, which implements the map abstract data type (as described in the Maps section), incidentally
implements a stack class as well. We discovered this only after downloading and exploring the
package, because filehash was not returned in our search stack packages on CRAN and Bioconductor
(see Table 1). We choose not to benchmark the stack class provided by filehash because it is essentially
a variation on the map class.

The packages dequer and Rstackdequeue performed favorably compared to the base R list
implementation of a stack, while the package LiqueuR performed less favorably. dequer and Rstack-
dequeue begain outperforming the base R list at about 700-1,000 elements and 9,000-10,000 elements,
respectively. LiqueuR exhibited strictly worse performance than the base R list (Figure 7).

Queues

Of the packages that implement stacks (rstackdeque, dequer, liqueueR, flifo, and rstack), all but
rstack also implement queues. Overall, the queue classes provided by these packages are quite similar
to the corresponding stack classes. The queue class of rstackdeque is implemented using linked
lists of R environments, supports amortized O(1) ‘enqueue’ and ‘dequeue’, and is side-effect free.
liqueueR’s queue class is implemented as a simple R list, supports O(n) ‘enqueue’ and ‘dequeue’,
and has side-effects. The queue class of flifo is virtually the same as that of liqueueR in terms of
implementation and algorithmic complexity. We do not run benchmark tests on the flifo queue class
for the same reasons we do not run benchmark tests on the flifo stack class. It turns out that filehash
also implements a queue class, which we likewise do not benchmark for reasons given in the previous
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section.

The queue class of dequer, much like the stack class of dequer, is implemented as a doubly-linked
list of nodes, is written in C, and has methods that operate via side-effects. The queue class of dequer,
however, appears to have some bugs that the stack class of dequer does not. First, dequer’s queue
class works only when it has fewer than approximately 106 elements. Second, benchmark tests suggest
the ‘dequeue’ method of dequer’s queue class runs in O(n) time (Figure 8). In theory, this method
should run in O(1) time. The cause of this discrepancy is unclear despite an extensive examination of
source code.

The results of the benchmark tests of the queue packages were broadly similar to those of stack
packages. The liqueueR package performed strictly worse than the base R list implementation of a
queue. Rstackdeque began outperforming the base R list at about 20,000 - 60,000 elements. Finally,
dequer was strictly slower than the base R list with respect to the ‘dequeue’ operation, but was faster
with respect to the ‘enqueue’ operation on queues containing more than 1,000-2,000 elements (Figure
8).

Sequences

Among the packages under review, stdvectors, listenv, and S4Vectors implement the sequence
abstract data type.

The package stvectors implements a sequence class called “stdvector.” The “stdvector” class
has a small API: “stdvector” objects support the operations ‘append’, ‘replace’, ‘getObjectAtIndex’,
and ‘remove’ (by index), but not ‘search’, ‘getIndexOfObject’, or ‘remove’ (by element). Internally, a
“stdvector” object is a C++ array that grows dynamically. Accordingly, the functions ‘getIndexOfObject’
and ‘replace’ are O(1), the function ‘append’ is O(1) amortized, and the function ‘remove’ (when
called on an element in the middle of the sequence) is O(n). Objects of class “stdvector” are imple-
mented in S3 and can store any type of R object. Operations on “stdvector” objects (in general) have
side-effects.

The sequence class provided by the listenv package is called “listenv.” The “listenv” class has
the same API of the “stdvector” class (described above), is written in pure R, and can store any type
of R object. Internally, a “listenv” object is a list containing a character vector and a reference to an R
environment. Elements are stored in the environment and are indexed by names that are stored in the
character vector. The methods ‘append’ and ‘remove’ involve modifying both the R environment and
the character vector. Because character vectors are copied upon modification, ‘append’ and ‘remove’ are
O(n) operations. The methods ‘getObjectAtIndex’ and ‘replace’ involve first copying the character
vector and then performing a lookup in the environment. The ‘getObjectAtIndex’ and ‘replace’
methods are O(n), but grow very slowly in execution time as n increases. Operations on “listenv”
objects have side-effects, and the “listenv” class is implemented using the S3 system.

S4Vectors is a large and richly-featured package that provides broad support for the sequence
abstract data type. At the core of S4Vectors is “Vector,” an abstract class (i.e., class that cannot be
instantiated) that supports basic sequence functionality. Most of the classes implemented by S4Vectors
extend “Vector” in some useful way. For example, the “Rle” class efficiently represents sequences
that contain long subsequences of repeating elements; the “Pairs” class stores sequences consisting
of ordered pairs; and the “LLint” class stores sequences consisting of very large integers. Users can
easily write their own, custom extension of “Vector” class as well. S4Vectors is written in both R and
C, and the many classes provided by S4Vectors are implemented using the S4 object-oriented system.
The package IRanges (Lawrence et al., 2013), a companion package of S4Vectors, implements many
additional helpful extensions of the “Vector” class.

We decided to run benchmark tests on the “SimpleList” class of the S4Vectors package. The
“SimpleList” class is directly analogous to a base R list and provides essentially the same functionality
as a base R list. In fact, under the hood, a “SimpleList” is an S4 object containing a base R list.
The operations ‘append’, ‘replace’, and ‘remove’ run in O(n) time on objects of this class, and the
‘getObjectAtIndex’ operation runs in O(1) time. It should be noted that the “SimpleList” class is
fairly generic; more specialized extensions of the “Vector” class (e.g., “Rle”) will likely perform better
under certain conditions.

The benchmark test results for packages implementing the sequence abstract data type were
mixed. The stdvectors package was faster than the base R list with respect to the ‘append’ and ‘remove’
operations on objects containing more than 1,000 - 2,000 elements, but was strictly slower with respect
to the other operations. The listenv package outperformed the base R list with respect to the ‘append’
operation on objects containing more than 4,000 elements, but performed strictly worse with respect
to the other operations. Finally, the S4Vectors package was strictly slower than the R list with respect
to all operations (Figure 9).
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Discussion

The state of R collection packages

CRAN and Bioconductor have many collection packages available for download. At present, deciding
which package to use is challenging given the variety of options. In this section we provide practical
recommendations to users exploring the collection package ecosystem.

Among the packages we reviewed that implement the map collection (filehash, hash, and
hashmap), the best package for most situations is probably hash. The package hash is fast, and
hash map objects can store any type of R object. The package hashmap has efficiently vectorized
functions, but hashmap appears to be slower than hash and the map class it implements cannot store
general R objects. The package filehash is useful when working with large datasets (i.e., datasets
that consume more memory than is available in RAM), but should be avoided in favor of hash when
working with smaller datasets.

The only package we located on CRAN that implements the set abstract data type is sets. The
sets package is versatile and provides a rich collection of functions and classes. However, sets is
slow; ‘search’ runs in linear time, and ‘insert’ and ‘remove’ run in superlinear time. These functions
would run in constant time if “set” objects were implemented as hash tables rather than R lists. Users
interested in working with a solid implementation of the set abstract data type, and less interested in
speed, should consider the sets package.

We consider rstackdeque to be the best package for general-purpose use among the packages
we reviewed that implement the stack collection (rstackdeque, dequer, liqueueR, flifo, and rstack).
The rstackdeque package is reasonably fast, fully-featured, and supports functional programming.
The package dequer is faster than rstackdeque, but does not allow for functional programming and
suffers from several bugs and drawbacks (see Results). The packages liqueueR, flifo, and rstack
do not allow for functional programming and implement O(n) ‘push’ and ‘pop’, which we consider
to be prohibitively slow. We also recommend rstackdeque among the packages we reviewed that
implement the queue abstract data type for similar reasons.

A standard R list is the probably the best implementation of the sequence abstract data type in
most situations. R lists are fast and support the full sequence API (as defined in the Background section).
The S4Vectors package provides a wide range of classes that implement sequences. The class that we
benchmarked, ‘SimpleList’, is slower than a base R list. However, many of the classes implemented by
S4Vectors (and its companion package IRanges) are excellent choices for more specialized, structured
sequence data. The sequence class implemented by stdvectors outperforms the base R list with respect
to the operations ‘append’ and ‘remove’ for large datasets. However, stdvectors does not support
the full sequence API and is slower than a base R list with respect to the other sequence operations.
The listenv sequence class is, for the most part, slower than a base R list. Also, it implements fewer
methods.

Many R users only use the data structures provided by base R. While base data structures are
reasonably fast, there are cases in which base data structures are much slower than data structures
implemented by collection packages. For example, the “rstack” class from rstackdeque is about
an order of magnitude faster than a base R list when operating on large datasets. R programmers
should consider using the packages recommended above to speed up program execution times when
efficiency is important.

Most of the collection packages reviewed in this paper are used by other packages as imports
or dependencies. For instance, hash is a dependency of the package neuroim (Buchsbaum, 2016).
neuroim allows users to store and manipulate brain imaging data, and the map class from hash serves
to associate character identifiers with different brain regions. The FindMinIC (Lange et al., 2013)
package uses sets. FindMinIC creates models from all subsets of a given list of predictor variables and
then rank-orders the models by information criterion (e.g., AIC). The ‘power set’ operator from sets
is used to generate the space of possible models. S4Vectors is among the top 5% of most downloaded
packages on Bioconductor and is therefore imported by a large number of other packages. One
such package is GenomicRanges (Lawrence et al., 2013), which uses S4Vectors to represent genomic
annotations and alignments. These examples, and many others, illustrate the usefulness of collection
packages in R software development.

Looking forward

The collection package ecosystem in R is young and could be improved in several ways. First, set
objects could be implemented as hash tables rather than R lists (as is the case with sets) to maximize
the efficiency of set operations. Second, stack and queue objects could be stored internally as linked
lists of nodes rather than environments (as is the case with rstackdeque). Environments in R are hash
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tables by default, and are therefore more expensive in space than nodes, which are structures that only
store data and a reference to another node. Third, every collection object could be equipped with an
iterator to facilitate iteration through the elements of the collection. Minor improvements related to
the implementation of the map and sequence abstract data types are also possible.

One compelling way to implement these improvements would be to create a single, unified
collection package. Such a package might have “Map,” “Set,” “Stack,” “Queue,” and “Sequence”
classes that derive from a generic “Collection” abstract class. The “Collection” class might have
methods to check for the presence of an element (‘contains’ or ‘%in%’), return the number of elements
stored (‘size’), return an iterator (‘iterator’), and print to the console (‘print’). The derived classes
would implement these methods as well as their own, specialized methods (Figure 4). Each class might
be implemented in C or in C++ via the package Rcpp. In addition to offering probable performance
improvements over current collection packages, such a package would provide a consistent API
between different collection classes and aggregate important abstract data types into a single location.
We anticipate that developers will disagree on the specific implementation details of the proposed
package. For instance, some may want to implement purely functional data structures, while others
will prefer non-functional data structures; some may want to implement the classes using the S3
object oriented system, while others will prefer S4, and still others R6; some may want to implement
additional abstract data types (e.g., priority queues, graphs, etc.), while others will prefer to keep the
package lean and implement only those abstract data types mentioned above. Designing and writing
the proposed package will be a major project. The R community should take inspiration from the
latest in functional (e.g., OCaml, Haskell) and scripting (e.g., Python, Ruby) languages as it considers
this possibility.

Collection
contains	  (%in%)
size
iterator
print

Map
put
get
remove

Set
insert
delete
search

Stack

push
pop

Queue
enqueue
dequeue

Sequence
append
replace
getObjectAtIndex
getIndexOfObject
remove
search

Figure 4: Inheritance diagram of a package that implements the map, set, stack, queue, and sequence
collections.

Package authors can take away several general strategies for improving package performance
based on the analysis of the packages reviewed for this article. First, authors should avoid unnec-
essarily copying objects inside functions (as listenv does, for instance). Copying objects, especially
those that are large, is time-intensive. Authors should also keep in mind that most arguments in
R are passed by deep copy to functions. Passing arguments by reference instead (as rstackdeque
does by using environments) can accelerate function execution times. Second, authors should avoid
adding gratuitous side-effects to functions that could be written without side-effects. At its core,
R is a functional language. Users expect the data they pass into functions to remain unchanged.
Functions with seemingly unnecessary side-effects (like those from liqueueR and flifo) may catch
users off-guard. That said, some functions (like ‘insert’ on map data structures) require side-effects
to run in constant time. Finally, authors should remember that certain R functions and data structures
have O(n) complexity “hidden” in them. The ‘dequeue’ function from dequer, and the ‘push’ and
‘pop’ functions from rstack, are supposed to run in O(1) time. Unfortunately, these functions appear
to run in O(n) time for reasons that are not immediately obvious. Authors can detect surprises like
these by benchmarking code before package release.

The utility of reviewing R packages

R’s diverse selection of packages is one of its greatest strengths, but also a source of frustration
for package users and developers. Users often must sift through many packages to find one that
suits their needs, and developers sometimes inadvertently write packages that essentially replicate
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the functionality of packages that already exist on CRAN or Bioconductor. A good way for the R
community to address this issue is to write more package reviews. Reviews can help users quickly
find the best package for their purposes, avert authors from developing packages that in effect already
exist, and highlight deficiencies in the R package ecosystem. There exist very few review articles in the
archives of The R Journal or The Journal of Statistical Software, the two academic journals most directly
related to R. Given the growth in popularity of R and the proliferation of R packages, we think that
additional review articles would be helpful.

Summary

For many statisticians, programmers, and scientists, R is the go-to tool for data processing, modeling,
and visualization. However, R’s lack of base support for collection data types can be a hindrance,
especially as data sets continue to grow in size. In this article, we reviewed collection packages –
packages that implement collection data types like sets, maps, stacks, queues, and sequences. We
demonstrated that data types implemented by collection packages are in many cases faster than
corresponding base R data types, provided specific package recommendations to users navigating the
collection package ecosystem, and gave several suggestions for improving the collection capabilities
of R. An interesting line of future work would be to investigate collection packages that implement
more advanced abstract data types, such as graphs and priority queues. Such data types, though
less common than the ones explored in this review, are quite useful in a variety of applications. Data
structures and algorithms lie at the core of computer science. As R users develop new collection
packages, and effectively use those that already exist, they will wield the language more powerfully.
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Appendix

Tables 3 – 6 display the code we used to benchmark the operations of the packages under review. In
Table 3, the variables ‘key’ and ‘value’ represent a key-value pair. In Tables 2 - 6, the variable ‘elem’
represents a data element. In all tables, the variable ‘y’ represents the collection object itself. Benchmark
test results are displayed in Figures 5 - 9. In all figures, results for different packages are plotted
on different y-scales due to high between-package variance in execution time. The points represent
median execution time. The colored bands represent the 25th and 75th percentiles of execution time.
The code used to produce these plots is available at github.com/Timothy-Barry/Collections-in-R.
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Figure 5: Benchmark test results the sets package.

‘Insert’ ‘Remove’

sets y <-set_union(y,elem) y <-set_complement(elem,y)
base if !(elem %in% y) c(y,elem) else y y <-y[!(y == elem)]

‘Search’

sets set_contains_element(elem,y)
base elem %in% y

Table 2: Commands used in the benchmark for the set collection type.
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Maps
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Figure 6: Benchmark test results for packages that implement the map abstract data type. The plot
that shows the results of the ‘get’ benchmark for the package filehash has two lines. The line with
circular points gives the running time of a single call to ‘get’; the line with triangular points gives the
running time of the second of two consecutive calls to ‘get’.

‘Get’ ‘Put’ ‘Remove’

filehash dbFetch(y,key) dbInsert(y,key,value) dbDelete(y,key)
hash y[[key]] y[[key]] <-value delete(key,y)
hashmap y[[key]] y[[key]] <-value y$erase(key)
base y[key] y[key] <-value y <-y[!(names(y) %in% key]

Table 3: Commands used in the benchmark for the map collection type.
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Figure 7: Benchmark test results packages that implement the stack abstract data type.

‘Pop’ ‘Push’

dequer pop(y) push(y,elem)
liqueR y$pop() y$push(elem)
rstackdeque without_top(y) insert_top(y,elem)
base y <-y[1:(length(y)-1)] y <-c(y,elem)

Table 4: Commands used in the benchmark for the stack collection type.
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Queues
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Figure 8: Benchmark test results of packages that implement the queue abstract data type.

‘Dequeue’ ‘Enqueue’

dequer pop(y) pushback(y,elem)
liqueueR y$pop() y$push(elem)
rstackdeque y <-without_front(y) y <-insert_back(y,elem)
base y <-c(elem,y) y <-y[1:(length(y)-1)]

Table 5: Commands used in the benchmark for the queue collection type.
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Figure 9: Benchmark test results for packages that implement the sequence abstract data type.

‘Append’ ‘GetElementAtIndex’

listenv y[[length(y) + 1]] <- elem y[[index]]
S4Vectors y[[length(y) + 1]] <-elem y[[index]]
stdvectors stdvectorPushBack(y,elem) stdvectorSubset(y,index)
base y <-c(y,elem) y[index]

‘Remove’ ‘Replace’

listenv y[[index]] <-NULL y[[index]] <-elem
S4Vectors y[[index]] <-NULL y[[index]] <-elem
stdvectors stdvectorErase(y,index,index) stdvectorReplace(y,index,elem)
base y <-y[-index] y[index] <-elem

Table 6: Commands used in the benchmark for the sequence collection type.
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Approximating the Sum of Independent
Non-Identical Binomial Random
Variables
by Boxiang Liu and Thomas Quertermous

Abstract The distribution of the sum of independent non-identical binomial random variables is
frequently encountered in areas such as genomics, healthcare, and operations research. Analytical
solutions for the density and distribution are usually cumbersome to find and difficult to compute.
Several methods have been developed to approximate the distribution, among which is the saddlepoint
approximation. However, implementation of the saddlepoint approximation is non-trivial. In this
paper, we implement the saddlepoint approximation in the sinib package and provide two examples
to illustrate its usage. One example uses simulated data while the other uses real-world healthcare data.
The sinib package addresses the gap between the theory and the implementation of approximating
the sum of independent non-identical binomials.

Introduction

Convolution of independent non-identical binomial random variables appears in a variety of appli-
cations, such as analysis of variant-region overlap in genomics (Schmidt et al., 2015), calculation of
bundle compliance statistics in healthcare organizations (Benneyan and Taşeli, 2010), and reliability
analysis in operations research (Kotz and Johnson, 1984).

Computating the exact distribution of the sum of non-identical independent binomial random
variables requires enumeration of all possible combinations of binomial outcomes that satisfy the
totality constraint. However, analytical solutions are often difficult to find for sums of greater than
two binomial random variables. Several studies have proposed approximate solutions (Johnson et al.,
2005; Jolayemi, 1992). In particular, Eisinga et al. (2013) examined the saddlepoint approximation, and
compared them to exact solutions. They note that in practice, these approximations are often as good
as the exact solution and can be implemented in most statistical software.

Despite the theoretical development of aforementioned approximate solutions, a software imple-
mentation in R is still lacking. The stats package includes functions for frequently used distribution
such as dbinom and dnorm, and less frequently used distributions such as pbirthday, but it does not
contain functions for the distribution of the sum of independent non-identical binomials. The EQL
package provides a saddlepoint function to approximate the mean of i.i.d. random variables, but
does not apply to the case where the random variables are not identical. In this paper, we implement a
saddlepoint approximation in sinib (sum of independent non-identical binomial random variables).
The package provides the standard suite of distributional functions for the distribution (psinib),
density (dsinib), quantile (qsinib), and random deviates (rsinib). The package is accompanied by a
detailed documentation, and can be easily integrated into existing applications.

The remainder of this paper is organized as follows. We begin by providing an overview of the
distribution of the sum of independent non-identical binomial random variables. Next, we give
an overview of the saddlepoint approximation. The following section describes the design and
implementation of the saddlepoint approximation in the sinib package. We provide two examples
and assess the accuracy of saddlepoint approximation in these situations. The final section concludes
and discusses future direction.

Overview of the distribution

Suppose X1,. . . ,Xm are independent non-identical binomial random variables such that Sm = ∑m
i=1 Xi.

We are interested in finding the distribution of Sm.

P(Sm = s) = P(X1 + X2 + · · ·+ Xm = s) (1)

In the special case of m = 2, the probability simplifies to

P(S2 = s) = P(X1 + X2 = s) =
s

∑
i=0

P(X1 = i)P(X2 = s− i) (2)
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Computation of the exact distribution often involves enumerating all possible combinations of each
variable that sum to a given value, which becomes infeasible when n is large. A fast recursion method
to compute the exact distribution has been proposed (Butler and Stephens, 2016; Arthur Woodward
and Palmer, 1997). The algorithm is as follows:

1. Compute the exact distribution of each Xi.

2. Calculate the distribution of S2 = X1 + X2 using Equation 2 and cache the result.

3. Calculate Sr = Sr−1 + Xi for r = 3, 4, . . . , m.

Although the recursion speeds up the calculation, studies have shown that the result may be
numerically unstable due to round-off error in computing P(Sr = 0) if r is large (Eisinga et al., 2013;
Yili). Therefore, approximation methods are still widely used in literature.

Saddlepoint approximation

The saddlepoint approximation, first proposed by Daniels (1954) and later extended by Lugannani
and Rice (1980), provides highly accurate approximations for the probability and density of many
distributions. In brief, let M(u) be the moment generating function, and K(u) = log(M(u)) be the
cumulant generating function. The saddlepoint approximation to the PDF of the distribution is given
as:

P̂1(S = s) =
exp(K(û)− ûs)√

2πK′′(û)
(3)

where û is the unique value that satisfies K′(û) = s.

Eisinga et al. (2013) applied the saddlepoint approximation to the sum of independent non-identical
binomial random variables. Suppose that Xi ∼ Binomial(ni, pi) for i = 1, 2, . . . , m. The cumulant
generating function of Sm = ∑m

i=1 Xi is:

K(u) =
m

∑
i=1

ni ln(1− pi + pi exp(u)) (4)

The first- and second-order derivatives of K(u) are:

K′(u) =
m

∑
i=1

niqi (5)

K′′(u) =
m

∑
i=1

niqi(1− qi) (6)

where qi =
piexp(u)

(1−pi+pi exp(u)) .

The saddlepoint of û can be obtained by solving K′(û) = s. A unique root can always be found
because K(u) is strictly convex and therefore K′(u) is monotonically increasing on the real line.

The above shows the first-order approximation of the distribution. The approximation can be
improved by adding a second-order correction term (Daniels, 1987; Akahira and Takahashi, 2001):

P̂2(S = s) = P̂1(S = s)
{

1 +
K′′′′(û)

8[K′′(û)]2
− 5[K′′′(û)]2

24[K′′(û)]3
}

(7)

where

K′′′(û) =
m

∑
i=1

niqi(1− qi)(1− 2qi)

and

K′′′′(û) =
m

∑
i=1

niqi(1− qi)[1− 6qi(1− qi)]

Although the saddlepoint equation cannot be solved at boundaries s = 0 and s = ∑m
i=1 ni, their

exact probabilities can be computed easily:

P(S = 0) =
m

∏
i=1

(1− pi)
ni (8)

P(S =
m

∑
i=1

ni) =
m

∏
i=1

pni
i (9)
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Incorporation of boundary solutions into the approximation gives:

P̄(S = s) =


P(S = 0), s = 0

[1− P(S = 0)− P(S = ∑m
i=1 ni)]

P̂2(S=s)

∑
∑m

i=1 ni−1
i=1 P̂2(S=i)

, 0 < s < ∑m
i=1 ni

P(S = ∑m
i=1 ni), s = ∑m

i=1 ni

(10)

We have implemented Equation 10 as the final approxmation of the probability density function.
For the cumulative density, Daniels (1987) gave the following approximator:

P̂3(S ≥ s) =

1−Φ(ŵ)− φ(ŵ)( 1
ŵ − 1

û1
), if s 6= E(S) and û 6= 0

1
2 − 1√

2π

[ K′′′(0)
6K′′(0)3/2 − 1

2
√

K′′(0)

]
, otherwise (11)

where ŵ = sign(û)[2ûK′(û) − 2K(û)]1/2 and û1 = [1− exp(−û)][K′′(û)]1/2. The letters Φ and φ
denotes the probability and density of the standard normal distribution.

The accuracy can be improved by adding a second-order continuity correction:

P̂4(S ≥ s) = P̂3(S ≥ s)− φ(ŵ)
[ 1

û2

( κ̂4
8
− 5κ̂2

3
24

)
− 1

û3
2
− κ̂3

2û2
2
+

1
ŵ3

]
(12)

where û2 = û[K′′(û)]1/2, κ̂3 = K′′′(û)[K′′(û)]−3/2, and κ̂4 = K′′′′(û)[K′′(û)]−2.

We have implemented Equation 12 to approximate the cumulative distribution.

The sinib package

The package uses only base R and the stats package to minimize compatibility issues. The arguments
for the functions in the sinib package are designed to have similar meaning to those in the stats
package, thereby minimizing the learning required. To illustrate, we compare the arguments of the
*binom and the *sinib functions.

From the help page of the binomial distribution, the arguments are as follows:

• x, q: vector of quantiles.

• p: vector of probabilities.

• n: number of observations.

• size: number of trials.

• prob: probability of success on each trial.

• log, log.p: logical; if TRUE, probabilities p are given as log(p).

• lower.tail: logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x].

Since the distribution of sum of independent non-identical binomials is defined by a vector of
trial and probability pairs (each pair for one constituent binomial), it was neccessary to redefine these
arguments in the *sinib functions. Therefore, the following two arguments were redefined:

• size: integer vector of number of trials.

• prob: numeric vector of success probabilities.

All other arguments remain the same. It is worth noting that when size and prob arguments are given
as vectors of length 1, the *sinib function reduces to *binom functions:

# Binomial:
dbinom(x = 1, size = 2, prob = 0.5)
[1] 0.5

# Sum of binomials:
library(sinib)
dsinib(x = 1, size = 2, prob = 0.5)
[1] 0.5

The next section shows a few examples to illustrate the usage of sinib.
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Example usage of sinib

This section shows a few examples to illustrate the usage of sinib.

Sum of two binomials

We use two examples to illustrate the use of this package, starting from the simplest case of two
binomial random variables with the same mean but different sizes: X ∼ Bin(n, p) and Y ∼ Bin(m, p).
The distribution of S = X + Y has an analytical solution, S ∼ Bin(m + n, p). We can therefore use
different combinations of (m, n, p) to assess the accuracy of the saddlepoint approximation to the
cumulative density function. We use m, n = {10, 100, 1000} and p = {0.1, 0.5, 0.9} to assess the
approximation. The ranges of m and n are chosen to be large and the value of p are chosen to represent
both boundaries.

library(foreach)
library(data.table)
library(cowplot)
library(sinib)

# Gaussian approximator:
p_norm_app = function(q,size,prob){

mu = sum(size*prob)
sigma = sqrt(sum(size*prob*(1-prob)))
pnorm(q, mean = mu, sd = sigma)

}

# Comparison of CDF between truth and approximation:
data=foreach(m=c(10,100,1000),.combine='rbind')%do%{

foreach(n=c(10,100,1000),.combine='rbind')%do%{
foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{

a=pbinom(q=0:(m+n),size=(m+n),prob = p)
b=psinib(q=0:(m+n),size=c(m,n),prob=c(p,p))
c=p_norm_app(q=0:(m+n),size=c(m,n),prob = c(p,p))
data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)

}
}

}
data[,m:=paste0('m = ',m)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('saddle','norm'))

ggplot(data[n==10],aes(x=truth,y=value,color=p,linetype=variable))+
geom_line()+
facet_grid(p~m)+
theme_bw()+
scale_color_discrete(name='prob',guide = 'none')+
xlab('Truth')+
ylab('Approximation')+
scale_linetype_discrete(name = '', breaks = c('saddle','norm'),

labels = c('Saddlepoint','Gassian')) +
theme(legend.position = 'top')

Figure 1 shows that the saddlepoint approximations are close to the ground truths across a range
of parameters. For parsimony, this figure only shows the case of n = 10. In comparison with the
saddlepoint method, the Gaussian method (dashed lines) provides a relatively poor approximation.
We can further examine the accuracy by looking at the differences between the approximations and
the ground truth.

data=foreach(m=c(100),.combine='rbind')%do%{
foreach(n=c(100),.combine='rbind')%do%{

foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{
a=pbinom(q=0:(m+n),size=(m+n),prob = p)
b=psinib(q=0:(m+n),size=as.integer(c(m,n)),prob=c(p,p))
c=p_norm_app(q=0:(m+n),size=c(m,n),prob = c(p,p))
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Figure 1: Comparison of CDF between truth and approximation for n = 10.

data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)
}

}
}
data = melt(data,measure.vars = c('saddle','norm'),value.name = 'approx',

variable.name = 'Method')
data[,`Relative error` := (truth-approx)/truth]
data[,Error := (truth-approx)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('Relative error','Error'),value.name = 'error',

variable.name = 'type')

ggplot(data[Method == 'saddle'],aes(x=s,y=error,color=p))+
geom_point(alpha=0.5)+theme_bw()+
facet_wrap(type~p,scales='free')+
xlab('Quantile')+
ylab(expression(

'Truth - Approximation'~~~~~~~~~~~~~~~frac(Truth - Approximation,Truth)))+
scale_color_discrete(guide='none') +
geom_vline(xintercept=200*0.5,color='green',linetype='longdash')+
geom_vline(xintercept=200*0.1,color='red',linetype='longdash')+
geom_vline(xintercept=200*0.9,color='blue',linetype='longdash')

Figure 2 shows the difference between the truth and the approximation for m = n = 100. The
dashed lines indicate the mean of each random variable. The approximations perform well overall.
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Figure 2: Difference in CDF between the ground truth and the approximation

The largest difference occurs around the mean, which is approximately 4e-4. It is worthwhile to
mention that the errors are small for quantiles away from the mean because the the true probabilities
are close to zero and one in the tails. To explore the tail behavior, we examine the relative error defined
as truth−approximation

truth . The relative errors are large for quantiles between zero and the mean because the
true probabilities in this interval are close to zero and the saddlepoint approximation returns zero. The
relative errors are small for quantiles near and greater than the mean, indicating that the saddlepoint
method provides a good approximation in this interval. As a baseline, we calculated the error and
relative error derived from the Gaussian approximation (Figure 3). The largest absolute deviation
approaches 0.06, two orders of magnitude greater than the deviation obtained from the saddlepoint
approximation.

# Comparison of PDF between truth and approximation:
d_norm_app = function(x,size,prob){

mu = sum(size*prob)
sigma = sqrt(sum(size*prob*(1-prob)))
dnorm(x, mean = mu, sd = sigma)

}

data=foreach(m=c(10,100,1000),.combine='rbind')%do%{
foreach(n=c(10,100,1000),.combine='rbind')%do%{

foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{
a=dbinom(x=0:(m+n),size=(m+n),prob = p)
b=dsinib(x=0:(m+n),size=as.integer(c(m,n)),prob=c(p,p))
c=d_norm_app(x=0:(m+n),size=c(m,n),prob=c(p,p))
data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)

}
}

}

data[,m:=paste0('m = ',m)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('saddle','norm'))
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Figure 3: Difference in CDF between the ground truth and Gaussian approximation.

ggplot(data[n==10],aes(x=truth,y=value,color=p,linetype=variable))+
geom_line()+
facet_wrap(m~p,scales='free')+
theme_bw()+
scale_color_discrete(guide = 'none')+
xlab('Truth')+
ylab('Approximation') +
scale_linetype_discrete(name = '', breaks = c('saddle','norm'),

labels = c('Saddlepoint','Gassian')) +
theme(legend.position = 'top')

We next examine the approximation for the probability density function. Figure 4 shows that the
saddlepoint approximation is very close to the ground truth, whereas the Gaussian approximation is
farther away. It is worthwhile to mention that the Gaussian method provides a good approximation
for p = 0.5 because the distribution is symmetrical. Furthermore, we examine the difference between
the truth and the approximations. One example for m = n = 100 is shown in Figure 5. As before, the
saddlepoint approximation degrades around the mean, but the largest deviation is less than 4e-7. As a
baseline, we calculated the difference between the true PDF and the Gaussian approximation in Figure
6. The largest deviation from the Gaussian approximation is 0.004, or four orders of magnitude greater
than that from the saddlepoint approximation.

data=foreach(m=c(100),.combine='rbind')%do%{
foreach(n=c(100),.combine='rbind')%do%{

foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{
a=dbinom(x=0:(m+n),size=(m+n),prob = p)
b=dsinib(x=0:(m+n),size=as.integer(c(m,n)),prob=c(p,p))
c=d_norm_app(x=0:(m+n),size=c(m,n),prob = c(p,p))
data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)

}
}

}
data = melt(data,measure.vars = c('saddle','norm'),value.name = 'approx',

variable.name = 'Method')
data[,`Relative error` := (truth-approx)/truth]
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Figure 4: Comparison of PDF between truth and approximation for n = 10.

data[,Error := (truth-approx)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('Relative error','Error'),

value.name = 'error', variable.name = 'type')

ggplot(data[Method == 'saddle'],aes(x=s,y=error,color=p))+
geom_point(alpha=0.5)+theme_bw()+
facet_wrap(type~p,scales='free')+
xlab('Quantile')+
ylab(expression(

'Truth - Approximation'~~~~~~~~~~~~~~~frac(Truth - Approximation,Truth)))+
scale_color_discrete(guide='none') +
geom_vline(xintercept=200*0.5,color='green',linetype='longdash')+
geom_vline(xintercept=200*0.1,color='red',linetype='longdash')+
geom_vline(xintercept=200*0.9,color='blue',linetype='longdash')

Healthcare monitoring

In the second example, we used a health system monitoring dataset by Benneyan and Taşeli (2010). To
improve compliance with medical devices, healthcare organizations often monitor bundle reliability
statistics, each representing a percentage of patient compliance. Suppose ni and pi represent the
number of patients and percentage of compliant patients for element i in the bundle, and n and p take
the following values:
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Figure 5: Difference in PDF between truth and the saddlepoint approximation.

size=as.integer(c(12, 14, 4, 2, 20, 17, 11, 1, 8, 11))
prob=c(0.074, 0.039, 0.095, 0.039, 0.053, 0.043, 0.067, 0.018, 0.099, 0.045)

Since it is difficult to find an analytical solution for the density, we estimated the density with
simulation (1e8 trials) and treated it as the ground truth. We then compared simulations with 1e3,
1e4, 1e5, and 1e6 trials, and the saddlepoint approximation to the ground truth. (Note that running
simulation will take several minutes.)

# Sinib:
approx=dsinib(0:sum(size),size,prob)
approx=data.frame(s=0:sum(size),pdf=approx,type='saddlepoint')

# Gauss:
gauss_approx = d_norm_app(0:sum(size),size,prob)
gauss_approx = data.frame(s=0:sum(size),pdf=gauss_approx,type='gauss')

# Simulation:
data=foreach(n_sim=10^c(3:6,8),.combine='rbind')%do%{

ptm=proc.time()
n_binom=length(prob)
set.seed(42)
mat=matrix(rbinom(n_sim*n_binom,size,prob),nrow=n_binom,ncol=n_sim)

S=colSums(mat)
sim=sapply(X = 0:sum(size), FUN = function(x) {sum(S==x)/length(S)})
data.table(s=0:sum(size),pdf=sim,type=n_sim)

}

data=rbind(data,gauss_approx,approx)
truth=data[type=='1e+08',]

merged=merge(truth[,list(s,pdf)],data,by='s',suffixes=c('_truth','_approx'))
merged=merged[type!='1e+08',]
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Figure 6: Difference in PDF between truth and the Gaussian approximation.

ggplot(merged,aes(pdf_truth,pdf_approx))+
geom_point()+
facet_grid(~type)+
geom_abline(intercept=0,slope=1)+
theme_bw()+
xlab('Truth')+
ylab('Approximation')
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Figure 7: Comparison of PDF between truth and approximation.

Figure 7 shows that the simulation with 1e6 trials and the saddlepoint approximation are indistin-
guishable from the ground truth, while the Gaussian method and estimates with fewer simulations
show clear deviations from the truth. To further examine the magnitude of deviation, we plot the
difference in PDF between the truth and the approximation:

merged[,Error:=pdf_truth-pdf_approx]
merged[,`Relative Error`:=(pdf_truth-pdf_approx)/pdf_truth]
merged = melt(merged,measure.vars = c('Error','Relative Error'),variable.name = 'error_type',

value.name = 'error')

p2=ggplot(merged,aes(s,error))+
geom_point()+
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facet_grid(error_type~type,scales = 'free_y')+
theme_bw()+
xlab('Outcome')+
ylab('Truth-Approx')+
xlim(0,20) +
ylab(expression(frac(Truth - Approximation,Truth)~~~~~~~'Truth - Approximation'))

1000 10000 1e+05 1e+06 gauss saddlepoint
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Figure 8: Error and relative error between truth and approximation.

Figure 8 shows that that the saddlepoint method and the simulation with 1e6 draws both provide
good approximations, while the Gaussian approximation and simulations of smaller sizes show clear
deviations. We also note that the saddlepoint approximation is 5 times faster than the simulation of
1e6 trials.

ptm=proc.time()
n_binom=length(prob)
mat=matrix(rbinom(n_sim*n_binom,size,prob),nrow=n_binom,ncol=n_sim)
S=colSums(mat)
sim=sapply(X = 0:sum(size), FUN = function(x) {sum(S==x)/length(S)})
proc.time()-ptm
# user system elapsed
# 1.008 0.153 1.173

ptm=proc.time()
approx=dsinib(0:sum(size),size,prob)
proc.time()-ptm
# user system elapsed
# 0.025 0.215 0.239

Conclusion and future direction

In this paper, we presented an implementation of the saddlepoint method to approximate the distribu-
tion of the sum of independent and non-identical binomials. We assessed the accuracy of the method
by comparing it with first, the analytical solution in the simple case of two binomials, and second, the
simulated ground truth on a real-world dataset in healthcare monitoring. These assessments suggest
that the saddlepoint method generally provides an approximation superior to simulation in terms of
both speed and accuracy, and outperforms the Gaussian approximation in terms of accuracy. Overall,
the sinib package addresses the gap between the theory and implementation on the approximation of
sum of independent and non-identical binomial random variables.

In the future, we aim to explore other approximation methods such as the Kolmogorov approxi-
mation and the Pearson curve approximation described by Butler and Stephens (2016).
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cchs: An R Package for Stratified
Case-Cohort Studies
by Edmund Jones

Abstract The cchs package contains a function, also called cchs, for analyzing data from a stratified
case-cohort study, as used in epidemiology. For data from this type of study, cchs calculates Estimator
III of Borgan et al. (2000), which is a score-unbiased estimator for the regression coefficients in the
Cox proportional hazards model. From the user’s point of view, the function is similar to coxph
(in the survival package) and other widely used model-fitting functions. Convenient software has
not previously been available for Estimator III since it is complicated to calculate. SAS and S-Plus
code-fragments for the calculation have been published, but cchs is easier to use and more efficient
in terms of time and memory, and can cope with much larger datasets. It also avoids several minor
approximations and simplifications.

Introduction

One common type of study in epidemiology is the cohort study, in which participants are recruited
and followed over time. Participants who experience a certain type of event (e.g., a heart attack or the
diagnosis of a disease) are called cases, and participants who do not are called non-cases or controls.
A related type of study is the case-cohort study, which is nested within a cohort study. In a case-cohort
study, some of the covariates are only measured for the cases and the subcohort—the subcohort is a
randomly selected subset of the cohort. These covariates are not measured for the other participants.
A case-cohort study can often estimate effect-sizes almost as accurately as the corresponding cohort
study, but at much lower cost since measuring all the covariates on all the participants is expensive.

The case-cohort dataset contains only the cases and the subcohort, and is usually analyzed with a
Cox proportional hazards regression model (Cox, 1972). A common way to fit the Cox model is to
use the estimator of Prentice (1986), who proposed the case-cohort design. More advanced kinds of
analysis sometimes use information on the full cohort, such as the values of those covariates that were
measured for all the participants.

In a stratified case-cohort study, the selection of the subcohort is stratified. The cohort is divided
into strata and each stratum is assigned a sampling fraction, which is the number of participants in
that stratum who will be in the subcohort divided by the total number of participants in the stratum.
The purpose of the stratification is usually to improve the efficiency of the estimator. To fit a Cox
model to data from a stratified case-cohort study, one possible estimator is the time-fixed version of
Estimator III of Borgan et al. (2000). This estimator is optimal in the sense that it is score-unbiased; this
criterion is explained in the section “Comparison with other estimators”. In this article, “Estimator III”
means the time-fixed version of Borgan et al.’s Estimator III, unless otherwise stated.

The subject of this article is the cchs package (version 0.4.0; Jones, 2017), which has made Estimator
III available in a convenient form. The package consists of a single function, also called cchs, which
calculates the estimator, and an example dataset, called cchsData.

Previous software for calculating Estimator III includes SAS code (SAS Institute Inc., 1999) that
appears in Langholz and Jiao (2007a) and S-Plus code (Tibco Software Inc., 2007) in the appendix of
Cologne et al. (2012). S-Plus is no longer available for purchase but is very similar to R; Cologne et al.
(2012)’s code works in R if one function, match.data.frame, is imported from S-Plus.

The previously published SAS and S-Plus code-fragments both analyze specific datasets with
specific models. They could be rewritten to work more generally, but even then with some datasets they
would give slightly inaccurate results, and with others they would use far too much computational
time or memory to be usable, as explained later in the article. Langholz and Jiao wrote more general
SAS code (available at Langholz and Jiao, 2007b), but this still has the problems with inaccurate results
and computational resources and is less easy to use than cchs. Cologne et al. (2012) state that Estimator
III can be calculated by an application called Epicure, which is now sold by Risk Sciences International.
The estimator was also calculated by Borgan et al. themselves, but their code is not publicly available.

The cch function in the survival package (Therneau, 2017; Therneau and Grambsch, 2000) can
calculate several estimators for case-cohort data, including the estimator of Prentice (1986) and
Estimators I and II of Borgan et al. (2000). The functionality of cchs could be added to cch as a single
additional option. But Estimator III is complicated to calculate and cchs has numerous features that
cch lacks. Other software for stratified case-cohort studies includes the survey and NestedCohort
packages, which use inverse probability weights (Lumley, 2004, 2017a; Mark and Katki, 2006; Katki
and Mark, 2008), and the code for Estimator II in Samuelsen et al. (2007).
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The next five sections discuss the model, the estimator, and how to use cchs. The function is easy
to use for anyone who is accustomed to the syntax of model-fitting functions in R such as lm or coxph.
The subsequent sections discuss how cchs works internally compared to the previously published
SAS and S-Plus code. The previously published code makes several approximations and is unable to
cope with large datasets, but cchs avoids these drawbacks by manipulating the data in an economical
way, leading to huge savings in computational time and memory.

Parts of cchs are based on code from coxph, cch, and the appendix of Cologne et al. (2012), and
the mathematical formulas and some of the computational methods are from Therneau and Li (1999),
Borgan et al. (2000), Langholz and Jiao (2007a), and Cologne et al. (2012), but a major part of the
computational methods is original, as discussed in the section “How cchs works”.

The idea of creating cchs came from work on EPIC-InterAct (InterAct Consortium, 2011) and EPIC-
CVD (Danesh et al., 2007), two stratified case-cohort studies that are nested within the cohort from EPIC,
the European Prospective Investigation of Cancer and Nutrition (Bingham and Riboli, 2004). EPIC-
InterAct is a study of incident type 2 diabetes with data from 29 centers in eight European countries,
where the subcohort was stratified by center or country. EPIC-CVD is a study of cardiovascular disease
that uses most of the same centers as EPIC-InterAct and the same subcohort in those centers. In
Jones et al. (2015), data from EPIC-InterAct was used to compare five different models for data from
stratified case-cohort studies, and a pre-release version of cchs was used to fit two of those models.

The model and the estimator

The Cox model for survival-time data is commonly defined by this equation:

hi(t) = h0(t) exp(β>zi),

where

hi is the hazard function for participant i,

t is the time to the event,

h0 is the baseline hazard function,

β is the regression coefficients (log hazard ratios), and

zi is the covariates for participant i.

If all the event-times are distinct, then the partial likelihood is

∏
j

exp(β>zij )

∑k Yk(tj) exp(β>zk)
,

where

tj is the jth event-time,

ij is the participant whose event happened at time tj,

Yk(tj) =

{
1 if tj ∈ (t0k, t1k]

0 otherwise
,

t0k is the entry-time for participant k (often zero for all participants), and

t1k is the exit-time for participant k (i.e. the time at which they had the event or were censored).

The product is over all the cases and the sum is over all the participants. The time-interval (t0k, t1k] is
participant k’s “at-risk time” and Yk(tj) is an indicator variable for whether participant k is at risk at
time tj.

For case-cohort data, zi is only known for the cases and subcohort members, so the partial
likelihood cannot be evaluated and it is impossible to estimate the regression coefficients using
the method of maximum likelihood. Instead, the coefficients are estimated by maximizing pseudo-
likelihoods, which are approximations of the partial likelihood. The pseudo-likelihood for Estimator
III is

∏
j

α−1
s(ij)

exp(β>zij )

∑k∈R(tj) Yk(tj)α
−1
s(k) exp(β>zk)

,

where

s(i) is the stratum that contains participant i,

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 486

αs is the sampling fraction for stratum s (the proportion of stratum s that appears in the
subcohort),

R(tj) =

{
C if ij ∈ C
C ∪ {ij} \ {Js(ij)} if ij /∈ C

,

C is the subcohort, and

Js is a participant randomly selected from C ∩ s (where s is a stratum).

Borgan et al. (2000) called this a “swapper” method because of the way R(tj) is defined for ij /∈ C. As
shown above, Js(ij) is removed from C and ij is added. If Js(ij) is not at risk at time tj, then its removal
from R(tj) makes no difference to the pseudo-likelihood since YJs(ij )

(tj) = 0. It is recommended to

use an asymptotic covariance estimator rather than a robust one (Jiao, 2001); see the section “The
calculation of the covariance matrix”.

Langholz and Jiao (2007a) discuss two situations in which a case-cohort study might be stratified,
which they call “exposure stratified” and “confounder stratified.” In the exposure stratified situation,
the strata are defined by levels of one or more covariates, and the purpose of the stratification is to
increase the efficiency of the estimator. In the confounder stratified situation, the strata are defined
by a covariate that is believed to confound the relation between the exposure of interest and the
event-time (e.g., the center in a multi-center study). For an exposure stratified study, it is usual to fit
a single unstratified Cox model to the data, and this is is the situation for which Estimator III was
designed. For a confounder stratified study, it is more natural to fit a stratified Cox model—in which
each stratum s has its own baseline hazard h0s(t) and hi(t) = h0s(i)(t) exp(β>zi)—and for this, the
estimator of Prentice (1986) should be used; but it is still possible to fit an unstratified model using
Estimator III.

Comparison with other estimators

Borgan et al. (2000) described three estimators for the Cox model with data from a stratified case-cohort
study. These have been investigated in several simulation studies: Borgan et al. used cohorts of size
1000 with subcohorts of size 100, and found that there was little to choose between Estimators II and III,
but both performed better than Estimator I; Cologne et al. (2012) made similar findings but reported
that Estimator III did slightly better than Estimator II when the sampling fraction was very small; and
Samuelsen et al. (2007) found that Estimator II performed well.

Of the three estimators, only Estimator III is score-unbiased. This is one of the main desirable
criteria for estimators for case-cohort data. It means that the expectation of the pseudo-score (the
derivative of the pseudo-likelihood) is zero when the coefficients take their true values (Godambe,
1960, 1976; Lindsay, 1982; Severini, 2011; Cologne et al., 2012). On the other hand, Estimator II has
smaller asymptotic variance (this was hinted at in Borgan et al., 2000, stated in Samuelsen et al., 2007,
and explained most clearly in Samuelsen et al., 2006).

Recall that “Estimator III” refers to the time-fixed version of that estimator, as calculated by
cchs. Borgan et al. also described time-dependent versions of the three estimators, which have
smaller asymptotic variance (Kulich and Lin, 2004). The time-dependent version of Estimator III is
score-unbiased (Borgan et al., 2000), but it is even more complicated to calculate than the time-fixed
version.

Estimator II can be improved using covariate data on the whole cohort, if that is available (Breslow
et al., 2009a,b; Yan et al., 2017). The estimator of Prentice (1986) can also be adapted to work with
stratified case-cohort studies. Its pseudo-likelihood is

∏
j

exp(β>zij )

∑k∈C∪{ij} Yk(tj) exp(β>zk)
.

This estimator is only score-unbiased if for ij /∈ C the C in the above expression is replaced by
(C ∩ s(ij)). This is less efficient than Estimator III since the denominator includes fewer participants.

For stratified case-cohort data it is also possible to use general methods based on inverse probability
weights. These methods are suitable for a wide range of complex sampling schemes (Mark and Katki,
2006; Lumley, 2017b), but no claim is made that the estimators are score-unbiased. This approach
has been used by Gray (2009), Liu et al. (2012), and Payne et al. (2016). In other research, Kulich and
Lin (2004) presented a framework that covered many case-cohort estimators and the possibility of
stratified subcohort-selection, and Zeng and Lin (2007) and Kim et al. (2013) described wide classes
of sampling schemes and regression models for survival analysis, of which the stratified case-cohort
design and the Cox model are special cases.
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How to use cchs

From the user’s point of view, cchs is reasonably similar to coxph. The most important arguments are:

formula, which specifies the model (the left-hand side must be a "Surv" object),

data, a data frame or environment that contains the variables in the formula,

inSubcohort, an indicator for whether each participant is in the subcohort,

stratum, the stratum variable,

samplingFractions, the sampling fraction for each stratum,

cohortStratumSizes, the size of each stratum in the full cohort, and

precision, discussed below.

If the data is supplied as a data frame, it is assumed to be in the usual form where each row corresponds
to one observation (i.e., one participant in the case-cohort study) and each column corresponds to
a variable. The inSubcohort and stratum arguments can either be columns or elements of data or
separate objects that are named in the call to cchs.

One of samplingFractions or cohortStratumSizes must be specified, but not both. If the latter
is specified, then cchs uses it to calculate the former—for each stratum, it divides the size of the
subcohort by the size of the cohort, which is given by cohortStratumSizes. If the sampling fractions
are not stored as a column of data, then they can be passed to cchs as a named vector. For example, if
the stratum variable takes the values "London" and "Paris" and the sampling fractions are 0.1 and 0.2
respectively, then this vector should be c(London = 0.1, Paris = 0.2).

The precision argument must be set if there are any tied event-times. Estimator III requires
all event-times to be distinct, so cchs changes tied event-times by small amounts, as suggested by
Langholz and Jiao (2007a), and it uses precision to work out suitable values. If the times are all
integers, then precision should be set to 1. In datasets from EPIC-InterAct and EPIC-CVD, the times
are recorded to the nearest day but stored as numbers of years, so precision should be set to 1 /
365.25.

Additional arguments are discussed in “Obscure aspects of the calculation”.

An example analysis

cchsData is an artificial stratified case-cohort dataset that was created from the nwtco dataset in the
survival package. The original nwtco data comes from two clinical trials run by the National Wilms
Tumor Study Group in the United States (D’Angio et al., 1989; Green et al., 1998). Different artificial
case-cohort datasets based on nwtco have been used by Kulich and Lin (2004), Breslow et al. (2009a),
and Breslow et al. (2009b).

In cchsData, the event is relapse of Wilms tumor and the subcohort-selection is stratified by the
result of a histological examination. The most important variables are time (the time to the event
or censoring), isCase (the event-indicator), inSubcohort (the indicator for being in the subcohort),
localHistol (the stratum variable), and sampFrac (the stratum-specific sampling fractions). The times
are stored as numbers of days, and some of them are tied, so the precision argument of cchs should
be set to 1 (or 1/2, 1/3, etc.).

The sampling fractions in cchsData are 5% and 20%. The subcohort is about half as big as the
set of cases. In case-cohort studies in general, the sampling fraction is typically in the area of 5%
but sometimes larger (Sharp et al., 2014), and the subcohort is usually larger than the set of cases
(Juraschek et al., 2013; Lamb et al., 2013; Jones et al., 2015) but occasionally smaller (Huxley et al.,
2013).

The following command uses Estimator III to fit a Cox model to cchsData. The covariates are age
at diagnosis (ageAtDiagnosis) and stage of cancer at diagnosis (stage):

> cchs(Surv(time, isCase) ~ ageAtDiagnosis + stage, data = cchsData,
+ inSubcohort = inSubcohort, stratum = localHistol,
+ samplingFractions = sampFrac, precision = 1)

The cchs function returns an object of S3 class "cchs" that contains many of the same elements as
a "coxph" object and several additional elements. When a "cchs" object is printed, information about
the dataset and the changes to the tied event-times appears before the coefficients. The output from
the above command is:
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Call: cchs(formula = Surv(time, isCase) ~ stage + ageAtDiagnosis,
data = cchsData, inSubcohort = inSubcohort, stratum = localHistol,
samplingFractions = sampFrac, precision = 1)

Number of observations/rows: 785, of which
subcohort non-cases: 214
subcohort cases: 48
non-subcohort cases: 523

179 of 571 discretized event-times were changed by up to 0.01 to deal
with ties.
Number of strata for subcohort-selection: 2
Coefficients (HR = hazard ratio, CI = 95% confidence interval, SE = standard
error):

HR CIlower CIupper p logHR SElogHR
ageAtDiagnosis 1.101685 1.029489 1.178944 0.005104173 0.09684087 0.03458127
stageII 1.397695 0.915168 2.134635 0.121219767 0.33482413 0.21606100
stageIII 1.794611 1.156081 2.785816 0.009150320 0.58478850 0.22436755
stageIV 2.367953 1.382691 4.055282 0.001686931 0.86202589 0.27449190

This output can be interpreted like output from any other function that fits the Cox model. For
example, the hazard is estimated to be 79% higher for patients who were at stage III when diagnosed
compared to patients who were at stage I, adjusting for age at diagnosis. The level for the confidence
intervals in the output is determined by the confidenceLevel argument to cchs, whose default is 0.95.

If the output of cchs is stored as an object called result, then the coefficients are available as
result$coefficients and the covariance matrix is available as result$var. The table at the bottom
of the output is stored as result$coeffsTable for convenience. For example, this can be used to get
the confidence intervals for the hazard ratio for ageAtDiagnosis:

> result <- cchs(Surv(time, isCase) ~ ageAtDiagnosis + stage, data = cchsData,
+ inSubcohort = inSubcohort, stratum = localHistol,
+ samplingFractions = sampFrac, precision = 1)
> result$coeffsTable["ageAtDiagnosis", c("CIlower", "CIupper")]

Other issues for the user

Calling cchs twice with the same arguments will not necessarily give exactly the same results, which
is unusual for estimators that maximize a likelihood or pseudo-likelihood. This happens for two
reasons: first, Estimator III involves randomness in the choice of Js(ij); and second, if there are tied
event-times, these are changed in a random way. To get exactly the same results, set the random seed
(using set.seed) just before the call to cchs.

Another approach would be to call cchs multiple times, using the replicate command, then
combine the results, perhaps by using Rubin’s rules (Rubin, 1987; Schafer, 1999), which are normally
used for multiple imputation. With this approach, for each term in the model the coefficient estimate
is the mean of the separate estimates, and the variance is the mean of the separate variances plus a
term to account for the between-replication variability. It might be worth expressly comparing the
within-replication variability (the separate variance estimates) with the between-replication variability
(the variability due to the randomness of the estimator). Figure 1 shows the point-estimates and
confidence intervals that appear in the previous section, and the quartiles and ranges of the point-
estimates produced by 1000 calls to cchs with the same arguments. Here, the between-replication
variability is small, and very small compared to the within-replication variability.

In coxph, model formulas can contain certain special terms. Of these, cchs allows offset terms,
but it does not allow cluster (for identifying correlated groups of rows), strata (for fitting a stratified
Cox model), or tt (for time-varying covariates). If the data are from a stratified case-cohort study and
it is desired to fit a stratified Cox model where the strata in the baseline hazard are the same as the
strata for the subcohort-selection, then Prentice’s estimator should be used (Langholz and Jiao, 2007a).

All error and warning messages produced by cchs are designed to be meaningful. This is achieved
by checking the arguments and raising an error if any of them have illegal values, and by adding extra
messages to any errors or warnings raised by model.frame or coxph when they are called internally
by cchs. The addition of the extra messages results in the call stack, which can be viewed by typing
traceback(), being longer and more complicated than usual. Therefore if traceback() is going to be
used to diagnose problems, it is advisable to switch the extra messages off by setting annotateErrors
= FALSE.
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Figure 1: The dots and horizontal lines show the point-estimates and confidence intervals from the
output in “An example analysis”; this is within-replication variability. The boxes and whiskers show
the hazard ratios from 1000 replications of cchs, using the dataset and model in the same section; this
is between-replication variability. The boxes show the quartiles and the whiskers show the full ranges.

How cchs works

The cchs function works differently from the previously published SAS and S-Plus code in several
ways, and these novel aspects of its implementation affect the amount of computational time and
memory that it uses and enable it to work with much bigger datasets. They also affect the numbers in
the output. These issues are discussed here for cautious or curious users who want to know how cchs
works or compare it with other software for Estimator III.

Functions that calculate estimators for the Cox model with case-cohort data invariably work by
manipulating the data or the model-formula in various ways—for example, duplicating rows and
changing entry-times, or appending weights to the rows and including the weight in the model-
formula—and then passing the data and model-formula to a second model-fitting function (in R,
coxph) whose original purpose is to fit the Cox model with the standard estimator. The manipulation is
done in such a way that when the second function attempts to maximize the partial likelihood, what it
actually maximizes is the pseudo-likelihood for the case-cohort estimator. The second function returns
the estimates of the regression coefficients and their covariance matrix, and the top-level function
usually then makes adjustments to the covariance matrix.

This method works because the standard partial likelihood and the various pseudo-likelihoods all
have similar forms. They have the same number of multiplicative terms, one for each case, and the
same values in the numerators (apart from multiplicative factors, which are easy to deal with). The
only differences are the sets of participants who appear in the denominators and, for some pseudo-
likelihoods, multiplicative factors in the denominators. These sets are dealt with by duplicating or
excluding rows and changing entry- and exit-times, and any multiplicative factors are dealt with by
using an offset term in the model-formula.

For Estimator III, the manipulations are rather complicated because of the swapping. The cchs
function manipulates the data as follows:

1. Define a small number ε, which is smaller than any of the differences between consecutive
event-times.

2. For each ij /∈ C, change the entry-time to tj − ε, where tj is the exit-time.

3. For each stratum s:

3.1 Choose a random participant Js from C ∩ s. Denote the entry-time for Js by t0s and the
exit-time by t1s.

3.2 Let Us = {tj : ij ∈ s, ij /∈ C, t0s < tj ≤ t1s}. Sort Us into increasing order as us(1), . . . , us(|Us |).

3.3 Replace Js’s row by |Us|+ 1 new rows with variables as follows.

Row 1: entry-time t0s, exit-time us(1) − ε, event-indicator zero.
Row 2: entry-time us(1), exit-time us(2) − ε, event-indicator zero.
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. . .
Row |Us|: entry-time us(|Us |−1), exit-time us(|Us |) − ε, event-indicator zero.

Row |Us|+ 1: entry-time us(|Us |), exit-time t1s, event-indicator as in the original row.

These steps are best understood by referring to the earlier definition of R(tj) and bearing in mind
that coxph takes a row’s at-risk time to be the half-open interval, (entry-time, exit-time]. The purpose
of step 1 is to choose ε to be sufficiently small that steps 2 and 3 do not have any unintended effects
on other terms in the pseudo-likelihood. Step 2 has the effect of removing the non-subcohort cases
from R(tj), except for ij itself, which is not removed. Step 3 makes the further changes to R(tj) that are
needed if ij /∈ C. Note that it deals with one Js, not one ij, at a time. Step 3.1 chooses Js. Step 3.2 defines
Us to be the event-times that lie in the range of Js’s at-risk time and correspond to non-subcohort cases
in s. Step 3.3 excises a short stretch of at-risk time from Js at each time in Us by splitting Js’s row into
multiple rows with separate stretches of at-risk time.

The effect of step 3 is to remove Js(ij) from R(tj) when ij /∈ C, as required by the definition of R(tj).
For a non-subcohort case in s whose event-time is not in Us, it makes no difference whether Js(ij) is in
R(tj) or not, because YJs(ij )

(tj) is zero; so for such cases this manipulation is not necessary.

One other change to the data is needed. An extra column is created that contains − log αs(k) for
participant k, and this is included as an offset term in the model-formula that cchs passes to coxph.
This has the effect of inserting the α−1

s(k) factors that are needed in the denominators.

The calculation of the covariance matrix

The cchs function uses an asymptotic covariance estimator, as recommended by Jiao (2001). Internally,
after it manipulates the data and calls coxph, the final step is to adjust the covariance matrix. This is
done by using the matrix of “dfbeta” residuals, D, produced by residuals.coxph; dij is the change in
the estimate of regression coefficient j when row i is dropped from the data (or an approximation of that
change). The covariance matrix is adjusted by adding ∑s ms(1− αs)Cov DC∩s, where ms = |C ∩ s|,
DC∩s is the rows of D that correspond to C ∩ s, and Cov DC∩s is the empirical covariance matrix
D>C∩sDC∩s/(ms − 1).

This adjustment corresponds to Equation (17) in Borgan et al. (2000). The use of D is based on the
formula for the adjustment to the covariance matrix with unstratified case-cohort data, which appears
on page 102 of Therneau and Li (1999) and as Equation (5) in Langholz and Jiao (2007a). There is a small
discrepancy between the formulas in these two publications. To explain this, let DC be the rows of D
that correspond to C and let α = m/n be the sampling fraction, where m is the size of the subcohort
and n is the size of the cohort. According to Therneau and Li, the quantity to add to the covariance
matrix is (1− α)D>C DC, but according to Langholz and Jiao it is m(n−m)

n Cov DC = (1− α) m
m−1 D>C DC.

These expressions differ by a factor of m/(m− 1), which is unimportant if m is large, but makes a
difference if m is small. The cchs function does the calculation in the same way as Langholz and Jiao
and Cologne et al. (2012).

How the SAS code and S-Plus code work

The previously published SAS and S-Plus code-fragments for Estimator III manipulate the data in a
completely different way from cchs:

1. Define a small number ε, which is smaller than any of the differences between consecutive
event-times.

2. For each ij /∈ C, change the entry-time to tj − ε.

3. Replace the dataset with a new dataset that is constructed as follows. For each ij:

3.1 Make one copy of all the rows.

3.2 Drop those of the new rows that are not at risk at tj.

3.3 For all rows, set the entry-time to tj − ε and the exit-time to tj, and set the event-indicator
to 1 for ij and 0 for the other rows.

4. For each ij /∈ C, choose a random participant Js(ij) from C ∩ s(ij) and remove the row that
contains Js(ij) and has exit-time tj.

Step 3 radically changes the dataset and greatly increases its size. The result of the manipulations is
that when the data is passed to coxph in S-Plus or proc phreg in SAS, each row corresponds to exactly
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one additive term in the numerator or denominator of one multiplicative term of the pseudo-likelihood.
The α−1

s(k) terms and the adjustment to the covariance matrix are dealt with in the same way as in cchs.

The advantage of this method is that steps 3 and 4 are relatively simple—the “swapping” in
step 4 just consists of choosing and removing a single row each time. The disadvantages are that if
the original dataset is medium or large in size then this method uses a gigantic amount of memory
and requires coxph to deal with a gigantic dataset. For step 3.1, the S-Plus code creates a data frame
that contains one row for every combination of a case and a participant. In EPIC-CVD, a typical
dataset that was supplied to an investigator contained about 31, 000 participants, of whom 14, 000 were
cases, and this took up about 4.4MB as a binary file. So the data frame created by step 3 would have
31, 000× 14, 000 ≈ 434 million rows and take up about 62GB. This is too big for a desktop computer to
store in memory, and even after some rows are removed in step 4, the data frame would be far too big
for coxph to process in a reasonable amount of time.

In contrast, when cchs is used on the same dataset, the manipulated dataset has fewer than
31, 000 + 14, 000 = 45, 000 rows. This 45, 000 was calculated by supposing that for every case an extra
row is created, whereas in reality some cases are in the subcohort and it is likely that some “swapper”
rows are not at risk at the relevant event-times, and for these no extra rows are created, so the true
number of rows in the manipulated dataset is less than 45, 000.

The manipulation of the data by the SAS and S-Plus code can be regarded as maximal, in the sense
that each row ultimately corresponds to a single additive term in a single multiplicative term of the
pseudo-likelihood. The manipulation by cchs can be regarded as minimal, since it makes only the
manipulations that are strictly necessary in order for coxph to calculate the correct pseudo-likelihood,
and it leaves the data with the smallest possible number of rows.

Obscure aspects of the calculation

Three obscure issues arise in calculating Estimator III. Under normal circumstances users of cchs can
ignore these, but for development or testing it may be necessary to understand these issues or, as
described below, set the relevant logical arguments to different values.

The first issue has to do with the dropNeverAtRiskRows argument, which determines whether rows
should be dropped if their at-risk time does not contain any of the event-times. The dropped rows make
no difference to the regression coefficients output by cchs, but they do affect the covariance-estimates
and confidence intervals, because of the approximation that residuals.coxph uses to calculates the
dfbeta residuals. The SAS code and S-Plus code drop these rows (in step 3.2), but Borgan et al. (2000)
and Langholz and Jiao (2007a) make no mention of this issue. In cchs, dropNeverAtRiskRows is TRUE
by default but can be set to FALSE if desired.

The second issue has to do with the dropSubcohEventsDfbeta argument. When the adjustment
to the covariance matrix is calculated, the correct way is to use all the rows of the matrix of dfbeta
residuals that correspond to subcohort members. The SAS code and S-Plus code both omit the rows
that correspond to subcohort cases at their event-times, presumably because this makes the code
simpler and is unlikely to change the output greatly. By default, cchs calculates the adjustment to the
covariance matrix in the strictly correct way. But if dropSubcohEventsDfbeta is TRUE, then it calculates
the adjustment in the same way as the SAS and S-Plus code, as follows. For each ij ∈ C, it splits
that row of the data at tj − ε and replaces it with two rows; the first row has entry-time t0ij , exit-time
tj − ε, and event-indicator 0; and the second row has entry-time tj − ε, exit-time tj, and event-indicator
1. When calculating the adjustment to the covariance matrix, cchs excludes the row of the dfbeta
residuals that corresponds to the second of these two rows.

The third issue is that the “swapper” Js(ij) is supposed to be selected once for each stratum (see
Section 3 of Borgan et al., 2000), but the SAS and S-Plus both select it once for each case. The cchs
function selects the swapper correctly. It has no logical argument to specify how the swapper should
be selected, since it manipulates the data in a completely different way from the SAS and S-Plus code.

Discussion

In case-cohort studies, stratified selection of the subcohort seems to be common (Sharp et al., 2014),
so there are likely to be plenty of investigations where cchs may be useful. The way in which cchs
manipulates the data makes it faster and more computationally efficient than the previously published
SAS and S-Plus code. The three obscure issues described in the previous section should not greatly
affect most analyses, but will make a difference with small datasets.
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Small Area Disease Risk Estimation and
Visualization Using R
by Paula Moraga

Abstract Small area disease risk estimation is essential for disease prevention and control. In this
paper, we demonstrate how R can be used to obtain disease risk estimates and quantify risk factors
using areal data. We explain how to define disease risk models and how to perform Bayesian inference
using the INLA package. We also show how to make interactive maps of estimates using the leaflet
package to better understand the disease spatial patterns and communicate the results. We show an
example of lung cancer risk in Pennsylvania, United States, in year 2002, and demonstrate that R
represents an excellent tool for disease surveillance by enabling reproducible health data analysis.

Introduction

Disease risk mapping analyses can help to better understand the spatial variation of the disease, and
allow the identification of important public health determinants. These analyses are essential to inform
programmes of disease prevention and control. The increased availability of geospatial disease and
population data has enabled to study a number of health outcomes worldwide such as influenza and
cancer in developed countries (Moraga and Ozonoff, 2013; Moraga and Kulldorff, 2016), and neglected
tropical diseases (Moraga et al., 2015; Hagan et al., 2016).

Areal disease data often arise when disease outcomes observed at point level locations are ag-
gregated over subareas of the study region due to several reasons such as patient confidentiality.
Producing disease risk estimates at areal level is complicated by the fact that raw rates can be very
unstable in areas with small populations and for rare diseases, and also by the presence of spatial
correlation that may exist due to spatially correlated risk factors (Leroux et al., 2000). Thus, generalized
linear mixed models are often used to obtain disease risk estimates since they enable to improve local
estimates by accommodating spatial correlation and the effects of explanatory variables. Bayesian
inference in these models may be performed using the Integrated Nested Laplace Approximation
(INLA) approach (Rue et al., 2009) which is a computational alternative to MCMC that allows to do
approximate Bayesian inference in latent Gaussian models. This approach is implemented in the R
package called INLA (Rue et al., 2017) (http://www.r-inla.org/).

Small area disease estimates can be visualized through maps, greatly facilitating effective commu-
nication. R provides excellent tools for visualization including packages for making interactive maps
such as leaflet (Cheng et al., 2017). The maps created with leaflet support interactive panning and
zooming which is very convenient to examine small areas in detail.

In this paper, we illustrate the use of R for performing disease risk mapping analysis using areal
data. First, we introduce disease risk models for areal data and give a brief overview of INLA. In
Section Z.4 we show how to estimate lung cancer risk and quantify risk factors in Pennsylvania,
United States, in year 2000. Specifically, we discuss how to compute the observed and expected disease
counts in the Pennsylvania counties, how to obtain disease risk estimates by fitting a spatial disease
risk model using INLA, and how to build interactive maps showing the risk estimates using leaflet.
Finally, the conclusions are presented.

Disease risk models

Disease risk estimates in areas can be obtained by computing the Standardized Incidence Ratios (SIRs).
For area i, i = 1, . . . , n, the SIR is obtained as the ratio of the observed to the expected disease counts:
SIRi = Yi/Ei. The expected counts represent the total number of disease cases that one would expect
if the population of the specific area behaved the way the standard (or regional) population behaves.
The expected counts can be calculated using indirect standardization as

Ei =
m

∑
j=1

r(s)j nj,

where r(s)j is the disease rate in stratum j of the standard population, and nj is the population in
stratum j of the specific area. The SIR corresponding to area i, SIRi, indicates whether the area i has
more (SIRi > 1), equal (SIRi = 1) or fewer (SIRi < 1) cases observed than expected from the standard
population. When applied to mortality data, the ratio is commonly known as the Standardized
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Mortality Ratio or SMR.

Although in some situations SIRs can give a sense of the disease’s spatial variability, very extreme
values can occur in areas with small populations owing to the small sample sizes involved. In contrast,
disease models are preferred to obtain disease risks estimates because they enable to incorporate
covariates and borrow information from neighboring areas to improve local estimates, resulting in
the smoothing or shrinking of extreme values based on small sample sizes (Gelfand et al., 2000). A
common approach is to model the observed counts Yi, i = 1, . . . , n, using a Poisson distribution with
mean Ei × θi, where Ei is the expected counts and θi is the relative risk in area i. Then, the log risks are
modeled with a sum of an intercept to model the overall disease risk level, and random effects that
account for extra-Poisson variability in the observed data (Lawson, 2009). Areas with relative risks
θ > 1 and θ < 1 are areas with high and low risks, respectively. Areas with θ = 1 have the same risk
as expected from the standard population.

The general model in disease mapping is expressed as

Yi ∼ Po(Ei × θi), i = 1, . . . , n,

log(θi) = α + ui + vi.

Here, α denotes the overall risk level, ui is a spatial structured random effect that models the spatial
dependence between the relative risks, and vi is an unstructured exchangeable random effect that
models uncorrelated noise. Often, other covariates or random effects are also included to quantify risk
factors and deal with other sources of variability.

A model commonly used in disease mapping is the Besag-York-Mollié (BYM) model (Besag
et al., 1991). In this model, the spatially structured component ui is modelled with the conditional
autoregressive (CAR) distribution which smoothes the data according to a certain adjacency structure
given by a neighborhood matrix that specifies two areas are neighbours if they have a common
boundary. The CAR distribution is expressed as

ui|u−i ∼ N
(

ūδi ,
σ2

u
nδi

)
,

where ūδi = n−1
δi

∑j∈δi
uj, and δi and nδi represent, respectively, the set of neighbours and the number

of neighbours of area i. The unstructured component vi is modelled using independent and identically
distributed normal variables with zero-mean and variance equal to σ2

v .

INLA

Traditionally, Bayesian inference has been implemented via MCMC methods which make inference
tractable for complex models but may present convergence and computation time problems. Inte-
grated Nested Laplace Approximation (INLA) is a computational less-intensive alternative to MCMC
designed to perform approximate Bayesian inference in latent Gaussian models (Rue et al., 2009).
These models include a very wide and flexible class of models ranging from generalized linear mixed
to spatial and spatio-temporal models. Specifically, models are of the form

yi|x, θ ∼ π(yi|xi, θ),

x|θ ∼ N(0, Q(θ)−1),

θ ∼ π(θ),

where y are the observed data, x represents a Gaussian field, and θ are hyperparameters. Observations
yi are assumed to belong to an exponential family with mean µi = g−1(ηi). The linear predictor ηi
accounts for effects of various covariates in an additive way,

ηi = α +
nβ

∑
k=1

βkzki +
n f

∑
j=1

f (j)(uji).

Here, α is the intercept, {βk}’s quantify the linear effects of covariates {zki} on the response, and
{ f (j)(·)}’s are a set of non-linear or smooth functions defined in terms of some covariates {uji}. This
formulation permits to accommodate a wide range of models thanks to the very different forms that
the functions { f (j)} can take including the disease risk models previously introduced. INLA uses a
combination of analytical approximation and numerical integration to obtain approximated posterior
distributions of the parameters that can then be post-processed to compute quantities of interest like
posterior expectations and quantiles.
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The INLA approach is implemented in the R package INLA. This package is not on CRAN because
it uses some external C libraries that make difficult to build the binaries. Therefore, when we install
the package we need to use install.packages() adding the URL of the INLA repository:

install.packages("INLA", repos = "https://inla.r-inla-download.org/R/stable",
dep = TRUE)

To fit a model using INLA we need to take two steps. First, we need to write the linear predictor of
the model as a formula object in R. Then, we run the model calling the inla() function where we
specify the formula, the family, the data and other options. Results can be inspected with the summary()
function and the posterior distributions can be post-processed using a set of specific functions provided
by INLA. Further details about how to use all these functions will be given in the disease mapping
example in next Section.

Example: lung cancer risk in Pennsylvania

In this Section we present an example of small area disease mapping study where we estimate the
risk of lung cancer in Pennsylvania counties in year 2002. We use the data contained in the R package
SpatialEpi (Kim and Wakefield, 2016). The data contain the counties population which was obtained
from the 2000 decennial census, and the lung cancer and smoking proportions which were obtained
from the Pennsylvania Department of Health. We show how to calculate the observed and expected
disease cases, and the the SIRs in each of the counties. We also obtain disease risk estimates and
quantify risk factors by fitting a Bayesian model using INLA. Finally, we show how to make interactive
maps of the risk estimates using leaflet.

Data

We start by loading the SpatialEpi package and attaching the pennLC data.

library(SpatialEpi)
data(pennLC)

By typing ?pennLC we see pennLC is a list with the following elements:

• geo: a data frame of county ids, and longitude and latitude of the geographic centroid of each
county,

• data: a data frame of county ids, number of cases, population and strata information,
• smoking: a data frame of county ids and proportion of smokers,
• spatial.polygon: a SpatialPolygons object with the map of Pennsylvania.

pennLC$data contains the number of lung cancer cases and the population at county level, stratified on
race (white and non-white), gender (female and male) and age group (under 40, 40-59, 60-69 and 70+).

We now create a data frame called d with columns containing the counties ids, the observed and
expected number of cases, the smoking proportions and the SIRs. Specifically, d will contain the
following columns:

• id: id of each county,
• Y: observed number of cases in each county,
• E: expected number of cases in each county,
• smoking: smoking proportion in each county,
• SIR: SIR of each county.

Observed cases

pennLC$data contains the cases in each county stratified by race, gender and age. We can obtain the
number of cases in each county, Y, by aggregating the rows of pennLC$data by county and adding up
the observed number of cases.

d <- aggregate(x = pennLC$data$cases, by = list(county = pennLC$data$county),
FUN = sum)

aggregate() returns a data frame where the first row is the county and the second column is the
observed number of cases in each of the counties. We set the column names of the returned object
equal to id and Y.

names(d) <- c("id", "Y")
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Expected cases

Now we calculate the indirectly standardized expected number of cases in each county as explained
in Section Z.2. That is, we use the strata-specific rates from the the Pennsylvania population (standard
population), and apply them to the population distribution of the county. The expected counts
represent the total number of disease cases one would expect if the population in the county behaved
the way the Pennsylvania population behaves. We can do this by using the expected() function of
SpatialEpi. This function has three arguments, namely,

• population: a vector of population counts for each strata in each area,

• cases: a vector with the number of cases for each strata in each area,

• n.strata: number of strata considered.

Vectors population and cases have to be sorted by area first and then, within each area, the counts for
all strata need to be listed in the same order. All strata need to be included in the vectors, including
strata with 0 cases. Hence, to get the expected counts we first sort the data using the order() function
where we specify the order as county, race, gender and finally age.

pennLC$data <- pennLC$data[order(pennLC$data$county, pennLC$data$race,
pennLC$data$gender, pennLC$data$age), ]

Then we call the expected() function to obtain the expected counts E in each county. In the function
we set population equal to pennLC$data$population and cases equal to pennLC$data$cases. There
are 2 races, 2 genders and 4 age groups for each county, so number of strata is set to 2 x 2 x 4 = 16.

population <- pennLC$data$population
cases <- pennLC$data$cases
n.strata <- 16
E <- expected(population, cases, n.strata)

Now we add the vector E to the data frame d which contains the counties ids (id) and the
observed counts (Y), making sure the E elements correspond to the counties in d$id in the same
order. To do that, we use match() to calculate the vector of the positions that match d$id in
unique(pennLC$data$county) which are the corresponding counties of E. Then we rearrange E using
that vector.

d$E <- E[match(d$id, unique(pennLC$data$county))]

Smokers proportions

We also add to d the variable smoking which represents the proportion of smokers in each county. We
add this variable using the merge() function where we specify the columns for merging as id in d and
county in pennLC$smoking.

d <- merge(d, pennLC$smoking, by.x = "id", by.y = "county")

SIRs

Finally, we compute the vector of SIRs as the ratio of the observed to the expected counts, and add it
to the data frame d.

d$SIR <- d$Y/d$E

Add data to map

The map of Pennsylvania counties is given by the SpatialPolygons object called pennLC$spatial.polygon.
Using this object and the data frame d we can create a SpatialPolygonsDataFrame called map, that will
allow us to make maps of the variables in d. In order to do that, we first set the row names of the data
frame d equal to d$id. Then we merge pennLC$spatial.polygon and d matching the SpatialPolygons
member Polygons ID slot values with the data frame row names.

library(sp)
rownames(d) <- d$id
map <- SpatialPolygonsDataFrame(pennLC$spatial.polygon, d, match.ID = TRUE)
head(map@data)
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## id Y E smoking SIR
## adams adams 55 69.62730 0.234 0.7899200
## allegheny allegheny 1275 1182.42804 0.245 1.0782897
## armstrong armstrong 49 67.61012 0.250 0.7247435
## beaver beaver 172 172.55806 0.276 0.9967660
## bedford bedford 37 44.19013 0.228 0.8372910
## berks berks 308 300.70598 0.249 1.0242563

Mapping variables

We can visualize the observed and expected disease counts, the SIRs, as well as the smokers proportions
in an interactive chropleth map using the leaflet package. We create the map by first calling leaflet()
and adding the default OpenStreetMap map tiles to the map with addTiles(). Then we add the
Pennsylvania counties with addPolygons() where we specify the areas boundaries color (color) and
the stroke width (weight). We fill the areas with the colours given by the color palette function
generated with colorNumeric(), and set fillOpacity to a value less than 1 to be able to see the
background map. We use colorNumeric() to create a color palette function that maps data values
to colors according to a given palette. We create the function using the parameters palette with
the color function that values will be mapped to, and domain with the possible values that can be
mapped. Finally, we add the legend by specifying the color palette function (pal) and the values used
to generate colors from the palette function (values). We set opacity to the same value as the opacity
in the areas, and specify a title and a position for the legend.

library(leaflet)
l <- leaflet(map) %>% addTiles()
pal <- colorNumeric(palette = "YlOrRd", domain = map$SIR)
l %>% addPolygons(color = "grey", weight = 1, fillColor = ~pal(SIR),

fillOpacity = 0.5) %>%
addLegend(pal = pal, values = ~SIR, opacity = 0.5, title = "SIR",

position = "bottomright")

We can improve the map by highlighting the counties when the mouse hovers over them, and
showing information about the observed and expected counts, SIRs, and smoking proportions. We
do this by adding the arguments highlightOptions, label and labelOptions to addPolygons(). We
choose to highlight the areas using a bigger stroke width (highlightOptions(weight = 4)). We create
the labels using HTML syntax. First, we create the text to be shown using the function sprintf()
which returns a character vector containing a formatted combination of text and variable values and
then applying htmltools::HTML() which marks the text as HTML. In labelOptions we specify the
labels style, textsize, and direction. Possible values for direction are left, right and auto and
this specifies the direction the label displays in relation to the marker. We choose auto so the optimal
direction will be chosen depending on the position of the marker.

labels <- sprintf("<strong> %s </strong> <br/> Observed: %s <br/> Expected: %s <br/>
Smokers proportion: %s <br/> SIR: %s",

map$id, map$Y, round(map$E, 2), map$smoking, round(map$SIR, 2)) %>%
lapply(htmltools::HTML)

l %>% addPolygons(color = "grey", weight = 1, fillColor = ~pal(SIR), fillOpacity = 0.5,
highlightOptions = highlightOptions(weight = 4), label = labels,
labelOptions = labelOptions(style = list("font-weight" = "normal",

padding = "3px 8px"),
textsize = "15px",
direction = "auto")) %>%

addLegend(pal = pal, values = ~SIR, opacity = 0.5, title = "SIR",
position = "bottomright")

Figure 1 shows a snapshot of the interactive map created using leaflet showing the SIRs in the
Pennsylvania counties. We can examine the map and see which counties have SIR equal to 1 indicating
observed counts are the same as expected counts, and which counties have SIR greater (or smaller)
than 1, indicating observed counts are greater (or smaller) than expected counts.

This map gives a sense of the disease risk across Pennsylvania. However, SIRs are misleading
and insufficiently reliable in counties with small populations. In contrast, model-based approaches
enable to incorporate covariates and borrow information from neighboring counties to improve local
estimates, resulting in the smoothing of extreme values based on small sample sizes. In the next
section we will show how to obtain disease risk estimates using a Bayesian model using INLA.
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Figure 1: Snapshot of the interactive map created using leaflet showing the lung cancer SIRs in
Pennsylvania counties in 2002.

Modeling

In this Section we specify the model for the data, and detail the required steps to fit the model and
obtain the disease risk estimates using INLA.

Model

We specify a model assuming that the observed counts Yi are conditionally independently Poisson
distributed,

Yi|θi ∼ Po(Ei × θi), i = 1, . . . , n,

where Ei is the expected count and θi is the relative risk in area i. The logarithm of θi is expressed as
follows:

log(θi) = β0 + β1 × smokingi + ui + vi,

where β0 is the intercept, β1 is the coefficient of the smokers proportion covariate, ui is an structured

spatial effect, ui|u−i ∼ N(ūδi ,
σ2

u
nδi

), and vi is an unstructured spatial effect, vi ∼ N(0, σ2
v ).

Neighbourhood matrix

We create the neighbourhood matrix needed to define the spatial random effect using the poly2nb()
and the nb2INLA() functions of the spdep package (Bivand, 2017). First, we use poly2nb() to create a
neighbours list based on areas with contiguous boundaries. Then, we use nb2INLA() to convert this
list into a file with the representation of the neighbourhood matrix as required by INLA that is saved
in the working directory. Then we read the file using the inla.read.graph() function of INLA, and
store it in the object g which we will later use for specifying the spatial disease model with INLA.

library(spdep)
library(INLA)
nb <- poly2nb(map)
head(nb)

## [[1]]
## [1] 21 28 67
##
## [[2]]
## [1] 3 4 10 63 65
##
## [[3]]
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## [1] 2 10 16 32 33 65
##
## [[4]]
## [1] 2 10 37 63
##
## [[5]]
## [1] 7 11 29 31 56
##
## [[6]]
## [1] 15 36 38 39 46 54

nb2INLA("map.adj", nb)
g <- inla.read.graph(filename = "map.adj")

Inference using INLA

As stated in Section Z.4.3, the model includes two random effects, namely, ui for modeling spatial
residual variation, and vi for modeling unstructured noise. We need to include two vectors in the
data that denote the indices of these random effects. We call re_u the vector denoting ui, and re_v the
vector denoting vi. We set both re_u and re_v equal to 1, . . . , n, where n is the number of counties. In
our example, n = 67 and this can be obtained with the number of rows in the data (nrow(map@data)).

map$re_u <- 1:nrow(map@data)
map$re_v <- 1:nrow(map@data)

We specify the model formula by including the response in the left-hand side, and the fixed and
random effects in the right-hand side. Random effects are set using f() with parameters equal to the
name of the variable and the chosen model. For ui, we use model = "besag" with neighbourhood
matrix given by g. For vi we choose model = "iid".

formula <- Y ~ smoking + f(re_u, model = "besag", graph = g) + f(re_v, model = "iid")

We fit the model by calling the inla() function. We specify the formula, family, data, and the
expected counts, and set control.predictor equal to list(compute = TRUE) to compute the posterior
means of the linear predictors.

res <- inla(formula, family = "poisson", data = map@data, E = E,
control.predictor = list(compute = TRUE))

Results

We can inspect the results object res using summary().

summary(res)

##
## Call:
## c("inla(formula = formula, family = \"poisson\", data = map@data, ", " E = E,
## control.predictor = list(compute = TRUE))")
##
## Time used:
## Pre-processing Running inla Post-processing Total
## 0.3179 1.1198 0.2155 1.6531
##
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) -0.3236 0.1503 -0.6212 -0.3234 -0.0279 -0.3231 0
## smoking 1.1567 0.6247 -0.0809 1.1582 2.3853 1.1619 0
##
## Random effects:
## Name Model
## re_u Besags ICAR model
## re_v IID model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant
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## Precision for re_u 93.05 49.95 30.95 81.84 220.42
## Precision for re_v 17956.92 18118.49 1155.86 12549.06 65967.91
## mode
## Precision for re_u 63.63
## Precision for re_v 3103.11
##
## Expected number of effective parameters(std dev): 18.61(4.366)
## Number of equivalent replicates : 3.60
##
## Marginal log-Likelihood: -320.53
## Posterior marginals for linear predictor and fitted values computed

We see the intercept β̂0= -0.3236 with a 95% credible interval equal to (-0.6212, -0.0279), and the
coefficient of smoking is β̂1 = 1.1567 with a 95% credible interval equal to (-0.0810, 2.3853). This
indicates that the smokers proportion has a positive although non significant effect on disease risk.
We can plot the posterior distribution of the smoking coefficient. We do this by calculating a spline
smoothing of the marginal distribution of the coefficient with inla.smarginal() and then plot it with
ggplot() of ggplot2 package (Wickham and Chang, 2016) (see Figure 2).

library(ggplot2)
marginal <- inla.smarginal(res$marginals.fixed$smoking)
marginal <- data.frame(marginal)
ggplot(marginal, aes(x = x, y = y)) + geom_line() +
labs(x = expression(beta[1]), y = "Density") +
geom_vline(xintercept = 0, col = "blue") + theme_bw()

Figure 2: Posterior distribution of the coefficient of covariate smokers proportion.

The disease risk estimates and uncertainty for each of the counties are given by the mean posterior
and the 95% credible intervals of θi, i = 1, . . . , n which are in the data frame res$summary.fitted.values.
Here, column mean is the mean posterior and 0.025quant and 0.975quant are the 2.5 and 97.5 per-
centiles, respectively. We add these data to map to be able to make maps of these variables. We assign
column mean to the estimate of the relative risk, and columns 0.025quant and 0.975quant to the lower
and upper limits of 95% credible intervals of the risks.

head(res$summary.fitted.values)

## mean sd 0.025quant 0.5quant 0.975quant
## fitted.Predictor.01 0.8793912 0.05856462 0.7633052 0.8797123 0.9943822
## fitted.Predictor.02 1.0597516 0.02768817 1.0067707 1.0592960 1.1153106
## fitted.Predictor.03 0.9632142 0.05186119 0.8555748 0.9649813 1.0612639
## fitted.Predictor.04 1.0270184 0.05121187 0.9270286 1.0267054 1.1289998
## fitted.Predictor.05 0.9076782 0.05497745 0.7978867 0.9081541 1.0156557
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## fitted.Predictor.06 0.9951907 0.04023105 0.9184425 0.9943119 1.0770673
## mode
## fitted.Predictor.01 0.8808707
## fitted.Predictor.02 1.0583769
## fitted.Predictor.03 0.9685918
## fitted.Predictor.04 1.0262831
## fitted.Predictor.05 0.9096874
## fitted.Predictor.06 0.9927333

map$RR <- res$summary.fitted.values[, "mean"]
map$LL <- res$summary.fitted.values[, "0.025quant"]
map$UL <- res$summary.fitted.values[, "0.975quant"]

Mapping disease risk

We show the estimated disease risk in an interactive map using leaflet. In the map, we add labels
that appear when mouse hovers over the counties showing information about observed and expected
counts, SIRs, smokers proportions, RRs, and lower and upper limits of 95% credible intervals.

pal <- colorNumeric(palette = "YlOrRd", domain = map$RR)

labels <- sprintf("<strong> %s </strong> <br/> Observed: %s <br/> Expected: %s <br/>
Smokers proportion: %s <br/> SIR: %s <br/> RR: %s (%s, %s)",
map$id, map$Y, round(map$E, 2), map$smoking, round(map$SIR, 2),
round(map$RR, 2), round(map$LL, 2), round(map$UL, 2)) %>%

lapply(htmltools::HTML)

leaflet(map) %>% addTiles() %>%
addPolygons(color = "grey", weight = 1, fillColor = ~pal(RR), fillOpacity = 0.5,

highlightOptions = highlightOptions(weight = 4), label = labels,
labelOptions = labelOptions(style = list("font-weight" = "normal",

padding = "3px 8px"),
textsize = "15px", direction = "auto")) %>%

addLegend(pal = pal, values = ~RR, opacity = 0.5, title = "RR",
position = "bottomright")

A snapshot of the interactive map created is shown in Figure 3. We observe counties with greater
disease risk are located in the west and south east of Pennsylvania, and counties with lower risk are
located in the center. The 95% credible intervals give a measure of the uncertainty in the risk estimates.

Figure 3: Snapshot of the interactive map created using leaflet showing the lung cancer RRs in
Pennsylvania counties in 2002.
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By typing range(map@data$SIR) and range(map@data$RR) we see that the range of SIRs is much
wider about 1 compared to the range of RRs: (0.32 to 1.37) versus (0.85 to 1.15). We can also see the
shrinkage of the RRs toward 1 by comparing maps of SIRs and RRs created using the same scale on
the SIR gradient legend (see Figure 4). For example, in the SIRs map, in the central, less populated part
of the state, there are 3 counties with extreme high values (dark colour) and 3 counties with extreme
low values (light colour). In the RRs map, these extreme values shrink toward values closer to 1.

pal <- colorNumeric(palette = "YlOrRd", domain = map$SIR)

leaflet(map) %>% addTiles() %>%
addPolygons(color = "grey", weight = 1, fillColor = ~pal(RR), fillOpacity = 0.5,

highlightOptions = highlightOptions(weight = 4), label = labels,
labelOptions = labelOptions(style = list("font-weight" = "normal",

padding = "3px 8px"),
textsize = "15px", direction = "auto")) %>%

addLegend(pal = pal, values = ~RR, opacity = 0.5, title = "RR",
position = "bottomright")

Figure 4: Snapshot of the interactive maps created using leaflet showing the lung cancer SIRs (left)
and RRs (right) in Pennsylvania counties in 2002 using the same scale.

Summary

In this article we have shown how to obtain small area disease risk estimates, and generate interactive
maps that help the understanding and interpretation of the results. First, we have introduced disease
risk models using areal data, and have given an overview of the INLA package for performing
Bayesian inference. Then, we have given a practical example where we have estimated lung cancer risk
in Pennsylvania in 2002. We have conducted the analyses using several R packages such as spdep for
spatial data manipulation, SpatialEpi for calculating the expected disease counts in the Pennsylvania
counties, INLA for performing Bayesian inference, and leaflet and ggplot2 for visualization of the
results.

One limitation of disease models based on areal data is that they are often subject to ecological
bias. This bias occurs when associations obtained from analyses that use variables at an aggregated
level lead to conclusions different from analyses that use the same variables measured at an individual
level (Robinson, 1950). Therefore, whenever point data are available, it is preferable to use disease
models without aggregating data and predict disease risk in a continuous surface (Moraga et al., 2017;
Diggle et al., 2013).

It is also possible to use R to build tools to better communicate the results to stakeholders and
the general public. For instance, summaries and maps of disease risk estimates can be presented
in interactive dashboards using flexdashboard (Allaire, 2017), and web applications using shiny
(Chang et al., 2017). One example of such web application is the SpatialEpiApp package (Moraga,
2017a,b) which is useful for disease risk mapping and the detection of clusters. This is an easy to
use application where users simply need to upload their data and click several buttons that execute
the tasks and process the outputs, making spatial analysis methods accessible to multiple disciplines.
SpatialEpiApp creates interactive visualizations by using the packages leaflet for rendering maps,
dygraphs (Vanderkam et al., 2017) for plotting time series, and DT (Xie, 2016) for displaying data
tables, and enables the generation of reports by using rmarkdown (Allaire et al., 2017). In conclusion,
R represents an excellent tool for disease surveillance by enabling reproducible health data analysis.
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SetMethods: an Add-on R Package for
Advanced QCA
by Ioana-Elena Oana and Carsten Q. Schneider

Abstract This article presents the functionalities of the R package SetMethods, aimed at performing
advanced set-theoretic analyses. This includes functions for performing set-theoretic multi-method
research, set-theoretic theory evaluation, Enhanced Standard Analysis, diagnosing the impact of
temporal, spatial, or substantive clusterings of the data on the results obtained via Qualitative Com-
parative Analysis (QCA), indirect calibration, and visualising QCA results via XY plots or radar charts.
Each functionality is presented in turn, the conceptual idea and the logic behind the procedure being
first summarized, and afterwards illustrated with data from Schneider et al. (2010).

Introduction

Set-theoretic methods, in general (Goertz and Mahoney, 2012), and Qualitative Comparative Analysis,
in particular, are becoming increasingly popular within different disciplines in the social sciences and
neighboring fields (Rihoux et al., 2013). Parallel to conceptual developments and increasing numbers
of applied studies, accelerating progress in terms of software development can be witnessed. While
less than a decade ago only two functioning software packages were available to users (fsQCA Ragin
et al. (2006) and Tosmana Cronqvist (2011)), there are now over a dozen different software solutions
offered (see http://compasss.org/software.htm). Many of them are developed within the R software
environment, with R package QCA (Dusa, 2007) being not only the one with the longest history, but
also the most complete and complex.

In this paper, we discuss the different functionalities of the R package SetMethods (Medzihorsky
et al., 2016). It is best perceived of as an add-on tool to package QCA and allows applied researchers to
perform advanced set-theoretic analyses. More precisely, SetMethods enables researchers to perform
Set-Theoretic Multi-Method Research, the Enhanced Standard Analysis (ESA), Set-Analytic Theory
Evaluation, to run diagnostics in the presence of clustered data structures, and to display their results
in various ways.

We proceed as follows. Each of the different functionalities within SetMethods is presented in
a separate section. Within each section, we first briefly summarize the conceptual idea behind the
analysis in question, then describe the computational logic of the function for performing the analysis,
after which we demonstrate the use of the function by displaying the R syntax and selected output by
using an example from published research.

Even though the main purpose is to present the functionality of R package SetMethods, this
article is also useful for researchers who perform their QCA in software environments other than R
because we present the logic of several of the main advanced set-analytic procedures in a concise and
transparent manner.

The empirical example

In order to illustrate the use of the different functions in SetMethods, we use the empirical example by
Schneider et al. (2010) which uses fuzzy-sets for explaining capitalist variety and export performance
in high-tech industries. More precisely, the research question focuses on the institutional determinants
of export performance in high-tech industries. The outcome consists of the export performance in
high-tech industries (EXPORT). The conditions used are: employment protection (EMP), collective
bargaining (BARGAIN), university training (UNI), occupational training (OCCUP), stock market size
(STOCK), and mergers and aquisitions (MA). The authors analyze 76 cases, representing 19 countries
at four time points.

For the sake of simplicity, we use the same data for illustrating all the functions. Our goal is not, of
course, to contribute to the substantive discussion on varieties of capitalism or institutional context.
This is why we will take the liberty to alter the analytic setup if needed for demonstration purposes,
by, for instance, dropping cases or conditions or by changing the outcome to be explained.

# We load the SetMethods package:
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library(SetMethods)

# First rows of the Schneider et al.(2010) data called SCHF from package
# SetMethods:

data(SCHF)
head(SCHF)

## EMP BARGAIN UNI OCCUP STOCK MA EXPORT
## Australia_90 0.07 0.90 1.00 0.68 0.45 0.33 0.19
## Austria_90 0.70 0.98 0.01 0.91 0.01 0.05 0.25
## Belgium_90 0.94 0.95 0.14 0.37 0.26 0.14 0.14
## Canada_90 0.04 0.21 0.99 0.11 0.62 0.31 0.28
## Denmark_90 0.59 0.78 0.10 0.55 0.53 0.10 0.34
## Finland_90 0.70 0.97 0.20 0.95 0.02 0.13 0.17

Set-theoretic multi-method research (MMR)

The term Set-Theoretic Multi-Method Research (MMR) captures all those empirical approaches for
combining cross-case analyses with within-case studies in which both levels of analysis follow the goal
of investigating sets and their relations. At the cross-case level the most common methodological tool
is Qualitative Comparative Analysis (QCA) and at the within-case level, process tracing. Both tools
can be rooted in (fuzzy) set theory (see, e.g. Ragin (2008) for QCA and Mikkelsen (2017) for process
tracing). In principle and practice any sequence of analyses can and is performed in the applied
literature. In the following, we focus on the sequence ’cross-case QCA first, followed by within-case
analyses’. This sequence may or may not be continued by another QCA. As any decent QCA, it is
certainly preceded by a thorough accumulation of case knowledge in order to select and calibrate
conditions. These crucial research steps, however, fall outside of the definitional scope of set-theoretic
MMR.1

In the following, we limit our discussion to set-theoretic MMR after a cross-case analysis of
sufficiency, as discussed in Schneider and Rohlfing (2013, 2016), Schneider and Rohlfing (manuscript),
and Rohlfing and Schneider (2018).2 We first briefly summarize the different types of cases and the
purpose of their within-case analysis (Section Identifying types of cases). After this, we discuss the four
different feasible comparative within-case analyses in Figure 1 and their analytic purposes (Section
Identifying best-matching pairs of cases for comparative process tracing). For each form of within-case
analysis, we explain the use of the mmr function and the formula used for finding cases (Schneider and
Rohlfing, manuscript) 3. The general structure of function mmr is illustrated in Figure 1. Users need to
specify whether they want to perform single or comparative within-case analysis and then on which
cases the analysis is performed.

Identifying types of cases

Key for combining QCA with process tracing is the sorting of cases to different case types based on
the QCA solution formula. The literature identifies five different types (Schneider and Rohlfing, 2013).
Membership in a type is defined by the membership scores of a case in the outcome Y, on the one
hand, and the sufficient term T or the solution formula S, on the other hand. Table 1 summarizes
the definition of each case type and the analytic purpose of the within-case analysis in single cases.
Figure 2 visualizes the location of each case type in an XY plot.

Typical cases and deviant cases consistency are defined based on their membership in a sufficient
term T, whereas deviant cases coverage and IIR cases are defined based on their membership solution
formula S. Deviant cases consistency are subdivided into deviant in degree and deviant in kind.
The latter are always preferable for within-case analysis. IIR cases are not useful for single-case
studies, but they play an important role for comparative within-case analyses (see Section Identifying
best-matching pairs of cases for comparative process tracing).

Table 1 is adapted from Schneider and Rohlfing (manuscript).

1For a systematic discussion of the pre-QCA case studies, see Rihoux and Lobe (2009).
2For MMR after an analysis of necessity, see Rohlfing and Schneider (2013).
3For a systematic test of the mathematical formulas used for selecting single cases or pairs of cases for set-

theoretic MMR see the Appendix of this paper.
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Figure 1: Types of Post-QCA Case Studies
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Table 1: Types of cases in fsQCA of sufficiency

Membership in Goal of
Type of case T Y within-case analysis

(1) Typical >.5 >.5 T ≤ Y identify mechanism M
(2) Deviant consistency (degree) >.5 >.5 T ≥ Y not recommended
(3) Deviant consistency (kind) >.5 <.5 identify missing INUS

S
(4) Deviant coverage <.5 >.5 identify missing conjunction
(5) IIR <.5 <.5 not useful
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Figure 2: Types of Cases, XY Plot
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Process tracing in typical cases aims at empirically probing the causal mechanism(s) linking the
sufficient term S to outcome Y. For conjunction S to be causal, each conjunct C of S must be causal,
i.e. they must make a difference to outcome Y by making a difference to mechanism M. This requires
as many within-case analyses of typical cases as there are conjuncts in the sufficient conjunction.
For each analysis, one is the focal conjunct FC and the others are the complementary conjuncts CC.
The focal conjunct FC is the conjunct for which we want to find out whether it makes a difference
for the mechanism M, while the complementary conjuncts CC represent the other conjuncts of the
sufficient term S (Schneider and Rohlfing, manuscript). For causal inference on the configuration we
proceed by taking each conjunct at a time as the focal conjunct FC. Additionally, we also apply the test
severity principle. With fuzzy-sets the membership in mechanism M can only vary within the corridor
established by the membership in FC (the lowest value M can take) and Y (the highest value M can
take) for preserving the causal chain FC → M→ Y (Schneider and Rohlfing, manuscript). The smaller
the corridor, the smaller the range of membership values M can take. Therefore, the most severe test for
M is the one in which FC = S = Y because the only consistent membership score in M equals FC = S =
Y.

The best-available typical case fulfills the following criteria: a) the focal conjunct is the one that
defines the membership of the typical case in the term (FC ≤ CC); b) the corridor for mechanism M as
defined by the sufficient term S (from a) we also have S = FC) and Y is small; c) membership in the
sufficient term S is high; d) the case is uniquely covered by the sufficient term S.

Figure 3 visualizes the test severity principle in two different ways. The XY plot in the upper
panel shows that for cases closer to the diagonal, test severity increases. The length of the vertical
and horizontal arrows, respectively, visualizes the range of fuzzy set membership scores for M that
would still be consistent. The larger this range, the less severe the test. The Euler diagram in the lower
panel visualizes the same by contrasting S1 almost as big as Y with S2 being much smaller than Y. The
former leaves little and the latter a lot of room for M.

The ideal typical case is located in the upper-right corner of the XY plot in Figure 3 with FC = S =
Y = 1. In applied QCA, such cases usually do not exist in the data at hand. Function mmr() identifies
the best available typical case in a given data set.

Function mmr() first sorts each typical case based on whether FC ≤ CC (rank 1) or FC > FC (rank
2). Cases in each rank are then further sorted according to Formula 1. Smaller values indicate better
suitable cases.4

TYP = (Y− S) small corridor for mechanism

+ (1− S) large membership in the sufficient term
(1)

where Y = outcome, S = sufficient term

Applied to our example, function mmr() works as follows. After minimizing the truth table TT_y
and producing the parsimonious and intermediate solutions sol_yp and sol_yi using package QCA,
we input these solutions 5 into the mmr() function while setting arguments match to FALSE and cases

4This holds for all mmr() formulas: the smaller the value, the more suitable the case (pair) is.
5For inputing solutions that have model ambiguity, argument sol can be used to specify which solution the

user wants to work with. If a single number is used, this number indicates which model of the conservative or
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Figure 3: Two visualizations of test severity
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to 2. As argument term is set to 1 the output shows the typical cases for each focal condition in the first
sufficient term, together with some additional information. The information included in the output
comprises of membership values of the typical cases in the focal conjuct, complementary conjuncts,
the whole sufficient term, and the outcome (in this case EXPORT), formula values St, whether the
case is the most typical according to the formula, which rank does the case sit in, and whether the case
is uniquely covered by the sufficient term. The order of the information that users should look for in
this output is whether the case is uniquely covered, what rank is the case in (the smaller, the better),
and what formula value St does the case have (the smaller, the better). For example, for focal conjunct
emp in sufficient term emp ∗ bargain ∗OCCUP, Switzerland_03 appears to be the best available typical
case, being uniquely covered, being in Rank 1, and having the smallest formula value (St=0.59).

# We create the truth table:

TT_y <- truthTable(SCHF, outcome = "EXPORT",
conditions = c("EMP","BARGAIN","UNI",

"OCCUP","STOCK", "MA"),

parsimonious solution according to the order in the "qca" object the user wants to work with. However, since QCA
solutions (conservative, parsimonious, intermediate) are in a subset relationship with each other, they tend to
have more complicated structures in which model ambiguity is tied from one solution to the other. For this cases
the argument sol allows users to specify the models they want to choose by using a character string of the form
"c1p3i2" where c = conservative solution, p = parsimonious solution and i = intermediate solution.
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incl.cut = .9,
complete = TRUE,
PRI = TRUE,
sort.by = c("out", "incl", "n"))

# Get the parsimonious solution:

sol_yp <- minimize(TT_y, include = "?", details = TRUE,
show.cases = TRUE)

# Get the intermediate solution:

sol_yi <- minimize(TT_y, include = "?", details = TRUE,
show.cases = TRUE, dir.exp = c(0,0,0,0,0,0))

# Get typical cases for the first term of the second intermediate solution:

mmr (results = sol_yi, outcome = "EXPORT", neg.out = FALSE,
sol = "c1p1i2", match = FALSE, cases = 2, term = 1)

## Typical Cases - Focal Conjunct emp :
## ----------
## Focal Conjunct Comp. Conjunct Term Membership EXPORT St
## Switzerland_03 0.70 0.71 0.70 0.99 0.59
## Switzerland_99 0.75 0.54 0.54 0.98 0.69
## most_typical Rank uniquely_cov
## Switzerland_03 TRUE 1 TRUE
## Switzerland_99 FALSE 2 TRUE
##
## Typical Cases - Focal Conjunct bargain :
## ----------
## Focal Conjunct Comp. Conjunct Term Membership EXPORT St
## Switzerland_99 0.54 0.74 0.54 0.98 0.90
## Switzerland_03 0.76 0.70 0.70 0.99 0.53
## most_typical Rank uniquely_cov
## Switzerland_99 FALSE 1 TRUE
## Switzerland_03 TRUE 2 TRUE
##
## Typical Cases - Focal Conjunct OCCUP :
## ----------
## Focal Conjunct Comp. Conjunct Term Membership EXPORT St
## Switzerland_03 0.71 0.70 0.70 0.99 0.58
## Switzerland_99 0.74 0.54 0.54 0.98 0.70
## most_typical Rank uniquely_cov
## Switzerland_03 TRUE 2 TRUE
## Switzerland_99 FALSE 2 TRUE

Deviant cases consistency

Deviant cases consistency are puzzling because their membership in the sufficient term S exceeds that
in the outcome Y, i.e. S > Y. This becomes even more puzzling if S > 0.5&Y < 0.5, that is, if we have
deviant cases consistency in kind rather than just in degree (see Table 1). The more S exceeds Y, the
bigger the empirical puzzle, especially if membership in S is high. Within-case analysis of a deviant
case consistency aims at identifying the reasons why mechanism M either absent or prevented from
producing Y. The reason must be an INUS condition omitted from S. Formula 2 identifies the best
available deviant case consistency in a data set.

DCN = [1− (S−Y)] far from to the diagonal

+ (1− S) large membership in the sufficient term
(2)

where Y = outcome, S = sufficient term
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Using the same data from Schneider et al. (2010) and focusing on the parsimonious solution,
function mmr() identifies the deviant consistency cases for each sufficient term. For obtaining this
we need to keep argument match set to FALSE, as we are doing single case identification, but set
argument cases to 3, the identifier for deviant cases consistency (see Figure 1). The output shows the
deviant consistency cases (first column) grouped by sufficient term (second column) together with
term membership, outcome membership, formula value Sd, and whether the case is the most deviant
for a particular term. In the output we see that, for example, for term emp ∗OCCUP the most deviant
case consistency is Switzerland_90 with the smallest formula value (Sd=0.67). Figure 4 shows all the
deviant cases consistency (cases in the lower right corner) for the first sufficient path emp ∗OCCUP of
the parsimonious solution.

# Get deviant cases consistency for the parsimonious solution:

mmr (results = sol_yp, outcome = "EXPORT", neg.out = FALSE,
sol = 1, match = FALSE, cases = 3)

## Deviant Consistency Cases :
## ----------
## cases term term_membership EXPORT Sd
## 2 Switzerland_90 emp*OCCUP 0.82 0.31 0.67
## 1 Australia_90 emp*OCCUP 0.68 0.19 0.83
## 3 Australia_95 emp*OCCUP 0.68 0.31 0.95
## 4 Australia_99 emp*OCCUP 0.68 0.38 1.02
## 14 Australia_95 BARGAIN*UNI*STOCK 0.90 0.31 0.51
## 7 Australia_03 BARGAIN*UNI*STOCK 0.90 0.35 0.55
## 6 Spain_99 BARGAIN*UNI*STOCK 0.79 0.27 0.69
## 8 Norway_03 BARGAIN*UNI*STOCK 0.79 0.32 0.74
## 41 Australia_99 BARGAIN*UNI*STOCK 0.79 0.38 0.80
## 21 Denmark_95 BARGAIN*UNI*STOCK 0.76 0.40 0.88
## 5 Belgium_99 BARGAIN*UNI*STOCK 0.72 0.40 0.96
## 31 Finland_95 BARGAIN*UNI*STOCK 0.73 0.49 1.03
## 42 Spain_03 occup*STOCK*ma 0.74 0.30 0.82
## 32 Denmark_95 occup*STOCK*ma 0.73 0.40 0.94
## 15 Canada_90 occup*STOCK*ma 0.62 0.28 1.04
## 22 Canada_95 occup*STOCK*ma 0.60 0.30 1.10
## most_deviant
## 2 TRUE
## 1 FALSE
## 3 FALSE
## 4 FALSE
## 14 TRUE
## 7 FALSE
## 6 FALSE
## 8 FALSE
## 41 FALSE
## 21 FALSE
## 5 FALSE
## 31 FALSE
## 42 TRUE
## 32 FALSE
## 15 FALSE
## 22 FALSE

# Plot each sufficient path of the parsimonious solution:

pimplot(data = SCHF, results = sol_yp, outcome = "EXPORT", case_labels = FALSE)
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Figure 4: Deviant Cases Consistency

Deviant cases coverage

Deviant cases coverage are puzzling because they are members of the outcome without, however,
being members of any known sufficient term. Within-case analysis aims at identifying sufficient term
S+ omitted from the solution formula, which triggers mechanism a M and outcome Y.

Since deviant cases coverage are defined by what they are not - members of the solution formula
(see Table 1) - this solution formula is not a good place to start selecting the best available deviant
cases coverage. Instead, this type of case is selected based on their membership in their truth table row
TT. For each TT with at least one deviant case coverage, a within-case analysis can be performed. If
more than one deviant case coverage populates the same TT, Formula 3 identifies the best available
case for within-case analysis.

DCV = |Y− TT| small corridor for mechanism

+ (1− TT) large membership in the truth table row
(3)

where Y = outcome, TT = membership in the Truth Table row

Similar to the Formula 1 for identifying the best available typical case, the goal is to minimize the
difference between the membership scores in Y and TT and to prefer higher membership in TT. This
is achieved by formula 3. Since the primary goal in this within-case analysis is not to draw causal
inference but to identify a missing conjunction, there is no need to decompose TT into its constituent
sets.

Applied to our example, the following code displays the list of deviant cases coverage (notice
argument cases is set to 4), the membership they have in the entire solution formula, their values on
the Formula 3, the truth table row they belong to (columns starting with TT indicating the specific
combination of conditions the case presents), the membership they have in that specific truth table
row, and membership in the outcome. The cases are sorted by truth table row and ranked according
to their appropriateness using formula values Sd. For example, we can notice that truth table row
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emp ∗ bargain ∗UNI ∗ occup ∗ STOCK ∗ MA (rows 9, 10, 4, and 5 of the output) is populated by 4
deviant coverage cases, out of which UK_90 is the best available for within case analysis, having the
smallest formula value (Sd=0.51).

# Get deviant cases coverage for the parsimonious solution:

mmr (results = sol_yp, outcome = "EXPORT", neg.out = FALSE,
sol = 1, match = FALSE, cases = 4)

## Deviant Coverage Cases :
## ----------
## case solution_membership Sd TT_EMP TT_BARGAIN TT_UNI
## 8 UK_03 0.12 0.22 0 0 1
## 3 Germany_99 0.17 0.33 1 1 0
## 11 UK_99 0.18 0.34 0 0 1
## 12 USA_99 0.20 0.39 0 0 1
## 7 Sweden_95 0.36 0.47 1 1 0
## 1 France_95 0.41 0.50 1 1 0
## 9 UK_90 0.36 0.51 0 0 1
## 10 UK_95 0.36 0.59 0 0 1
## 4 Ireland_03 0.32 0.64 0 0 1
## 5 Ireland_99 0.32 0.64 0 0 1
## 2 Germany_03 0.40 0.67 1 1 0
## 6 Netherlands_95 0.45 0.68 1 1 0
## TT_OCCUP TT_STOCK TT_MA TT_row_membership EXPORT
## 8 0 1 1 0.88 0.98
## 3 1 1 1 0.71 0.67
## 11 0 1 1 0.82 0.98
## 12 0 1 1 0.80 0.99
## 7 1 1 1 0.62 0.71
## 1 1 0 0 0.56 0.62
## 9 0 1 1 0.64 0.79
## 10 0 1 1 0.64 0.87
## 4 0 1 1 0.68 1.00
## 5 0 1 1 0.68 1.00
## 2 1 0 0 0.51 0.69
## 6 1 1 1 0.51 0.70

Individually irrelevant cases

Individually irrelevant (IIR) cases owe their name to the fact that single within-case analyses in this
type of cases is not useful. IIR cases do play a crucial role in two forms of comparative within-case
analysis (see Section Identifying best-matching pairs of cases for comparative process tracing). Even if
not useful for single case studies, identifying IIR cases is informative as their list - together with the
deviant cases coverage - indicate the diversity among cases without the outcome. The more different
truth table rows are populated by IIR cases (and deviant cases coverage), the more heterogeneous this
group of cases is.

Function mmr() lists all individually irrelevant cases with respect to the entire solution formula
(also called globally uncovered IIR cases) and sorts each of them into the truth table to which they
belong best. Since these cases are not informative for single case studies and are being used just to
indicate diversity among the cases without the outcome, the function does not involve a formula
ranking of IIR cases.

# Get individually irrelevant cases for the parsimonious solution:

mmr (results = sol_yp, outcome = "EXPORT", neg.out = FALSE,
sol = 1, match = FALSE, cases = 5)

## Individually Irrelevant Cases :
## ----------
## case solution_membership TT_EMP TT_BARGAIN TT_UNI TT_OCCUP
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## 19 New Zealand_90 0.17 0 0 0 0
## 18 New Zealand_03 0.25 0 0 1 0
## 21 New Zealand_99 0.25 0 0 1 0
## 6 Canada_03 0.38 0 0 1 0
## 7 Canada_99 0.20 0 0 1 0
## 20 New Zealand_95 0.20 0 0 1 0
## 4 Belgium_90 0.26 1 1 0 0
## 10 France_90 0.23 1 1 0 0
## 14 Italy_90 0.01 1 1 0 0
## 25 Spain_90 0.03 1 1 0 0
## 1 Austria_90 0.30 1 1 0 1
## 2 Austria_95 0.30 1 1 0 1
## 3 Austria_99 0.30 1 1 0 1
## 9 Finland_90 0.30 1 1 0 1
## 11 Germany_90 0.05 1 1 0 1
## 12 Germany_95 0.17 1 1 0 1
## 13 Italy_03 0.25 1 1 0 1
## 15 Italy_95 0.03 1 1 0 1
## 17 Netherlands_90 0.14 1 1 0 1
## 8 Denmark_90 0.45 1 1 0 1
## 16 Italy_99 0.38 1 1 0 1
## 5 Belgium_95 0.21 1 1 0 1
## 27 Sweden_90 0.07 1 1 0 1
## 26 Spain_95 0.06 1 1 1 0
## 22 Norway_90 0.12 1 1 1 1
## 23 Norway_95 0.49 1 1 1 1
## 24 Norway_99 0.45 1 1 1 1
## TT_STOCK TT_MA TT_row_membership EXPORT
## 19 0 1 0.58 0.06
## 18 0 1 0.75 0.13
## 21 0 1 0.75 0.08
## 6 1 1 0.62 0.36
## 7 1 1 0.80 0.40
## 20 1 1 0.76 0.09
## 4 0 0 0.63 0.14
## 10 0 0 0.54 0.42
## 14 0 0 0.70 0.20
## 25 0 0 0.69 0.17
## 1 0 0 0.70 0.25
## 2 0 0 0.70 0.25
## 3 0 0 0.70 0.47
## 9 0 0 0.70 0.17
## 11 0 0 0.92 0.27
## 12 0 0 0.74 0.32
## 13 0 0 0.67 0.31
## 15 0 0 0.71 0.18
## 17 0 0 0.57 0.39
## 8 1 0 0.53 0.34
## 16 1 0 0.62 0.29
## 5 1 1 0.53 0.20
## 27 1 1 0.74 0.36
## 26 0 0 0.84 0.19
## 22 0 0 0.65 0.14
## 23 0 0 0.51 0.14
## 24 0 1 0.55 0.32

Identifying best-matching pairs of cases for comparative process tracing

The literature identifies four feasible within-case comparisons after a QCA between two types of
cases each (Schneider and Rohlfing, manuscript). With each comparison a different analytic goal is
pursued. Figure 5 summarizes these goals. The two comparisons ’along the main diagonal’ pursue
a causal inference goal, whereas the two ’vertical’ comparisons aim at improving the QCA model
specification by identifying either an INUS condition missing from a known sufficient term or an
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entire new sufficient term missing from the solution formula.

Figure 5: Forms of feasible comparisons
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Matching typical and individually irrelevant (IIR) cases

The purpose of the within-case comparison between a typical case and and IIR case is to empirically
investigate whether a sufficient term is a difference-maker, i.e. causal, not only for the outcome (Y) at
the cross-case level, but also for the mechanism M at the within-case level. Similarly, the within-case
comparison of two typical cases empirically probes whether the same mechanism M links the sufficient
term S to outcome Y in typical cases that are as different from each other as possible. For both forms
of comparison, it holds that if S is a conjunction, each of its conjuncts C must be a difference-maker.
Hence, the comparisons between a typical case and an IIR case (or another typical case) must be
performed for each single conjunct C at a time. The following sections provide more details for each
form of comparison and spells out the sorting mechanisms and mathematical formulas that underly
the respective functions in SetMethods.

Table 2: Possible membership constellations between focal (FC) and complementary conjuncts (CC)
in comparison of typical and IIR case

Difference Deter- Attribution Attribution
Rank Typical IIR FC minate typical IIR

1 FC ≤ CC FC < 0.5 < CC Yes Yes Yes Yes
2 FC > CC FC < 0.5 < CC Yes Yes No Yes
3 FC ≤ CC FC ≤ CC < 0.5 Yes No Yes Yes
4 FC ≤ CC CC < FC < 0.5 Yes No Yes No
4 FC > CC FC ≤ CC < 0.5 Yes No No Yes
6 FC > CC CC < FC < 0.5 Yes No No No
7 FC ≤ CC CC < 0.5 < FC No No Yes No
8 FC > CC CC < 0.5 < FC No No No No

taken from Schneider and Rohlfing (manuscript)

Function mmr() first sorts each pair of typical and IIR cases into ranks 1-8 as defined in Table 2.
Cases in smaller rank numbers are more adequate for the analytic goal of the comparative within-case
analysis of these two case types. For case pairs in rank 1, for example, it holds that the difference-
making quality can be attributed to the focal conjunct FC both on the typical and the IIR case, and that
it is determinate.

Within each rank, Formula 4 maximizes the following criteria: between both cases, the difference
in FC and in Y, respectively, should be small; both should have high membership in CC; and both
should be close to the diagonal. Within each rank, case pairs with smaller formula values are more
appropriate. Additionally, typical cases should be uniquely covered by the sufficient term under
inverstigation, while IIR cases should be globally uncovered (not covered by any of the sufficient
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terms).

TYP− I IR = [1− (FCTYP − FCI IR)] large difference in focal condition

+ [1− (YTYP −YI IR)] large difference in outcome

+ |min(CCTYP)−min(CCI IR)| small difference in complementary conditions

+ 2 ∗ |(YTYP −min (FCTYP, CCTYP))| typical case close to diagonal

+ 2 ∗ |(YI IR −min (FCI IR, CCI IR))| IIR case close to diagonal
(4)

where Y = outcome, FC = focal condition, and CC = complementary condition

For switching to comparative MMR and identifying pairs of cases, argument match must be set to
TRUE. Additionally, for getting the best available pairs of typical and IIR cases we set cases to 2. In the
output for the first sufficient term (notice argument term set to 1) we will get the best available pairs
for each focal conjunct in turn as separate tables. The output lists the names of the typical and IIR case,
their value on the above formula (Distance), which rank does the pair come from, whether the typical
case is uniquely covered, and whether the IIR case is globally uncovered. Researchers should strive to
pick cases that are uniquely covered and globally uncovered, have the smallest rank possible, and
have the smallest Distance value. For example, for focal conjunct OCCUP, typical case Denmark_99
and IIR case New Zealand_90 are the best pair available as they are in Rank 1, they have the smallest
formula value (Distance=1.24), and the typical case is uniquely covered by the term, while the IIR case
is globally uncovered by the solution.

# Get matching pairs of typical and IIR cases for the first term
# of the parsimonious solution:

mmr (results = sol_yp, outcome = "EXPORT", neg.out = FALSE,
sol = 1, match = TRUE, cases = 2, term = 1)

## Focal Conjunct emp :
## ----------
## Typical IIR Distance PairRank UniqCovTyp GlobUncovIIR
## 44 Switzerland_03 Norway_90 1.30 1 TRUE TRUE
## 43 Denmark_03 Norway_90 1.38 1 TRUE TRUE
## 88 Switzerland_03 Norway_95 1.38 1 TRUE TRUE
## 80 Switzerland_03 Italy_95 1.40 1 TRUE TRUE
## 60 Switzerland_03 Belgium_95 1.55 1 TRUE TRUE
##
## Focal Conjunct OCCUP :
## ----------
## Typical IIR Distance PairRank UniqCovTyp
## 37 Denmark_99 New Zealand_90 1.24 1 TRUE
## 81 Denmark_99 New Zealand_95 1.30 1 TRUE
## 133 Denmark_99 New Zealand_03 1.31 1 TRUE
## 38 Switzerland_99 New Zealand_90 1.39 1 TRUE
## 82 Switzerland_99 New Zealand_95 1.45 1 TRUE
## GlobUncovIIR
## 37 TRUE
## 81 TRUE
## 133 TRUE
## 38 TRUE
## 82 TRUE

Matching two typical cases

The matching of two typical cases follows a logic similar to the one between a typical and an IIR case.
The goal is to probe the difference-making properties of each conjunct (FC) in sufficient term S to
mechanism M. Table 3 defines the four ranks that can occur based on two typical cases’ membership
in FC and the complementary conditions CC. After sorting each possible pair of typical cases into one
of these ranks, Formula 5 further ranks those pairs such that their difference in FC and the outcome,
respectively, is minimized; that their membership in CC is maximized; and that both are close to the
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diagonal (test severity principle). Additionally, the two typical cases should be uniquely covered by
the sufficient term.

Table 3: Possible membership constellations between focal (FC) and complementary conjuncts (CC)
in comparison of two typical cases

Rank Typical 1 Typical 2 Attribution typical 1 Attribution typical 2

1 FC ≤ CC FC ≤ CC Yes Yes
2 FC ≤ CC FC > CC Yes No
2 FC > CC FC ≤ CC No Yes
4 FC > CC CC > FC No No

taken from Schneider and Rohlfing (manuscript)

TYP1 − TYP2 = [0.5− (FCTYP1 − FCTYP2 )] large difference in focal condition

+ [0.5− (YTYP1 −YTYP2 )] large difference in outcome

+
∣∣min(CCTYP1 )−min(CCTYP2 )

∣∣ small difference in complementary conditions

+ 2 ∗
∣∣(YTYP1 −min (FCTYP1 , CCTYP1 ))

∣∣ typical case close to diagonal

+ 2 ∗ |(YTYP2 −min (FCTYP2 , CCTYP2 ))| typical case close to diagonal
(5)

For getting the best available pairs of two typical cases argument cases in function mmr() must be
set to 1. The output is similar to the one for typical-IIR pairs of cases, the best available pair of typical
cases for each focal conjunct being situated in as low a rank as possible, having the smaller formula
value (Distance), and being both uniquely covered. Looking at the first term of the parsimonious
solution, we can see that pair Switzerland_03-Denmark_03 is the best available for focal conjunct emp,
while pair Switzerland_99-Denmark_99 is the best available for focal conjunct OCCUP, both pairs
containing uniquely covered typical cases, being in Rank 1, and having the smallest Distance value for
their respective focal conjunct.

# Get matching pairs of typical and typical cases for the first term
# of the parsimonious solution:

mmr (results = sol_yp, outcome = "EXPORT", neg.out = FALSE,
sol = 1, match = TRUE, cases = 1, term = 1)

## Focal Conjunct emp :
## ----------
## Typical1 Typical2 Distance PairRank UniqCov1 UniqCov2
## 12 Switzerland_03 Denmark_03 1.72 1 TRUE TRUE
## 4 Switzerland_03 Denmark_99 1.44 2 TRUE TRUE
## 3 Denmark_03 Denmark_99 1.62 2 TRUE TRUE
## 8 Switzerland_03 Switzerland_99 2.13 2 TRUE TRUE
## 7 Denmark_03 Switzerland_99 2.31 2 TRUE TRUE
##
## Focal Conjunct OCCUP :
## ----------
## Typical1 Typical2 Distance PairRank UniqCov1 UniqCov2
## 2 Switzerland_99 Denmark_99 1.27 1 TRUE TRUE
## 4 Switzerland_03 Denmark_99 1.44 3 TRUE TRUE
## 3 Denmark_03 Denmark_99 1.62 3 TRUE TRUE
## 8 Switzerland_03 Switzerland_99 2.13 3 TRUE TRUE
## 7 Denmark_03 Switzerland_99 2.31 3 TRUE TRUE

Matching typical and deviant cases consistency

The comparative within-case analysis of a typical and a deviant case consistency aims at identifying
the INUS condition missing from the sufficient term S in question. The best available pair of cases
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maximizes the following criteria: their membership in S should be as high and similar as possible
and their membership in Y is different as possible. Formula 6 translates these matching criteria into
practice.

TYP− DCON = [(1− STYP) + (1− SDCON)] large membership in term

+ [1− (YTYP −YDCON)] large difference in outcome

+ |STYP − SDCON | similar membership in term

(6)

Setting cases to 3 we get best available pair of typical and deviant consistency cases for each
sufficient term in the parsimonious solution sol_yp. For identifying a missing INUS in sufficient term
emp ∗OCCUP, the best available pair of cases that we could choose for process-tracing would be the
one between typical case Switzerland_03 and deviant consistency case Australia_90, as they have
the smallest formula value (Distance=0.84).

# Get matching pairs of typical and deviant consistency cases for the
# parsimonious solution:

mmr (results = sol_yp, outcome = "EXPORT", neg.out = FALSE,
sol = 1, match = TRUE, cases = 3)

## Term emp*OCCUP :
## ----------
## typical deviant_consistency distance term best_matching_pair
## 1 Switzerland_03 Australia_90 0.84 emp*OCCUP TRUE
## 2 Switzerland_99 Australia_90 0.85 emp*OCCUP FALSE
## 3 Switzerland_99 Switzerland_90 0.85 emp*OCCUP FALSE
## 4 Switzerland_03 Switzerland_90 0.92 emp*OCCUP FALSE
## 5 Switzerland_03 Australia_95 0.96 emp*OCCUP FALSE
##
## Term BARGAIN*UNI*STOCK :
## ----------
## typical deviant_consistency distance term
## 1 Netherlands_03 Australia_95 0.55 BARGAIN*UNI*STOCK
## 2 Netherlands_03 Australia_03 0.59 BARGAIN*UNI*STOCK
## 3 Netherlands_99 Australia_95 0.65 BARGAIN*UNI*STOCK
## 4 Netherlands_99 Australia_03 0.69 BARGAIN*UNI*STOCK
## 5 Netherlands_99 Spain_99 0.73 BARGAIN*UNI*STOCK
## best_matching_pair
## 1 TRUE
## 2 FALSE
## 3 FALSE
## 4 FALSE
## 5 FALSE
##
## Term occup*STOCK*ma :
## ----------
## typical deviant_consistency distance term best_matching_pair
## 1 USA_03 Spain_03 0.84 occup*STOCK*ma TRUE
## 2 Japan_99 Spain_03 0.86 occup*STOCK*ma FALSE
## 3 Japan_03 Spain_03 0.88 occup*STOCK*ma FALSE
## 4 USA_90 Spain_03 0.89 occup*STOCK*ma FALSE
## 5 USA_95 Spain_03 0.91 occup*STOCK*ma FALSE

Matching deviant cases coverage and IIR cases

The comparative within-case analysis of a deviant case coverage and an IIR case aims at identifying
the sufficient conjunction S+ missing from the sufficient solution formula generated with QCA. The
point of reference for matching cases is their membership in the truth table row TT to which they
belong. Analogous to the within-case comparison of a typical and a deviant case consistency case,
the goal is to maximize both cases’ membership and their similarity in TT and their difference in Y.
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Formula 7 achieves this.

DCOV − I IR = [(1− TTDCOV) + (1− TTI IR)] large membership in TT row

+ [1− (YDCOV −YI IR)] large difference in outcome

+ |TTDCOV − TTI IR| similar membership in TT row

(7)

Cases for this forth type of comparison can be identified by setting cases to 4. Since for deviant
coverage and IIR cases we are interested in identifying an entire missing sufficient term, the output
for these pairs is focused on matching pairs in truth table rows, rather than in sufficient terms.
Therefore, the output is sorted by truth table rows (the columns starting with TT showing the
combination of conditions) and for each truth table row we can identify a best matching pair of
cases according to formula values in column distance. For example, if we focus on truth table row
EMP ∗ BARGAIN ∗ uni ∗OCCUP ∗ stock ∗ ma (rows 6, 7, 8, 9, 10 in the output), the deviant case
coverage France_95 and the IIR case Finland_90 constitute the best matching pair, having the smallest
formula value for this specific truth table row (distance=1.43).

# Get matching pairs of deviant coverage and IIR cases for the
# parsimonious solution:

mmr (results = sol_yp, outcome = "EXPORT", neg.out = FALSE,
sol = 1, match = TRUE, cases = 4)

## Matching Deviant Coverage-IIR Cases :
## ----------
## deviant_coverage individually_irrelevant distance best_matching_pair
## 1 USA_99 New Zealand_95 0.58 TRUE
## 2 UK_03 New Zealand_95 0.59 FALSE
## 3 UK_99 New Zealand_95 0.59 FALSE
## 4 Ireland_03 New Zealand_95 0.73 FALSE
## 5 Ireland_99 New Zealand_95 0.73 FALSE
## 6 France_95 Finland_90 1.43 TRUE
## 7 France_95 Italy_95 1.44 FALSE
## 8 Germany_03 Finland_90 1.46 FALSE
## 9 Germany_03 Italy_95 1.47 FALSE
## 10 France_95 Austria_90 1.51 FALSE
## 11 Sweden_95 Sweden_90 1.41 TRUE
## 12 Sweden_95 Belgium_95 1.43 FALSE
## 13 Netherlands_95 Belgium_95 1.48 FALSE
## 14 Netherlands_95 Sweden_90 1.64 FALSE
## TT_EMP TT_BARGAIN TT_UNI TT_OCCUP TT_STOCK TT_MA
## 1 0 0 1 0 1 1
## 2 0 0 1 0 1 1
## 3 0 0 1 0 1 1
## 4 0 0 1 0 1 1
## 5 0 0 1 0 1 1
## 6 1 1 0 1 0 0
## 7 1 1 0 1 0 0
## 8 1 1 0 1 0 0
## 9 1 1 0 1 0 0
## 10 1 1 0 1 0 0
## 11 1 1 0 1 1 1
## 12 1 1 0 1 1 1
## 13 1 1 0 1 1 1
## 14 1 1 0 1 1 1

Enhanced standard analysis (ESA)

Limited empirical diversity is an omnipresent feature in social science data. The treatment of logical
remainders rows has been a major theme since the Ragin’s path-breaking book (Ragin, 1987, esp.
chapter 7). In Ragin (2008, chapters 8 and 9), three approaches towards remainders are proposed
under the label of the Standard Analysis (SA). Researchers can decide not to include them into the
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logical minimization (yielding the conservative or complex solution CS), to include all remainders that
are simplifying (yielding the most parsimonious solution PS), or to include only those simplifying
assumption that are easy based on so-called directional expectations (yielding the intermediate solution
(IS)).

Schneider and Wagemann (2012, chapter 8) propose the Enhanced Standard Analysis (ESA), which
argues that simplifying assumptions on specific remainders can be untenable. There are three sources
of untenability. Incoherent counterfactuals, which are either logical remainders contradicting claims
of necessity6 or assumptions made for the negated outcome7, and implausible counterfactuals, which
consist of claims about impossible remainders8. ESA simply stipulates that no QCA solution formula
can be based on untenable assumptions.

Figure 6 provides a graphical representation of the different types of assumptions as defined
by SA and ESA. Both approaches only allow for simplifying assumptions9 (i.e. those in the inner
circle) and both distinguish between difficult and easy counterfactuals (i.e. the vertical line inside the
circle)10. ESA but not SA does block any untenable assumption (i.e. the gray area on the lower part).
A risk of making untenable assumption is given whenever a researcher is claiming the presence of a
necessary condition, when statements of sufficiency for both the outcome and its negation are made,
and/or when two or more conditions with mutually exclusive categories are used in a truth table.
ESA requires that researchers identify those logical remainder rows whose inclusion into the logical
minimization would amount to an untenable claim. As a result, one obtains the enhanced PS and the
enhanced IS.11

Function esa() provides a straightforward tool for avoiding untenable assumptions and thus
putting ESA into practice. First, function esa() can exclude remainders that contradict single necessary
conditions, unions of necessary conditions, or more complicated expressions of necessity. For example,
assuming that the disjunction STOCK + MA is necessary for the outcome EXPORT, we ban all
remainder rows implied by this necessity claim in the nec_cond argument. All the logical remainder
rows that are subsets of ¬STOCK¬MA are subsequently set ot OUT = 0 in the truth table object ttnew
and thus excluded from further logical minimization.

# Ban logical reminders contradicting necessity:
# Let's assume that "STOCK + MA" is necessary for "EXPORT":

newtt <- esa(oldtt = TT_y, nec_cond = "STOCK + MA")

## EMP BARGAIN UNI OCCUP STOCK MA OUT n incl PRI cases
## 1 0 0 0 0 0 0 0 0 - -
## 3 0 0 0 0 1 0 ? 0 - -
## 4 0 0 0 0 1 1 ? 0 - -
## 5 0 0 0 1 0 0 0 0 - -
## 6 0 0 0 1 0 1 ? 0 - -
## 7 0 0 0 1 1 0 ? 0 - -
## 9 0 0 1 0 0 0 0 0 - -
## 13 0 0 1 1 0 0 0 0 - -
## 14 0 0 1 1 0 1 ? 0 - -
## 15 0 0 1 1 1 0 ? 0 - -
## 17 0 1 0 0 0 0 0 0 - -
## 18 0 1 0 0 0 1 ? 0 - -
## 20 0 1 0 0 1 1 ? 0 - -
## 21 0 1 0 1 0 0 0 0 - -
## 22 0 1 0 1 0 1 ? 0 - -
## 23 0 1 0 1 1 0 ? 0 - -
## 24 0 1 0 1 1 1 ? 0 - -
## 25 0 1 1 0 0 0 0 0 - -
## 26 0 1 1 0 0 1 ? 0 - -
## 30 0 1 1 1 0 1 ? 0 - -

6X← Y (implies ¬X→ ¬Y) & ¬X→ Y
7X→ Y & X→ ¬Y
8For instance, X = ‘rich-poor country’ etc & X→ Y
9Schneider and Wagemann (2012) propose Theory-Guided ESA (TESA) as an approach in which parsimony is

not the primary decision rule for choosing remainders.
10It can be noted that all assumptions that contribute to parsimony are either easy or difficult, they cannot be

neither. This is because all assumptions not constrainted by directional expectations (if there are any or just some)
are by default easy.

11For an application of ESA, see, for instance Thomann (2015).
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## 31 0 1 1 1 1 0 ? 0 - -
## 33 1 0 0 0 0 0 0 0 - -
## 34 1 0 0 0 0 1 ? 0 - -
## 35 1 0 0 0 1 0 ? 0 - -
## 36 1 0 0 0 1 1 ? 0 - -
## 37 1 0 0 1 0 0 0 0 - -
## 38 1 0 0 1 0 1 ? 0 - -
## 39 1 0 0 1 1 0 ? 0 - -
## 40 1 0 0 1 1 1 ? 0 - -
## 41 1 0 1 0 0 0 0 0 - -
## 42 1 0 1 0 0 1 ? 0 - -
## 44 1 0 1 0 1 1 ? 0 - -
## 45 1 0 1 1 0 0 0 0 - -
## 46 1 0 1 1 0 1 ? 0 - -
## 47 1 0 1 1 1 0 ? 0 - -
## 48 1 0 1 1 1 1 ? 0 - -
## 50 1 1 0 0 0 1 ? 0 - -
## 51 1 1 0 0 1 0 ? 0 - -
## 52 1 1 0 0 1 1 ? 0 - -
## 54 1 1 0 1 0 1 ? 0 - -
## 58 1 1 1 0 0 1 ? 0 - -
## 59 1 1 1 0 1 0 ? 0 - -

Secondly, the esa() function can also ban implausible counterfactuals to produce truth tables
in which specific logical remainders identifyied through conjunctions are excluded. For example,
we can ban all remainder rows that have BARGAIN+ ∼ OCCUP by using the Boolean expression
in argument untenable_LR. Finally, the function can exclude contradictory simplifying assumptions
(which are another form of untenable assumptions) and empirically observed rows that are part of
simultaneous subset relations12 by just using the unique truth table row identifier in the argument
contrad_rows. While argument untenable_LR accepts Boolean expression for excluding only logical
remainders, argument contrad_rows can exclude both empirically observed rows and remainder rows
through their unique identifier (row number).13

# Ban impossible logical remainders:
newtt <- esa(oldtt = TT_y, untenable_LR = "BARGAIN*~OCCUP")

# Ban contradictory rows:
newtt <- esa(oldtt = TT_y, contrad_rows = c("19", "14", "46", "51"))

Set-analytic theory evaluation

Ragin (1987, chapter 7) spells out the notion of theory evaluation. In essence, it consists of identifying
the overlap between a researcher’s theory (T) as formulated prior to the empirical analysis and the
empirical results (S) obtained via QCA. With both T and S being represented in the form of Boolean
expressions, all four logically possible combinations between T and S can be expressed in Boolean
terms as well and each case’s membership in each of these four expressions be calculated. Theory
evaluation reveals which aspects of T are empirically corroborated by S and which ones are not. It
also reveals how strong this emirical support is. Last but not least, theory evaluation can serve as a
case selection device by identifying cases that display membership scores in the empirical solution
and the outcome that are expected or utterly unexpected based on T.

Schneider and Wagemann (2012, chapter 11) refine Theory Evaluation by taking into account
each case’s membership score not only in T and S, but also outcome Y. This is necessary due to
the development of parameters of fit based on which by now it has become widespread practice to
allow for solution formulas with less than perfect consistency and coverage scores. This means that
in applied QCA, there are cases of S&¬Y and of ¬S&Y. This gives rise to eight different areas. Each
area can be defined as a Boolean expression, provides different analytic information, and defines

12Simultaneous subset relations happen when an empirically observed truth table row is a consistent enough
subset of both the outcome and its negation.

13Due to space restrictions, output for these functions is not shown here.
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Figure 6: Graphical Representation of Different Types of Assumptions on Remainders
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different types of cases. Each case has partial membership in all areas but only in one of higher than
0.5. Figure 7 provides a visualization of the areas and the kinds of cases in each area.14

Figure 7: Graphical Representation of Theory Evaluation
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Function theory.evaluation() performs the theory evaluation procedure between a theory spec-
ified in Boolean terms and results obtained using the QCA package. Assuming that the theory can
be summarized as EMP*∼MA + STOCK, the example below shows how theory evaluation works using
the second intermediate solution for outcome EXPORT. The first part of the output shows the names
and proportion of cases in each of the intersections between theory and the empirical solution. The
second part of the output shows parameters of fit for the solution, the theory, and their intersections,
which indicate how much each of these areas are in line with a statement of sufficiency for EXPORT.
Additionally, the function also stores the membership of each case in each intersection between theory
and empirics, which can be accessed by setting argument print.data to TRUE.

14For applied examples of theory evaluation, see, for instance, Sager and Thomann (2017); Schneider and Maerz
(2017).
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# Assuming the theory can be summarized as "EMP*~MA + STOCK",
# perform theory evaluation using the second intermediate solution:

theory.evaluation(theory = "EMP*~MA + STOCK", empirics = sol_yi,
outcome = "EXPORT", sol = 2, print.data=FALSE)

##
## Cases:
## ----------
##
## Covered Most Likely (T*E and Y > 0.5) :
## *******************
##
## Cases in the intersection/Total number of cases: 23 / 76 = 30.26 %
##
## Case Names:
## [1] "Ireland_90" "Japan_90" "USA_90" "Ireland_95"
## [5] "Japan_95" "Switzerland_95" "USA_95" "Denmark_99"
## [9] "Finland_99" "France_99" "Japan_99" "Netherlands_99"
## [13] "Sweden_99" "Switzerland_99" "Belgium_03" "Denmark_03"
## [17] "Finland_03" "France_03" "Japan_03" "Netherlands_03"
## [21] "Sweden_03" "Switzerland_03" "USA_03"
##
## Covered Least Likely (t*E and Y > 0.5) :
## *******************
##
## Cases in the intersection/Total number of cases: 0 / 76 = 0 %
##
## Case Names:
## [1] "No cases in this intersection"
##
## Uncovered Most Likely (T*e and Y > 0.5) :
## *******************
##
## Cases in the intersection/Total number of cases: 12 / 76 = 15.79 %
##
## Case Names:
## [1] "UK_90" "France_95" "Netherlands_95" "Sweden_95"
## [5] "UK_95" "Germany_99" "Ireland_99" "UK_99"
## [9] "USA_99" "Germany_03" "Ireland_03" "UK_03"
##
## Uncovered Least Likely (t*e and Y > 0.5) :
## *******************
##
## Cases in the intersection/Total number of cases: 0 / 76 = 0 %
##
## Case Names:
## [1] "No cases in this intersection"
##
## Inconsistent Most Likely (T*E and Y < 0.5) :
## *******************
##
## Cases in the intersection/Total number of cases: 12 / 76 = 15.79 %
##
## Case Names:
## [1] "Canada_90" "Switzerland_90" "Australia_95" "Canada_95"
## [5] "Denmark_95" "Finland_95" "Australia_99" "Belgium_99"
## [9] "Spain_99" "Australia_03" "Norway_03" "Spain_03"
##
## Inconsistent Least Likely (t*E and Y < 0.5) :
## *******************
##
## Cases in the intersection/Total number of cases: 1 / 76 = 1.32 %
##
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## Case Names:
## [1] "Australia_90"
##
## Consistent Most Likely (T*e and Y < 0.5) :
## *******************
##
## Cases in the intersection/Total number of cases: 23 / 76 = 30.26 %
##
## Case Names:
## [1] "Austria_90" "Belgium_90" "Denmark_90" "Finland_90"
## [5] "France_90" "Germany_90" "Italy_90" "Netherlands_90"
## [9] "Norway_90" "Spain_90" "Sweden_90" "Austria_95"
## [13] "Belgium_95" "Germany_95" "Italy_95" "New Zealand_95"
## [17] "Norway_95" "Spain_95" "Austria_99" "Canada_99"
## [21] "Italy_99" "Canada_03" "Italy_03"
##
## Consistent Least Likely (t*e and Y < 0.5) :
## *******************
##
## Cases in the intersection/Total number of cases: 4 / 76 = 5.26 %
##
## Case Names:
## [1] "New Zealand_90" "New Zealand_99" "Norway_99" "New Zealand_03"
##
##
## Fit:
## ----------
##
## Cons.Suf Cov.Suf PRI Cons.Suf(H)
## emp*bargain*OCCUP 0.909 0.194 0.721 0.865
## BARGAIN*UNI*STOCK 0.796 0.497 0.665 0.704
## emp*UNI*OCCUP*ma 0.919 0.171 0.611 0.894
## emp*occup*STOCK*ma 0.904 0.298 0.802 0.859
## UNI*occup*STOCK*ma 0.894 0.341 0.795 0.853
## Sol.Formula 0.799 0.705 0.691 0.716
## Theory 0.639 0.973 0.515 0.550
## T*E 0.811 0.705 0.707 0.726
## t*E 0.825 0.165 0.423 0.764
## T*e 0.651 0.547 0.419 0.592
## t*e 0.697 0.203 0.232 0.640

Diagnostic tools for clustered data structures

Most of the data analyzed in the social sciences and neighboring disciplines contains structures, or
layers, that might be analytically relevant but are not captured by the models used to analyze that
data. García-Castro and Arino (2016) discuss clustering along a temporal dimension. This can be days,
years, decades, or substantively important periods (before - after a crisis). Clusters can also be of
different origin. For instance, cases can be clustered along geographic units, such as world regions or
subnational units. There can also be clusterings along substantive lines, such as e.g. economic sectors,
parties, political regime types.

Whenever a researcher is not capturing these differences via a condition in her QCA model, she
de facto assumes that the analytic difference does not matter. There are often good reasons to not
include additional conditions into an analysis, with keeping limited diversity at bay being one of them.
It should, however, been put to an empirical test whether it is ok to pool cases across different time
periods, geographic units, and/or substantive areas.

Function cluster() provides the tools for performing such a test. It analyzes whether the QCA
solution formula obtained from the pooled data also can be found in each of the sub-populations in
the data. If it can, then pooling the data is fine. If it cannot, then pooling the data is not fine because
it produces a solution that does not hold for all sub-populations. Rather, it is an artifact of having
pooled cases that follow different causal logics. In this case, researchers might decide to drop from
their analysis those sub-populations that do not follow the general pattern or to include a condition
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into their model that captures the difference.

For using the cluster() function, researchers need data in the long format, with a column
identifying the unit of analysis and a column identifying the clustering element. In our example, using
the Schneider et al. (2010) data, the column identifyign the units is the COUNTRY column, while the
cluster element is stored in the YEAR column. After having the data in the long format, we can get the
diagnostic of how our solution holds throughout the different units and clusters by just imputing the
solution (in this case sol_yi) in the cluster() function, while also specifying the data, the outcome, the
unit identifier, and the cluster identifier. The first part of the output shows the consistency sufficiency
for the overall, pooled sample for each sufficient term and the entire solution to be diagnosed. This
first row of the output should be equivalent to the consistency measures obtained when producing
the solution. The rows below show consistency values of the same terms and solution, but for each
cluster and each unit in part. These are the values we would obtain if the analysis where to be run for
each cluster subsample and each unit subsample separately. For example, the pooled consistency of
sufficient term emp ∗UNI ∗OCCUP ∗ma is 0.919 but only 0.733 for the year 1990. This might be an
indication for the researcher that her sufficiency statement is not as consistent and might not work
in the same way for the cluster of cases from 1990. In general, if consistency values between clusters
differ greatly from pooled consistency for a term, we might want to rexamine the setup of the analysis
to account for this. The Distances: section of the output reports on how much the parameters of fit
differ from the clusters to the pooled data. Finally, the last part of the output displays a similar table
for coverage, with pooled, between clusters, and within units measures.

# Perfom cluster diagnostic:
# First we need to load the Schneider et. al. (2010) data in the long format:

data(SCHLF)

# This data has a column identifying the unit (country)
# and the clustering element (year):

head(SCHLF)

## EMP BARGAIN UNI OCCUP STOCK MA EXPORT COUNTRY YEAR
## Australia_90 0.07 0.90 1.00 0.68 0.45 0.33 0.19 Australia 1990
## Austria_90 0.70 0.98 0.01 0.91 0.01 0.05 0.25 Austria 1990
## Belgium_90 0.94 0.95 0.14 0.37 0.26 0.14 0.14 Belgium 1990
## Canada_90 0.04 0.21 0.99 0.11 0.62 0.31 0.28 Canada 1990
## Denmark_90 0.59 0.78 0.10 0.55 0.53 0.10 0.34 Denmark 1990
## Finland_90 0.70 0.97 0.20 0.95 0.02 0.13 0.17 Finland 1990

# Get the intermediate solution:

sol_yi <- minimize(SCHLF, outcome = "EXPORT",
conditions = c("EMP","BARGAIN","UNI",

"OCCUP","STOCK", "MA"),
incl.cut1 = .9,
include = "?",
details = TRUE, show.cases = TRUE,
dir.exp = c(0,0,0,0,0,0))

# Get pooled, within, and between consistencies for the intermediate solution:

cluster(data = SCHLF, results = sol_yi, outcome = "EXPORT", unit_id = "COUNTRY",
cluster_id = "YEAR")

## Consistencies:
## ---------------
## emp*bargain*OCCUP BARGAIN*UNI*STOCK emp*UNI*OCCUP*ma
## Pooled 0.909 0.796 0.919
## Between 1990 0.839 0.873 0.733
## Between 1995 0.903 0.727 0.953
## Between 1999 0.928 0.802 1.000
## Between 2003 0.951 0.818 1.000
## Within Australia 1.000 0.405 0.634
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## Within Austria 1.000 1.000 1.000
## Within Belgium 1.000 0.803 1.000
## Within Canada 1.000 1.000 1.000
## Within Denmark 1.000 0.757 1.000
## Within Finland 1.000 0.835 0.957
## Within France 1.000 0.916 1.000
## Within Germany 1.000 1.000 1.000
## Within Ireland 1.000 1.000 1.000
## Within Italy 1.000 0.800 1.000
## Within Japan 1.000 1.000 1.000
## Within Netherlands 1.000 1.000 1.000
## Within NewZealand 0.414 0.875 0.727
## Within Norway 0.965 0.486 0.930
## Within Spain 1.000 0.524 1.000
## Within Sweden 1.000 0.926 1.000
## Within Switzerland 0.880 1.000 1.000
## Within UK 1.000 1.000 1.000
## Within USA 1.000 1.000 1.000
## emp*occup*STOCK*ma bargain*occup*STOCK*ma
## Pooled 0.904 0.913
## Between 1990 0.858 0.903
## Between 1995 0.847 0.884
## Between 1999 1.000 1.000
## Between 2003 0.995 0.916
## Within Australia 0.865 1.000
## Within Austria 1.000 1.000
## Within Belgium 1.000 1.000
## Within Canada 0.587 0.587
## Within Denmark 0.732 1.000
## Within Finland 1.000 1.000
## Within France 1.000 1.000
## Within Germany 1.000 1.000
## Within Ireland 1.000 1.000
## Within Italy 1.000 1.000
## Within Japan 1.000 0.997
## Within Netherlands 1.000 1.000
## Within NewZealand 0.710 0.710
## Within Norway 0.930 0.961
## Within Spain 1.000 0.628
## Within Sweden 1.000 1.000
## Within Switzerland 1.000 1.000
## Within UK 1.000 1.000
## Within USA 1.000 1.000
##
##
## Distances:
## ----------
## emp*bargain*OCCUP BARGAIN*UNI*STOCK
## From Between to Pooled 0.023 0.032
## From Within to Pooled 0.031 0.050
## emp*UNI*OCCUP*ma emp*occup*STOCK*ma
## From Between to Pooled 0.060 0.039
## From Within to Pooled 0.024 0.030
## bargain*occup*STOCK*ma
## From Between to Pooled 0.024
## From Within to Pooled 0.032
##
##
## Coverages:
## ----------
## emp*bargain*OCCUP BARGAIN*UNI*STOCK emp*UNI*OCCUP*ma
## Pooled 0.194 0.497 0.171
## Between 1990 0.231 0.246 0.193
## Between 1995 0.206 0.466 0.271
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## Between 1999 0.174 0.589 0.042
## Between 2003 0.184 0.570 0.214
## Within Australia 0.415 1.000 0.675
## Within Austria 0.075 0.041 0.279
## Within Belgium 0.138 0.959 0.283
## Within Canada 0.328 0.545 0.246
## Within Denmark 0.273 0.894 0.317
## Within Finland 0.059 0.937 0.282
## Within France 0.070 0.805 0.118
## Within Germany 0.236 0.374 0.205
## Within Ireland 0.113 0.352 0.098
## Within Italy 0.173 0.367 0.112
## Within Japan 0.161 0.064 0.161
## Within Netherlands 0.150 0.748 0.183
## Within NewZealand 1.000 0.778 0.667
## Within Norway 0.598 0.978 0.435
## Within Spain 0.204 0.710 0.204
## Within Sweden 0.061 0.761 0.054
## Within Switzerland 0.738 0.244 0.032
## Within UK 0.075 0.282 0.052
## Within USA 0.037 0.045 0.037
## emp*occup*STOCK*ma bargain*occup*STOCK*ma
## Pooled 0.298 0.278
## Between 1990 0.452 0.450
## Between 1995 0.459 0.345
## Between 1999 0.069 0.117
## Between 2003 0.321 0.290
## Within Australia 0.675 0.317
## Within Austria 0.041 0.034
## Within Belgium 0.228 0.103
## Within Canada 0.701 0.701
## Within Denmark 0.480 0.238
## Within Finland 0.218 0.042
## Within France 0.132 0.048
## Within Germany 0.205 0.169
## Within Ireland 0.291 0.118
## Within Italy 0.265 0.184
## Within Japan 0.456 0.947
## Within Netherlands 0.196 0.070
## Within NewZealand 0.611 0.611
## Within Norway 0.435 0.533
## Within Spain 0.204 0.581
## Within Sweden 0.054 0.057
## Within Switzerland 0.093 0.093
## Within UK 0.072 0.072
## Within USA 0.717 0.717

Function cluster() can be applyied in a similar fashion for necessary relationships by just setting
argument necessity to TRUE and inputting the necessary condition to be diagnosed in the field
results. Additionally, we can also diagnose Boolean expressions by just entering this into the results
argument.

# Get pooled, within, and between consistencies for ~EMP
# as necessary for EXPORT:

cluster(data = SCHLF, results = "~EMP", outcome = "EXPORT",
unit_id = "COUNTRY", cluster_id = "YEAR", necessity=TRUE)

# Get pooled, within, and between consistencies for EMP*~MA*STOCK
# as sufficient for EXPORT:

cluster(data = SCHLF, results = "EMP*~MA*STOCK", outcome = "EXPORT",
unit_id = "COUNTRY", cluster_id = "YEAR")
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Additional functions

Plotting sufficient terms and solutions, truth table rows, and necessity relations

Package SetMethods also includes a function pimplot() for plotting each sufficient term and the
solution formula (obtained by using the minimize() function in package QCA). The function can also
plot truth table rows against the outcome by using arguments incl.tt or ttrows as in the examples
below. Additionally, the function can plot results obtained from necessity analyses using an object
of class "sS" (obtained by using the superSubset() function in package QCA) by setting argument
necessity to TRUE.15

# Plot the prime implicants of the parsimonious solution:

pimplot(data = SCHF, results = sol_yp, outcome = "EXPORT")

# Plot all truth table rows with a consistency higher than 0.9:

pimplot(data=SCHF, results = sol_yi, incl.tt=0.9, outcome = "EXPORT", sol = 1)

# Plot truth table rows "60" and "61":

pimplot(data=SCHF, results = sol_yi, ttrows =c("60","61"),
outcome = "EXPORT", sol = 1)

# For plotting results of necessity analyses using superSubset,
# the first stept is to obtain an "sS" object:

SUPSUB <- superSubset(SCHF, outcome="EXPORT",
conditions = c("EMP","BARGAIN","UNI","OCCUP","STOCK", "MA"),
relation = "necessity", incl.cut = 0.8)

SUPSUB

# This can be imputed as result and necessity should be set to TRUE:

pimplot(data = SCHF, results = SUPSUB, outcome = "EXPORT",
necessity = TRUE)

QCAradar

Another function included in the package is the QCAradar() function which allows visualization of
QCA results or simple Boolean expressions in the form of a radar chart16. The function accepts in the
argument results sufficient solutions obtained through the function minimize() in package QCA, or
Boolean expressions involving more than three conditions, as in the second example below.

# Display radar chart for the second intermediate solution:

QCAradar(results = sol_yi, outcome = "EXPORT", fit=TRUE, sol = 2)

Figure 8a shows a radar chart for the second intermediate solution formula. The different sufficient
terms are overlapping on the radar in different shades. For example, we can see the first term
emp*bargain*OCCUP, as condition EMP is missing it is set to 0 for that respective corner, condition
BARGAIN is missing and set to 0, and condition OCCUP is present and set to 1. Since the rest of the
conditions are not specified in this term, they are all left at -.

15The plots resulting from these functions are not included in the paper due to length reasons.
16See Maerz (2017) for an applied example of radar charts.
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Figure 8: Radar Charts

# Show a radar chart for the following boolean expression "A*~B*C*~D"

QCAradar(results = "A*~B*C*~D")

Figure 8b shows a radar chart for the Boolean expression ”A∗ ∼ B ∗ C∗ ∼ D”. Conditions A and
C that are present are set to 1 for their respective corners, while conditions B and D that are missing
and set to 0. There are not conditions left at - in this figure, as all conditions are specified.

Indirect calibration

SetMethods also includes a function for performing the indirect calibration procedure described by
Ragin (2008)17. This procedure assumes that the cases included in the analysis have interval-scale raw
scores which can be initially sorted broadly into different levels of fuzzy set membership. Subsequently,
the raw scores are transformed into calibrated scores using a binomial or a beta regression. Assuming
that vector x contains the initial raw scores, while vector x_cal contains the rough grouping of those
values into set membership scores, function indirectCalibration() can produce a vector of fuzzy-set
scores a by fitting the x to x_cal using a binomial regression if binom is set to TRUE.

# Generate fake data

set.seed(4)
x <- runif(20, 0, 1)

# Find quantiles

quant <- quantile(x, c(.2, .4, .5, .6, .8))

# Theoretical calibration

x_cal <- NA
x_cal[x <= quant[1]] <- 0
x_cal[x > quant[1] & x <= quant[2]] <- .2
x_cal[x > quant[2] & x <= quant[3]] <- .4
x_cal[x > quant[3] & x <= quant[4]] <- .6
x_cal[x > quant[4] & x <= quant[5]] <- .8
x_cal[x > quant[5]] <- 1
x_cal

# Indirect calibration (binomial)

17The QCA package can also perform indirect calibration through its calibrate function
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a <- indirectCalibration(x, x_cal, binom = TRUE)
a

Conclusions

In this article, we have presented the main functionalities of the R package Setmethods. It is true
that starting to perform QCA in R is more onerous than starting with a point-and-click software.
Yet, the flexibility offered by R is also its strength, especially for a young method like QCA. As set
methods continue to develop, software implementations need to be updated and improved at a fast
rate. Package SetMethods is designed to do precisely this: providing a tool for implementing new
ideas that enhance set-theoretic analyses for applied researchers.
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HRM: An R Package for Analysing
High-dimensional Multi-factor Repeated
Measures
by Martin Happ, Solomon W. Harrar, Arne C. Bathke

Abstract High-dimensional longitudinal data pose a serious challenge for statistical inference as many
test statistics cannot be computed for high-dimensional data, or they do not maintain the nominal
type-I error rate, or have very low power. Therefore, it is necessary to derive new inference methods
capable of dealing with high dimensionality, and to make them available to statistics practitioners.
One such method is implemented in the package HRM described in this article. This new method
uses a similar approach as the Welch-Satterthwaite t-test approximation and works very well for
high-dimensional data as long as the data distribution is not too skewed or heavy-tailed. The package
also provides a GUI to offer an easy way to apply the methods.

Introduction

Repeated measures designs appear in many different situations. In clinical studies, physicians might
be interested in the effect of different treatments over time. Typically, a univariate or multivariate
measurement is observed over a period of time for each subject. The subjects can be separated into
different disjoint groups and can often be assumed not to influence one another. That is, observations
on different subjects are considered independent. We refer to factors whose levels contain different
sets of subjects as whole-plot or between-subjects factors. On the other hand, the time factor is a
typical sub-plot or within-subjects factor because it structures the observations within individual
subjects. Observations on the same subject may be dependent, and for different level combinations
of the whole-plot factors, different types of dependence may be assumed. However, within a group
defined by a factor level combination or cell, the observation vectors are modeled as coming from the
same multivariate distribution. In particular, the dependence structure is the same for all subjects
within such a cell.

Let us first consider a simple, additive model for univariate repeated measures data with different
groups. This model already allows for different variances in different cells, as described above, but it
is not sufficiently general regarding the dependence structures that are encompassed, and therefore
a more general model will be considered later. An additive model for repeated measures could be
written as

Yijk = µij + Aik + εijk,

where Yijk is the observation on subject (k) in group (i) at time point (j). It is decomposed additively
into the population mean µik in group (i) for time point (k), and two random components. Namely,
Aik ∼ N(0, τ2

i ) is the specific effect for subject (k) in group (i) and εijk ∼ N(0, σ2
i ) is an additive

random error term whose variance may depend on the group. All random variables εijk and Aik
shall be assumed independent. Such a model formulation results in a covariance structure where
observations on different subjects, that is, with different index pair (i, k), are independent, and
observations Yij1k and Yij2k on the same subject (k) in group (i) all have the same variance σ2

i + τ2
i ,

as well as the same covariance τ2
i , no matter the value of their indices j1 and j2. In other words, the

correlation ρij1k,ij2k = τ2
i /(σ2

i + τ2
i ) between two observations does not depend on their time distance

|j1 − j2|.
For other dependence structures the correlation may decrease if two observations are further apart.

Such dependence models are certainly possible and sometimes justified. By inspecting the compound
symmetry structure above more closely, we also observe that also differences of two observations have
the same variance independent of the choice of time points. Indeed, this property is generally referred
to as sphericity. Therefore, the compound symmetry covariance structure is a special case of sphericity
(see e.g., Bathke et al. (2009)).

Box (1954a,b) (or in more detail Huynh and Feldt (1970)) showed that the simple F-test is no longer
valid when sphericity of the covariance structure cannot be assumed. In lower-dimensional situations,
classical corrections such as the Greenhouse-Geisser (Geisser and Greenhouse, 1958; Greenhouse and
Geisser, 1959) or Huynh-Feldt (Huynh and Feldt, 1976; Lecoutre, 1991) methods for the repeated
measures ANOVA can be used when the covariance matrix sphericity assumption is violated. However,
the performance of tests using the Greenhouse-Geisser or Huynh-Feldt corrections heavily depends
on the actual underlying covariance structures as both have been derived under the assumption of
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homoscedasticity across the levels of the between-subjects factor, which is very often not justifiable in
practice. In other words, they assume that the variance-covariance structure between the repeated
observations is the same for each cell. This assumption is rather restrictive, in particular in the presence
of high dimensionality of the data vectors, and therefore a more general model is needed. In a classical
MANOVA-design or repeated measures design, this problem was already tackled by Harrar (2009);
Chen et al. (2010); Konietschke et al. (2015); Pauly et al. (2015); Harrar and Kong (2016); and Bathke
et al. (2018), among others.

Here, and in the following, high-dimensionality of repeated measures means that the number
of repeated measurements (d) per subject is larger than the sample sizes (ni) in group (i) (d > ni).
Methods that rely on the inverse of an empirical variance-covariance matrix cannot be calculated in
this situation. A well-known example is Hotelling’s T2 test for multivariate data which can be used
to test for simple treatment effects, that is, for the hypothesis that expectation vectors are the same
for all groups. In a high-dimensional setting, the empirical variance-covariance matrix is singular,
rendering Hotelling’s T2 unusable. Alternative test statistics that can in principle still be calculated
for high-dimensional data include the ANOVA type statistic (Brunner et al., 1997; Brunner and Puri,
2001). Also, the Greenhouse-Geisser and the Huynh-Feldt correction for the repeated measures
ANOVA can technically be computed, but they do suffer from the limitations mentioned before, and
the performance of all three approaches deteriorates with increasing dimensionality (see, e.g., the
simulation results in Happ et al. (2016)). Another possible approach for high-dimensional data is
presented by the procedure proposed by Secchi et al. (2013), however this requires strong assumptions
on the covariance matrices. Specifically, when we denote with Σi the d× d dimensional variance-
covariance matrix for the i-th group, then the assumption from Secchi et al. (2013) can be formulated
as

0 < lim
d→∞

tr
(

Σk
i

)
d

< ∞

for k = 1, 2, and 4 and for all groups i = 1, . . . , a. Similar assumptions have also been used by
Srivastava (2007); Srivastava and Yanagihara (2010); Chen et al. (2010) or Harrar and Kong (2016) and
these assumptions were discussed in Pauly et al. (2015). For practical applications, it may be difficult
to verify this assumption.

The method implemented in the package HRM does not assume any particular covariance struc-
tures (Happ et al., 2016, 2017), neither homoscedasticity across the between-subjects factor levels, nor
sphericity regarding the levels of the within-subjects factor. In particular, no compound symmetry
is assumed. Also, it does not require a stringent covariance assumption as in Secchi et al. (2013) or
Srivastava and Yanagihara (2010). It is therefore rather general. A limitation exists, however, for this
method. The theory has been derived under the asumption of normal errors. While it performs well
empirically for a wide range of simulated data distributions, including discrete data, we recommend
caution when the data is very skewed or heavy-tailed. For details, see Section Limitations.

In the following subsection, we will describe the model that is underlying the HRM package.
Here, it will become clear that this model allows for rather general covariance structures, rendering
the associated R package applicable for a wide range of high-dimensional data sets.

Statistical model

Consider a setting with two whole- and two sub-plot factors. Models for other designs can be
formulated analogously. We refer to the whole-plot factors as A and S (e.g., group and subgroup) and
to the sub-plot factors as C and D, respectively. For example, in the EEG data in Section Examples,
the sub-plot factors are variable and region. The observations are represented by independent random
vectors

Xijk =
(

X′ijk11, . . . , X′ijkbc

)′
∼ N

(
µij, Σij

)
.

Here, Xijk is the d = b × c dimensional data vector of the k-th subject in the i-th group and j-th
subgroup for i = 1, . . . , a and j = 1, . . . , s. Note that we do not impose any special dependence
structure on the covariance-matrices Σij.

Accordingly, the factors A, S, B, and C have a, s, b, and c factor levels, respectively. The sample
size in the i-th group and j-th subgroup is denoted by nij. Overall, there are N = ∑

i,j
nij experimental

units. Our hypotheses of interest concern interaction effects between two or more factors, and main
effects of a single factor. They can all be formulated as quadratic forms using appropriate projection
matrices Kφ which depend on the respective hypothesis of interest φ, namely

H0(φ) : µ′Kφµ = 0.
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In a setting with only one whole- and one sub-plot factor with a and d factor levels (group and time),
this projection matrix is simply given by a Kronecker product of two matrices, that is Kφ = Wφ ⊗ Sφ.
If we want to test for the main group effect, we choose Wφ = Pa and Sφ = 1/d Jd where Pa is the a× a
dimensional centering matrix and Jd is the d× d dimensional matrix whose entries are all equal to
1. With the latter matrix, we average over the sub-plot factor, and the former matrix centers a vector
by subtracting its mean from all components of the vector. If we want to test for an interaction effect,
we use for both Wφ and Sφ a centering matrix and if we want to test only for the main time effect we
simply use Wφ = 1/a Ja and Sφ = Pd. The corresponding test statistic is then constructed as

T (φ) :=
X̄ ′KφX̄

tr
(

Σ̂φ

) ,

where

Σ̂φ = Kφ

 a⊕
i=1

s⊕
j=1

1
nij

Σ̂φ

 ,

X̄ is the as× d-dimensional vector containing the means of all groups at each time point, and Σ̂φ is
the empirical variance-covariance matrix for the i-th group. In general, we do not know the exact
distribution of T(φ), but we can approximate the sampling distribution of T(φ) under null hypothesis
by an F-distribution with estimated degrees of freedom f̂ and f̂0. We refer to Brunner et al. (2012);
Happ et al. (2016, 2017) for details regarding this so-called Box approximation and in particular the
estimation of the degrees of freedom.

Note that this method only provides an approximation to the sampling distribution. Although
it generally performs well, it is not asymptotically exact. There are asymptotic tests such as those
proposed by Pauly et al. (2015) or Sattler and Pauly (2017), converging under some assumptions such
as min{ni, i = 1, . . . , a} → ∞ and they also provide a small sample size approximation. Similar to the
aforementioned papers, an advantage of the approximative method in HRM is that it is working very
well even for rather small sample sizes.

The R package HRM

In the R package HRM, the test statistic is implemented for designs described in Section Statistical
model. It is possible to use tests with up to four factors (at most two whole-plot or three sub-plot
factors). Two S3 methods are provided to facilitate different data input formats. Both S3 methods can
be called by the generic function hrm_test. The data can either be provided in the wide table format
where each row represents the observations from one subject. This means that for each group, all
observations have to be stored in a matrix. Then the matrices from all groups need to be elements of a
list. This method only supports one whole- or one sub-plot factor, that is, a maximum of two factors
can be used.

The other way is to provide the data in the long table format as a data frame. Here, all observations
are in stored in one column. The other columns of the data frame specify the factor levels to which an
observation belongs. For this type of data, at least one whole- and one sub-plot factor have to be used
and they support in general up to two whole- and two sub-plot factors. There is also the special case
of one whole- and three sub-plot factors implemented.

Depending on the type of data that is given as an argument to hrm_test, either the S3 method
hrm_test.list or hrm_test.data.frame is internally called. We will give now a short description of
these two S3 methods.

Methods

The S3 method hrm_test.list has two parameters, data and alpha. The second parameter has
its default value set to 0.05 and specifies the type-I error level of the procedure which is used for
calculating the critical value for the test procedure. The first parameter is a list containing the data in
the wide table format for all groups. That is, the list has the structure

data <- list(group_1, group_2, ..., group_a),

where group_i is the data for the i-th group in the wide table format (the repeated measurements are
the columns). Clearly, this method only works with one whole- and one sub-plot factor.

The method hrm_test.data.frame can be used for designs with up to two whole- and three
sub-plot factors, but it is limited to a maximum number of four factors. The parameter data needs
to be a data frame containing the data with the aforementioned columns. Similar to the method
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hrm_test.list we can also specify the nominal type-I error rate by using the parameter alpha. The
method hrm_test.data.frame needs a formula object. These are special R objects that allow to write a
statistical model in a compact way and is used by many R packages. Let us assume the model

Yijk = µij + εijk = αi + β j + γij + εijk,

where Yijk is the observation at time j for subject k in the i-th group and εijk is the measurement error.
The influence of the whole-plot factor is described by α and of the sub-plot factor by β. We denote by
γ the interaction between these two factors. To write this model in a compact way in R we can use the
formula

response ~ whole-plot factor * sub-plot factor.

Here the expression on the left-hand side of ∼ is the response variable. It is explained by the variables
on the right-hand side. The symbol * means that the interaction term γij is also included in the model,
that is µij = αi + β j + γij. Therefore main effects and the interaction effect are included in the model.
This formula is equivalent to

response ~ whole-plot factor + sub-plot factor
+ whole-plot factor : sub-plot factor,

where : specifically denotes for the interaction effect. Hence the ∗ notation is an abbreviation for
adding main and interaction effects. If we are only interested in the main effects then we could use the
formula

response ~ whole-plot factor + sub-plot factor,

or alternatively if we are only interested in the interaction effect, our formula has the form

response ~ whole-plot factor : sub-plot factor.

For the method hrm_test.data.fram we also need to specify the column name for the subjects. This
column name needs to be a character. Otherwise an error message is returned by the method.

All these methods previously described return an HRM object which contains a list consisting of
the results in a data.frame, the formula, the type-I error, the subject column name and the column
names of the whole- and sub-plot factors which are used, and the data used for testing.

In the special case when only one whole- and one sub-plot factor is used, it is possible to plot
the so-called profile curves. In each group i = 1, . . . , a, the mean x̄it is calculated at each time point
t = 1, . . . , d. Then, the points (1, x̄i1), . . . , (d, x̄id) are plotted for all groups i = 1, . . . , a. An example
can be seen in Figure 3. For plotting these curves, the S3 method plot.HRM is available. It needs an
object of class "HRM" which is returned by the function hrm_test. Additionally we can change the
labels for the x-axis and the y-axis with the parameters xlab and ylab respectively. Furthermore, it
is possible to disable the legend by setting the argument legend = FALSE, the title for the legend
can be changed with the argument legend.title. By setting legend.title = NULL, no legend title
is displayed. Internally, this method is only a ggplot2 wrapper (Wickham, 2009). If there is only one
sub-plot but no whole-plot factor used, it is still possible to plot profile curves (see for example Figure
5).

For objects of class "HRM", there are also the methods print.HRM and summary.HRM available. The
first method just reproduces the standard output from hrm_test whereas summary.HRM lists addition-
ally the whole- and sub-plot factors which were used in the model.

To improve the performance in case of a large dimension, this package uses mainly the dual
empirical variance-covariance matrices (Brunner et al., 2012; Happ et al., 2017). Because the trace
function is invariant under cyclic permutations, the empirical d× d variance-covariance matrix can be
reduced to an ni × ni matrix. This is especially useful if d >> ni, where ni is the sample size in the i-th
group. Another improvement is to use

tr
(̂i ĵ

)
= 1′d

(̂i ∗ ̂′j) 1d

for calculating the trace of a matrix product, where ∗ is the Hadamard-Schur product. The effects
of these two improvements are only noticeable for calculating a single test statistic if d is very large
(d > 1000).

An additional enhancement for high-dimensional data is achieved by using the method hrm_test.list
instead of hrm_test.data.frame. Although it can sometimes be convenient to use the long table for-
mat in a data frame, for computing the degrees of freedom and the test statistic, the data has to be
separated internally by the whole-plot factors. This procedure can be quite time consuming for very
large datasets (dimension d > 105 and number of subjects > 100) if the data structure "data.frame" is

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLES 538

dimension d data.frame data.table

105 224.17 0.64
2× 105 1411.93 1.07

Table 1: Running times in seconds for converting a wide table into a long table for 100 subjects.

used. The problem in this case is that the data structure "data.frame" is not suitable for large data
sets. But most functions that import data into R return a "data.frame" object. In such a case, it is
beneficial to provide the data already separated by the whole-plot factors in a list. This can be done
with the method hrm_test.list. One disadvantage by using this method is, that it is currently not
possible to specify more than one whole- or sub-plot factor. Another way to solve this problem is
to convert the "data.frame" object into a "data.table" object (from package data.table (Dowle and
Srinivasan, 2017)) which is specifically developed for large data sets. But the syntax for a data.table
is completely different from a data.frame and their syntax is also not compatible with each other. In
order to demonstrate the effect, we ran a small simulation with d = 105 and n = 100. Here, it takes
about 4 minutes to convert a data.frame from the wide to the long table format and when we used a
data.table it takes under 1 second to do the same (see Table 1). By increasing the dimension, the time
it takes for the conversion increases exponentially if you use a data.frame. For this simulation we used
the the function Sys.time to measure the calculation time and repeated each calculation five times.
Note that the time needed for rearranging the data heavily depends on the computer on which the R
script runs. In our case, we employed a computer with an AMD Ryzen 5 1600 CPU (6× 3.2 GHz) and
16GB DDR-4 RAM (2800 MHz). Therefore the results from this simulation cannot be generalized but it
can be an indication that a data frame should not be rearranged if the dimension is large. Therefore,
using the method hrm_test.list may help to avoid this additional step of converting your data frame
into a "data.table" object.

Graphical user interface

For more convenient access to the package’s capabilities, a graphical user interface (GUI) can be used
by typing the command hrm_GUI() into the R console. A window opens where the data file (long
table format) can be loaded and viewed. This window is shown in Figure 1. After typing the formula
as described before and selecting the column identifying the subjects, the results can be displayed
in a separate window. Optionally, the results can be saved as a LATEX-table or just as plain text. For
each hypothesis test, the degrees of freedom of the F approximation, the value of the test statistic, the
critical value for the test, and the p-value are displayed. An example of the results window for the
EEG data is shown in Figure 2. This data set contains of 160 subjects who have been divided into one
of four diagnostic groups (whole-plot factor). For each subject 40 measurements from an EEG are
available (sub-plot factor). This example is explained in more detail in Section EEG Data Example. In
the results window are the test statistics along with the degrees of freedom and p-values for main and
interaction effects displayed.

If only one whole- and one sub-plot factor is being used, the profile curves of the groups are
displayed as a graphic in a separate window. The plot can be saved in the pdf format.

The GUI relies on the function hrm_test for doing the analysis and plot.HRM for creating the plot
as shown in Figure 3. That is, there is no difference between using the GUI or using both generic
functions directly. For creating the GUI, the RGtk2 package is used (Lawrence and Temple Lang, 2010).
This package allows us to utilise the cross-platform widget-toolkit GTK+ with R. The current version
2.20.34 of this package cannot be installed on macOS, therefore the GUI for the package HRM does
not work on macOS.

For opening data files, we rely on the functions provided in the package tcltk to ensure that this
procedure works on multiple computer environments. For viewing the data we utilise the package
RGtk2Extras (Taverner et al., 2012) which provides a very easy way do display and manipulate data in
a GUI. The packages cairoDevice and ggplot2 are used for plotting (Lawrence, 2017; Wickham, 2016)
profile curves. Similar as before, we have to avoid functions that only work for a specific computer
environment. Therefore we work with the package cairoDevice which is capable of displaying a
graphic in a window and does not depend on a specific computer environment. For saving the results
of the function hrm_test as a LATEX-table, we are using the package xtable (Dahl, 2016) which converts
a data.frame into the corresponding LATEX code for a table.

Because of the limitation of RGtk2, the GUI does not work on macOS (OS X 10.11.6). But the
package HRM itself can be installed on macOS and the function hrm_test can be run regardless.
Apart from that, the GUI works on all other newer operating systems (for example Debian 7.3.0-12 or
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Figure 1: GUI for the HRM package. The data can be loaded either by clicking ’Open File’ in the
toolbar or by clicking on the button ’Load Data’ next to the textfield for the file path. The formula has
to be specified in the appropriate textfield and the subject column needs to be chosen in the dropdown
list.

Microsoft Windows 7, 8, 10).

Examples

EEG Data Example

In order to demonstrate how to work with the package, we use the EEG data from Staffen et al.
(2014) which is included in the HRM package. There are 160 subjects who have been diagnosed
with Alzheimer’s disease (AD), mild cognitive impairments (MCI), or subjective cognitive complaints
(SCC+ or SCC–). For each subject, four variables (activity, complexity, mobility and brain rate) are
measured at 10 different brain regions (frontal left/right, parietal left/right, central left/right, temporal
left/right, and occipital left/right). We are using the diagnostic groups and sex as whole-plot factors,
and the region and variable as sub-plot factors. Sample sizes are given in Table 2. In all combinations
of diagnostic group and sex the dimension is larger than the sample size, therefore this is considered a
high-dimensional setting.

Sex AD MCI SCC+ SCC-

male 12 27 14 6
female 24 30 31 16

sum 36 57 45 22

Table 2: Sample sizes for the EEG data.

To perform the analysis we are using the graphical user interface and the R console. The commands

# Save EEG data from package HRM
write.table(EEG,

file = "EEG.csv",
sep = ",",
dec = ".",
col.names = TRUE)

# Open the GUI
hrm_GUI()

will load the package and save the EEG data in a ‘.csv’ file in the current working directory. The last
line launches the GUI (see Figure 1). By clicking on the ’Open File’ button we can select the ‘EEG.csv’
file we previously saved. Depending on the data, we may have to change the separator mark, decimal
mark, or deselect that the file contains header. This can be done in the fields below the textfield for
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Figure 2: Results for the EEG data. The results can be saved as a LATEX table by clicking on the button
on the bottom or in the toolbar.

the file path. We can look at the data by clicking on the button ’View Data’ in the toolbar. A new
window is created displaying the data we have just loaded (seen in Figure 4). The data consists of
columns specifying the whole-plot (group, sex) and sub-plot factors (variable, region). Additionally,
one column contains the response variable from each person (value) and the subject column identifies
the subjects. A unique identification of the subjects is necessary to determine automatically within the
function hrm_test which factors are whole- and which are sub-plot factors. By combining the factors
region and variable into just one factor, we obtain a new factor which we will simply call dimension.
It is provided in the column with the same name.

Another way to look at the data is by using the command

View(EEG)

which will also display the complete data set. After we have loaded and looked at the data we need to
specify the formula in the GUI. In this example, the formula is given by

value ~ group * sex * region * variable

which means that for the four factors tests for main and interaction effects will be performed. If we
were only interested in testing the main effects we could use the formula

value ~ group + sex + region + variable

where we are using + instead of *. If we simply want to test interaction effects we could use : instead.
In addition to specifying the formula, we need to select which column identifies the subjects. This is
done by selecting the ’subject’ column in the dropdown list. To perform the tests, we simply click on
the ’Ok’ button on the bottom of the window or the ’Get Results’ button in the toolbar. A new window
(see Figure 2) will open which contains the results of the performed tests. For each tested hypothesis,
the degrees of freedom, the value of the test statistic, and the p-value are displayed. Above the results,
a summary about the factors used in the analysis is provided. To perform these tests manually, we
may use the commands

r <- hrm_test(formula = value ~ group*sex*region*variable,
data = EEG,
subject = "subject")

library(xtable)
print(xtable(r$result), include.rownames = FALSE)

% latex table generated in R 3.4.1 by xtable 1.8-2 package
\begin{table}[ht]

\centering
\begin{tabular}{lrrrrrl}

\hline
hypothesis & df1 & df2 & crit & test & p.value & sign.code \\
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Figure 3: Profile Plot for the EEG data. The image can be saved by clicking on ’Save File’.

\hline
group & 3.04 & 116.29 & 2.67 & 1.66 & 0.18 & \\
sex & 1.00 & 116.29 & 3.92 & 6.05 & 0.02 & * \\
region & 5.59 & 246.82 & 2.18 & 196.60 & 0.00 & *** \\
variable & 1.51 & 178.72 & 3.36 & 4930.69 & 0.00 & *** \\
group:sex & 3.04 & 116.29 & 2.67 & 0.18 & 0.91 & \\
group:region & 14.09 & 246.82 & 1.73 & 0.80 & 0.67 & \\
group:variable & 4.52 & 178.72 & 2.33 & 3.34 & 0.01 & ** \\
sex:region & 5.59 & 246.82 & 2.18 & 0.99 & 0.43 & \\
sex:variable & 1.51 & 178.72 & 3.36 & 4.89 & 0.02 & * \\
region:variable & 7.76 & 299.89 & 1.99 & 143.58 & 0.00 & *** \\
group:sex:region & 14.09 & 246.82 & 1.73 & 0.58 & 0.88 & \\
group:sex:variable & 4.52 & 178.72 & 2.33 & 0.26 & 0.92 & \\
group:region:variable & 18.75 & 299.89 & 1.63 & 1.04 & 0.41 & \\
sex:region:variable & 7.76 & 299.89 & 1.99 & 1.26 & 0.27 & \\

Figure 4: EEG data used in the example.
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group:sex:region:variable & 18.75 & 299.89 & 1.63 & 0.74 & 0.77 & \\
\hline

\end{tabular}
\end{table}

to obtain the results stated here. The command xtable is used to convert a "data.frame" object into a
LATEX table. This is also possible with the GUI. In the toolbar of the results window there is a button
labeled with ’Save as LATEX table’. By clicking on it we can select a path to save a ‘.tex’ file containing
the results.

As an alternative formula, we may use the following.

value ~ group * dimension

Here, only one whole- and one sub-plot factor are specified. After clicking on the ’Ok’ button, two
windows will open. In the first window, the results of the test statistics are displayed. The other
window shows a plot of the profiles (see Figure 3). We can also create these plots by using the function

plot(hrm_test(value ~ group*dimension, data = EEG, subject = "subject"))

Here the function hrm_test returns an object of class "HRM" and the function plot is applied to an
object of such a class. If we calculate the test statistics in this two-factor example and save the results
again as a table, we obtain the following:

hrm_test(formula = value ~ group*dimension,
data = EEG,
subject = "subject")

Call:
value ~ group * dimension

hypothesis df1 df2 crit test p.value sign.code
group (weighted) 2.993584 130.10764 2.676095 1.881486 0.13600798
group 2.779981 95.00304 2.768161 1.657329 0.18482432
dimension 2.504068 268.94339 2.803050 3056.569162 0.00000000 ***
group : dimension 7.155131 268.94339 2.031723 2.376905 0.02164946 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

T-cell Activation Example

It is also possible to use the function hrm_test with only one sub-plot factor and no whole-plot
factor. A data example with such a design is included in the package longitudinal (Opgen-Rhein and
Strimmer., 2015) and is originally taken from Rangel et al. (2004). The data are from a microarray
time series for T-lymphocytes activation. Here, the expression levels of n = 58 genes are measured
at d = 100 time points (d > n), thus presenting a high-dimensional situation. In order to analyse the
data, we need to load the necessary packages first and then convert the data into the long table format.
At the end, we can use the function hrm_test which detects a significant time effect. Alternatively, we
could have used the GUI. But for this approach we would have needed to save the data as a ‘.csv’ file
first because the GUI only supports loading data sets from external files.

This data example is just used as a demonstration for the package. From a statistical point of
view, the gene expressions do not necessarily have to be independent, as different genes may have
an influence on each other. For example in eukaryotes, gene expression is highly regulated. Some
genes encode for transcription factors (for example zinc-fingers) which can up- or down-regulate
the expression of other genes. With regard to this data example the gene FYB seems to influence
the expression of several interleukin receptor genes and GATA-3 (a zinc-finger transcription factor)
(Rangel et al., 2004). Therefore, it is very plausible that the assumption of independent genes is violated
for this data example. However, for the illustration of the method we are making the simplifying
assumption that observations on different ’subjects’ (genes, in this case) are independent from each
other.

library(longitudinal)
library(tidyr)
library(HRM)

# transforming the data into the long table format
data(tcell)
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Figure 5: Profile curve.

data <- t(print(tcell.10))
data <- as.data.frame(data)
data$subject = 1:58
data_long <- gather(data, time, measurement, 1:100, factor_key = TRUE)

hrm_test(data_long, measurement ~ time, subject = "subject")

Call:
measurement ~ time

hypothesis df1 df2 crit test p.value sign.code
time 5.514332 314.3169 2.179376 6.268063 6.538363e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To plot the profile curve for this data set, we simply apply the plot function to an "HRM" object
returned by the function hrm_test. By setting the optional argument legend to FALSE, no legend is
added to the plot (see Figure 5).

object_hrm <- hrm_test(measurement ~ time, data = data_long, subject = "subject")
plot(object_hrm, legend = FALSE, xlab = "time", ylab = "mean expression level")

For the plot.HRM method it is also possible to use additional arguments which will be added to the
"ggplot2" object. As an example we want to use the theme_bw style with no legend. Here we need to
take into consideration that theme_bw overwrites everything related to the legend already specified in
plot.HRM. Therefore, we need to specify separately that a legend should not be displayed. The code

plot(object_hrm, ... = theme_bw() +
theme(legend.title = element_blank(), legend.position = "none") +
theme(axis.text = element_text(size=18), axis.title = element_text(size = 25)) )

produces Figure 6 with a white background and no legend. Because plot.HRM simply returns an
"ggplot2" object, we also could have used the following code.

plot(object_hrm) + theme_bw() +
theme(legend.title = element_blank(), legend.position = "none") +
theme(axis.text = element_text(size = 18), axis.title = element_text(size = 25))

That is we can pass additional arguments through ... in the method hrm.plot or, even easier, just
add the additional arguments directly to the object to manipulate the graphic.

Limitations

In Section Statistical model, we have already stated the mathematical assumptions for the methods
implemented in the HRM package. We are assuming normally distributed observations from indepen-
dent subjects. As long as the data distribution is not ’too far’ from a normal distribution, the test works
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Figure 6: Profile curve generated with additional arguments for ggplot2.

fine. However, for very skewed or heavy-tailed distributions, the test may in general not maintain the
type-I error rate. This could especially be a problem in combination with heteroscedastic data and
unbalanced groups. Note that this limitation still holds for large sample sizes because the described
method is only an approximation and not an asymptotically exact test. This limitation also applies in
particular to the case of multivariate normally distributed observations. Therefore it is important to
check the assumptions or do some simulations to see whether the test is robust against some violations
of the assumptions. As we see in the following simulations, the test statistic is mainly affected by
skewed or heavy-tailed distributions but works well for data generated by a binomial distribution. For
our two examples used in Section Examples they do not satisfy the assumptions. For the genetic data,
the gene expressions (subjects) are in general correlated. The EEG data seems to violate the normality
assumption as some QQ-plots from marginal distributions show larger deviations from a straight line.
But it is very difficult to check these distributional assumptions in general for high-dimensional data
sets. In our case we only use those data sets for demonstration purposes but for real analyses one
should be careful about the assumptions, as the type-I error can be quite inflated which we can see in
the subsequent simulations.

In order to illustrate the behaviour of the proposed method when its formal assumptions are vio-
lated, we have performed several simulations for testing for the main group effect. For all simulations
we used the dimension d = 20 and performed 104 simulation runs. We have already observed that the
test statistic does not perform well for skewed data. Therefore we concentrated in this simulation study
on the exponential and log-normal distribution. But we have also considered a discrete distribution,
as in such a case the test seems to perform very well.

For the first simulation, we defined the random variables X1jk = ε1j + δ1 for j = 1, . . . , 20 and k =
1, . . . , n1 = 20. In the second group we chose X2jk = ε2j + δ2 for j = 1, . . . , 20 and k = 1, . . . , n1 = 30.
Here, δ1 ∼ E(1), δ2 ∼ E(2), ε1j ∼ E(1) and ε2j ∼ E(2), where E refers to the exponential distribution.
Then we shifted the second group equally for all 20 time points such that both groups have the
same mean which means that the null hypothesis of no main group effect holds. For this setting, the
simulated type-I error rate was 0.0688. In the second simulation we used for the second group E(4)
distributions. In this case, the simulated type-I error rate was 0.0748. Additionally, we used different
sample sizes to see the impact of negative or positive pairing. The results are displayed in Table 3. For
all these settings, the simulated type-I error was slightly inflated. We performed similar simulations
using log-normal distributions. Here, we considered δ1 ∼ LN(0, 1), δ2 ∼ LN(0, θ), ε1j ∼ LN(0, 1) and
ε2j ∼ LN(0, θ) with θ = 1

2 , 2. Both groups have been shifted such that they have the same mean. The
results in Table 4 show heavily inflated type-I error rates (up to over 30%).

In a third simulation, we considered binomial distributions as an example for discrete data. Here,
we defined δ1, ε2j ∼ Bin(m, 0.5) and δ1, ε2j ∼ Bin(m, 0.9) for m = 5, 10, 15 and for sample sizes
n1 = 20, 15 and n2 = 15, 20. The other simulation parameters were the same as for the other two
simulations. That is, the dimension was 20 and all random variables have been shifted to mean zero
such hat the null hypothesis holds. The results are shown in Table 5. For binomial data, the method
seemed to work very well even for heteroscedastic and unbalanced groups. Furthermore, the value
of m did not seem to influence the result very much and even in the case of Bernoulli distributions
(m = 1) the simulated type-I error rate was close to the nominal level of 5%.
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Therefore the package HRM should not be used with distributions similar to log-normal or
exponential distributions, that is very skewed or heavy-tailed distributions. Instead, in those cases,
we recommend using a nonparametric test such as the rank-based ANOVA type statistic or a similar
method.

θ Sample sizes Type-I error rate

2 20, 30 0.0688
4 20, 30 0.0748
2 30, 20 0.0543
4 30, 20 0.0685
2 25, 25 0.0616
4 25, 25 0.0702

Table 3: Type-I error rate simulation with different settings for testing for the main group effect. We
used centred exponential distributions with parameter θ = 1 in the first group and θ = 2, 4 for the
second group, and the dimension was d = 20.

θ Sample sizes Type-I error rate

0.5 20, 30 0.1157
2 20, 30 0.2927

0.5 30, 20 0.0917
2 30, 20 0.3126

0.5 25, 25 0.1032
2 25, 25 0.2974

Table 4: Type-I error rate simulation using log-normal distributions for testing for the main group
effect. For the first group we used centred LN(0, 1) and for the second group centred LN(0, θ)
distributions, and the dimension was d = 20.

m Sample sizes Type-I error rate

1 20, 15 0.0488
5 20, 15 0.0476

10 20, 15 0.0503
15 20, 15 0.0467
1 15, 20 0.0515
5 15, 20 0.0485

10 15, 20 0.0479
15 15, 20 0.0489

Table 5: Type-I error rate simulation using binomial distributions for testing for the main group effect.
For the first group we used centred Bin(m, 0.5) and for the second group we used centred Bin(m, 0.9)
random variables, and the dimension was d = 20.

Another drawback of our method is that it is not invariant under scale transformations of indi-
vidual variables. This means that changing the scale in one dimension (using m/s instead of km/h)
may lead to a different result because the observations are not standardized to avoid the problem of
singular empirical covariance matrices. Therefore the same scale should be used for all dimensions.

The package MANOVA.RM by Friedrich et al. (2017b) provides several asymptotically exact tests
that do not have these limitations (see for example Friedrich and Pauly (2018)). However, not all
have been extended to high-dimensional settings (Friedrich et al., 2017a) and some may also require a
resampling step which may take a while to compute for large data sets. But this might only become a
real problem if you want to simulate the power of the test for multiple situations. The ANOVA type
statistic mentioned before has the problem that it gets quite conservative when the dimension is large
(Brunner et al., 2002; Bathke et al., 2009; Friedrich et al., 2017a), and additionally, the test is also not
invariant under scale transformations. Friedrich et al. (2017a) proposed a potential solution for this
problem in the low-dimensional case.
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Conclusions

The aim of the HRM package is to provide an easy to use way to do inference on high-dimensional
repeated measures. To that end, a graphical user interface has also been implemented in this package.
With the GUI, it is possible to load and view the data, plot the profile curves and save the results
of hypothesis tests as a table which can be inserted very easily into a LATEX document. The GUI is
optional, that is, all of its functions can be used directly. There are different functions to allow for data
in the long or wide table format. Although both formats can be transformed easily into each other, not
having to do it is more convenient for users. This applies especially to statistics practitioners who are
not expert R users.

The package currently supports up to four factors. If data in the wide table format are used, the
maximum number of factors that can be used is two. For the long table format, it is possible to use up
to two whole-plot factors and up to three sub-plot factors, but the maximum number of factors is four.
Table 6 summarizes the minimum and maximum number of factors that can be used.

Table Format Whole-plot Sub-plot Total

long table 0–2 0–3 1–4
wide table 1 1 2

Table 6: Minimum and maximum number of factors which can be used with the package HRM.

There are still a few limitations to the method implemented in the package. Improvements to the
test statistic to get rid of these limitations are part of future work and will also be implemented in the
package. For example, a nonparametric version of the test statistic will be provided in the future by
setting an additional argument nonparametric = TRUE for the function hrm_test. This new test will
use (pseudo)-ranks and can be applied to metric or non-metric data. Additionally, the package will be
further improved to increase the performance for large data.
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Conference Report: eRum 2018
by Gergely Daróczi

Conference Summary

The European R Users Meeting (eRum) is an international conference that aims at bringing
together users of the R language living in Europe – in the years when the useR! conference
is hosted outside of the continent.

The first eRum conference was held in 2016 in Poznan, Poland with around 250 attendees
and 20 sessions spanning over 3 days, including more than 80 speakers. Around that time,
we also held a smaller conference in Budapest: the first satRday event happened with 25
speakers and almost 200 attendees from 19 countries in 2016.

The eRum 2018 conference is heritage of these two successful conferences: originally
planned for 400-500 attendees from all around Europe, we ended up having 450 registrations
from 39 countries – mostly from Germany and Hungary (15%), Poland, Austria, Netherlands
and United Kingdom (10%), many other European countries, and for example Argentina,
South Africa and New Zealand as well.

Tutorials

The conference started on May 14, 2018 with 3-6 hours workshops in the morning and in the
afternoon as well on 7 parallel tracks – including topics from machine learning, writing and
improving R packages, data visualization, handling spatial data and text mining. This day
was hosted at the Central European University.

Scientific Program

The great success of the conference was mainly due to the high quality lineup of speakers:
Achim Zeileis, Martin Mächler, Nathalie Villa-Vialaneix, Stefano Maria Iacus and Roger
Bivand were our keynotes speakers; Arthur Charpentier, Barbara Borges Ribeiro, Colin
Gillespie, Erin LeDell, Henrik Bengtsson, Jeroen Ooms, Mark van der Loo, Matthias Templ,
Olga Mierzwa-Sulima, Przemyslaw Biecek and Szilard Pafka presented invited talks on the
two main days of the conference on May 15-16, 2018 in the Akvarium Klub that is a cultural
center located under a pool, in the center of Budapest.

The contributed presentations were picked from the more than 150 submissions that we
have received for the Call for Papers, and the final conference program included 30 regular
talks (18 mins), 24 lightning talks (5 mins), 8 Shiny demos and 22 posters.

The oral presentations were split into two parallel sessions (except for the keynotes), and
all the talks were live-streamed and the video recordings are still available on the Hungarian
RUG’s YouTube channel along with the presented slides on the conference homepage.

Social Programs

The Welcome Reception offered networking opportunity for the more than 400 attendees
with a light dinner, also combined with a poster session and a Shiny demo session in a
concert room with a huge LED wall. The Conference Dinner was hosted on a boat cruise
showing the riverside of the Danube both at daytime and on the way back at night as well,
and some traditional Hungarian dishes were served with a nice selection of wines. The local
R-Ladies chapter also hosted a meetup with almost 100 attendees featuring 6 talks and a
networking opportunity with pizza and drinks to all interested parties.
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Sponsors

As the conference ticket prices were kept as low as possible to make it affordable to all
attendees (eg early-bird student tickets were priced at $50 for 3 days including catering), we
are grateful to all our Platinum (RStudio), Gold (Mango Solutions, Microsoft, Quantide),
Silver (H2O.ai, Emarsys, Open Analytics, Budapest BI Forum) and Bronze (WLOG Solutions,
Jumping Rivers, R Consosritum, Upshift R Kft, R-bloggers) sponsors for contributing almost
1/4 of the overall conference budget.

Organizers

The Program Committee included 15 members form the Hungarian R User Group, organiz-
ers of eRum 2016, R Forwards, R Ladies and other European R User Groups: Adolfo Alvarez
(Poland), Ágnes Salánki (Hungary), Andrew Lowe (Hungary), Bence Arató (Hungary),
Branko Kovač (Serbia), Eszter Windhager-Pokol (Hungary), Gergely Daróczi (Hungary),
Heather Turner (UK), Kevin O’Brien (Ireland), Imre Kocsis (Hungary), László Gönczy (Hun-
gary), Maciej Beresewicz (Poland), Mariachiara Fortuna (Italy), Przemyslaw Biecek (Poland)
and Szilárd Pafka (USA). The local Organizing Committee was lead by Gergely Daróczi,
and the legal and accounting background was provided by Upshift R Kft for this nonprofit
conference.

Further Information

• Conference homepage: http://2018.erum.io

• Twitter account: https://twitter.com/erum2018

• Talk abstracts, video recordings and slides: http://2018.erum.io/#talk-abstracts

• YouTube playlist of all eRum 2018 talks: https://www.youtube.com/watch?list=
PLUBl0DoLa5SAo_XRnkQA5GtEORg9K7kMh

Gergely Daróczi
Budapest Users of R Network, Hungary
ORCiD: 0000-0003-3149-8537
daroczig@rapporter.net
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R Day report
by Fernando P. Mayer, Walmes M. Zeviani, Wagner H. Bonat, Elias T. Krainski, Paulo J. Ribeiro Jr

About

R Day1 - National Meeting of R Users, took place on May, 22, 2018 at Federal University
of Paraná (UFPR), Curitiba, Brazil. It was the first event in Brazil endorsed by The R
Foundation.

The event

R Day was planned as a satellite event of the 63rd RBRAS Annual Meeting2 of the Brazilian
Region of The International Biometric Society3. Paraná Federal University (UFPR) was
selected on 2016 to host the meeting.

The R Day was considered as a UFPR extension event, and as such it was non-profitable
and with no registration fees. There were 295 subscribed participants. Figure 1 shows how
they split between students, professional and others.

Figure 2 shows the spread of the participants’ home locations, for 88 of those who have
opted for make geocoding information available on the subscription form. There was quite
a spread, with all of the five country regions represented, an encouraging achievement
considering the continental distances within the country. The fact the event was an RBRAS
satellite helped to gather a wider audience.

An important feature was that the event was meant to be guided by the community,
opened for proposals for oral presentations and tutorials for which there were 25 and 14
proposals, respectively. Time and space restrictions allowed for the selections of 18 oral
presentations and 8 tutorials contemplating a diversity of topics related to R.

Three speakers were invited by the organising committee. Paulo Justiniano Ribeiro Jr,
senior lecture at the Department of Statistics at UFPR and LEG member gave an historical
review mixed with his own experiences which are highly connected with the history of
R in Brazil. The full video of his talk was made available at Youtube4. Figure 3 captures
a moment of Professor Paulo’s talk, reckon to be influential on the dissemination of R in
Brazil.

Rondon de Andrade Porto, data scientist at the Conselho Nacional de Justiça - CNJ
(National Justice Council), showed how R is used to generate a large volume of visualizations
and dynamic reports on the CNJ.

The R Day final talk was made by Gabriela de Queiroz (via webconference) who can be
seen in Figure 4. Gabriela is the founder of R Ladies and told us how it all started and how
it became an important community for the diffusion of R in Brazil and worldwide. It was
such an inspiring talk that a few days later, the R Ladies Curitiba chapter was founded5.

The number of participants, well above our expectations, and all the positive and enthu-
siastic feedbacks shows a clear demand for events gathering the community of R users in
Brazil. The existing community is large, diverse and spread around the country. The objec-
tive is to promote regular R Day events for sharing expert knowledge and experience, and
stimulate and strength relationships and networks. Figure 5 shows some of the participants
who were there after the closing session.

Photos of the event are available at LEG’s page on Facebook6. Slides, scripts and other

1http://rday.leg.ufpr.br
2http://www.rbras.org.br/rbras63/
3https://www.biometricsociety.org/
4https://www.youtube.com/watch?v=fnGvDEkjZy0
5https://www.meetup.com/pt-BR/rladies-curitiba
6https://www.facebook.com/leg.ufpr
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Figure 3: Prof. Paulo Justiniano (LEG) on the opening session.

Figure 4: Gabriela de Queiroz (R Ladies) on the closing session.

Figure 5: Some participants of R Day after the closing session.
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materials used by the presenters are available at R Day7 web page.

Next steps

As R Day was so well received by the general community and by RBRAS meeting partici-
pants, the initial idea is to make R Day a regular satellite event. RBRAS meetings lasts for 3
days in even years, and for 5 days in odd years, and each year occurs in a different city of
the country. That way, in even years, R Day could be organized in the city hosting the event.
In odd years, we plan to make R Day in Curitiba, in a date that does not overlap with the
RBRAS meeting, and maybe with 2 days duration.

Acknowledgements

We especially thank “The R Foundation” for endorsing R Day, particularly to Heather Turner,
who contacted us and was always very kind and helpful to make this happen.

We thank all participants and the presenters, who offered to come voluntarily to make R
Day a great event. Also, we would like to thank our sponsors8, who provided the financial
support for coffee breaks.

We also thank RBRAS for the partnership and support in making R Day a satellite event
of its annual meeting.

Fernando P. Mayer
Laboratório de Estatística e Geoinformação - LEG/DEST/UFPR
fernando.mayer@ufpr.br

Walmes M. Zeviani
Laboratório de Estatística e Geoinformação - LEG/DEST/UFPR

Wagner H. Bonat
Laboratório de Estatística e Geoinformação - LEG/DEST/UFPR

Elias T. Krainski
Laboratório de Estatística e Geoinformação - LEG/DEST/UFPR

Paulo J. Ribeiro Jr
Laboratório de Estatística e Geoinformação - LEG/DEST/UFPR

7http://rday.leg.ufpr.br/materiais.html
8http://rday.leg.ufpr.br/apoio.html

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

mailto:fernando.mayer@ufpr.br
http://rday.leg.ufpr.br/materiais.html
http://rday.leg.ufpr.br/apoio.html


NEWS AND NOTES 555

R Foundation News
by Torsten Hothorn

Donations and members

Membership fees and donations received between 2017-12-01 and 2018-06-23.

Donations

Shaban Demirel (United States) Yves Deville (France) Danilo Godone (Italy) Reigo Hen-
drikson (Estonia) J. Brian Loria (United States) Joerg Maeder (Switzerland) Joni Oksanen
(Finland) Ravinderpal Vaid (United States) Merck Research Laboratories, Kenilwort (United
States) Zurich R Courses, Zurich (Switzerland)

Supporting benefactors

b-data GmbH, Zurich (Switzerland) Brigham Young University, Provo (United States) Kansai
University, Fac of Commerce, Suita (Japan) Mirai Solutions GmbH, Zürich (Switzerland)

Supporting institutions

General Counsel Metrics, LLC, Princeton (United States)

Supporting members

Douglas Adamoski (Brazil) Ayala S. Allon (Israel) Justin Bem (Gabon) Florian Brezina
(Germany) Jiddu Broersma (Netherlands) Michael Cantrall (United States) Robin Crockett
(United Kingdom) Jorge de la Vega G (Mexico) Arturo Erdely (Mexico) Samuel Frame
(Canada) Jan Marvin Garbuszus (Germany) J. Antonio García (Mexico) Susan Gruber
(United States) Eugene Horber (Switzerland) Landon Jensen (United States) Stephen Kaluzny
(United States) Sebastian Koehler (Germany) Luca La Rocca (Italy) Thomas Levine (United
States) Fabio Marroni (Italy) Hans Mielke (Germany) Steffen Moritz (Germany) Alfredo Páez
Jiménez (Spain) Elgin Perry (United States) Casper Petersen (Denmark) Laurent Schüpbach
(Switzerland) András Tajti (Hungary) Marius Teodosiu (Romania) Pari Viswanathan (India)
Chatchavan Wacharamanotham (Switzerland) Brandon Weinberg (United States) Douglas
Zickuhr (Ireland) Joachim Zuckarelli (Germany)

Torsten Hothorn
Universität Zürich, Switzerland Torsten.Hothorn@R-project.org
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Changes on CRAN
2017-12-01 to 2018-06-30

by Kurt Hornik, Uwe Ligges and Achim Zeileis

In the past 7 months, 1178 new packages were added to the CRAN package repository.
18 packages were unarchived, 493 archived and none removed. The following shows the
growth of the number of active packages in the CRAN package repository:
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On 2018-06-30, the number of active packages was around 12582.

Changes in the CRAN checks

The package check pages now also show issues found by checks with alternative BLAS/LA-
PACK implementations (ATLAS, MKL and OpenBLAS), provided by Brian D. Ripley (see
https://www.stats.ox.ac.uk/pub/bdr/Rblas/README.txt for more information).

Changes in the CRAN submission pipeline

Package maintainers who submitted packages this year found the automated submission
system has been extended again. Incoming packages are automatically checked under both
Linux and Windows. Based on these checks, the auto-check service (and in later steps
possibly a CRAN team member) will take one of several actions:

archive reject the package, if the package does not pass the checks cleanly and the problem
are not likely to be false positives.

inspect triggers a manual inspection of the package, this always happens for first time
submissions and also for packages that show possible problems that are likely to be
false positives. In both cases some human action is required.

pending if a decision is pending a response from the package maintainer: If an additional
issue was present in the package that we cannot check for in the incoming checks (such
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as the BLAS issues mentioned in the section above), the maintainer is automatically
asked whether these issues have been fixed. Same is true for change of maintainer (or
maintainer’s mail address) where the old maintainer (old address) is automatically
asked to confirm the maintainer change. The answers have to be processed manually.

pretest during a manual inspection, a human may trigger a new auto-check of the pack-
age for various reasons, e.g., after problems in the initial check or after updates of
dependencies.

publish publish the package, if the package is already well established on CRAN, passes
the checks cleanly, and does not have any reverse dependencies.

recheck if the package cleanly passes the checks and has at least one reverse dependency,
this action moves the package into a queue for auto-checking the package’s reverse
dependencies. If the check status of at least one of the package’s reverse dependencies
changes to a worse state, the maintainer is asked whether this is expected and the
other maintainers of affected packages have been informed and hence action pending
is triggered. If no change to a worse state is discovered, the next action is publish.

All these actions include an informative e-mail message to the package maintainer. The
package is also moved to a corresponding subdirectory of the incoming directory on CRAN.
Once an action is inspect or pending, a CRAN team member will trigger the next action. The
additional directory pretest is the one that contains the yet unprocessed packages.

During June 2018, CRAN received 2122 package submissions. For these, 3571 actions
took place of which 2433 (68.1%) were auto processed actions and 1138 (31.9%) manual
actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

action archive inspect pending pretest publish recheck
auto 530 890 118 0 664 231
manual 412 36 81 50 449 110

These include the final decisions for the submissions which were as follows:

action archive publish
auto 470 (23.6%) 578 (29.0%)
manual 410 (20.6%) 535 (26.8%)

where we only count those as auto processed whose publication happened automatically in
all steps.

The large number of 1467 manual action items (not counting additional mail communi-
cation) shows that even more automation is needed and will follow.

As the CRAN team is no longer able to respond to individual help requests or being
involved in lengthy discussions for exceptions, please really use the corresponding mailing
lists such as R-package-devel (see https://www.r-project.org/mail.html).

Changes in the CRAN Repository Policy

The Policy now says the following:

• CRAN hosts packages in publication quality and is not a development platform. A
package’s contribution has to be non-trivial.

• Packages should not write in the user’s home filespace (including clipboards), nor
anywhere else on the file system apart from the R session’s temporary directory (or
during installation in the location pointed to by TMPDIR: and such usage should be
cleaned up). Installing into the system’s R installation (e.g., scripts to its ‘bin’ directory)
is not allowed.
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• Packages should not attempt to disable compiler diagnostics.

• Uploads must be source tarballs created by R CMD build and following the
‘PACKAGE_VERSION .tar.gz’ naming scheme. This should be done with current R-patched
or the current release of R.

• For packages which have recently been archived, a snapshot of the CRAN results page
at the time of archival may be available under https://cran-archive.r-project.
org/web/checks/. (Note that only a few of the links from the snapshot will work:
normally those to listed ‘Alternative issues’ will.)

CRAN package repository archive

As of 2018-07, a full CRAN mirror takes about 176 G, which is quite a lot, in particular taking
into account that a considerable part is not needed for current versions of R and contributed
packages. CRAN mirrors already only provide Mac and Windows binaries for R versions
not older than 5 years (currently, from R 3.0 onwards), with disk usages of 65 G (about 39%)
and 46 G (about 26%), respectively, for Mac and Windows. Older versions are available
from the CRAN archive service available at https://CRAN-archive.R-project.org (but
not the CRAN mirrors). For the CRAN package repository, sources currently use 52 G,
with 44 G used for archived (non-current) versions. Given that the source archive area
takes up about 25% of the whole CRAN mirror area, with material most likely needed
only very occasionally, we will thus move the source archive area to the CRAN archive
server during 2018-08. Archived source packages can then be obtained directly via https:
//CRAN-archive.R-project.org/src/contrib/Archive, and of course via the “Old sources”
download links on the package web pages on every CRAN mirror.

CRAN mirror security

Currently, there are 100 official CRAN mirrors, 66 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

New packages in CRAN task views

Bayesian openEBGM, tRophicPosition.

ClinicalTrials InformativeCensoring, Mediana, ThreeArmedTrials, clusterPower, crm-
Pack, dfped, dfpk, ewoc, gsbDesign.

DifferentialEquations QPot, cOde, dMod, phaseR, rODE, rodeo, rpgm.

Distributions MittagLeffleR, coga, hyper2.

Econometrics OrthoPanels, dlsem, pder, wooldridge, zTree.

ExperimentalDesign DoE.MIParray, FMC, MBHdesign, PBIBD, bioOED, edesign, ide-
fix, minimalRSD, odr, optbdmaeAT, optrcdmaeAT, rsurface, sFFLHD, skpr∗, sopt-
dmaeA, unrepx.

ExtremeValue POT.

FunctionalData covsep, denseFLMM, freqdom.fda, ftsspec.

HighPerformanceComputing Sim.DiffProc, drake, parSim.

MachineLearning ICEbox, effects, ggRandomForests, pdp, plotmo, tensorflow.
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MetaAnalysis CIAAWconsensus, ConfoundedMeta, MetaSubtract, RandMeta, TFisher,
clubSandwich, effsize, forestmodel, getmstatistic, metaBMA, metacart, metaforest,
nmaINLA, psychmeta, ratesci, rma.exact.

NaturalLanguageProcessing alineR, ore, rel, stm, stringdist.

NumericalMathematics PythonInR, SnakeCharmR, XR, XRJulia, XRPython, expint,
feather, findpython, fourierin, interp, logOfGamma, reticulate, tripack.

Optimization ABCoptim, CVXR, ManifoldOptim, Rtnmin, SACOBRA, colf, coneproj,
ecr, flacco, metaheuristicOpt, mize, n1qn1, ompr, optimr, optimsimplex, quad-
progXT, sdpt3r.

Pharmacokinetics RxODE.

Phylogenetics treeplyr.

Psychometrics CTTShiny, EFAutilities, MIIVsem, PLmixed, dexter, umx.

Spatial spm, spsann.

SpatioTemporal FLightR, sf, sigloc.

TimeSeries dLagM, fpp2, freqdom, freqdom.fda, ftsa, funtimes, influxdbr, odpc, sweep,
timetk, tscount, wktmo.

WebTechnologies gtrendsR.
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News from the Bioconductor Project
by Bioconductor Core Team

The Bioconductor project provides tools for the analysis and comprehension of high-throughput
genomic data. Bioconductor 3.7 was released on 1 May, 2018. It is compatible with R 3.5.1
and consists of 1560 software packages, 342 experiment data packages, and 919 up-to-date
annotation packages. The release announcement includes descriptions of 98 new software
packages and updated NEWS files for many additional packages. Start using Bioconductor
by installing the most recent version of R and evaluating the commands

source("https://bioconductor.org/biocLite.R")
biocLite()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocInstaller::biocLite("SingleCellExperiment")

Docker and Amazon images provide an effective on-ramp for power users to rapidly obtain
access to standardized and scalable computing environments. Key resources include:

• The bioconductor.org web site to install, learn, use, and develop Bioconductor packages.

• A listing of available software, linking to pages describing each package.

• A question-and-answer style user support site and developer-oriented mailing list.

• The F1000Research Bioconductor channel for peer-reviewed Bioconductor work flows.

• Our package submission repository for open technical review of new packages.

Our annual conference will be on July 25 (‘Developer Day’), 26, and 27, 2018, in Toronto,
Canada, and features an exceptional line-up of morning scientific talks and afternoon
hands-on workshops.

Bioconductor Core Team
Biostatistics and Bioinformatics
Roswell Park Comprehensive Cancer Center, Buffalo, NY
USA maintainer@bioconductor.org
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Changes in R
From version 3.5.0 to version 3.5.0 patched

by R Core Team

CHANGES IN R 3.5.0 patched

BUG FIXES

• file("stdin") is no longer considered seekable.

• dput() and dump() are no longer truncating when options(deparse.max.lines = *)
is set.

• Calls with an S3 class are no longer evaluated when printed, fixing part of PR#17398,
thanks to a patch from Lionel Henry.

• Allow file argument of Rscript to include space even when it is first on the command
line.

• callNextMethod() uses the generic from the environment of the calling method. Re-
ported by Hervé Pagès with well documented examples.

• Compressed file connections are marked as blocking.

• optim(*,lower = c(-Inf,-Inf)) no longer warns (and switches the method), thanks
to a suggestion by John Nash.

• predict(fm,newdata) is now correct also for models where the formula has terms
such as splines::ns(..) or stats::poly(..), fixing PR#17414, based on a patch
from Duncan Murdoch.

• simulate.lm(glm(*,gaussian(link = <non-default>))) has been corrected, fixing
PR#17415 thanks to Alex Courtiol.

• unlist(x) no longer fails in some cases of nested empty lists. Reported by Steven
Nydick.

• qr.coef(qr(<all 0,w/ colnames>)) now works. Reported by Kun Ren.

• The radix sort is robust to vectors with >1 billion elements (but long vectors are still
unsupported). Thanks to Matt Dowle for the fix.

• Terminal connections (e.g., stdin) are no longer buffered. Fixes PR#17432.

• deparse(x), dput(x) and dump() now respect c()’s argument names recursive and
use.names, e.g., for x <-setNames(0,"recursive"), thanks to Suharto Anggono’s
PR#17427.

• Unbuffered connections now work with encoding conversion. Reported by Stephen
Berman.

• ‘.Renviron’ on Windows with Rgui is again by default searched for in user documents
directory when invoked via the launcher icon. Reported by Jeroen Ooms.

• printCoefmat() now also works with explicit right=TRUE.

• print.noquote() now also works with explicit quote=FALSE.

• The default method for pairs(..,horInd=*,verInd=*) now gets the correct order,
thanks to reports by Chris Andrews and Gerrit Eichner. Additionally, when horInd or
verInd contain only a subset of variables, all the axes are labeled correctly now.
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• agrep("..|..",..,fixed=FALSE) now matches when it should, thanks to a reminder
by Andreas Kolter.

• str(ch) now works for more invalid multibyte strings.

CHANGES IN R 3.5.0

SIGNIFICANT USER-VISIBLE CHANGES

• All packages are by default byte-compiled on installation. This makes the installed
packages larger (usually marginally so) and may affect the format of messages and
tracebacks (which often exclude .Call and similar).

NEW FEATURES

• factor() now uses order() to sort its levels, rather than sort.list(). This allows
factor() to support custom vector-like objects if methods for the appropriate generics
are defined. It has the side effect of making factor() succeed on empty or length-one
non-atomic vector(-like) types (e.g., "list"), where it failed before.

• diag() gets an optional names argument: this may require updates to packages defin-
ing S4 methods for it.

• chooseCRANmirror() and chooseBioCmirror() no longer have a useHTTPS argument,
not needed now all R builds support ‘https://’ downloads.

• New summary() method for warnings() with a (somewhat experimental) print()
method.

• (methods package.) .self is now automatically registered as a global variable when
registering a reference class method.

• tempdir(check = TRUE) recreates the tempdir() directory if it is no longer valid
(e.g. because some other process has cleaned up the ‘/tmp’ directory).

• New askYesNo() function and "askYesNo" option to ask the user binary response
questions in a customizable but consistent way. (Suggestion of PR#17242.)

• New low level utilities ...elt(n) and ...length() for working with ... parts inside
a function.

• isTRUE() is more tolerant and now true in

x <- rlnorm(99)
isTRUE(median(x) == quantile(x)["50%"])

New function isFALSE() defined analogously to isTRUE().

• The default symbol table size has been increased from 4119 to 49157; this may improve
the performance of symbol resolution when many packages are loaded. (Suggested by
Jim Hester.)

• line() gets a new option iter = 1.

• Reading from connections in text mode is buffered, significantly improving the perfor-
mance of readLines(), as well as scan() and read.table(), at least when specifying
colClasses.

• order() is smarter about picking a default sort method when its arguments are objects.
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• available.packages() has two new arguments which control if the values from the
per-session repository cache are used (default true, as before) and if so how old cached
values can be to be used (default one hour).

These arguments can be passed from install.packages(), update.packages() and
functions calling that: to enable this available.packages(), packageStatus() and
download.file() gain a ... argument.

• packageStatus()’s upgrade() method no longer ignores its ... argument but passes
it to install.packages().

• installed.packages() gains a ... argument to allow arguments (including
noCache) to be passed from new.packages(), old.packages(), update.packages()
and packageStatus().

• factor(x,levels,labels) now allows duplicated labels (not duplicated levels!).
Hence you can map different values of x to the same level directly.

• Attempting to use names<-() on an S4 derivative of a basic type no longer emits a
warning.

• The list method of within() gains an option keepAttrs = FALSE for some speed-up.

• system() and system2() now allow the specification of a maximum elapsed time
(‘timeout’).

• debug() supports debugging of methods on any object of S4 class "genericFunction",
including group generics.

• Attempting to increase the length of a variable containing NULL using length()<- still
has no effect on the target variable, but now triggers a warning.

• type.convert() becomes a generic function, with additional methods that operate
recursively over list and data.frame objects. Courtesy of Arni Magnusson (PR#17269).

• lower.tri(x) and upper.tri(x) only needing dim(x) now work via new functions
.row() and .col(), so no longer call as.matrix() by default in order to work effi-
ciently for all kind of matrix-like objects.

• print() methods for "xgettext" and "xngettext" now use encodeString() which
keeps, e.g. "\n", visible. (Wish of PR#17298.)

• package.skeleton() gains an optional encoding argument.

• approx(), spline(), splinefun() and approxfun() also work for long vectors.

• deparse() and dump() are more useful for S4 objects, dput() now using the same
internal C code instead of its previous imperfect workaround R code. S4 objects now
typically deparse perfectly, i.e., can be recreated identically from deparsed code.

dput(), deparse() and dump() now print the names() information only once, using the
more readable (tag = value) syntax, notably for list()s, i.e., including data frames.

These functions gain a new control option "niceNames" (see .deparseOpts()), which
when set (as by default) also uses the (tag = value) syntax for atomic vectors. On the
other hand, without deparse options "showAttributes" and "niceNames", names are
no longer shown also for lists. as.character(list( c (one = 1))) now includes the
name, as as.character(list(list(one = 1))) has always done.

m:n now also deparses nicely when m > n.

The "quoteExpressions" option, also part of "all", no longer quote()s formulas as
that may not re-parse identically. (PR#17378)
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• If the option setWidthOnResize is set and TRUE, R run in a terminal using a recent
readline library will set the width option when the terminal is resized. Suggested by
Ralf Goertz.

• If multiple on.exit() expressions are set using add = TRUE then all expressions will
now be run even if one signals an error.

• mclapply() gets an option affinity.list which allows more efficient execution with
heterogeneous processors, thanks to Helena Kotthaus.

• The character methods for as.Date() and as.POSIXlt() are more flexible via new
arguments tryFormats and optional: see their help pages.

• on.exit() gains an optional argument after with default TRUE. Using after = FALSE
with add = TRUE adds an exit expression before any existing ones. This way the
expressions are run in a first-in last-out fashion. (From Lionel Henry.)

• On Windows, file.rename() internally retries the operation in case of error to attempt
to recover from possible anti-virus interference.

• Command line completion on ‘::’ now also includes lazy-loaded data.

• If the TZ environment variable is set when date-time functions are first used, it is
recorded as the session default and so will be used rather than the default deduced
from the OS if TZ is subsequently unset.

• There is now a [ method for class "DLLInfoList".

• glm() and glm.fit get the same singular.ok = TRUE argument that lm() has had
forever. As a consequence, in glm(*,method = <your_own>), user specified methods
need to accept a singular.ok argument as well.

• aspell() gains a filter for Markdown (‘.md’ and ‘.Rmd’) files.

• intToUtf8(multiple = FALSE) gains an argument to allow surrogate pairs to be
interpreted.

• The maximum number of DLLs that can be loaded into R e.g. via dyn.load() has been
increased up to 614 when the OS limit on the number of open files allows.

• Sys.timezone() on a Unix-alike caches the value at first use in a session: inter alia this
means that setting TZ later in the session affects only the current time zone and not the
system one.

Sys.timezone() is now used to find the system timezone to pass to the code used
when R is configured with ‘--with-internal-tzcode’.

• When tar() is used with an external command which is detected to be GNU tar
or libarchive tar (aka bsdtar), a different command-line is generated to circumvent
line-length limits in the shell.

• system(*,intern = FALSE), system2() (when not capturing output), file.edit() and
file.show() now issue a warning when the external command cannot be executed.

• The “default” ("lm" etc) methods of vcov() have gained new optional argument
complete = TRUE which makes the vcov() methods more consistent with the coef()
methods in the case of singular designs. The former (back-compatible) behavior is
given by vcov(*,complete = FALSE).

• coef() methods (for lm etc) also gain a complete = TRUE optional argument for consis-
tency with vcov().
For "aov", both coef() and vcov() methods remain back-compatibly consistent, using
the other default, complete = FALSE.
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• attach(*,pos = 1) is now an error instead of a warning.

• New function getDefaultCluster() in package parallel to get the default cluster set
via setDefaultCluster().

• str(x) for atomic objects x now treats both cases of is.vector(x) similarly, and
hence much less often prints "atomic". This is a slight non-back-compatible change
producing typically both more informative and shorter output.

• write.dcf() gets optional argument useBytes.

• New, partly experimental packageDate() which tries to get a valid "Date" object from
a package ‘DESCRIPTION’ file, thanks to suggestions in PR#17324.

• tools::resaveRdaFiles() gains a version argument, for use when packages should
remain compatible with earlier versions of R.

• ar.yw(x) and hence by default ar(x) now work when x has NAs, mostly thanks to a
patch by Pavel Krivitsky in PR#17366. The ar.yw.default()’s AIC computations have
become more efficient by using determinant().

• New warnErrList() utility (from package nlme, improved).

• By default the (arbitrary) signs of the loadings from princomp() are chosen so the first
element is non-negative.

• If ‘--default-packages’ is not used, then Rscript now checks the environment
variable R_SCRIPT_DEFAULT_PACKAGES. If this is set, then it takes precedence over
R_DEFAULT_PACKAGES. If default packages are not specified on the command line or by
one of these environment variables, then Rscript now uses the same default packages
as R. For now, the previous behavior of not including methods can be restored by
setting the environment variable R_SCRIPT_LEGACY to ‘yes’.

• When a package is found more than once, the warning from
find.package(*,verbose=TRUE) lists all library locations.

• POSIXt objects can now also be rounded or truncated to month or year.

• stopifnot() can be used alternatively via new argument exprs which is nicer and
useful when testing several expressions in one call.

• The environment variable R_MAX_VSIZE can now be used to specify the maximal vector
heap size. On macOS, unless specified by this environment variable, the maximal
vector heap size is set to the maximum of 16GB and the available physical memory.
This is to avoid having the R process killed when macOS over-commits memory.

• sum(x) and sum(x1,x2,..,x<N>) with many or long logical or integer vectors no
longer overflows (and returns NA with a warning), but returns double numbers in such
cases.

• Single components of "POSIXlt" objects can now be extracted and replaced via [
indexing with 2 indices.

• S3 method lookup now searches the namespace registry after the top level environment
of the calling environment.

• Arithmetic sequences created by 1:n, seq_along, and the like now use compact internal
representations via the ALTREP framework. Coercing integer and numeric vectors to
character also now uses the ALTREP framework to defer the actual conversion until
first use.

• Finalizers are now run with interrupts suspended.
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• merge() gains new option no.dups and by default suffixes the second of two duplicated
column names, thanks to a proposal by Scott Ritchie (and Gabe Becker).

• scale.default(x,center,scale) now also allows center or scale to be “numeric-
alike”, i.e., such that as.numeric(.) coerces them correctly. This also eliminates a
wrong error message in such cases.

• par*apply and par*applyLB gain an optional argument chunk.size which allows to
specify the granularity of scheduling.

• Some as.data.frame() methods, notably the matrix one, are now more careful in not
accepting duplicated or NA row names, and by default produce unique non-NA row
names. This is based on new function .rowNamesDF(x,make.names = *) <-rNms where
the logical argument make.names allows to specify how invalid row names rNms are
handled. .rowNamesDF() is a “workaround” compatible default.

• R has new serialization format (version 3) which supports custom serialization of
ALTREP framework objects. These objects can still be serialized in format 2, but less
efficiently. Serialization format 3 also records the current native encoding of unflagged
strings and converts them when de-serialized in R running under different native en-
coding. Format 3 comes with new serialization magic numbers (RDA3, RDB3, RDX3).
Format 3 can be selected by version = 3 in save(), serialize() and saveRDS(),
but format 2 remains the default for all serialization and saving of the workspace.
Serialized data in format 3 cannot be read by versions of R prior to version 3.5.0.

• The "Date" and “date-time” classes "POSIXlt" and "POSIXct" now have a working
length<-() method, as wished in PR#17387.

• optim(*,control = list(warn.1d.NelderMead = FALSE)) allows to turn off the warn-
ing when applying the default "Nelder-Mead" method to 1-dimensional problems.

• matplot(..,panel.first = .) etc now work, as log becomes explicit argument and
... is passed to plot() unevaluated, as suggested by Sebastian Meyer in PR#17386.

• Interrupts can be suspended while evaluating an expression using suspendInterrupts.
Subexpression can be evaluated with interrupts enabled using allowInterrupts.
These functions can be used to make sure cleanup handlers cannot be interrupted.

• R 3.5.0 includes a framework that allows packages to provide alternate representations
of basic R objects (ALTREP). The framework is still experimental and may undergo
changes in future R releases as more experience is gained. For now, documentation is
provided in https://svn.r-project.org/R/branches/ALTREP/ALTREP.html.

UTILITIES

• install.packages() for source packages now has the possibility to set a ‘timeout’
(elapsed-time limit). For serial installs this uses the timeout argument of system2():
for parallel installs it requires the timeout utility command from GNU coreutils.

• It is now possible to set ‘timeouts’ (elapsed-time limits) for most parts of R CMD check
via environment variables documented in the ‘R Internals’ manual.

• The ‘BioC extra’ repository which was dropped from Bioconductor 3.6 and later has
been removed from setRepositories(). This changes the mapping for 6–8 used by
setRepositories(ind=).

• R CMD check now also applies the settings of environment variables
_R_CHECK_SUGGESTS_ONLY_ and _R_CHECK_DEPENDS_ONLY_ to the re-building of
vignettes.

• R CMD check with environment variable _R_CHECK_DEPENDS_ONLY_ set to a true value
makes test-suite-management packages available and (for the time being) works
around a common omission of rmarkdown from the ‘VignetteBuilder’ field.
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INSTALLATION on a UNIX-ALIKE

• Support for a system Java on macOS has been removed — install a fairly recent Oracle
Java (see ‘R Installation and Administration’ §C.3.2).

• configure works harder to set additional flags in ‘SAFE_FFLAGS’ only where necessary,
and to use flags which have little or no effect on performance.

In rare circumstances it may be necessary to override the setting of ‘SAFE_FFLAGS’.

• C99 functions expm1, hypot, log1p and nearbyint are now required.

• configure sets a ‘-std’ flag for the C++ compiler for all supported C++ standards (e.g.,
‘-std=gnu++11’ for the C++11 compiler). Previously this was not done in a few cases
where the default standard passed the tests made (e.g. clang 6.0.0 for C++11).

C-LEVEL FACILITIES

• ‘Writing R Extensions’ documents macros MAYBE_REFERENCED, MAYBE_SHARED and
MARK_NOT_MUTABLE that should be used by package C code instead NAMED or SET_NAMED.

• The object header layout has been changed to support merging the ALTREP branch.
This requires re-installing packages that use compiled code.

• ‘Writing R Extensions’ now documents the R_tryCatch, R_tryCatchError, and
R_UnwindProtect functions.

• NAMEDMAX has been raised to 3 to allow protection of intermediate results from (usually
ill-advised) assignments in arguments to BUILTIN functions. Package C code using
SET_NAMED may need to be revised.

DEPRECATED AND DEFUNCT

• Sys.timezone(location = FALSE) is defunct, and is ignored (with a warning).

• methods:::bind_activation() is defunct now; it typically has been unneeded for
years.

The undocumented ‘hidden’ objects .__H__.cbind and .__H__.rbind in package base
are deprecated (in favour of cbind and rbind).

• The declaration of pythag() in ‘Rmath.h’ has been removed — the entry point has not
been provided since R 2.14.0.

BUG FIXES

• printCoefmat() now also works without column names.

• The S4 methods on Ops() for the "structure" class no longer cause infinite recursion
when the structure is not an S4 object.

• nlm(f,..) for the case where f() has a "hessian" attribute now computes LL′ =
H + µI correctly. (PR#17249).

• An S4 method that “rematches” to its generic and overrides the default value of a
generic formal argument to NULL no longer drops the argument from its formals.

• Rscript can now accept more than one argument given on the ‘#!’ line of a script.
Previously, one could only pass a single argument on the ‘#!’ line in Linux.

• Connections are now written correctly with encoding "UTF-16LE". (PR#16737).
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• Evaluation of ..0 now signals an error. When ..1 is used and ... is empty, the error
message is more appropriate.

• (Windows mainly.) Unicode code points which require surrogate pairs in UTF-16 are
now handled. All systems should properly handle surrogate pairs, even those systems
that do not need to make use of them. (PR#16098)

• stopifnot(e,e2,...) now evaluates the expressions sequentially and in case of an
error or warning shows the relevant expression instead of the full stopifnot(..) call.

• path.expand() on Windows now accepts paths specified as UTF-8-encoded character
strings even if not representable in the current locale. (PR#17120)

• line(x,y) now correctly computes the medians of the left and right group’s x-values
and in all cases reproduces straight lines.

• Extending S4 classes with slots corresponding to special attributes like dim and
dimnames now works.

• Fix for legend() when fill has multiple values the first of which is NA (all colours
used to default to par(fg)). (PR#17288)

• installed.packages() did not remove the cached value for a library tree that had
been emptied (but would not use the old value, just waste time checking it).

• The documentation for installed.packages(noCache = TRUE) incorrectly claimed it
would refresh the cache.

• aggregate(<data.frame>) no longer uses spurious names in some cases. (PR#17283)

• object.size() now also works for long vectors.

• packageDescription() tries harder to solve re-encoding issues, notably seen in some
Windows locales. This fixes the citation() issue in PR#17291.

• poly(<matrix>,3) now works, thanks to prompting by Marc Schwartz.

• readLines() no longer segfaults on very large files with embedded '\0' (aka ‘nul’)
characters. (PR#17311)

• ns() (package splines) now also works for a single observation. interpSpline() gives
a more friendly error message when the number of points is less than four.

• dist(x,method = "canberra") now uses the correct definition; the result may only
differ when x contains values of differing signs, e.g. not for 0-1 data.

• methods:::cbind() and methods:::rbind() avoid deep recursion, thanks to Suharto
Anggono via PR#17300.

• Arithmetic with zero-column data frames now works more consistently; issue raised
by Bill Dunlap.

Arithmetic with data frames gives a data frame for ^ (which previously gave a numeric
matrix).

• pretty(x,n) for large n or large diff(range(x)) now works better (though it was
never meant for large n); internally it uses the same rounding fuzz (1e-10) as
seq.default() — as it did up to 2010-02-03 when both were 1e-7.

• Internal C-level R_check_class_and_super() and hence R_check_class_etc() now
also consider non-direct super classes and hence return a match in more cases. This
e.g., fixes behaviour of derived classes in package Matrix.

• Reverted unintended change in behavior of return calls in on.exit expressions intro-
duced by stack unwinding changes in R 3.3.0.
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• Attributes on symbols are now detected and prevented; attempt to add an attribute to
a symbol results in an error.

• fisher.test(*,workspace = <n>) now may also increase the internal stack size which
allows larger problem to be solved, fixing PR#1662.

• The methods package no longer directly copies slots (attributes) into a prototype that
is of an “abnormal” (reference) type, like a symbol.

• The methods package no longer attempts to call length<-() on NULL (during the
bootstrap process).

• The methods package correctly shows methods when there are multiple methods with
the same signature for the same generic (still not fully supported, but at least the user
can see them).

• sys.on.exit() is now always evaluated in the right frame. (From Lionel Henry.)

• seq.POSIXt(*,by = "<n>DSTdays") now should work correctly in all cases and is
faster. (PR#17342)

• .C() when returning a logical vector now always maps values other than FALSE and
NA to TRUE (as documented).

• Subassignment with zero length vectors now coerces as documented (PR#17344).
Further, x <-numeric(); x[1] <-character() now signals an error ‘replacement has
length zero’ (or a translation of that) instead of doing nothing.

• (Package parallel.) mclapply(), pvec() and mcparallel() (when mccollect() is used
to collect results) no longer leave zombie processes behind.

• R CMD INSTALL <pkg> now produces the intended error message when, e.g., the
LazyData field is invalid.

• as.matrix(dd) now works when the data frame dd contains a column which is a data
frame or matrix, including a 0-column matrix/d.f. .

• mclapply(X,mc.cores) now follows its documentation and calls lapply() in case
mc.cores = 1 also in the case mc.preschedule is false. (PR#17373)

• aggregate(<data.frame>,drop=FALSE) no longer calls the function on <empty> parts
but sets corresponding results to NA. (Thanks to Suharto Anggono’s patches in
PR#17280).

• The duplicated() method for data frames is now based on the list method (instead
of string coercion). Consequently unique() is better distinguishing data frame rows,
fixing PR#17369 and PR#17381. The methods for matrices and arrays are changed
accordingly.

• Calling names() on an S4 object derived from "environment" behaves (by default) like
calling names() on an ordinary environment.

• read.table() with a non-default separator now supports quotes following a non-
whitespace character, matching the behavior of scan().

• parLapplyLB and parSapplyLB have been fixed to do load balancing (dynamic schedul-
ing). This also means that results of computations depending on random number
generators will now really be non-reproducible, as documented.

• Indexing a list using dollar and empty string (l$"") returns NULL.

• Using \usage{ data(<name>,package="<pkg>") } no longer produces R CMD check
warnings.
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• match.arg() more carefully chooses the environment for constructing default choices,
fixing PR#17401 as proposed by Duncan Murdoch.

• Deparsing of consecutive ! calls is now consistent with deparsing unary - and + calls
and creates code that can be reparsed exactly; thanks to a patch by Lionel Henry
in PR#17397. (As a side effect, this uses fewer parentheses in some other deparsing
involving ! calls.)
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