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idmTPreg: Regression Model for
Progressive Illness Death Data
by Leyla Azarang and Manuel Oviedo de la Fuente

Abstract The progressive illness-death model is frequently used in medical applications. For example,
the model may be used to describe the disease process in cancer studies. We have developed a
new R package called idmTPreg to estimate regression coefficients in datasets that can be described
by the progressive illness-death model. The motivation for the development of the package is a
recent contribution that enables the estimation of possibly time-varying covariate effects on the
transition probabilities for a progressive illness-death data. The main feature of the package is that
it befits both non-Markov and Markov progressive illness-death data. The package implements the
introduced estimators obtained using a direct binomial regression approach. Also, variance estimates
and confidence bands are implemented in the package. This article presents guidelines for the use of
the package.

Introduction

In a classical survival study, patients start from an initial state "alive" and are followed up until the
end of the study. They make a transition to the absorbing state "dead", unless they drop out of the
study. In many medical studies, state "alive" includes two or more transient states. For example, in the
illness trajectory of a cancer, a particular stage of the illness as a transient state is usually observed
over time (e.g. cancer recurrence). Multi-state models are particularly useful for modeling the overall
process of survival Hougaard (2000), Andersen and Keiding (2002). A multi-state model is a model for
a continuous-time stochastic process allowing individuals to move among a finite number of states. A
transition from one state to another one is the occurrence of one event of interest. The progressive
illness-death model depicted in Figure 1 is a three-state multi-state model used in the medical literature
to describe disease progression (Meira-Machado et al., 2008). It consists of three states: "Healthy" (state
1), "Diseased" (state 2) and "Dead" (state 3). All patients start in healthy state, then each patient can
either have a transition directly to the dead state or they can be diseased before moving to the dead
state. That means, the trajectory for a patient will be 1 −→ 3 or 1 −→ 2 −→ 3, but the entire trajectory
might not be observed due to censoring.

Often, in the presence of censoring, estimating the effect of a set of prognostic factors on the
course of the disease is an important target for the progressive illness-death model. The effect of
prognostic factors for the Markov progressive illness-death model is generally modeled by Aalen´s
additive model, Aalen et al. (2001). According to their model, the effects on transition intensities are
estimated and, from them, the effects on transition probabilities (therefore, the conditional transition
probabilities) can be calculated by solving the so-called forward Kolmogorov differential equation.
But the violation of Markov condition does not allow such a calculation. To this end, Meira-Machado´s
approach (Meira-Machado et al., 2014) based on kernel smoothing is an alternative to the Aalen
model. The method considers the nonparametric estimation of conditional transition probabilities
in a non-Markov illness-death Model that allows only conditioning on continuous covariates in low
dimension. Azarang et al. (2017) proposed the direct binomial regression method for the transition
probabilities in the right-censored progressive illness-death model. By applying this method, one
can estimate the possibly time-varying regression coefficients as covariate effects on the transition
probabilities. The method does not require the Markov assumption and has no restriction on the
dimension of covariates. In addition, it can be applied for both continuous and categorical covariates.
Based on this method, we have developed a software package in R, called idmTPreg (available from
the Comprehensive R Archive Network at https://cran.r-project.org/web/packages/idmTPreg/).
The progressive illness-death model illustrated in Figure 1 is the only progressive disease model
supported by the idmTPreg package.

Furthermore, several packages to analyse multi-state survival data like the progressive illness-
death data are available on the Comprehensive R Archive Network (CRAN). For example, the mstate
de Wreede et al. (2010), provides estimation of the transition probabilities possibly depending on
covariates, the implemented technique assumes proportional transition intensities. The package can
be applied to right censored and left truncated multi-state data. The msm package Jackson (2011),
in terms of covariates, can be used to obtain conditional transition probabilities in continuous-time
Markov and hidden-Markov multistate models for longitudinal data. In the p3state.msm package
Meira-Machado and Roca-Pardiñas (2011), estimates of regression parameters can be obtained by
assuming that each transition may be specified by a Cox-type model. To this end, one of the three
possible options for the model can be chosen; TDCM, CMM or CSMM. TDCM (time dependent
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Cox model) associates a time dependent covariate with the occurrence of disease, in CMM (Cox
Markov model) it is assumed that the future is independent of the past given the present state, and the
CSMM model (Cox semi-Markov model) emphasizes the importance of time spent in the current state,
Survival.

This paper describes idmTPreg package and its capabilities through the following sections. In
the next section, we outline the methodology of the direct modeling approach in the progressive
illness-death model, the detailed mathematics underlying the package have been discussed in our
previous paper. Then, we describe the package in full detail, and demonstrate how to apply the
functions provided by the package through the analysis of a real dataset. Ultimately, the last section
gives a summary of the work.

Figure 1: Progressive illness-death model.

An overview of the methodology

In this section we briefly review the methodological background behind the idmTPreg package. As
mentioned before, the progressive illness-death model presents two transient states (state 1 and state
2) and an absorbing state (state 3). The three possible transitions are shown by forward arrows in
Figure 1. We assume here that recovery (transition from 2 to 1) is not possible. Five different transition
probabilities of the model are: p11(s, t), p12(s, t), p13(s, t), p22(s, t) and p23(s, t); s and t (s < t) are times.
Among the transition probabilities the following relations hold: p11(s, t) + p12(s, t) + p13(s, t) = 1 and
p22(s, t) + p23(s, t) = 1. The transition probabilities pkl(s, t)´s, where k = 1, 2; l = 1, 2, 3 and k ≤ l, are
defined as:

pkl(s, t) = Pr(patient is at state l at time t | patient was at state k at time s.)

Likewise, in the presence of covariates (XXX) the conditional transition probabilities denoted by
pkl(s, t|X) are defined. Let Z be the sojourn time in state 1, T be the total survival time, and C be the
censoring time of the model. The observed information is (Z̃, ∆1, T̃, ∆, XXX), where ∆1 and ∆ are the
censoring indicator of Z and T respectively; Z̃ = min(Z, C) and T̃ = min(T, C); and XXX is the vector of
time-independent covariates. In order to correct for estimation bias due to censoring, we update ∆1
and ∆ with time t and define ∆t

1 and ∆t as follows:

∆t = 1{min(T,t)≤C} =
{

∆ if T̃ ≤ t
1 if T̃ > t

and

∆t
1 = 1{min(Z,t)≤C} =

{
∆ if Z̃ ≤ t
1 if Z̃ > t

Azarang et al. (2017) introduced regression modeling to estimate the possibly time-varying co-
efficients for the conditional transition probabilities (pkl(s, t|XXX), k = 1, 2; l = 1, 2, 3; k ≤ l) in the
progressive illness-death model via defining binomial time-varying response variables (Ykl(t)’s), and
time-varying random weights Ws

kl(t) (depending on transition from k to l the weights are either a
function of ∆t

1 or a function of ∆t and are estimated by Ŵs
kl(t), see Azarang et al. (2017) for more

details). The response variables and weights for each transition probability are well defined so that:

pkl(s, t|XXX) = Es[Ws
kl(t)Ykl(t)|XXX] k = 1, 2; l = 1, 2, 3; k ≤ l,

where Es for k = 1 is the expectation value conditioned on the event of being observed at the initial
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state by a given time s (Z > s) and for k = 2 it is the expectation value conditioned on being observed

at the intermediate state by time s (Z ≤ s < T). Then for a fixed time s, the linear predictor XβXβXβ
(s)
kl (t) is

linked to the transition probability pkl(s, t|X) via an allowable link function for the binomial family.
Without the loss of generality, we consider logit link function:

pkl(s, t|XXX) =
exp(XβXβXβ

(s)
kl (t))

1 + exp(XβXβXβ
(s)
kl (t))

.

As mentioned before, we consider s to be fixed and t ∈ [a, τ], where t is the last event time point,

and pkl(s, a|xxx) > 0. Then, βββ
(s)
kl (t), which is a vector of possibly time-varying coefficients, can be

estimated by solving the following score equations:

∑
Ik

∂pkl(s, t|XXXi)

∂βββ
(s)
kl (t)

Ŵs
kl(t)[Ykl(t)− pkl(s, t|XXXi)] ≡ 0,

where I1 = {i : Z̃i > s} and I2 = {i : Z̃i ≤ s < T̃i}. Note that the expected value of the above

score functions equals zero. Since the estimates of the coefficients, β̂ββ
(s)
kl (t), are piecewise constant

between the jump times of Ykl (that are the jump times of Ws
kl too) we can fit the standard approach

for generalised linear models at each jump time of the corresponding response variable. Therefore, for

each t between a and τ, β̂ββ
(s)
kl (t) are given.

Package description

The idmTPreg package provides estimates of the coefficients on transition probabilities for a progres-
sive illness-death dataset. The package consists of 6 user-visible functions described in Table 1. In
addition, there is an invisible function called mod.glm.fit that is contained inside the main function
to fit generalized linear type models. This function is a modified version of glm.fit available in the R
Stats Package. The modification was done to give special weights to the binary responses discussed in
the previous section. The modified function mod.glm.fit gives the estimated vector of coefficients.
Also, the call to mod.glm.fit has been programmed in parallel to obtain 95% pointwise bootstrap
confidence bands. The number of cores for parallel execution is set to the number of CPU cores on the
current host by default unless it is specified by the user. Then, registerDoParallel of the doParallel
package is used to register the parallel backend. The parallel computation is performed by the foreach
function of foreach package.

The main function, intended to be called by the user, is TPreg(). The data frame to be passed
into the main function of the package, other than covariates, must contain Zt, Tt, delta1, and delta
variables (denoted by Z̃, T̃, ∆1 and ∆ in the previous section). Assessing these variables for a non-
statistician might be challenging, so iddata function is used to convert simple records of progressive
illness-death data to the proper format. To this end, one may ask clinicians to give them the total
survival time (Stime), the indicator of uncensored total survival time (Sind), the arrival time to the
diseased state (Iltime), the indicator of visiting diseased state (Ilind) and a vector of covariates (cov).
By convention for patients who have not been diseased (Ilind=0), their arrival time to the diseased
state is recorded equal to their total survival time.

Example of application

To illustrate our method with the capability of our package, we consider the colon cancer dataset
which is freely available as a part of the survival package. In this study, from 929 patients who had
curative-intent resections of stage III colon cancer, 315 were randomly assigned to observation only,
310 to levamisole alone (Lev), and 304 to levamisole plus fluorouracil (Lev+5FU). See Moertel et al.
(1990) for details. By the end of the study, 477 patients remained alive, 468 developed a recurrence,
and 452 died and among these, 38 died without recurrence. The possible events for a patient may
be described by the progressive illness-death model with states 1, 2 and 3 corresponding to "Alive
and disease-free", "Alive with recurrence", and "Dead" respectively. A subset of colon cancer dataset
called colonTPreg is available in the idmTPreg package, but just three risk factors were included in
the dataset : Age (in years) and Nodes (number of lymph nodes with detectable cancer), and treatment.
We use the colonTPreg dataset to demonstrate the functionality of the package.

> library(idmTPreg)
> data(colonTPreg)
> head(colonTPreg)
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Function Description

TPreg Fits the semi-parametric regression model to estimate the effects on transition

probabilities for a sequence of time.

summary Gives details about the estimated effects of pre-specified transition probabilities

for a sequence from a given s to a given t.

plot Makes a plot for the estimated effect of pre-specified transition probabilities

along time, from time s to time t.

print Provides the details about the estimated effects of pre-specified transition

probabilities for given s and t.

iddata Converts a raw illness-death data to a data frame which can be passed into

TPreg function (described before) .

Table 1: Functions and summary of their descriptions in the idmTPreg package.

id Zt Tt delta1 delta Nodes Age treatment
1 1 968 1521 1 1 5 43 Lev+5FU
2 2 3087 3087 0 0 1 63 Lev+5FU
3 3 542 963 1 1 7 71 Obs
4 4 245 293 1 1 6 66 Lev+5FU
5 5 523 659 1 1 22 69 Obs
6 6 904 1767 1 1 9 57 Lev+5FU

Each row in the data corresponds to a single individual. The columns Zt, and Tt are time variables,
measured in days. For instance, patient 1 experienced a recurrence after 968 days (transition from
state 1 to state 2), and died after 1521 days. Patient 2 was censored after 3087 days without having the
recurrence. These data have a suitable format for the analysis.

Estimates for the effect of covariates on transition probabilities are obtained using function TPreg().
The first argument of this function is an object of class "formula" which specifies the covariates on the
right-hand side of the ∼ operator, that are separated by + operators. The left side of the ∼ operator is
left empty because the time-dependent binary responses corresponding to each transition are defined
in the main function. The data argument must be a data frame of "iddata" class or a data frame
similar to colonTPreg format described previously. The link argument is a suitable link function
for binomial family (logit, probit and cauchit). Argument s is the current time for the transition
probabilities; default is zero which reports the occupation probabilities. Argument t is the Future time
for the transition probabilities; default is NULL which is the largest uncensored sojourn time in the
initial state. The R argument specifies the number of bootstrap replicates, default is 199. The argument
trans indicates the possible transition(s) for a progressive illness-death model. The output is an object
of class "TPreg". This object has its own print(), summary() and plot() methods.

We apply the method described in the previous section to estimate the effect of the risk factors
on transition "Alive and disease-free"−→"Dead". To see the result for each time of the sequence from
time s = 0 to 7 years with the default increment, we use the following input command:

> co13 <- TPreg( ~ Age + Nodes + treatment, colonTPreg,
+ link = "logit", s = 0, R = 99,
+ t = 365.24*7, trans = "13")
> co13
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Call:
TPreg(formula = ~Age + Nodes + treatment, data = colonTPreg,
link = "logit", s = 0, t = 365.24 * 7, R = 99, trans = "13")

Transition:
[1] "13"

(s,t):
[1] 0.00 2556.68

Coefficients:
Estimate St.Err LW.L UP.L P.value

X.Intercept. -1.5899472 0.588179192 -2.742778368 -0.43711594 6.868203e-03
Age 0.0162786 0.008990345 -0.001342478 0.03389967 7.019108e-02
Nodes 0.2773286 0.066204572 0.147567677 0.40708960 2.802296e-05
treatmentLev -0.2360843 0.209801808 -0.647295861 0.17512722 2.604733e-01
treatmentLev.5FU -0.6222765 0.281455569 -1.173929431 -0.07062360 2.704119e-02

[1] "18 observations deleted due to missingness from 'data'"

The print() method returns the results for s=0 and t= 2556.68 days; and provides 95% point-
wise bootstrap confidence bands based on nonparametric resampling and normal method (normal
approximation of two-sided nonparametric confidence interval). Then, using the summary() function
one can obtain estimated values at each especified time between s=0 and t=2556.68. The estimates
between the jump times of Y13 in the time interval [s,t] are piecewise constant, and one can choose
a vector of times from the jump times via argument by. Then, at the selected times the values are
estimated. This argument gives the increment of the sequence from time s to time t. The default is

bmax(Z̃)−min(Z̃)
q0.01(Z̃)

c, where q0.01(.) is the sample quantile corresponding to 0.01 probability and bxc
gives the largest integer less than or equal to x.

> summary(co13)

Call:
TPreg(formula = ~Age + Nodes + treatment, data = colonTPreg,

link = "logit", s = 0, t = 365.24 * 7, R = 99, trans = "13")
(s,t):
[1] 0.00 2556.68

Transition 13 :

Coefficients:
time X.Intercept. Age Nodes treatmentLev treatmentLev.5FU

1 23.00 -28.325534 -0.024555212 -0.03918837 3.388159555 24.27533991
2 402.00 -4.092865 0.025096305 0.08050421 0.156140164 -0.07222873
3 659.00 -2.220785 0.003369437 0.16278647 0.001584098 -0.22781061
4 938.00 -2.003750 0.007666566 0.19530069 -0.009332136 -0.35912373
5 1313.00 -1.599525 0.008508928 0.20271435 0.068328191 -0.54960487
6 1891.00 -1.438688 0.009063383 0.24205416 -0.035327744 -0.48638357
7 2122.00 -1.623667 0.013412336 0.25594531 -0.124328431 -0.52617865
8 2221.00 -1.296856 0.010038380 0.25308608 -0.202232077 -0.59947602
9 2385.00 -1.488674 0.014490552 0.26120609 -0.295496733 -0.67206843
10 2556.68 -1.589947 0.016278598 0.27732864 -0.236084318 -0.62227652

Standard Errors:
time X.Intercept. Age Nodes treatmentLev treatmentLev.5FU

1 23.00 6951.8911865 0.012738568 0.02106333 6951.7974079 7332.1281285
2 402.00 0.7536143 0.012812950 0.02905815 0.3390078 0.3389652
3 659.00 0.5991375 0.009148785 0.03054517 0.2120707 0.2345916
4 938.00 0.4703039 0.006894272 0.03200788 0.1997101 0.2180372
5 1313.00 0.4797216 0.007066202 0.03454175 0.1730820 0.1684948
6 1891.00 0.4183546 0.006680265 0.03836143 0.1509584 0.1735455
7 2122.00 0.5117859 0.007847209 0.03600325 0.1715612 0.2003901
8 2221.00 0.4941523 0.007429709 0.03879966 0.2166193 0.1933320
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9 2385.00 0.4466957 0.007199118 0.04701630 0.1918290 0.2106014
10 2556.68 0.5881792 0.008990345 0.06620457 0.2098018 0.2814556

Lower limit:
time X.Intercept. Age Nodes treatmentLev treatmentLev.5FU

1 23.00 -13654.032259 -4.952281e-02 -0.08047250 -1.362213e+04 -1.434670e+04
2 402.00 -5.569949 -1.707772e-05 0.02355023 -5.083151e-01 -7.366005e-01
3 659.00 -3.395094 -1.456218e-02 0.10291793 -4.140744e-01 -6.876100e-01
4 938.00 -2.925546 -5.846207e-03 0.13256524 -4.007639e-01 -7.864766e-01
5 1313.00 -2.539779 -5.340829e-03 0.13501253 -2.709125e-01 -8.798548e-01
6 1891.00 -2.258663 -4.029937e-03 0.16686576 -3.312062e-01 -8.265328e-01
7 2122.00 -2.626767 -1.968194e-03 0.18537895 -4.605884e-01 -9.189432e-01
8 2221.00 -2.265394 -4.523850e-03 0.17703874 -6.268059e-01 -9.784067e-01
9 2385.00 -2.364197 3.802815e-04 0.16905414 -6.714816e-01 -1.084847e+00
10 2556.68 -2.742778 -1.342478e-03 0.14756768 -6.472959e-01 -1.173929e+00

Upper limit:
time X.Intercept. Age Nodes treatmentLev treatmentLev.5FU

1 23.00 13597.3811919 0.0004123815 0.002095746 1.362891e+04 1.439525e+04
2 402.00 -2.6157811 0.0502096878 0.137458182 8.205954e-01 5.921430e-01
3 659.00 -1.0464752 0.0213010553 0.222655003 4.172426e-01 2.319888e-01
4 938.00 -1.0819546 0.0211793383 0.258036135 3.820996e-01 6.822917e-02
5 1313.00 -0.6592702 0.0223586842 0.270416172 4.075688e-01 -2.193550e-01
6 1891.00 -0.6187126 0.0221567029 0.317242567 2.605507e-01 -1.462343e-01
7 2122.00 -0.6205667 0.0287928650 0.326511677 2.119315e-01 -1.334141e-01
8 2221.00 -0.3283172 0.0246006100 0.329133417 2.223417e-01 -2.205453e-01
9 2385.00 -0.6131503 0.0286008224 0.353358041 8.048813e-02 -2.592898e-01
10 2556.68 -0.4371159 0.0338996729 0.407089599 1.751272e-01 -7.062360e-02

p.value:
time X.Intercept. Age Nodes treatmentLev treatmentLev.5FU

1 23.00 9.967490e-01 0.05390150 6.281445e-02 0.9996111 0.997358354
2 402.00 5.604497e-08 0.05015178 5.597856e-03 0.6451000 0.831259885
3 659.00 2.100303e-04 0.71265448 9.855485e-08 0.9940401 0.331501133
4 938.00 2.039302e-05 0.26612969 1.049831e-09 0.9627297 0.099542518
5 1313.00 8.552157e-04 0.22852284 4.392863e-09 0.6930100 0.001106878
6 1891.00 5.840419e-04 0.17486385 2.793398e-10 0.8149671 0.005068814
7 2122.00 1.511058e-03 0.08741659 1.169284e-12 0.4686432 0.008645272
8 2221.00 8.680053e-03 0.17665908 6.896373e-11 0.3505190 0.001930250
9 2385.00 8.602758e-04 0.04413322 2.765814e-08 0.1234587 0.001416893
10 2556.68 6.868203e-03 0.07019108 2.802296e-05 0.2604733 0.027041188

[1] "18 observation(s) deleted due to missingness from 'data'"

The plot() method is used to plot estimated regression coefficients with 95% confidence bands
to visualize possible time-varying effects of covariates along time. Argument covar of plot.Tpreg()
function indicates the covariates for which their effects are to be plotted. The argument rug ((TRUE)
by default) adds a rug representation of times between time s and time t. And argument Ylim gives
the list of limits for the y axes.

> plot(co13, covar = c("Age", "Nodes", "treatmentLev", "treatmentLev.5FU"),
Ylim = list(c(-0.1,0.1), c(-0.5,0.5), c(-2,2), c(-2,2)))

Figure 2 shows the plot corresponding the adjusted effects of Age, Nodes, Lev and Lev+5FU on
transition probability p13. The covariate age, shows no significant effect of age on p13 along time. The
increasing number of nodes with detectable cancer significantly increases the probability of dying
steadily over time. As for the effect of treatment, after 1000 days the Lev+5FU decreases the transition
probability to the death state (in the long run), while no effect of Lev on p13 is appreciated. By
setting trans = all inside TPreg() function, plot() simultaneously displays the effect of prespesified
covariate(s) on all transition probabilities.

We set by=1 and trans=11 to calculate all regression results on transition probability p11 for all
times between 0 and 7 years. Compared with a larger by, by=1 results in a longer time for R to run the
code.
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Figure 2: Estimated effects of the Age (upper left corner), Nodes (upper right corner), Lev (lower left
corner), and Lev+5FU (lower right corner) on the probability of transition from "Alive and disease-free"
to "Dead" along time.

> co11 <- TPreg( ~ Age + Nodes + treatment, colonTPreg, link = "logit", s = 0,
R = 199, by = 1, t = 365.24*7, trans = "11")

> co11

Call:
TPreg(formula = ~Age + Nodes + treatment, data = colonTPreg,
link = "logit", s = 0, t = 365.24 * 7, R = 199, by = 1, trans = "11")

Transition:
[1] "11"

(s,t):
[1] 0.00 2556.68

Coefficients:
Estimate St.Err LW.L UP.L P.value

X.Intercept. 0.909156911 0.585357182 -0.23814317 2.056456987 0.1203834661
Age -0.009283428 0.009090987 -0.02710176 0.008534907 0.3071746946
Nodes -0.260231227 0.068103658 -0.39371440 -0.126748057 0.0001328551
treatmentLev 0.099705824 0.279628624 -0.44836628 0.647777927 0.7214173649
treatmentLev.5FU 0.743733904 0.253849957 0.24618799 1.241279820 0.0033916175

[1] "18 observations deleted due to missingness from 'data'"

> plot(co11, covar = c("Age", "Nodes", "treatmentLev", "treatmentLev.5FU"),
Ylim = list(c(-0.1,0.1), c(-0.5,0.5), c(-2,2), c(-2,2)))

The rugs on x axis are all jump times of the response variable corresponding to transition (i.e.
Y11(t)). As mentioned in the second section, the estimates of the coefficients are piecewise constant
between the jump times. Therefore, Figure 3 depicts all the estimates, for every time between 0 and
7 years. From the figure, we see that the number of nodes significantly reduces the probability of
consistently staying healthy and treatment Lev+5FU significantly increases this probability at each
time point.
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Figure 3: Estimated effects of the Age (upper left corner), Nodes (upper right corner), Lev (lower left
-corner), and Lev+5FU (lower right corner) on disease-free survival along time.

Summary

This paper describes the implementation of a flexible method in R for fitting a regression model
to possibly non-Markov progressive illness-death data. The idmTPreg package offers the user the
opportunity to estimate possibly time-varying effect of covariates on the transition probabilities for
the progressive illness-death model. We have explained the use of the idmTPreg package by applying
the method to a colon cancer dataset. The results in this paper were obtained using R 3.4.2. In a future
version of the package, we plan to implement a similar method to estimate coefficients on net survivals
for a progressive illness-death in a relative survival setting.
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