
CONTRIBUTED RESEARCH ARTICLES 88

Dynamic Parallelization of R Functions
by Stefan Böhringer

Abstract R offers several extension packages that allow it to perform parallel computations. These
operate on fixed points in the program flow and make it difficult to deal with nested parallelism and
to organize parallelism in complex computations in general. In this article we discuss, first, of how to
detect parallelism in functions, and second, how to minimize user intervention in that process. We
present a solution that requires minimal code changes and enables to flexibly and dynamically choose
the degree of parallelization in the resulting computation. An implementation is provided by the R
package parallelize.dynamic and practical issues are discussed with the help of examples.

Introduction

The R language (Ihaka and Gentleman, 1996) can be used to program in the functional paradigm,
i.e. return values of functions only depend on their arguments and values of variables bound at the
moment of function definition. Assuming a functional R program, it follows that calls to a given set
of functions are independent as long as their arguments do not involve return values of each other.
This property of function calls can be exploited and several R packages allow to compute function
calls in parallel, e.g. packages parallel, Rsge (Bode, 2012) or foreach (Michael et al., 2013; Revolution
Analytics and Weston, 2013). A natural point in the program flow where to employ parallelization is
where use of the apply-family of functions is made. These functions take a single function (here called
the compute-function) as their first argument together with a set of values as their second argument
(here called the compute-arguments) each member of which is passed to the compute-function. The
calling mechanism guarantees that function calls cannot see each others return values and are thereby
independent. This family includes the apply, sapply, lapply, and tapply functions called generically
Apply in the following. Examples of packages helping to parallelize Apply functions include parallel
and Rsge among others and we will focus on these functions in this article as well.

In these packages, a given Apply function is replaced by a similar function from the package that
performs the same computation in a parallel way. Fixing a point of parallelism introduces some
potential problems. For example, the bootstrap package boot (Davison and Hinkley, 1997; Canty
and Ripley, 2013) allows implicit use of the parallel package. If bootstrap computations become
nested within larger computations the parallelization option of the boot function potentially has to be
changed to allow parallelization at a higher level once the computation scenario changes. In principle,
the degree of parallelism could depend on parameter values changing between computations thereby
making it difficult to choose an optimal code point at which to parallelize. Another shortcoming of
existing solutions is that only a single Apply function gets parallelized thereby ignoring parallelism
that spans different Apply calls in nested computations. The aim of this paper is to outline solutions
that overcome these limitations. This implies that the parallelization process should be as transparent
as possible, i.e. requiring as little user intervention as necessary. An ideal solution would therefore
allow the user to ask for parallelization of a certain piece of code and we will try to approximate
this situation. Potential benefits for the user are that less technical knowledge is required to make
use of parallelization, computations can become more efficient by better control over the scaling of
parallelization, and finally programs can better scale to different resources, say the local machine
compared to a computer cluster.

This article is organized as follows. We first give further motivation by an example that highlights
the problems this approach seeks to address. We then outline the technical strategy needed to
determine the parallelism in a given function call. After that, trade-offs introduced by such a strategy
are discussed. We conclude by benchmarking two examples and discussing important practical issues
such as deviations of R programs from the functional programming style.

Dynamic parallelism in R functions

Let us start by looking at an example that tries to condense real-world problems in short, self-contained
code which illustrates issues to be solved. Regression analyses are performed on the iris data set as
follows.

Example 1

Lapply <- lapply
Sapply <- sapply

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

http://CRAN.R-project.org/package=Rsge
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=boot


CONTRIBUTED RESEARCH ARTICLES 89

library(sets)
data(iris)
d <- iris; response <- 'Species'; R <- .01; Nl <- 1e1; Nu <- 1e5

vars <- setdiff(names(d), response)
responseLevels <- levels(d[[response]])

minimax <- function(v, min = -Inf, max = Inf)
ifelse(v < min, min, ifelse(v > max, max, v))

N <- function(p, r = R)
(2 * qnorm(p, lower.tail = FALSE)/r)^2 * (1 - p)/p

analysis <- function(data, vars) {
f1 <- as.formula(sprintf('%s ~ %s', response, paste(vars, collapse = ' + ')));
f0 <- as.formula(sprintf('%s ~ 1', response));
a <- anova(glm(f0, data = data), glm(f1, data = data), test = 'Chisq')
p.value <- a[['Pr(>Chi)']][[2]]

}
permute <- function(data, vars, f, ..., M) {
ps <- Sapply(0:M, function(i, data, vars, f, ...) {
if (i > 0) data[, vars] <- data[sample(nrow(data)), vars];
f(data, vars, ...)

}, data, vars, f, ...)
p.data <- ps[1]
ps <- ps[-1]
list(p.raw = p.data, p.emp = mean(ps[order(ps)] < p.data))

}
subsetRegression <- function() {
r <- Lapply(responseLevels, function(l) {
subsets <- as.list(set_symdiff(2^as.set(vars), 2^set()))
r1 <- Sapply(subsets, function(subset) {
d[[response]] = d[[response]] == l
p.value <- analysis(d, unlist(subset))
unlist(permute(d, unlist(subset), analysis,
M = as.integer(minimax(N(p.value), Nl, Nu))))

})
output <- data.frame(subset = sapply(subsets, function(s)

paste(s, collapse = '+')), t(r1))
})
names(r) <- responseLevels
r

}
print(subsetRegression())

Variable Species is dichotomized for all of its levels and a subset analysis is performed by re-
gressing these outcomes on all possible subsets of the other variables (function analysis). Also a
permutation based P-value is computed (function permute) and the number of iterations depends
on the raw P-value (praw) from the original logistic regression. Here, the number of iterations is
chosen to control the length of the confidence interval for the permutation P-value (cil , ciu) so that
(ciu − cil)/praw < r (in probability), where r is a chosen constant (function N). To ensure robustness,
the resulting number is constrained within an integer interval (function minimax).

Analyzing computational aspects of this code, we first note that our most global models are
represented by response levels, in this case three, constituting a low level of parallelization. Second,
the subset models vary in size, in this case by a factor of four. Third, the parallelism of permutation
computations is data dependent and cannot be determined beforehand. It is thus not straightforward
to choose a good point at which to parallelize. Finally, observe that we have copied the symbols
sapply and lapply to upper-cased symbols and used them in places where parallelization is desirable.
The sapply used for computing the variable output has not been marked in this way as it constitutes a
trivial computation. The remainder of the article is concerned with achieving the goals stated above
for a program for which desirable parallelization has been marked as in the code above.

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 90

{

...

...

...

{Ramp up 1
Ramp up 1*

{

Ramp down 1

Figure 1: Abstraction of program flow with the following symbol semantics. Circles: entry points
into or return points from functions; downward arrows: function calls; tables: Apply function calls;
upward arrows: return path from functions; square: end of computation. Further explanation in text.

Dynamic analysis

Parallelism in programs can be detected by static analysis of source code (e.g. Cooper and Torczon,
2011) or by dynamic analysis (e.g. Ernst, 2003) the latter relying on execution of the code at hand and
the analysis of data gleaned from such executions. Example 1 motivates the use of dynamic analysis
and we discuss static analysis later. In cases where parallelism is data dependent, dynamic analysis is
the only means to precisely determine the level of parallelism. On the other hand also in cases where
parallelism is known or can be determined by inexpensive computations, dynamic analysis has the
advantage of convenience as the user is not responsible for making decisions on parallelization.

In the following, dynamic analysis is performed on Apply functions marked as in Example 1. The
overarching idea is to run the program but stop it in time to determine the degree of parallelism while
still having spent only little computation time. Like in existing packages the assumption is made that
the functional style is followed by the called functions, i.e. they do not exert side-effects nor depend on
such.

Abstract program flow

Figure 1 depicts the program flow as seen in the parallelization process. Given code becomes a
sequence of linear code (circles) leading to an Apply function, the Apply-function (table), and linear
code executed thereafter (circles). This pattern repeats whenever Apply functions are nested. For
now, we ignore the case where Apply functions are called sequentially as this case is not interesting
for understanding the algorithm. We call code leading to a given Apply call the ramp-up and code
executed after the Apply the ramp-down such that every program can be seen as an execution ramp-up –
Apply – ramp-down. The task of dynamic analysis is to select the ”best” Apply function, then separate
execution into ramp-up – Apply – ramp-down, and perform the computation. Then, calls resulting from
the selected Apply can be computed in parallel.

Algorithm

We now outline an abstract algorithm for implementing this program flow. Specific details about
R-specific behavior are given in the implementation section. The problem is solved by re-executing
the code several times – a choice that is justified below. The re-executions involve custom Apply
functions which replace the original implementations with the ability to return execution to higher
level Apply functions without executing the ramp-down, namely code following the Apply (escaping).
The following re-executions take place:

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 91

• Probing (ramp-up): determine the level of parallelism, stop

• Freezing (ramp-up): save calls from Applys for parallel execution, stop

• Recovery (ramp-down): replace calls that were parallelized with stored results, continue execu-
tion

Between the freezing and recovery steps, parallel computations are performed.

Probing

Probing potentially involves several re-executions as parallelism is determined for increasing nesting
levels. For a given nesting level, probing simply stores the number of elements passed to the Apply
calls at the specified nesting level and returns to the higher level. The sum of these elements is the
level of parallelism achievable at that nesting level. If higher degree of parallelism is desired probing
is repeated at a deeper nesting level.

Freezing

After a nesting level is chosen in the probing step, execution is stopped again in Apply calls at that
nesting level. The calls that the Apply would generate are stored as unevaluated calls in a so-called
freezer object.

Parallel execution

Parallel execution is controlled by a backend object. Similarly to the foreach package, several options
are available to perform the actual computations (e.g. snow Tierney et al., 2013, or batch queuing
systems).

Recovery

During recovery, execution is stopped at the same position as in the freezing step. These time results
computed during parallel execution are retrieved and returned instead of evaluating function calls.
Finally the whole computation returns with the final result.

Corner cases

If the requested level of parallelism exceeds the available parallelism, the computation will already
finish in the probing step. This is because the probing level exceeds the nesting level at some point and
execution will not be stopped. In this case the computation is performed linearly (actually sub-linearly
because of the repeated re-executions).

When all results have been retrieved in the recovery step, the algorithm can switch back to probing
and parallelize Apply code sequential to the first hierarchy of Apply calls. If no such Apply calls are
present probing will compute the result linearly thus not incurring a performance penalty.

Implementation of R package parallelize.dynamic

The parallelization implementation is split into a so-called front-end part which implements the
algorithm described above and a backend part which performs parallel execution. Currently, there are
backends for local execution (local backend) which executes linearly, parallel execution on snow clusters
(snow backend), and a backend for execution on Sun Grid Engine or Open Grid Scheduler batch queuing
systems (OGSremote backend). This is a similar approach to the foreach package and potentially code
can be shared between the packages. Back-ends are implemented as S4-classes and we refer to the
package documentation for details on how to implement new backends.

API

Dynamic analysis of parallelism is performed by making use of replacements of Apply functions
similar to existing packages. In this implementation, replacement functions have the same name as
replaced functions with an upper case first letter, referred to as Apply functions. The new functions
have exactly the same programming interface and the same semantics (i.e. they compute the same

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

http://CRAN.R-project.org/package=snow


CONTRIBUTED RESEARCH ARTICLES 92

...

...

...

recover state, depth 1

probe, depth 1 run, depth 1

probe, depth 2 run, depth 2

Figure 2: Exceptions used in the process of parallelization. Plus symbols indicate exception handlers
and dotted lines indicate exceptions. See Figure 1 for explanation of other symbols.

result) as the replaced functions, which is a difference to similar packages. One advantage is that
programs can be very quickly adapted for parallel execution and the mechanism can be turned of by
re-instating the original function definitions for Apply functions as done in Example 1.

Global state

In order to perform probing, freezing and recovery Apply functions maintain a global state containing
the current position in the program flow. This is defined by the nesting level and an index number
counting Apply calls seen so far. Probing and freezing maintain additional state, respectively. During
probing, the number of elements passed to the Apply call under investigation is stored, during freezing,
unevaluated calls resulting from the parallelized Apply call are stored.

Escaping

Probing and freezing need the ability to skip the ramp-down as they did not compute any results yet.
This capability is implemented using the R exception handling mechanism defined by the functions
try/ stop. Any Apply that needs to escape the ramp-down issues a call to stop that is caught by a try
call that was issued in a higher-level Apply. As this disrupts normal program flow, execution can later
not be resumed at the point where stop was called, requiring re-execution of the whole code. Figure 2
illustrates the use of exception handling.

Freezing

The freezing mechanism is defined by a reference class (LapplyFreezer) which stores unevaluated
calls for parallel execution and results of these calls. The base class simply stores unevaluated calls
and results as R objects. Subclasses that store results on disk (LapplyPersistentFreezer) or defer
generation of individual calls from Apply calls to the parallel step (LapplyGroupingFreezer) exist and
can be paired with appropriate backends.

Lexical scoping and lazy evaluation

R allows the use of variables in functions that are not part of the argument list (unbound variables).
Their values are resolved by lexical scoping, i.e. a hierarchy of environments is searched for the first
definition of the variable. This implies that all environments including the global environment would
potentially have to be available when a parallel function call is executed to guarantee resolution
of variable values. As for the snow and OGS backends execution takes place in different processes

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 93

transferring these environments often constitutes unacceptable overhead. Therefore, if unbound
variables are used with these backends the option copy_environments can be set to TRUE to force
copying of environments. This mechanism constructs a new environment that only contains variables
unbound in parallel function calls and computes their values using get in the correct environment.
This is a recursive process that has to be repeated for functions called by compute-functions and is
possibly expensive (compare Example 1). Potentially, these variables could be part of expressions
that are evaluated lazily, i.e. values of these expressions should only be computed later when the
expression is assigned to a variable. Code relying on the semantics of lazy evaluation could therefore
work incorrectly.

A way to avoid copying of environments is to not use unbound variables in compute-functions.
Functions called from compute-functions are allowed to contain unbound variables as long as they
are bound by any calling function. The copy_environments option helps to minimize code changes to
achieve parallelization but its use is not recommended in general (see discussion of Example 1 below).

Package and source dependencies

The copy_environments option can be used to ensure that function definitions are available in the
parallel jobs. However, this mechanism avoids copying functions defined in packages as pack-
ages might contain initialization code containing side-effects upon which these functions could
depend. Instead, required packages have to be specified either as an element in the configuration
list passed to parallelize_initialize or as the libraries argument of parallelize_initialize.
Similarly, the sourceFiles component of the configuration list or the sourceFiles argument of
parallelize_initialize specify R scripts to be sourced prior to computing the parallel job.

Examples

Example 1 continued

We continue Example 1 by extending it for use with package parallelize.dynamic. Parallelization
is initialized by a call to parallelize_initialize. The following code has to replace the call to
subsetRegression in Example 1.

library(parallelize.dynamic)
Parallelize_config <- list(
libraries = 'sets',
backends = list(snow = list(localNodes = 8, stateDir = tempdir()))

)
parallelize_initialize(Parallelize_config,
backend = 'snow',
parallel_count = 32,
copy_environments = TRUE

)
print(parallelize_call(subsetRegression()))

It is good practice to put the definition of Parallelize_config into a separate file and describe
all resources available to the user there. This file can then be sourced into new scripts and the
call to parallelize_initialize can quickly switch between available resources by specifying the
appropriate backend.

Backend #Parallel jobs Time Speed-up

OGSremote 3 9129 sec 1.00
OGSremote 15 6073 sec 1.50
OGSremote 50 6206 sec 1.47

Table 1: Time is the absolute waiting time by the user averaged across two runs. Speed-up is relative to
the first line.

The example is benchmarked on a four-core machine (Intel Core i7) running the Open Grid Scheduler
(OGS; Open Grid Scheduler Development Team, 2013). In this example, we investigate the influence
of varying the number of parallel jobs generated. Results are listed in Table 1 and times include all
waiting times induced by polling job-statuses and wait times induced by OGS (on average each job

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

http://CRAN.R-project.org/package=parallelize.dynamic


CONTRIBUTED RESEARCH ARTICLES 94

waits 15 seconds before being started). The number of parallel jobs reflects parallelism in the program.
For three jobs, each of the response levels is analyzed in parallel. Fifteen is the number of subsets
of the covariates so that in this scenario the second level is parallelized (Sapply over the subsets).
Fifty exceeds the number of subset-scenarios (45 subsets in total) so that the Sapply within permute is
parallelized. Note, that in the last scenario execution is truly dynamic as the number of permutations
depends on the generalized linear model (glm) computed on each subset. This implies that this glm
is repeatedly computed during the re-executions, creating additional overhead. Choosing 15 jobs
instead of three makes better use of the processing power so that speed-up is expected, a job count of
50 results in about the same wait time.

Increasing job counts beyond the number of parallel resources can increase speed if the parallel
jobs differ in size and the overall computation depends on a single, long critical path. This path
can potentially be shortened by splitting up the computation into more pieces. In this example,
we could not benefit from such an effect. On the other hand, should we run the computation on a
computer cluster with hundreds of available cores, we could easily create a similar amount of jobs to
accommodate the new situation.

For the sake of demonstrating that the package can handle code with almost no modification, we
allowed for unbound, global variables (i.e. functions use globally defined variables that are not passed
as arguments). This forced us to use the copy_environments = TRUE option that makes the package
look for such variables and include their definition into the job that is later executed. It is better
practice in terms of using this package but also in terms of producing reproducible code in general to
pass data and parameters needed for a computation explicitly as arguments to a function performing a
specific analysis (analysis-function). We could also define all needed functions called from the analysis-
function in separate files and list these under the sourceFiles key in the Parallelize_config variable.
The package can then establish a valid compute environment by sourcing the specified files, loading
listed libraries and transferring arguments of the analysis-function in which case we would not
have to use the copy_environments = TRUE option. As a convenience measure the definition of the
analysis-function itself is always copied by the package.

Example 2

The second example mimics the situation in Figure 1. It is more or less purely artificial and is meant to
illustrate the overhead induced by the parallelization process.

parallel8 <- function(e) log(1:e) %*% log(1:e)
parallel2 <- function(e) rep(e, e) %*% 1:e * 1:e
parallel1 <- function(e) Lapply(rep(e, 15), parallel2)
parallel0 <- function() {
r <- sapply(Lapply(1:50, parallel1), function(e) sum(as.vector(unlist(e))))
r0 <- Lapply(1:49, parallel8)
r

}

parallelize_initialize(Lapply_config, backend = 'local')
r <- parallelize(parallel0)

Backend #Parallel jobs Time

off 24 0.01 sec
local 24 0.14 sec
snow 24 19.80 sec
OGSremote 24 29.07 sec

Table 2: Time is the absolute waiting time by the user averaged across at least 10 runs.

Again, a call to parallelize_initialize defines parameters of the parallelization and determines
the backend. Function parallelize then executes the parallelization. Arguments to parallelize
are the function to parallelize together with arguments to be passed to that function. Results from
benchmark runs are shown in Table 2 and again absolute clock times are listed, i.e. time measured
from starting the computation until the result was printed. snow and OGSremote backends were run
on an eight core machine with Sun Grid Engine 6.2 installed with default settings. parallelize was
configured to produce 24 parallel jobs. off in Table 2 denotes time for running without any paralleliza-
tion. This can always be achieved by calling parallelize_setEnable(F) before parallelize which

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 95

replaces the Apply functions by their native versions and parallelize by a function that directly
calls its argument. The local backend performs parallelization but executes jobs linearly, thereby
allowing to measure overhead. In this example overhead is ∼ 0.13 seconds which is large in relative
terms but unproblematic if the computation becomes larger. This overhead is roughly linear in the
number of jobs generated. Comparing snow and OGSremote backends we can judge the setup time of
these backends for their parallel jobs. It took snow a bit below a second and OGSremote a bit above
a second to setup and run a job. It should be noted that the batch queuing characteristics are very
influential for the OGSremote backend. This instance of the Sun Grid Engine was configured to run
jobs immediately upon submission. This example does not transfer big data sets which would add to
overhead, however, it seems plausible that an overhead of at most a couple of seconds per job makes
parallelization worthwhile even for smaller computations in the range of many minutes to few hours.

Discussion & outlook

Limitations

Using the parallelize.dynamic package, existing code can be made to run in parallel with minimal
effort. Certain workflows do not fit the computational model assumed here. Most notably the
cost of the ramp-up determines the overhead generated by this package and might render a given
computation unsuitable for this approach. In many cases re-factoring of the code should help to
mitigate such overhead, however, this would render the point of convenience moot. It should also be
pointed out that for a given computation for which time can be invested into choosing the code point
at which to parallelize carefully and subsequently using packages like parallel or foreach should
result in a more efficient solution.

Technical discussion

One way to reduce the cost of ramp-ups is to pull out code from nested loops and pre-compute
their values, if possible. To help automate such a step, static code analysis can be used to separate
computational steps from ramp-ups by analyzing code dependencies. Another option would be to
extent the R language with an option to manipulate the “program counter”, which would allow to
resume code execution after a parallelization step in a very efficient manner. Such a change seems not
straightforward but could also benefit debugging mechanisms.

All parallelization packages rely on function calls that are executed in parallel not to have side-
effects themselves or to depend on such. It would be impractical to formally enforce this with
the language features offered by R. Again, a language extension could enforce functional behavior
efficiently, i.e. only the current environment (stack frame) may be manipulated by a function. For now,
some care has to be taken by the user, however, this does not seem to be a big problem in practice.
For most “statistical” applications such as simulations, bootstrapping, permutations or stochastic
integration a reasonable implementation should naturally lead to side-effect free code.

Is a fully transparent solution possible? Replacing native apply functions directly with paral-
lelization ones would have the benefit of requiring no modifications of the code at all. The current
implementation would certainly suffer from too great an overhead, however, it is conceivable that
profiling techniques (measuring computing time of individual function calls) could be used to gather
prior knowledge on computational behavior of “typical” code allowing to exclude certain apply calls
from the parallelization process. This seems a very challenging approach and requires extensive
further efforts.

Conclusions

In the author’s experience, most standard statistical workloads can easily be adapted to this paral-
lelization approach and subsequently scale from the local machine to mid-size and big clusters without
code modifications. Once standard configurations for the use of a local batch queuing system at a
given site are created, this package can potentially dramatically broaden the audience that can make
use of high performance computing.

As a final note, R is sometimes criticized for being an inefficient programming language which can
be attributed to highly dynamic language features. The current implementation makes liberal use of
many such features most notably introspection features to create unevaluated calls and perform their
remote execution. The roughly 1000 lines of implementation (split roughly evenly between front-end
and backend) demonstrate that these features are powerful and allow to execute a project such as
this with a small code base. Also, the functional programming paradigm implemented in R allows

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 96

for a natural attacking point of parallelization. This can be exploited to gain computational speed
in a highly automatized way, a mechanism that is hard to imitate in procedural languages which
traditionally have stakes in high performance computing.

Summary

In many practical situations it is straightforward to parallelize R code. This article presents an
implementation that reduces user intervention to a minimum and allows us to parallelize code by
passing a given function call to the parallelize_call function. The major disadvantage of this
implementation is the induced overhead which can often be reduced to a minimum. Advantages
include that potentially little technical knowledge is required, computations can become more efficient
by better control over the amount of parallelization, and finally that programs can be easily scaled to
available resources. Future work is needed to reduce computational overhead and to complement this
dynamic with a static analysis.

Bibliography

D. Bode. Rsge: Interface to the SGE Queuing System, 2012. URL http://CRAN.R-project.org/package=
Rsge. R package version 0.6.3. [p88]

A. Canty and B. D. Ripley. boot: Bootstrap R (S-Plus) Functions, 2013. R package version 1.3-9. [p88]

K. Cooper and L. Torczon. Engineering a Compiler. Elsevier, Jan. 2011. ISBN 9780080916613. [p90]

A. C. Davison and D. V. Hinkley. Bootstrap Methods and Their Applications. Cambridge University Press,
Cambridge, 1997. URL http://statwww.epfl.ch/davison/BMA/. ISBN 0-521-57391-2. [p88]

M. D. Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003: ICSE Workshop on
Dynamic Analysis, pages 24–27, 2003. URL http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.182.5350&rep=rep1&type=pdf#page=25. [p90]

R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of Computational
and Graphical Statistics, 5(3):299–314, 1996. URL http://www.tandfonline.com/doi/abs/10.1080/
10618600.1996.10474713. [p88]

K. Michael, J. W. Emerson, and S. Weston. Scalable strategies for computing with massive data. Journal
of Statistical Software, 55(14):1–19, 2013. URL http://www.jstatsoft.org/v55/i14. [p88]

Open Grid Scheduler Development Team. Open Grid Scheduler: The official open source grid engine,
2013. URL http://gridscheduler.sourceforge.net/. [p93]

Revolution Analytics and S. Weston. foreach: Foreach Looping Construct for R, 2013. URL http://CRAN.R-
project.org/package=foreach. R package version 1.4.1. [p88]

L. Tierney, A. J. Rossini, N. Li, and H. Sevcikova. snow: Simple Network of Workstations, 2013. URL
http://CRAN.R-project.org/package=snow. R package version 0.3-13. [p91]

Stefan Böhringer
Leiden University Medical Center
Department of Medical Statistics and Bioinformatics
Postzone S-5-P, P.O.Box 9600
2300 RC Leiden
The Netherlands
correspondence at s-boehringer.org

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

http://CRAN.R-project.org/package=Rsge
http://CRAN.R-project.org/package=Rsge
http://statwww.epfl.ch/davison/BMA/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.5350&rep=rep1&type=pdf#page=25
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.5350&rep=rep1&type=pdf#page=25
http://www.tandfonline.com/doi/abs/10.1080/10618600.1996.10474713
http://www.tandfonline.com/doi/abs/10.1080/10618600.1996.10474713
http://www.jstatsoft.org/v55/i14
http://gridscheduler.sourceforge.net/
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=snow
mailto:correspondence at s-boehringer.org

