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EMSaov: An R Package for the Analysis
of Variance with the Expected Mean
Squares and its Shiny Application
by Hye-Min Choe, Mijeong Kim, and Eun-Kyung Lee

Abstract EMSaov is a new R package that we developed to provide users with an analysis of variance
table including the expected mean squares (EMS) for various types of experimental design. It is not
easy to find the appropriate test, particularly the denominator for the F statistic that depends on the
EMS, when some variables exhibit random effects or when we use a special experimental design such
as nested design, repeated measures design, or split-plot design. With EMSaov, a user can easily
find the F statistic denominator and can determine how to analyze the data when using a special
experimental design. We also develop a web application with a GUI interface using the shiny package
in R . We expect that our application can contribute to the efficient and easy analysis of experimental
data.

Introduction

The analysis of variance (ANOVA) is a well-known method that can be used to analyze data obtained
with different experimental designs. Its use mainly depends on the primary design of the experiment,
and the main testing method for the analysis of variance is the F test. If all factors are fixed effects
and there is no specific design of the experiment, that is, the experimental design is a factorial design,
then the usual way to calculate the F statistic is to use the mean squares of the corresponding source
of variation as the numerator and the mean squares of errors as the denominator. However, if some
variables exhibit random effects or some variables are nested in the other variables, it is not easy to find
the appropriate F statistic. This depends on the expected mean square (EMS), and the denominator of
the F statistic is determined by the EMS of the corresponding source of variation. Therefore, we first
have to calculate the expected mean squares for the ANOVA and then find the exact F statistic for the
test using the EMS, especially when data comes from a special experimental design. Even though the
EMS is very important to finding the exact F statistic in the ANOVA, few tools show this EMS and
most of the tools that have been developed provide only the result of the ANOVA without any further
explanation. Therefore, users cannot figure out how to calculate the test statistics and only know the
final result.

Several packages can be used to handle models with various experimental designs. The lm function
in R can handle factorial design with fixed effects without taking the special experimental design or
the random effects into account. The lme function in the nlme (Pinheiro et al., 2016) package handles
the mixed effect model, and in this function, the user can specify the factors with a random effect.
However this function mainly focuses on the grouped data and on estimating the variance components
instead of testing the corresponding factor. Also, it does not provide the EMS of each source in the
ANOVA table.

Another R package that can be used in the analysis of factorial experiments is afex (Singmann
et al., 2016). This package provides the function ems to calculate EMS for the factorial designs. They
adapted the Cornfield-Tukey algorithm (Cornfield and Tukey, 1956) to derive the expected values of
the mean squares. The afex package also provides the mixed function to calculate p-values for various
ANOVA tables considering the corresponding EMS to find the exact F statistic. However, the ems
function provides the general information on the factorial design, and the result for ems only shows
the coefficients of variances. It is provided in a p × p table form instead of the EMS formula for each
source in the ANOVA table, where p is the number of sources, and the elements of this table represent
the coefficient of variance in the formula of the EMS. It is not easy to find the corresponding F statistic
with this result, and this EMS does not match the analysis of variance for real data due to the use of
the number of levels in each factor with characters instead of the real number of levels, so users need
to match this character with their own number of levels.

In this paper, we provide a tool to show how to calculate test statistics as well as the final result.
We focus on the classical analysis of variance method, based on the F test using EMS, exclusively
for balanced designs. We develop a new R package EMSaov to provide users with the analysis of
variance table with EMS for various types of experimental design. With the ANOVA table combined
with EMS, users can easily understand how to calculate the F statistics, especially the denominator of
the F statistic, and then figure out the result of the analysis. We also provide an application for novice
users based on Shiny (shiny). First, we explain the general concepts of the analysis of variance and the
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Fixed model Random model Mixed model
Source Df (A,B:fixed) (A,B:random) (A:fixed, B:random)

A a − 1 σ2
ε + nbφA σ2

ε + nσ2
AB + nbσ2

A σ2
ε + nσ2

AB + nbφA
B b − 1 σ2

ε + naφB σ2
ε + nσ2

AB + naσ2
B σ2

ε + naσ2
B

AB (a − 1)(b − 1) σ2
ε + nφAB σ2

ε + nσ2
AB σ2

ε + nσ2
AB

Residuals ab(n − 1) σ2
ε σ2

ε σ2
ε

Table 1: Expected mean squares for the three different types of models

special types of experimental designs. Then we introduce EMSaov, our newly developed R package,
with its implementation, and explain the usage of functions in EMSaov in detail. We also introduce
the web interface of EMSaov, followed by the conclusion.

Analysis of variance

Fixed, random, and mixed models

There are two ways to select the levels of factors for various factorial experimental designs. One is to
select the appropriate levels as fixed values, and the other is to choose at random from many possible
levels. Bennett et al. (1954) discuss a case in which the chosen levels are obtained from a finite set of
possible levels. When all levels are fixed, the statistical model for the experiment is referred to as a
fixed model, and when all levels are chosen as random levels, the model is referred to as a random
model. When two or more factors are involved and some factors are chosen as fixed levels and the
others are chosen as random levels, the model is referred to as a mixed model. There is no difference
between the fixed model and the random model during data analysis for a single-factor experiment.
However, the EMS for each factor should be different from that of a fixed model if there is more than
one factor, some factors exhibit random effects, and the other factors are fixed effects. We thus have to
be careful when generating an F statistic to test the significance of each factor.

Consider the two-factor factorial experiment with factors A and B. The corresponding experimental
model with a completely randomized design is

Yijk = µ + Ai + Bj + ABij + εijk (1)

where µ is a common effect, Ai represents the effect of the ith level of factor A, and Bj represents the
effect of the jth level of factor B, ABij is the interaction effect of factors A and B, and εijk represents the
random error in the kth observation on the ith level of A and jth level of B, i = 1, · · · , a, j = 1, · · · , b,
and k = 1, · · · , n.

In this model, we assume that µ is a fixed constant, and εijk is a random variable that follows
N(0, σ2

ε ). We can assume three cases: the fixed model, the random model, and the mixed model. In a
mixed model, we treat factor A as a fixed effect and factor B as a random effect. The main test method
for the analysis of variance is an F test. The usual way to calculate the F statistic is to use the mean
squares of the corresponding source as the numerator and the mean square error as the denominator.
However, if some variables exhibit random effects, it is not easy to find the appropriate denominator
for the F statistic. In fact, this depends on the expected mean square (EMS), so we have to calculate the
expected mean square for the analysis of variance of the data.

The expected mean squares are different among the three models, and they are represented in
Table 1. For all three models, the mean squares error (MSE) is used as the denominator to test the
interaction effect between A and B. For factor A, MSE is used in the fixed model but MSAB is used in

Fixed model Random model Mixed model
Source Mean Sq (A,B:fixed) (A,B:random) (A:fixed, B:random)

A MSA MSA/MSE MSA/MSAB MSA/MSAB
B MSB MSB/MSE MSB/MSAB MSB/MSE

AB MSAB MSAB/MSE MSAB/MSE MSAB/MSE
Residuals MSE

Table 2: F statistics in ANOVA table for the three different models
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Source Df Sum Sq Mean Sq EMS F statistic

A a − 1 SSA MSA σ2
ε + bσ2

B(A) + abσ2
A MSA/MSB(A)

B(A) a(b − 1) SSB(A) MSB(A) σ2
ε + bσ2

B(A) MSB(A)/MSE

Residuals ab(n − 1) SSE MSE σ2
ε

Table 3: ANOVA table for the nested design

the other two models. For factor B, MSAB is used in the random model, but MSE is used in the other
two models. The appropriate test statistics for each factor are summarized in Table 2.

EMS rule

As we can see in the review on generating the F statistics for the three different models, the expected
mean squares are very important. The previous examples consist of very simple factorial models
with only two factors. For complex experimental designs, particularly when using models involving
random or mixed effects with nested factors, it is frequently helpful to have a formal procedure to
generate the expected mean squares, that is the EMS rules (Montgomery, 2008). The EMS rules are
simple and convenient procedures that determine the expected mean squares, and these are also
appropriate for manually calculating the expected mean squares for any nested, repeated-measures,
or split-plot design. We follow the EMS rules in Montgomery (2008) to generate the expected mean
squares in the ANOVA table with various experimental designs.

Nested and nested-factorial design

In the case of experiments with two or more factors without any restriction in the randomization,
most experimental designs can be categorized in one of three ways: crossed design, nested design, or
nested-factorial design. In this EMSaov package, we didn’t consider the unbalanced design and the
fractional factorial design. The crossed design considers every possible combination of the levels of
factors in the model. However, when the levels of one factor are not identical but similar to different
levels of another factor, it is referred to as a nested design.

In the nested design, when the levels of factor B are nested under the levels of factor A, the levels
of factor B belonging to the first level of factor A are not the same as the levels of factor B in the second
level of factor A, as shown in Figure 1. One of the features of this model is the lack of interaction effect
between the two factors that are nested, so when the analysis of variance is carried out, the interaction
term AB should be pooled to the nested factor B(A). The ANOVA table for this design is shown in
Table 3. Thus, the nested design can be extended to a more complex nested design, for example, to a
model with another nested factor C under the existing nested factor B. It can also be combined with
factorial design - a model with another factor C that is nested in both A and B, while factors A and B
are crossed.

Split-plot design

The split-plot design is used when it may not be possible to completely randomize the order of
experimentation. In this case, we assume for one factor to be a block. Since a factor treated as a block
is restricted during randomization, the effects of the corresponding factor are confounded with the
blocks, and it is thus difficult to determine the pure significance of this effect. On the other hand, there
is no loss of information for the other factors that are not treated as a block because it is completely
randomized under these factors. In this design, two levels of randomization are applied to assign
the experimental units to the treatment. The first level of randomization is applied to the whole plot

Figure 1: A two-stage nested design
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and is used to assign the experimental units to the levels of treatment factor A. The whole plot is split
into a split-plot, and the second level of randomization is used to assign the experimental units of the
subplot to levels of the treatment factor B. Since the split-plot design has two levels of experimental
units, the whole plot and the subplot portions have separate experimental errors. Therefore, the F tests
must be run only within the whole plot or within the split plot, and the mean squares in the whole
plot should not be compared with the mean squares in the split plot, regardless of the EMS value. We
handle this split-plot design as a hierarchical design with respect to the levels of model. The first level
of model is the whole plot, and the second level of model is the split plot. These levels of model can
then be extended to 3, 4, or more levels.

Approximate F test

In factorial experiments with three or more factors involving a random or mixed model, sometimes
there is no exact test statistic for certain effects in the model. We have to calculate a new F statistic
if there is no denominator that differs from the expected value of the numerator only by the specific
component being tested. Therefore, Satterthwaite (1946) proposed a test procedure that uses linear
combinations of the original mean squares to form the F statistic, for example,

MSnum = MSnum,1 + · · ·+ MSnum,rn (2)

MSden = MSden,1 + · · ·+ MSden,rd

where MSnum,1, · · · , MSnum,rn and MSden,1, · · · , MSden,rd
are selected from MS values in ANOVA

table such that E (MSnum)− E (MSden) is equal to the effect considered in the null hypothesis.

Then,

ApproxF =
MSnum

MSden
∼ Fd fnum ,d fden

(3)

where

d fnum =
(MSnum,1 + · · ·+ MSnum,rn )

2

(MSnum,1)2/d fnum,1 + · · ·+ (MSnum,rn )
2/d fnum,rn

(4)

d fden =

(
MSden,1 + · · ·+ MSden,rd

)2

(MSden,1)2/d fden,1 + · · ·+ (MSden,rd
)2/d fden,rd

(5)

In d fnum and d fden, d fnum,i and d fden,j are the degrees of freedom associated with the mean square
MSnum,i and MSden,j, respectively, where i = 1, · · · , rn and j = 1, · · · , rd

Implementation of EMSaov package

The EMSaov package includes EMSanova, PooledANOVA, and ApproxF as main functions and EMSaovApp
as a function for the Shiny application. EMSanova generates the analysis of variance (ANOVA) table
with the expected mean squares (EMS) and the corrected F tests considered with the EMS. Several
arguments are needed for this function (Table 4). We use the formula argument to specify the response
variable and factors in the ANOVA table with data, nested factors (nested), and types of factors
(type). Sometimes, we cannot find the appropriate denominator for the F statistic, and we have to
use the approximate F test. The function ApproxF is developed to approximate the results of the F
test. The ApproxF function takes SS.table and approx.name as arguments. SS.table is the result
from EMS.anova, and approx.name designates the source of variation in SS.table to calculate the
approximate F values for the test. To show how to use these functions in the EMSaov package, we use
the three sets of example data in Hicks (1982).

Example 1: Mixed effect model with approximate F test

film data in EMSaov corresponds to the mixed effect model (Example 10.3 in Hicks (1982)). There are
three factors: Gate, Operator, and Day. The experiment consists of measuring the dry-film thickness of
varnish in millimeters for three different gate setting (1, 2, and 3) twice with operators A, B, and C, for
two days.

In film, "thickness" is the dependent variable, and "Gate", "Operator", and "Day" are the factors
that we want to consider. We use thickness ∼ Gate + Operator + Day as a formula. In the EMSanova
function, we use the formula format just for specifying the factors in the model. To specify the types
of factors and whether the factors are nested or not, we need to use the other arguments. If the user
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argument

formula model formula
data data frame for ANOVA
type the list of factor types.

It designates whether each factor is random or not.
use "F" for the fixed effect, "R" for the random effect

nested the list of the nested effects
level the list of the model level

n.table numbers of levels in each factor
approximate calculate approximate F test when it is TRUE

Table 4: Arguments of EMSanova function

specifies formula = thickness ∼ Gate + Operator + Day, type, nested, level , and n.table should
follow the order of "Gate", "Operator" and "Day". In this example, "Gate" is treated as a fixed effect
and "Operator" and "Day" are treated as random effects. Therefore, type = c("F","R","R").

> data(film)
> anova.result <- EMSanova(thickness ~ Gate + Operator + Day, data = film,
+ type = c("F", "R", "R"))
> anova.result

Df SS MS Fvalue Pvalue Sig
Gate 2 1.573172222 0.786586111
Operator 2 0.112072222 0.056036111 18.7656 0.0506 .
Gate:Operator 4 0.042844444 0.010711111 4.3229 0.0926 .
Day 1 0.001002778 0.001002778 0.3358 0.6208
Gate:Day 2 0.011338889 0.005669444 2.2881 0.2175
Operator:Day 2 0.005972222 0.002986111 9.188 0.0018 **
Gate:Operator:Day 4 0.009911111 0.002477778 7.6239 9e-04 ***
Residuals 18 0.005850000 0.000325000

EMS
Gate Error+2Gate:Operator:Day+6Gate:Day+4Gate:Operator+12Gate
Operator Error+6Operator:Day+12Operator
Gate:Operator Error+2Gate:Operator:Day+4Gate:Operator
Day Error+6Operator:Day+18Day
Gate:Day Error+2Gate:Operator:Day+6Gate:Day
Operator:Day Error+6Operator:Day
Gate:Operator:Day Error+2Gate:Operator:Day
Residuals Error

For the factor "Gate", the EMS of the denominator should be "Error + 2Gate:Operator:Day +
6Gate:Day + 4Gate:Operator", but it is not so in this table. Therefore, we cannot find the exact
denominator for the F test and need to use the approximate F test. The factor "Gate" is in the first row
in the result of EMSanova and approx.name should be "Gate" for the ApproxF function.

> ApproxF(SS.table = anova.result, approx.name = "Gate")
$Appr.F
[1] 48.17076

$df1
[1] 2.01261

$df2
[1] 5.995597

$Appr.Pvalue
[1] 0.0002010433

The approximate F value for the test of the factor "Gate" is 48.17076 with p-value 0.0002. Therefore,
we can conclude that there are significant differences among the levels of the factor "Gate" at the
significance level 0.05.

If we want to combine "Gate:Day" and "Residuals", and treat them as a combined residual for
the further analysis, we can define del.ID as c("Gate:Day","Residuals") and use the PooledANOVA
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function. The first argument for PooledANOVA is the output from EMSanova.

> del.ID <- c("Gate:Day", "Residuals")
> PooledANOVA(anova.result, del.ID)

Df SS MS Fvalue Pvalue Sig
Gate 2 1.5732 0.7866 73.4365 7e-04 ***
Operator 2 0.1121 0.0560 18.7656 0.0506 .
Gate:Operator 4 0.0428 0.0107 4.3229 0.0926 .
Day 1 0.0010 0.0010 0.3358 0.6208
Operator:Day 2 0.0060 0.0030 3.4745 0.0507 .
Gate:Operator:Day 4 0.0099 0.0025 2.883 0.0491 *
Residuals 20 0.0172 0.0009

EMS
Gate Error+2Gate:Operator:Day+4Gate:Operator+12Gate
Operator Error+6Operator:Day+12Operator
Gate:Operator Error+2Gate:Operator:Day+4Gate:Operator
Day Error+6Operator:Day+18Day
Operator:Day Error+6Operator:Day
Gate:Operator:Day Error+2Gate:Operator:Day
Residuals Error

Example 2: Nested-factorial model

For the nested model, we need to specify nested, which indicates the parent factor of the nested factor.
We use the baseball data (Example 11.4 in Hicks (1982)) to illustrate the use of the EMSanova function
with the nested-factorial model. It has three factors where the subjects are nested within groups.

In this example, formula = velocity ∼ Group + Subject + test. The factors "Group" and "test"
are treated as fixed effects, and the factor "Subject" is treated as a random effect with the argument
for fixed and random effects being type = c("F","R","F"). We use nested = c(NA,"Group",NA) to
indicate the factor "Subject", nested in the factor "Group". The fixed effect "test" is measured twice with
"Pre" and "Post" in each subject, which means that there are two levels in this model. The first level
consists of "Group" and "Subject" and the second level consists of "test". This model level can thus be
represented with level=c(1,1,2).

> data(baseball)
> anova.result <- EMSanova(velocity ~ Group + Subject + test,
+ data = baseball,
+ type = c("F", "R", "F"),
+ nested = c(NA, "Group", NA),
+ level = c(1, 1, 2))
> anova.result

Df SS MS Fvalue Pvalue Sig Model.Level
Group 2 28.139200 14.0696000 1.0426 0.3729 1
Subject(Group) 18 242.905914 13.4947730 115.517 <0.0001 *** 1
test 1 21.257486 21.2574857 181.9669 <0.0001 *** 2
Group:test 2 12.381943 6.1909714 52.9955 <0.0001 *** 2
Residuals 18 2.102771 0.1168206 2

EMS
Group Error+2Subject(Group)+14Group
Subject(Group) Error+2Subject(Group)
test Error+21test
Group:test Error+7Group:test
Residuals Error

Example 3: Split-split plot design

The example rubber is the split-split plot design with 4 replicates (Example 13.3 in Hicks (1982)). Three
different laboratories (Lap), three different temperatures (Temp), and three types of rubber mix (Mix)
were involved in each replicate (Rep). "Rep" and "Lap" consist of the whole plot, "Temp" is added in
the split-plot, and "Mix" is added in the split-split plot.

This design can be treated as a three-level model with "Rep" and "Lap" in the first level, "Temp" in
the second level, and "Mix" in the third level. For the EMSanova, we set formula = Y ∼ Rep + Mix +
Lap + Temp), type = c("R","F","F","F") and level = c(1,3,1,2).
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> data(rubber)
> anova.result <- EMSanova(cure ~ Rep + Mix + Lap + Temp,
+ data = rubber,
+ type = c("R", "F", "F", "F"),
+ level = c(1, 3, 1, 2))
> anova.result

Df SS MS Fvalue Pvalue Sig Model.Level
Rep 3 5.581019 1.8603395 2.2311 0.1105 1
Lap 2 51.496852 25.7484259 4.9395 0.0539 . 1
Rep:Lap 6 31.276481 5.2127469 6.2517 5e-04 *** 1
Temp 2 2978.564630 1489.2823148 2167.7859 <0.0001 *** 2
Rep:Temp 6 4.122037 0.6870062 0.8239 0.5626 2
Lap:Temp 4 5.603148 1.4007870 0.5948 0.6732 2
Rep:Lap:Temp 12 28.261296 2.3551080 2.8245 0.0146 * 2
Mix 2 149.217963 74.6089815 53.0128 2e-04 *** 3
Rep:Mix 6 8.444259 1.4073765 1.6879 0.1672 3
Lap:Mix 4 4.894815 1.2237037 1.4772 0.2697 3
Rep:Lap:Mix 12 9.940741 0.8283951 0.9935 0.4828 3
Temp:Mix 4 47.853704 11.9634259 15.6467 1e-04 *** 3
Rep:Temp:Mix 12 9.175185 0.7645988 0.917 0.5454 3
Lap:Temp:Mix 8 10.688519 1.3360648 1.6024 0.1765 3
Residuals 24 20.011481 0.8338117 3

EMS
Rep Error+27Rep
Lap Error+9Rep:Lap+36Lap
Rep:Lap Error+9Rep:Lap
Temp Error+9Rep:Temp+36Temp
Rep:Temp Error+9Rep:Temp
Lap:Temp Error+3Rep:Lap:Temp+12Lap:Temp
Rep:Lap:Temp Error+3Rep:Lap:Temp
Mix Error+9Rep:Mix+36Mix
Rep:Mix Error+9Rep:Mix
Lap:Mix Error+3Rep:Lap:Mix+12Lap:Mix
Rep:Lap:Mix Error+3Rep:Lap:Mix
Temp:Mix Error+3Rep:Temp:Mix+12Temp:Mix
Rep:Temp:Mix Error+3Rep:Temp:Mix
Lap:Temp:Mix Error+4Lap:Temp:Mix
Residuals Error

EMSaovApp: Web interface for ANOVA with EMS

Even though we provide three functions to produce the appropriate analysis of variance for many
different types of experimental designs, this is not so easy for a novice user of R. For convenience, we
provide a Shiny-based application with a graphical user interface (GUI) to obtain the ANOVA of data
from various experimental designs. Figure 2 shows the main GUI for EMSaovApp with Example 2. The
first part of the GUI can be used to read data in the csv format. The middle part has various input
windows to select the dependent variable, the factors in the ANOVA table, the number of categories
in each factor, the specification of the nested factor, and the level of the model. In this example, "Y"
is selected as the dependent variable (Y variable) and the "Group", "Subject", and "Test" factors are
selected. Among the selected factors, "Subject" is treated as the random effect and the others are treated
as fixed effects. Therefore "Subject" is checked in the "Random Effect" part. The "Subject" factor is
nested in "Group", and the "test" factor is in the second level of the model. This information should
thus be specified in this part. The number of categories for each factor is automatically calculated from
the original data, but the user can change them in this GUI.

The bottom part has five tabs, including "EDA-main effect", "EDA-interaction", "ANOVA table",
"ANOVA table with Approx.F", and "Pooled ANOVA". The "EDA-main effect" tab shows parallel
box plots for each factor (Figure 2). "Subject" and "Test" show significant differences among the levels
in each factor, and the "EDA-interaction" tab shows the interaction plots to help see whether the
interaction effect between the two factors is significant or not. EMSaovApp automatically generates
interaction plots for all pairs of selected factors. In Figure 3, the interaction effect between "Group"
and "Test" is highly significant. Even though the interaction effect between "Group" and "Subject" and
the interaction effect between "Subject" and "Test" are provided, "Subject" is nested in "Group" and
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Figure 2: Main feature of EMSaovApp

Figure 3: Exploratory data analysis of the interaction effect between two factors
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Figure 4: Analysis of variance table with approximate F test result

Figure 5: Pooled analysis of variance table - pooling three way interaction effect "Gate:Operator:Day"
to "Residuals"

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 261

these interaction effects are not of interest. Figure 4 show the result of the tab "ANOVA table with
Approx. F" with data from Example 1. In this example, we can combine the three-way interaction to
the residuals by checking the corresponding items in the "Pooled ANOVA" tab (Figure 5).

Discussion

We have introduced EMSaov, an R package for ANOVA with various types of experimental design.
We should have information on the EMS to determine the denominator of the F statistics in ANOVA.
EMSaov is one of few packages for ANOVA with EMS that can handle fixed or random effects, nested
factors, or model with multi-level design. Future updates to EMSaov include the permutation tests
for each source of variation to cover the situation where data does not follow the normal assumption.
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