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liureg: A Comprehensive R Package for
the Liu Estimation of Linear Regression
Model with Collinear Regressors
by Muhammad Imdadullah, Muhammad Aslam, Saima Altaf

Abstract The Liu regression estimator is now a commonly used alternative to the conventional
ordinary least squares estimator that avoids the adverse effects in the situations when there exists a
considerable degree of multicollinearity among the regressors. There are only a few software packages
available for estimation of the Liu regression coefficients, though with limited methods to estimate
the Liu biasing parameter without addressing testing procedures. Our liureg package can be used
to estimate the Liu regression coefficients utilizing a range of different existing biasing parameters,
to test these coefficients with more than 15 Liu related statistics, and to present different graphical
displays of these statistics.

Introduction

For data collected either from a designed experiment or from an observational study, the ordinary
least square (OLS) method does not provide precise estimates of the effect of any explanatory variable
(regressor) when regressors are interdependent (collinear with each other). Consider a multiple linear
regression (MLR) model,

y = Xβ + ε,

where y is an n× 1 vector of observations on dependent variable, X is known design matrix of order
n× p, β is a p× 1 vector of unknown parameters, and ε is an n× 1 vector of random errors with mean
zero and variance σ2 In, where In is an identity matrix of order n.

The OLS estimator (OLSE) of β is given by

β̂ = (X′X)−1X′y,

which depends on the characteristics of the matrix X′X. If X′X is ill-conditioned (near dependencies
among various regressors of X′X exist) or det(X′X) ≈ 0, then the OLS estimates are sensitive to a
number of errors, such as non-significant or imprecise regression coefficients (Kmenta, 1980) with
wrong sign and non-uniform eigenvalues spectrum. Moreover, the OLS method, for example, can
yield a high variance of estimates, large standard errors, and wide confidence intervals.

Researchers may be tempted to eliminate regressor(s) causing problems by consciously removing
regressor from the model or by using some screening method such as stepwise and best subset
regression etc. However, these methods may destroy the usefulness of the model by removing relevant
regressor(s) from the model. To control variance and instability of the OLS estimates, one may
regularize the coefficients, with some regularization methods such as the ridge regression (RR), Lasso
regression and Liu regression (LR) methods etc., as alternative to the OLS. Computationally, the RR
(β̂r = (X′X + kI)−1X′y) suppresses the effects of collinearity and reduces the apparent magnitude
of the correlation among regressors in order to obtain more stable estimates of the coefficients than
the OLS estimates and it also improves the accuracy of prediction (see Hoerl and Kennard, 1970;
Montgomery and Peck, 1982; Myers, 1986; Rawlings et al., 1998; Seber and Lee, 2003; Tripp, 1983, etc.).
However, the ridge coefficient is a complicated function of k when some popular methods (such as
given in Golub et al. (1979), Mallows (1973) and McLeod and Xu (2017) etc.) are used for (optimal)
selection of k. Different applications can yield values for k which are too small to correct the problem
of the ill-conditioned product, X′X. In such cases, the RR may still be unstable. Similarly, the choice
of k belongs to the researcher, there being no consensus regarding how to select optimal k. As such,
other innovative methods were needed to deal with collinear data. Liu (1993) proposed another biased
estimator to mitigate the collinearity effect on regressors. They also discussed some of the properties
and methods for suitable selection of biasing parameter used in LR. For further detail, see Section "Liu
regression estimator."

We have developed the liureg (Imdadullah and Aslam, 2017) package to provide the functionality
of Liu related computations. The package provides the most complete suite of tools for the LR
available in R. Table 1 provides a comparison with other alternatives. For package development and R
documentation, we followed Wickham (2015); Leisch (2008); R Core Team (2015). The ridge package
by Cule and De Iorio (2012), lmridge by Imdadullah and Aslam (2016a) and lm.ridge from the MASS
by Venables and Ripley (2002) also provided guidance in coding.
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lrmest (1) ltsbase (2) liureg

Standardization of regressors
X X X

Estimation and testing of Liu coefficient
Estimation X X X
Testing X X
SE of coeff. X X

Liu related statistics
R2 X X
Adj-R2 X
Variance X
Bias2 X
MSE X
F-test X
σ2 X
CL X
Effective df X
Hat matrix X
Var-Cov matrix X
VIF X
Residuals X X
Fitted values X X
Predict values X

Liu model selection
GCV X
AIC&BIC X
PRESS X

Liu related graphs
Liu trace X
Bias, Var, MSE X X
AIC, BIC X

Table 1: Comparison of Liu related R packages (1 Dissanayake and Wijekoon, 2016; 2 Kan et al., 2013 )

In the available literature, there are only two R packages capable of estimating and/or testing
of the Liu coefficients. The R packages mentioned in Table 1 are compared with our liureg package.
The lrmest package (Dissanayake and Wijekoon, 2016) computes different estimates such as the OLS,
ordinary ridge regression (ORR), Liu estimator (LE), LE type-1, 2, 3, adjusted Liu estimator (ALTE),
and their type-1, 2, 3 etc. Moreover, lrmest provides scalar mean square error (MSE), prediction
residual error sum of squares (PRESS) values of some of the estimators. The testing of ridge coefficient
is performed only on scalar k, however, for a vector of d, the function liu() of lrmest package returns
only MSE along with value of the biasing parameter used. The ltsbase package (Kan et al., 2013)
computes ridge and Liu estimates based on the least trimmed squares (LTS) method. The MSE value
from four regression models can be compared graphically if the argument plot=TRUE is passed to the
ltsbase() function. There are three main functions, (i) ltsbase() computes the minimum MSE values
for six methods: OLS, ridge, ridge based on LTS, LTS, Liu, and Liu based on LTS method for sequences
of biasing parameters ranging from 0 to 1, (ii) the ltsbaseDefault() function returns the fitted values
and residuals of the model having minimum MSE, and (iii) the ltsbaseSummary() function returns the
regression coefficients and the biasing parameter for the best MSE among the four regression models.

It is important to note that the ltsbase package displays these statistics for models having minimum
MSE (bias and variance are not displayed in their output), while our package, liureg, computes these
and all other statistics not only for scalar but also for vector biasing parameter.

This paper outlines the collinearity detection methods available in the existing literature and uses
the mctest (Imdadullah and Aslam, 2016b) package through an illustrative example. To overcome the
issues of the collinearity effect on regressors a thorough introduction to Liu regression, properties of
the Liu estimator, different methods for the selecting values of d, and testing of the Liu coefficients
is presented. Finally, estimation of the Liu coefficients, methods of selecting a biasing parameter,
testing of the Liu coefficients, and different Liu related statistics are implemented in R within the
liureg package.
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Collinearity detection

Diagnosing collinearity is important to many researchers. It consists of two related but separate
elements: (1) detecting the existence of collinear relationship among regressors and (2) assessing the
extent to which this relationship has degraded the parameter estimates. There are many diagnostic
measures used for detection of collinearity in the existing literature provided by various authors
(Belsley et al., 1980; Curto and Pinto, 2011; Farrar and Glauber, 1967; Fox and Weisberg, 2011; Gunst
and Mason, 1977; Klein, 1962; Koutsoyiannis, 1977; Kovács et al., 2005; Marquardt, 1970; Theil, 1971).
These diagnostic methods assist in determining whether and where some corrective action is necessary
(Belsley et al., 1980). Widely used, and the most suggested diagnostics, are the value of pair-wise
correlations, the variance inflation factor (VIF)/ tolerance (TOL) (Marquardt, 1970), the eigenvalues
and eigenvectors (Kendall, 1957), the CN & CI (Belsley et al., 1980; Chatterjee and Hadi, 2006; Maddala,
1988), Leamer’s method (Greene, 2002), Klein’s rule (Klein, 1962), the tests proposed by Farrar and
Glauber (Farrar and Glauber, 1967), the Red indicator (Kovács et al., 2005), the corrected VIF (Curto
and Pinto, 2011), and Theil’s measures (Theil, 1971), (see also Imdadullah et al. (2016)). All of these
diagnostic measures are implemented in a the R package mctest (Imdadullah and Aslam, 2016b).
Below, we use the Hald dataset (Hald, 1952), for testing collinearity among regressors. We then use
the liureg package to compute the Liu regression coefficients for different Liu related statistics and
methods of selection of Liu biasing parameter is performed. For optimal choice of biasing parameter,a
graphical representation of the Liu coefficients is considered, along with a bias variance trade-off plot.
In additino, model selection criteria is also performed. The Hald data are about heat generated during
setting of 13 cement mixtures of 4 basic ingredients and used by Hoerl et al. (1975). Each ingredient
percentage appears to be rounded down to a full integer. The data set is included in both the mctest
and liureg packages.

Collinearity detection: An example

R > data(Hald)
R > x <- Hald[, -1]
R > y <- Hald[, 1]
R > mctest (x, y)

Call:
omcdiag(x = x, y = y, Inter = TRUE, detr = detr, red = red, conf = conf,

theil = theil, cn = cn)

Overall Multicollinearity Diagnostics

MC Results detection
Determinant |X'X|: 0.0011 1
Farrar Chi-Square: 59.8700 1
Red Indicator: 0.5414 1
Sum of Lambda Inverse: 622.3006 1
Theil's Method: 0.9981 1
Condition Number: 249.5783 1

1 --> COLLINEARITY is detected
0 --> COLLINEARITY is not detected by the test

===================================
Eigenvalues with INTERCEPT

Intercept X1 X2 X3 X4
Eigenvalues: 4.1197 0.5539 0.2887 0.0376 0.0001
Condition Indices: 1.0000 2.7272 3.7775 10.4621 249.5783

The results from all overall collinearity diagnostic measures indicate the existence of collinearity among
regressor(s). These results do not tell which regressor(s) are reasons of collinearity. The individual
collinearity diagnostic measures can be obtained though:

> mctest(x = x, y, all = TRUE, type = "i")

Call:
imcdiag(x = x, y = y, method = method, corr = FALSE, vif = vif,

tol = tol, conf = conf, cvif = cvif, leamer = leamer, all = all)
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All Individual Multicollinearity Diagnostics in 0 or 1

VIF TOL Wi Fi Leamer CVIF Klein
X1 1 1 1 1 0 0 0
X2 1 1 1 1 1 0 1
X3 1 1 1 1 0 0 0
X4 1 1 1 1 1 0 1

1 --> COLLINEARITY is detected
0 --> COLLINEARITY in not detected by the test

X1 , X2 , X3 , X4 , coefficient(s) are non-significant may be due to multicollinearity

R-square of y on all x: 0.9824

* use method argument to check which regressors may be the reason of collinearity

The results from most of the individual collinearity diagnostics suggest that all of the regressors are
the reason for collinearity among regressors. The last line of the imcdiag() function’s output suggests
that method argument should be used to check which regressors may be the reason of collinearity
among different regressors. This finding suggest that one should use regularization method such as
LR.

Liu regression estimator

To deal with multicollinear data, Liu (1993) formulated a new class of biased estimators that has
combined benefits of ORR by Hoerl and Kennard (1970) and the Stein type estimator Stein (1956),
β̂S = cβ̂, where c is parameter 0 < c < 1 to avoid their disadvantages. The Liu estimator (LE) can be
defined as,

β̂d = (X′X + Ip)
−1(X′y + dβ̂ols), (1)

= (X′X + Ip)
−1(X′X + dIp)β̂ols,

= Fd β̂ols,

where d is the Liu parameter also known as the biasing (tuning or shrinkage) parameter and lies
between 0 and 1 (i.e., 0 ≤ d ≤ 1), Ip is the identity matrix of order p× p, and β̂ is OLSE.

and other statistical areas, the LE has produced a number of new techniques and ideas, see for
example Akdeniz and Kaçiranlar (2001); Hubert and Wijekoon (2006); Jahufer and Chen (2009, 2011,
2012); Kaçiranlar et al. (1999); Kaçiranlar and Sakalhoğlu (2001); Torigoe and Ujiie (2006).

However, Liu (2011) and Druilhet and Mom (2008) have made statements that the biasing parame-
ter d may lie outside the range given by Liu (1993), that is, it may be less than 0 or greater than 1. The
LE is a linear transformation of the OLSE, β̂d = β̂ols.

the main interest of LE lies in the suitable selection of d for which MSE is minimum and that the
efficiency of estimators improves, as compared to other values of d. The β̂d is named as the LE by
Akdeniz and Kaçiranlar (1995) and Gruber (1998). Liu (1993), in applications to econometrics and
engineering, provided some important methods for the selection of d and also provided numerical
examples using an iterative minimum MSE method to get the smallest possible value to overcome the
problem of collinearity in an effective manner.

Reparameterization

The design matrix Xn×p and response variable yn×1 should be standardized, scaled or centered
first such that information matrix X′X is in the correlation form and vector X′y is in the form of
the correlation among regressors and the response variable. Consider the regression model, y =

β0 1+ X̃β1 + ε, where X̃ is centered and 1 = c(1, 1, · · · , 1)′. The value for β0 can be estimated by using
y. Let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, be the ordered eigenvalues of the matrix X̃′X̃ and q1, q2, · · · , qp be
the eigenvectors corresponding to their eigenvalues, such that Q = (q1, q2, · · · , qp) is an orthogonal
matrix of X̃′X̃ and
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Λ =

λ1
. . .

λp

 ,

therefore, the model can be rewritten in canonical form as y = β0 1 + Zα + ε, where Z = X̃Q and
α = Q′β1. Note that, Λ = Z′Z = Q′X̃′X̃Q. The estimate of α is α̂ = Λ−1Z′y. Similarly, Eq. 1 can be
written in canonical form as,

α̂d = (Λ + Ip)
−1(Z′y + dα̂).

The corresponding estimates of β̂1 and β̂d can be obtained by following the relations β̂1 = Qα̂ and
β̂d = Qα̂d, respectively. For simplification of notations, X̃ and α̂ will be represented as X and β,
respectively.

The fitted values of the LE can be found using Eq. 1,

ŷd = Xβ̂d,

= X(X′X + Ip)
−1(X′y + d)β̂,

= Hd y,

where, Hd is LE the matrix (Liu, 1993; Walker and Birch, 1988). It is worthwhile to note that Hd is not
idempotent because it is not a projection matrix, therefore it is called quasi-projection matrix.

As β̂d is computed on centered variables, they need to be converted back to the original scale:

β̂ =

(
β̂dj

Sxj

)
,

where Sxj is the scaling method of regressors.

The intercept term for the LE (β̂0d) can be estimated using the following relation:

β̂0d = y− (β̂1d, · · · , β̂pd)x′j

= y−
p

∑
j=1

xj β̂ jd. (2)

Properties of the Liu estimator

Like the linear RR, the Liu regression is also the most popular method among biased methods, because
of its relation to OLS. Its statistical properties have been studied by Akdeniz and Kaçiranlar (1995, 2001),
Arslan and Billor (2000), Kaçiranlar and Sakalhoğlu (2001), Kaçiranlar et al. (1999) and Sakalhoğlu
et al. (2001) among many others. Due to comprehensive properties of the LE, researchers have been
attracted towards this area of research.

For d = 1, β̂d = βols. In which case, LE is the shrinkage estimator, though biased, but has lower
MSE than OLS. That is, MSE(β̂d) < MSE(β̂ols) (see Sakalhoğlu et al., 2001, etc.).

Let Xj denote the jth column of X(j = 1, 2, · · · , p), where Xj = (x1j, x2j, · · · , xnj)
′. As already

discussed, the regressors are centered, thus, the intercept will be zero and can thereby be removed
from the model. However, it can be estimated from relation given in Eq. 2. Table 2, lists the Liu
properties that are implemented in our liureg package.

Theoretically and practically, LR is used to propose new methods for the choice of the biasing
parameter d to investigate the properties of LR, since the biasing parameter plays a key role while the
optimal choice of d is the main issue in this context. In the literature, many methods for the selection
of an appropriate biasing parameter d have been studied by Akdeniz and Özkale (2005), Arslan and
Billor (2000), Akdeniz et al. (2006), Özkale and Kaçiranlar (2007), and Liu (1993).

Methods of selecting values of d

The existing methods to select biasing parameter in the LR may not fully address the problem of
ill-conditioning when there exists severe multicollinearity, while the appropriate selection of biasing
parameter d also remains a problem of interest. The parameter d should be selected when there are
improvements in the estimates (have stable estimates) or prediction is improved.

The optimal value of d is one which gives minimum MSE. There is one optimal d for any problem
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Sr.# Property Formula

1) Linear transformation The LE is a linear transformation of the OLSE (β̂d = Fd β̂)
2) Wide range d Wide range of d have smaller MSE than the OLS
3) Optimal d An optimal d always exists that gives minimum MSE
4) Mean E(β̂d) = Fdβ, where Fd = (X′X + Ip)−1(X′X + dIp)
5) Bias Bias = Q′(Fd − Ip)β

6) Var-Cov matrix Cov(β̂d) = σ2Fd(X′X)−1F′d

7) MSE

MSE(β̂d) = σ2Fd(X′X)−1Fd + (Fd − Ip)ββ′(Fd − Ip)
′

= σ2
p

∑
j=1

(λj + d)2

λj(λj + 1)2 + (d− 1)2
p

∑
j=1

β2

(λ + 1)2

8) Effective DF (EDF) EDF = trace[XFd(X′X)−1X′]
9) Larger regression coeff. β̂′d β̂d ≥ β̂′ols β̂ols

10) Inflated RSS ∑(y− Xβ̂d)
2

Table 2: Properties of Liu estimator.

by the analogy with the estimate of k in RR, a wide range of d (−∞ < d < 1) can give smaller MSE
as compared to that of the OLS. For collinear data, a small change in d varies the LR coefficients
rapidly. Therefore, a disciplined way of selecting the shrinkage parameter is required that minimizes
the MSE. The biasing parameter d depends on the true regression coefficients (β) and the variance of
the residuals σ2, unfortunately these are unknown, but they can be estimated from the sample data.

We classified estimation methods as (i) Subjective or (ii) Objective

Subjective methods

In these methods, the selection of d is subjective or of judgmental nature and provides graphical
evidence of the effect of collinearity on the regression coefficient estimates and also accounts for
variation by the LE as compared to the OLSE. In these methods, the reasonable choice of d is done
using the Liu trace and the plotting of bias, variance, and MSE. Like ridge trace, the Liu trace is also a
graphical representation of the regression coefficients, β̂d, as a function of d over the interval (−∞, ∞).
Similarly, the plotting of bias, variance, and MSE from the LE may also be helpful in selecting an
appropriate value of d. At the cost of bias, optimal d can be selected at which MSE is minimum. All
these graphs can be used for selection of optimal (but judgmental) value of d from the horizontal
axis to assess the effect of collinearity on each of the coefficients. These graphical representations
do not provide a unique solution, rather they render a vaguely defined class of acceptable solutions.
However, these traces are still useful graphical representations to check for some optimal d.

Objective methods

Objective methods, to some extent, are similar to judgmental methods for selection of biasing parameter
d, but they require some calculations to obtain these biasing parameters. Table 3 lists widely used
methods to estimate the biasing parameter d already available in the existing literature. Table 3 also
lists other statistics that can be used for the selection of the biasing parameter d.

Testing of the Liu coefficients

Testing of the Liu coefficients is performed by following Aslam (2014) and Halawa and El-Bassiouni
(2000). For testing H0 : βdj = 0 against βdj 6= 0, the non-exact t-statistics defined by Halawa and
El-Bassiouni (2000) are,

Tdj =
β̂dj

SE(β̂dj)
,

where β̂dj is the jth Liu coefficient estimate and SE(β̂dj) is an estimate of standard error, which is the
square root of the jth diagonal element of the covariance matrix of LE (see property # 6 in Table 2).

The statistics Tdj are assumed to follow Student’s t distribution with (n − p) df (Halawa and
El-Bassiouni, 2000). Hastie and Tibshirani (1990) and Cule and De Iorio (2012) suggest using the df
from (n − trace(Hd)). For large sample size, the asymptotic distribution of this statistic is normal
(Halawa and El-Bassiouni, 2000).
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Sr.# Formula Reference

1) dopt =

p
∑

j=1

[
α2

j −σ2

(λj+1)2

]
p
∑

j=1

[
σ2+λjα2

j
λj(λj+1)2

]
Liu (1993)

2) d̂ = 1− σ̂2


p
∑

j=1

1
λj(λj+1)

p
∑

j=1

α̂2
j

(λj+1)2

 Liu (1993)

3) d̂imp =

n
∑

i=1

ẽ
1−gii

(
ẽi

1−h1−ii
− êi

1−hii

)
n
∑

i=1

(
ẽ

1−gii
− êi

1−hii

)2 ,

where, ê = yi − x′i(X′X− xix′i)
−1(X′y− xiyi),

ẽ = yi − x′i(X′X + Ip − xix′i)
−1(X′y− xiyi),

G = X(X′X + Ip)
−1X′, and H ∼= X(X′X)−1X′

Liu (2011)

4) PRESSd =
n

∑
i=1

(êd(i))
2,

where êd(i) =
êei

1− h1−ii
− êi

(1− h1−ii)(1− hii)
(h1−ii − h̃d−ii),

êdi
= yi − ŷdi

,

H̃d−ii diagonal elements from Liu hat matrix,

hii = x′i(X′X)−1xi,

and h1−ii = x′i(X′X + I)−1xi

Özkale and
Kaçiranlar
(2007)

5) CL =
SSRd

σ̂2 + 2 trace(H̃d)− (n− 2),

where, H̃d is hat matrix of LE
Mallows (1973)

6) GCV = SSRd
(n−[1+trace(H̃d)])2 Liu (1993)

7) AIC = n log(RSS) + 2d f ,
BIC = n log(RSS) + d f log(n), where d f = trace(Hd)

Table 3: Different available methods to estimate d.

For testing overall significance of vector of LE (β̂d) with E(β̂d) = Fd β and Cov(β̂d), the F-statistic
is,

F =
1
p
(β̂d − Fdβ)′(Cov(β̂d))

−1(β̂d − Fdβ)

The standard error of β̂d is computed by considering the variance of the estimator, given in Eq. 2,
and then taking the square root of this variance, that is:

S.E(β̂0d) =
√

Var(y) + X2
j diag[Cov(β̂d)] (3)

The R package liureg

Our R package liureg contains functions related to fitting of the LR model and provides a simple
way of obtaining the estimates of LR coefficients, testing the Liu coefficients, and the computation of
different Liu related statistics, which prove helpful for selection of optimal biasing parameter d. The
package computes different Liu related measures available for the selection of biasing parameter d,
and computes value of different biasing parameters proposed by some researchers in the literature.

The liureg objects contain a set of standard methods such as print(), summary(), plot(), and
predict(). Therefore, inferences can be made easily using the summary method for assessing the
estimates of regression coefficients, their standard errors, t-values and their respective p-values. The
default function liu which calls liuest() to perform required computations and estimation for given
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values of non-stochastic biasing parameter d. The syntax of default function is,

liu(formula,data,scaling=("centered","sc","scaled"),d,...)

The four arguments of liu() function are described in Table 4.

Argument Description

formula Symbolic representation for LR model of the form, response ∼ predictors.
data Contains the variables that have to be used in LR model.
d The biasing parameter, may be a scalar or vector. If a d value is not provided,

d = 1 will be used as the default value, i.e., the OLS results will be produced.
scaling The methods for scaling of predictors. The centered option, centers the

predictors, suggested by Liu (1993), and uses the default scaling option; the
sc option scales the predictors in correlation form as described in Belsley
(1991); Draper and Smith (1998); and the scaled option standardizes the
predictors having zero mean and unit variance.

Table 4: Description of liu() function arguments.

The liu() function returns an object of class "liu". The functions summary(), dest(), and lstats()
etc., are used to compute and print a summary of the LR results, list of biasing parameter by Liu
(1993, 2011) and Liu related statistics such as estimated squared bias, R2 and variance etc., after bias
is introduced in regression model. An object of class "liu" is a list, the components of which are
described in Table 5.

Object Description

coef A named vector of fitted Liu coefficients.
lfit Matrix of Liu fitted values for each biasing parameter d.
mf Actual data used.
xm A vector of means of design matrix X.
y The centered response variable.
xscale The scales used to standardize the predictors.
xs The scaled matrix of the predictors.
scaling The method of scaling used to standardize the predictors.
d The LR biasing parameter(s).
Inter Whether an intercept is included in the model or not.
call The matched call.
terms The terms object used.

Table 5: Components of the "liu" class.

Table 6 lists the functions and methods available in liureg package.

The Liu package implementation in R

The use of liureg is explained through examples using the Hald dataset.

> library(liureg)
> mod <- liu(y ~ X1 + X2 + X3 + X4, data = as.data.frame(Hald),
+ scaling = "centered", d = seq(0, 1, 0.01) )

The output of linear LR from liu() function is assigned to an object mod. The first argument
of the function is formula, which is used to specify the required LR model for the data provided
as second argument. The print method for mod, an object of class "liu", will display the de-scaled
coefficients. The output (de-scaled coefficients) from the above command is only for a few selected
biasing parameter values.

Call:
liu.default(formula = y ~ ., data = as.data.frame(Hald), d = c(0,
0.01, 0.49, 0.5, 0.9, 1))
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Functions Description

Liu coefficient estimation and testing
liuest() The main model fitting function for implementation of LR models in R.
coef() Display de-scaled Liu coefficients.
liu() Generic function and default method that calls liuest() and returns

an object of S3 class "liu" with different set of methods to standard
generics. It has a print method for display of Liu de-scaled coefficients.

summary() Standard LR output (coefficient estimates, scaled coefficient estimates,
standard errors, t-value and p-values); returns an object of class
"summary.liu" containing the relative summary statistics. Has a print
method.

Residuals, fitted values and prediction
predict() Produces predicted value(s) by evaluating liuest() in the frame

newdata.
fitted() Displays Liu fitted values for observed data.
residuals() Displays Liu residuals values.
press() Generic function that computes prediction residuals error sum of

squares (PRESS) for Liu coefficients.

Methods to estimate d
dest() Displays various d (biasing parameter) values from different authors

available in literature and have a print method.

Liu statistics
vcov() Displays associated Var-Cov matrix with matching Liu parameter d

values.
hatl() Generic function that displays hat matrix from LR.
infoliu() Generic function that compute information criteria AIC and BIC.
lstats() Generic function that displays different statistics of LR such as MSE,

squared bias, R2 etc. Has a print method.
Liu plots
plot() Liu coefficient trace plot against biasing parameter d.
plot.biasliu() Bias, variance, and MSE plot as a function of d.
plot.infoliu() Plot of AIC and BIC against d.

Table 6: Functions and methods in liureg package.

Intercept X1 X2 X3 X4
d=0 75.01755 1.41348 0.38190 -0.03582 -0.27032
d=0.01 74.89142 1.41486 0.38318 -0.03445 -0.26905
d=0.49 68.83758 1.48092 0.44475 0.03167 -0.20845
d=0.5 68.71146 1.48229 0.44603 0.03304 -0.20719
d=0.9 63.66659 1.53734 0.49734 0.08814 -0.15669
d=1 62.40537 1.55110 0.51017 0.10191 -0.14406

To obtain Liu scaled coefficients mod$coef can be used:

> mod$coef

d=0 d=0.01 d=0.49 d=0.5 d=0.9 d=1
X1 1.41348287 1.41485907 1.48091656 1.48229276 1.53734067 1.5511026
X2 0.38189878 0.38318147 0.44475049 0.44603318 0.49734070 0.5101676
X3 -0.03582438 -0.03444704 0.03166517 0.03304251 0.08813603 0.1019094
X4 -0.27031652 -0.26905396 -0.20845133 -0.20718877 -0.15668658 -0.1440610

Objects of class "liu" contain components such as lfit, d, and coef etc. For a fitted Liu model,
the generic method summary is used to investigate the Liu coefficients. The parameter estimates of
the Liu model are summarized using a matrix of 5 columns, namely estimates, estimates(Sc), StdErr
(Sc), t-values (Sc), and P(>|t|). The following results are shown only for d=-1.47218 which produces a
minimum MSE as compared to others values specified in the argument.

> summary(mod)
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Call:
liu.default(formula = y ~ ., data = as.data.frame(Hald), d = -1.47218)

Coefficients for Liu parameter d= -1.47218
Estimate Estimate (Sc) StdErr (Sc) t-val (Sc) Pr(>|t|)

Intercept 93.5849 93.5849 15.6226 5.990 2.09e-09 ***
X1 1.2109 1.2109 0.2711 4.466 7.97e-06 ***
X2 0.1931 0.1931 0.2595 0.744 0.4568
X3 -0.2386 -0.2386 0.2671 -0.893 0.3717
X4 -0.4562 -0.4562 0.2507 -1.820 0.0688 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Liu Summary
R2 adj-R2 F AIC BIC MSE

d=-1.47218 0.9819 0.8372 127.8 23.95 59.18 0.7047

The summary() function also displays Liu related R2, adjusted-R2, F-test, AIC, BIC, and minimum
MSE at certain d given in liu().

The dest() function, which works with Liu fitted models, computes different biasing parameters
developed by researchers, see Table 3. The list of different d values (5 in number) may help in deciding
the amount of bias needs to be introduced in LR. The biasing parameters by Liu (1993, 2011) include
dCL, dmm, dopt, dILE, and GCV for the appropriate selection of d.

> dest(mod)

Liu biasing parameter d
d values

dmm -5.91524
dcl -5.66240
dopt -1.47218
dILE -0.83461
min GCV at 1.00000

The lstats() function can be used to compute different statistics for a given Liu biasing parameter
specified in a call to liu. The Liu statistics are MSE, squared bias, F-statistics, Liu variance, degrees
of freedom (df) by Hastie and Tibshirani (1990), and R2 etc. Following are results using lstats() for
some d = −1.47218,−0.06, 0, 0.1, 0.5, 1.

> lstats(mod)

Liu Regression Statistics:

EDF Sigma2 CL VAR Bias^2 MSE F R2 adj-R2
d=-1.47218 9.4135 5.2173 5.0880 0.2750 0.4297 0.7047 127.8388 0.9819 0.8372
d=-0.06 9.0760 5.2989 5.5077 1.0195 0.0790 1.0985 125.8693 0.9823 0.8406
d=0 9.0677 5.3010 5.5315 1.0625 0.0703 1.1328 125.8194 0.9823 0.8407
d=0.1 9.0548 5.3043 5.5722 1.1362 0.0569 1.1931 125.7427 0.9823 0.8408
d=0.5 9.0169 5.3139 5.7488 1.4561 0.0176 1.4737 125.5157 0.9824 0.8412
d=1 9.0000 5.3182 6.0000 1.9119 0.0000 1.9119 125.4141 0.9824 0.8414

minimum MSE occurred at d= -1.47218

The lstats() also displays the value of d which produces minimum MSE among all provided
values of d as argument in liu() function.

The residuals, fitted values from the LR, and predicted values of the response variable y can
be computed using the fuctions residuals(), fitted(), and predict(), respectively. To obtain the
Var-Cov and Hat matrices, the functions vcov() and hatl() can be used. The df are computed by
following Hastie and Tibshirani (1990). The results for Var-Cov and diagonal elements of the hat
matrix from vcov() and hatl() functions are given below for d = −1.47218.

> vcov(liu(y ~ ., as.data.frame(Hald), d = -1.47218))

$`d=-1.47218`
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X1 X2 X3 X4
X1 0.07351333 0.04805778 0.06567391 0.04874902
X2 0.04805778 0.06732869 0.05192626 0.06412284
X3 0.06567391 0.05192626 0.07134433 0.05149914
X4 0.04874902 0.06412284 0.05149914 0.06284562

> diag(hatl(liu(y ~ ., as.data.frame(Hald), d = -1.47218)))
1 2 3 4 5 6 7

0.43522319 0.22023015 0.21341231 0.18535953 0.27191765 0.04296839 0.28798591
8 9 10 11 12 13

0.30622895 0.15028900 0.59103231 0.30392765 0.14087610 0.18778716

Following are possible uses of some functions to compute different Liu related statistics. For a
detailed description of these functions/commands, see the liureg package documentation.

> hatl(mod)
> halt(mod)[[1]]
> diag(hatl(mod)[[1]])
> vcov(mod)
> residual(mod)
> fitted(mod)
> predict(mod)
> lstats(mod)$lEDF
> lstats(mod)$var

For given values of X, such as for first five rows of X matrix, the predicted values for some
d = −1.47218,−0.06, 0, 0.1, 0.5, 1 will be computed by predict():

> predict(mod, newdata = as.data.frame(Hald[1 : 5, -1]))

d=-1.47218 d=-0.06 d=0 d=0.1 d=0.5 d=1
1 78.27798 78.40208 78.40736 78.41615 78.45130 78.49524
2 73.09404 72.91968 72.91227 72.89992 72.85053 72.78880
3 106.68373 106.27656 106.25926 106.23043 106.11510 105.97094
4 89.54007 89.41842 89.41325 89.40463 89.37017 89.32710
5 95.61470 95.63443 95.63527 95.63667 95.64226 95.64924

The model selection criteria’s of AIC and BIC can be computed using infoliu() function for each
value of d used in argument of liu(). For some d = −1.47218,−0.06, 0.5, 1, the AIC and BIC values
are:

> infoliu(liu(y ~ ., as.data.frame(Hald), d = c(-1.47218, -0.06, 0.5, 1)))

AIC BIC
d=-1.47218 23.95378 59.18349
d=-0.06 24.43818 59.88178
d=0.5 24.69007 60.21849
d=1 24.94429 60.54843

The effect of multicollinearity on the coefficient estimates can be identified by using different
graphical displays such as the Liu trace (see Figure 1); the plotting of bias, variance, and MSE against
d (see Figure 2); and plotting the information criteria against d f (Figure 3). These graphical displays
are (subjective) methods for selection of the optimal biasing parameter d.

> mod <- liu(y ~ ., as.data.frame(Hald), d = seq(-5, 5, .001) )
> plot(mod)
> plot.biasliu(mod)
> plot.infoliu(mod)

Summary

The liureg package provides the most complete suite of tools for LR available in R, comparable to
those available as listed in Table 1. We have implemented functions to compute the Liu coefficients,
the testing of these coefficients, the computation of different Liu related statistics and the computation
of the biasing parameter for different existing methods by various authors (see Table 3). We have
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Figure 1: Liu trace: Liu coefficient against biasing parameter d.

Figure 2: Bias, variance trade-off.

greatly increased the Liu related statistics and different graphical methods for the selection of the
biasing parameter d through the liureg package in R.

Up to now, a complete suite of tools for LR was not available for an open source or paid ver-
sion of statistical software packages, resulting in reduced awareness and use of developed Liu re-
lated statistics. The package liureg provides a complete open source suite of tools for the com-
putation of Liu coefficients estimation, testing, and computation of different statistics. We be-
lieve the availability of these tools will lead to an increased utilization and better Liu related prac-
tices.
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