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Epistemic Game Theory: Putting
Algorithms to Work
by Bilge Başer and Nalan Cinemre

Abstract The aim of this study is to construct an epistemic model in which each rational choice under
common belief in rationality is supplemented by a type which expresses such a belief. In practice, the
finding of type depends on manual solution approach with some mathematical operations in scope of
the theory. This approach becomes less convenient with the growth of the size of the game. To solve
this difficulty, a linear programming model is constructed for two-player, static and non-cooperative
games to find the type that is supporting that player’s rational choice is optimal under common
belief in rationality and maximizing the utility of the game. Since the optimal choice would only
be made from rational choices, it is first necessary to eliminate all strictly dominated choices. In
real life, the games are usually large sized. Therefore, the elimination process should be performed
in a computer environment. Since software related to game theory was mostly prepared with a
result-oriented approach for some types of games, it was necessary to develop software to execute
the iterated elimination method. With this regard, a program has been developed that determines
the choices that are strictly dominated by pure and randomized choices in two-player games. Two
functions named “esdc” and “type” are created by using R statistical programming language for the
operations performed in both parts, and these functions are added to the content of an R package after
its creation with the name EpistemicGameTheory.

Introduction

In order to evaluate the possible results of the decision, it is very important to constitute a belief about
opponents’ feasible preferences which can affect their choices. In addition to this, the precondition
of making a good choice requires having a reasonable belief about opponents’ choices. However, in
general each belief of players may not be reasonable according to their opponents. The player should
determine the opponent’s possible idea about his opponent with putting himself into his opponent’s
shoes, to decide which choice is reasonable for his opponent or which choice would not be preferred
by him. In other words, before surmising an idea about opponents’ choices, it is compulsory to reason
their system of thought. Indeed, Oskar Morgenstern who is one of the earliest founders of game
theory, has highlighted this subject in his article “Perfect Foresight and Economic Equilibrium” which
was published in 1935. In his article, Morgenstern has explained the significance of having idea about
beliefs of the opponents, analyzing the opponents’ systems of thought properly and establishing
a reasonable relation to make a good decision (Morgenstern, 1935). However, the importance of
this concept frequently has been underestimated in the studies on game theory, which have been
published in last sixty years. Morgenstern’s bold idea of using the tools of formal logic to talk about
how members of a social system think, about how they think about what other members think, and so
on, was far ahead of its time. However now, in the form of epistemic game theory, it has found a home
(Brandenburger, 2010).

The discipline that studies these patterns of reasoning, and how they influence the eventual choices
of the players, is called epistemic game theory (Perea, 2012).1

Approximately twenty-five years ago, conceptual changes have emerged with the introduction of
epistemic game theory. This new branch of science has brought game theory back to its fundamental
concepts, its background. In other words, it has brought game theory back to reasonable modeling
of players’ beliefs about their opponents. At the core of epistemic game theory, there is the fact that
people have different tendencies to reason under same circumstances in a game. Therefore, it is not
true reasoning in a unique way and claiming that it is the best option. Under such conditions, it can be
said that there are only different reasoning ways, and it should be avoided that claiming on which one
is better. In epistemic approach, the aim is to define the methods of reasoning, which can be used in
the game, and to examine how the method affects the result of the game.

1In this study, (Perea, 2012) is used on a large scale for explaining the concepts of Epistemic Game Theory.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 371

Concepts Of Epistemic Game Theory

Belief about opponents’ choices

The belief of a player about choices of his opponents is a probability distribution which is defined
over the set C−i = C1 × . . .× Ci−1 × Ci+1 × . . .× Cn where Ci is the set of player i’s choices. The
probability value which is assigned by player i for his opponents’ each choice combination, is obtained
by bi(c1, . . . , ci−1, ci+1, . . . , cn).

Let us symbolize the utility function of player i with ui and the belief about the choices of his
opponents with bi. Accordingly, expected utility of player i from choosing the choice ci is calculated
by the equation below.

ui(ci, bi) = ∑
(c1,...,ci−1,ci+1,...,cn)∈C−i

bi(c1, . . . , ci−1, ci+1, . . . , cn)× ui(c1, . . . , ci−1, ci, ci+1, . . . , cn)

Belief hierarchies and type

The concept of belief hierarchies is the basic element of epistemic approach. In an n-player game, the
belief hierarchies for player i is as follows:

1. The belief that player i has about his opponents’ choice-combinations,

2. The belief that player i has about the beliefs that his opponents have about their opponents’
choice-combinations,

3. The belief that player i has about the beliefs that his opponents have about the beliefs that their
opponents have about the other players’ choice-combinations,

and so on, ad infinitum. The first belief for player i is his first-order belief, the second belief is his
second-order belief, and so on.

The belief hierarchies have some disadvantages both theoretically and practically. In theory, it is
difficult to make a mathematical description of the hierarchy. In practice, it is often impossible to write
and express each stage of the infinite hierarchy (first-order belief, second-order belief, etc.). For this
reason, an approach that can express the hierarchy in a shorter and more formal way is needed.

The concept of infinite belief hierarchy has brought to game theory by John Harsanyi. He has
worked on incomplete information games, also called Bayesian games, where players have incomplete
information about the parameters of the game. It is aimed to model the beliefs of each player about
the unknown parameters of the game, each player’s beliefs about the other players’ beliefs about these
parameters, and so on ad infinitum. This may be called the explicit approach and is in fact feasible.
However, the explicit approach is mathematically rather cumbersome and hardly manageable. Indeed,
this was a major obstacle to the development of the theory of games with incomplete information at
its early stages. The breakthrough was provided by John Harsanyi in a seminal work (Harsanyi, 1982)
that awarded him the Nobel Prize in 1994 after thirty years. While Harsanyi actually formulated the
problem verbally, in an explicit way, he suggested a solution that ‘avoided’ the difficulty of having to
deal with infinite hierarchies of beliefs, by providing a much more workable implicit, encapsulated
model (Zamir, 2013).

The concept of a type is the basis of the Harsanyi model. As a concept, type can be considered as a
precise definition of players’ belief hierarchies about unknown parameters of the game. It is a special
representation of the player’s beliefs about the actual parameters involved and the answers to the types
of other players. This characteristic of the types gives the player the ability to self-reference inevitably
that is, the ability to decide the types of other players through their own types in an interactive
decision-making environment.

The construction that Harsanyi proposed in the context of a game with incomplete information on
the preferences of the players was very simple: For every player, define a set of types, and for every
type define a utility function, together with a probabilistic belief about the opponents’ types (Harsanyi,
1982).

The content of the type in epistemic game theory differs from that of Harsanyi. While Harsanyi
forms belief hierarchies for parameters of the game, epistemic game theory deals with the choices of
the players. In the studies (Armbruster and Boge, 1979) and (Boge and Eisele, 1979), belief hierarchies
have been used to describe the beliefs of players about their opponents’ choices.

Let us denote the belief hierarchy with tc
i which supports player i’s any choice c. In the literature,

belief hierarchy is also used as epistemic type (or briefly type). Therefore, ti represents an epistemic
type of the player i.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 372

Epistemic model

Let us consider an n-player game. The epistemic model, firstly, indicates possible types for each player.
Let us symbolize the set of all possible types for every player i with Ti. Each type ti stores information
about the beliefs on the choices of player i’s opponents and their types. The problem that arises here is
how this belief can be expressed mathematically.

As it is known, every player i’s belief about choices of his opponents is a probability distribution bi
which has been defined on the set C−i = C1 × . . .× Ci−1 × Ci+1 × . . .× Cn.ti should have information
about not only the belief about choices of his opponents but also information about his opponents’
types. Thus, ti represents the choice-type combinations of player i’s opponents.

The set that contains all possible choice-type combinations of any opponent j of player i is Cj × Tj.
In parallel with this definition, the set of all choice-type combinations of player i’s opponents’ becomes
(C1 × T1) × . . . × (Ci−1 × Ti−1) × (Ci+1 × Ti+1) × . . . × (Cn × Tn). This set includes all possible
combinations ((c1, t1), . . . , (ci−1, ti−1), (ci+1, ti+1), . . . , (cn, tn)).

An epistemic model specifies probability distribution bi(ti) defined on the set of all possible
choice-type combinations (C1 × T1)× . . .× (Ci−1 × Ti−1)× (Ci+1 × Ti+1)× . . .× (Cn × Tn) for every
player i and each type ti ∈ Ti. The probability distribution of bi(ti) represents the belief that type ti
has about the opponents’ choices and types.

Consider a type ti for player i within an epistemic model. The choice ci is rational for type
ti if it maximizes the expected utility for the belief that ti holds about the opponents’ choice-type
combinations.

The entire belief hierarchy can be expressed with an epistemic model. Constructing an epistemic
model is easier than establishing a belief hierarchy. This is an important advantage of epistemic model.
Another advantage of the epistemic model is that it can be defined by a mathematical expression
conveniently.

Deciding Under Common Belief In Rationality

Type ti is said to believe in the opponents’ rationality if for every opponent j, and every choice-type
pair (cj, tj) ∈ Cj × Tj to which ti assigns positive probability, the choice cj is rational for type tj.

In order to define common belief in rationality, firstly, the definition of k-fold belief in rationality is
needed and explained as follows.

k-fold belief in rationality

Consider an epistemic model.

1. Type ti expresses 1-fold belief in rationality if ti believes in the opponents’ rationality.

2. Type ti expresses 2-fold belief in rationality if ti only assigns positive probability to the oppo-
nents’ types that express 1-fold belief in rationality.

3. Type ti expresses 3-fold belief in rationality if ti only assigns positive probability to the oppo-
nents’ types that express 2-fold belief in rationality.

And so on. Thus, k-fold belief in rationality can be recursively defined for every number k.

Rational choice under belief in the opponents’ rationality

The choice c∗1 is the optimal choice for player i, if the expected utility of the choice c∗i is maximum
(ui(c∗i , bi) ≥ ui(ci, bi)).

If the choice c∗i is optimal with reference to player i’s belief about the opponents’ behavior patterns,
then c∗i is called as a rational choice.

Player i believes that his opponents are rational if he assigns positive probability for only his
opponent’s rational choices.

If the choice ci of player i is optimal for some belief bi about the choices of his opponents’ while
believing in the opponents’ rationality, then the choice ci is a rational choice for player i under belief in
the opponents’ rationality.

The concept of rational choice in game theory sometimes causes confusion. In the context of this
study, the word “rational” is used as follows: If a player has built a belief about his opponent’s choices,
and has made the optimal choice for himself under this belief, he has made a rational choice. However,
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this player may have had an unreasonable belief about the opponent, and making rational choice does
not guarantee making the reasonable choice. Reasonability carries a subjective meaning and depends
on the mindset of the person. Something that is reasonable for one may not be reasonable for another.
Therefore, it is impossible to make a single definition of reasonable choice.

The reasonable choice should not only be rational under the belief in the opponents’ rationality, but
at the same time, it should be optimal according to a reasonable belief about the opponents’ choices.
What is open to debate is when does a belief about the opponent be reasonable? Epistemic game
theory examines the answer to this question.

Rational choice under common belief in rationality

In an epistemic model, if the type ti expresses k-fold belief in rationality for every k, it can be said that
ti expresses common belief in rationality. If ti expresses common belief in rationality and the choice ci
is optimal for the type ti, then ci is a rational choice under common belief in rationality.

Common belief in rationality does not only mean that you believe that your opponents choose
rationally, but you also believe that your opponents believe that their opponents will choose rationally,
and that your opponents believe that their opponents believe that the other players will choose
rationally, and so on.

Consider an epistemic model, which contains type sets T1, . . . , Tn. If the player i’s choice ci is not
supported to express common belief in rationality by any type in Ti, this does not mean that the choice
ci cannot be chosen under common belief in rationality. There may be another epistemic model that
has a type supporting the choice ci to express common belief in rationality. The purpose of this work
is to seek an answer to the question that how this epistemic model can be detected.

Algorithm 1 (Choices that can be rationally chosen under common belief in rationality):
An algorithm has been required to use in order to find the choices that can be rationally chosen

under common belief in rationality. Algorithm 1 is based on the following theorem.

Theorem 1: A choice ci is irrational if and only if it is strictly dominated by another pure or
randomized choice. In other words, a choice ci is rational if and only if it cannot be strictly dominated
by another pure or randomized choice 2 (Pearce, 1984).

By Theorem 1, the algorithm is explained as follows.

1) Eliminate all strictly dominated choices in the original game.

2) Eliminate all strictly dominated choices in the reduced game obtained after the step (1).

3) Eliminate all strictly dominated choices in the reduced game obtained after the step (2).
...

Repeat this process until no strategy can be eliminated.

This algorithm ends with a finite number of steps and gives a set of choices that are not empty for
each player if the game is finite. The order of elimination and speed do not affect the result.

Theorem 2: (Brandenburger and Dekel, 1987) and (Tan and Werlang, 1988) proved that, if the
choices can be rationally made under k-fold belief in rationality for each k ≥ 1, then these choices are
also survived (k + 1)-fold elimination. This can be generalized as; the rational choices under common
belief in rationality are the choices that survive the iterated elimination of strictly dominated choices.

Algorithms For Finding Types That Express Common Belief In Rational-
ity For Optimal Choices

In practice, the finding of type depends on non-computer based approach with some mathematical
operations in scope of the theory. This approach becomes less convenient with the growth of the size
of the game. For this reason, we construct a linear programming model for two-player, static and
non-cooperative games to find the type that is supporting that player i’s rational choice ci is optimal
under common belief in rationality and maximizing the utility of the game. Since the optimal choice
would only be made from rational choices, it is first necessary to eliminate all strictly dominated
choices. By the reason of software related to game theory was mostly prepared with a result-oriented
approach for some solution methods and some types of games, it was necessary to develop software
to execute the iterated elimination method. With this regard, we developed a computer program that
determines the choices that are strictly dominated by pure and randomized choices in two-player

2A randomized choice means that a player, before making a choice, uses a randomization device and bases the
actual choice on the outcome of the randomization device.
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games. Başer transformed the operations performed in both parts to software by using R Statistical
Programming Language and created a package with the name EpistemicGameTheory (Baser, 2017a).

The EpistemicGameTheory R package containing functions named esdc and type for both pur-
poses explained above. The package roxygen2 was used to prepare the documentation when the R
package was created (Wickham and et al, 2015).

esdc function

As it is known, since the optimal choice is made only from rational choices, it is first necessary to make
iterated elimination of strictly dominated choices. For this purpose, the steps given in Algorithm 1 for
two-player games need to be coded into software. We developed Algorithm 2 to make the steps of this
algorithm suitable for programming architecture.

Let n be the number of choices of the first player; and m be the number of choices of the second
player; the utility matrix of the first player would be;

A =


a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm


the utility matrix of the second player would be;

B =


b11 b12 · · · b1m
b21 b22 · · · b2m

...
...

. . .
...

bn1 bn2 · · · bnm


Each entry of matrix A represents a utility level of the first player while each entry of matrix B

represents a utility level of the second player. The two subscripts of these entries indicate the strategies
chosen by the two players where the first subscript refers to the strategy chosen by the first player and
the second subscript refers to the strategy chosen by the second player.

Algorithm 2 (Creating the Algorithm to be Used in Comparing the Choices of the First Player):
1) A combination matrix (CA) is generated that contains all combinations of (n, (n− t)) with t = 1

at the initial point. Each row of CA shows how to compare the choices.

It is aimed to obtain a randomized choice for each row by using its elements and then compare with
the utility level of the choice which does not exist in that row. For instance, let c∗1 be the randomized
choice that is obtained by randomization of the choices (c11, c12, . . . , c1(n−t)) . Then the utility level of
c∗1 is compared with the utility level of the choice that does not exist in the first row. The randomization
process is made with the procedures in the following steps.

CA =


c11 c12 · · · c1(n−t)
c21 c22 · · · c2(n−t)
...

...
. . .

...
cn1 cn2 · · · cn(n−t)


2) An index matrix (N) with rows equal to the number of rows of the matrix CA is generated. Each

row of the index matrix is equal and consists of a number sequence of 1 to n.

N =


1 2 · · · n
1 2 · · · n
...

...
. . .

...
1 2 · · · n


3) A comparison is made between the rows of CA and N matrices. The elements existed in N and

not in CA are assigned to the corresponding row of the difference matrix. The purpose of this step is
identifying the choice for each row which is compared with the randomized choice that is obtained in
step 1.
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D =


d11 d12 · · · d1(n−(n−t))
d21 d22 · · · d2(n−(n−t))

...
...

. . .
...

dn1 dn2 · · · dn(n−(n−t))


4) For every row of CA, a probability vector P is generated from a uniform distribution on the

(n− t− 1)− dimensional simplex.

P = (p1, p2, . . . , p(n−t)), p1 + p2 + . . . + p(n−t) = 1

According to this probability vector, the first player chooses the first choice with the probability p1,
the second choice with the probability p2, ..., (n− t)th choice with the probability p(n−t).

5) Using the obtained probability values, the expected utility for the first player as a result of
choosing the randomized choice is calculated and compared with the utility provided by the choice
not existed in the related row of the combination matrix.

If the first player believes that second player will choose his first strategy, the expected utility for
the first player would be;

p1 × a11 + p2 × a21 + . . . + p(n−t)a(n−t)1 = E1,

If the first player believes that second player will choose his second strategy, the expected utility
for the first player is calculated as;

p1 × a12 + p2 × a22 + . . . + p(n−t)a(n−t)2 = E2,

...

If the first player believes that second player will choose his last strategy, the expected utility for
the first player is as below;

p1 × a1m + p2 × a2m + . . . + p(n−t)a(n−t)m = Em,

If all expected utilities (E1, E2, . . . , Em) obtained are greater than the expected utility of the choice
pointed by the element in the corresponding row of matrix D, then the strategy is strictly dominated
by that randomized choice. This process is made for every row of CA.

Two situations can arise here:

Elimination occurs: In this case, the reduced utility matrix is obtained. The new C(n∗, (n∗ − t))
combination matrix is created (where n∗ is the number of rows of the reduced utility matrix) and the
above steps are repeated.

Elimination does not occur: In this case, a new probability vector is generated, and the above steps
are repeated. Here it is very important to decide the number of iterations that determine how many
times the probability vector will be generated and it depends on the dimension of the game. Therefore,
the number of iterations must be sufficiently large to be able to determine the strictly dominated
choices (iteration −→ ∞). If there is no strictly dominated choice according to the utility matrix, the
value of t is increased by “1” to form a new combination matrix C(n, (n− t)) and the above steps are
repeated.

6) When (n∗ − t) < 1 the algorithm ends and the last reduced utility matrix is obtained.

The last reduced utility matrix determined by the above algorithm consists of the rational choices
of the first player. The same steps are performed for the second player. The specified steps are written
in the R statistical programming language, and a function named “esdc” is created. This function
gives the reduced game after the iterated elimination of all strictly dominated choices. The properties
of the function are shown in Figure 1.
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esdc Eliminating strictly dominated choices

Description
This function eliminates strictly dominated choices.

Usage
esdc(n,m,A,choices.A,B,choices.B,iteration)

Arguments
n an integer representing the number of choices of player 1
m an integer representing the number of choices of player 2
A an nxm matrix representing the payoff matrix of player 1
choices.A a vector of length n representing the names of player 1’s choices
B an nxm matrix representing the payoff matrix of player 2
choices.B a vector of length m representing the names of player 2’s choices
iteration an integer representing the iteration number of algorithm

Details
This function works for the games with two players.

Value
This function works for the games with two players.

Figure 1: esdc Function

The esdc function uses seven arguments. These are; the choice number of the first player (n), the
choice number of the second player (m), the utility matrix of the first player (A), the vector consisting
of the choice names of the first player (choices.A), the utility matrix of the second player (B), the vector
consisting of the choice names of the second player (choices.B), and the number of repetitions of the
algorithm (iteration). As a result of the execution of this function, the reduced utility matrices of the
players’ that are obtained after eliminating strictly dominated choices as output.

type function

It is aimed to show that for every player i and every rational choice ci(i = 1, 2, . . . , n), there is a type ti,
which supports that ci is optimal under common belief in rationality.

At the beginning of the game, a type is defined for each element in the player’s choice set. However,
the “type” function generates types only for rational choices because the player do not choose irrational
strategies in practice.

Construction of Epistemic Model:
Let A∗ be the first player’s reduced utility matrix.

A∗ =


a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm


The first player believes that the second player will likely choose the first choice with the probability

q1, the second choice with the probability q2, · · · , and the final choice with the probability qm. In this
case, according to the preferences of the second player, the utilities of the first player can be expressed
by a linear equation system.

Under this belief, first player will get the utility U1, if he chooses his first strategy;

a11q1 + a12q2 + · · ·+ a1mqm = U1,

he will get the utility U2, if he chooses his second strategy;

a21q1 + a22q2 + · · ·+ a2mqm = U2

...

he will get the utility Ui, if he chooses his ith strategy,

ai1q1 + ai2q2 + · · ·+ aimqm = Ui

...
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he will get the utility Un, if he chooses his nth strategy,

an1q1 + an2q2 + · · ·+ anmqm = Un

The first player prefers his ith choice if and only if the inequality Ui ≥ U1, U2, . . . , U(i−1),
U(i+1), . . . , Un is satisfied. Then, when is this inequality satisfied?

Let’s express this inequality in pairwise comparison;

Ui ≥ U1 ⇐⇒ Ui −U1 ≥ 0

Ui ≥ U2 ⇐⇒ Ui −U2 ≥ 0
...

Ui ≥ Un ⇐⇒ Ui −Un ≥ 0

Then the linear equation system is obtained by substitution of the equals of the utilities explicitly,
where q is a uniform distribution on the (m− 1)− dimensional simplex.

(ai1 − a11)q1 + (ai2 − a12)q2 + · · ·+ (aim − a1m)qm = Ui −U1 ≥ 0

(ai1 − a21)q1 + (ai2 − a22)q2 + · · ·+ (aim − a2m)qm = Ui −U2 ≥ 0
...

(ai1 − an1)q1 + (ai2 − an2)q2 + · · ·+ (aim − anm)qm = Ui −Un ≥ 0

Suppose that the first player’s ith strategy is optimal. In this case, all the points located in the
convex region consisting of the intersection of the closed half spaces and the hyperplane are those,
which make the i th strategy optimal under common belief in rationality.

The mathematical model above allows us to find all types that ci is optimal under the common
belief in rationality for every player i and every rational choice ci(i = 1, 2, . . . , n). By solving this
model, an infinite number of points are obtained. Instead of dealing with infinite number of points in
practice, constructing an epistemic model that there is a type ti for each player i and for each rational
choice ci(i = 1, 2, . . . , n) that supports ci to be optimal under the common belief in rationality that
maximizes the utility is making more sense. For this reason, a linear programming model has been
established for each choice. Thus, while showing at least, there is one type making the relevant choice
optimal under common belief in rationality, and it can also be found the type that maximizing the
utility of the player. In this regard, the linear programming model for the ith choice is established as
follows.

Zmax = ai1q1 + ai2q2 + · · ·+ aimqm

(ai1 − a11)q1 + (ai2 − a12)q2 + · · ·+ (aim − a1m)qm ≥ 0

(ai1 − a21)q1 + (ai2 − a22)q2 + · · ·+ (aim − a2m)qm ≥ 0
...

(ai1 − an1)q1 + (ai2 − an2)q2 + · · ·+ (aim − anm)qm ≥ 0

q1 + q2 + · · ·+ qm = 1

q1, q2, · · · , qm ≥ 0

Similar models can be set up for first player’s other choices and for the second player as well. A
function named “type” has been created in R programming language for solving the linear program-
ming model described above. The features of this function are shown in Figure 2.

The “type” function uses four arguments, named A, B, choices.A and choices.B. “A” is the reduced
utility matrix of the first player, and “B” is the reduced utility matrix of the second player. “choices.A”
and “choices.B” represent the name of the choices of players as previously defined. This function uses
the “lp” function from the lpSolve package, which provides the Simplex method for solving linear
programming problems (Berkelaar and et al, 2015). As a result of the execution of the “type” function,
probabilities for the types are obtained, which ensure that a rational strategy is optimal under common
belief in rationality and maximizes the utility of the player.

Since in epistemic game theory, it is important to comprehend why and how a choice is strictly
dominated, the “esdc” function becomes crucial. Indeed, it is advisable that to execute the “esdc”
function before the types are specified. In other words, the “esdc” function should be integrated into
the “type” function as a prepended operation (Baser, 2017b).

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=lpSolve


CONTRIBUTED RESEARCH ARTICLE 378

type Finding types that express common belief in rationality for optimal choices

Description
This function takes the reduced payoff matrices and finds out the probabilities for
the types that expresses common belief in rationality for optimal choices.

Usage
type(A,B,choices.A,choices.B)

Arguments
A an nxm matrix representing the reduced payoff matrix of player 1
B an nxm matrix representing the reduced payoff matrix of player 2
choices.A a vector of length n representing the names of player 1’s choices
choices.B a vector of length m representing the names of player 2’s choices

Details
This function works for the games with two players. It returns infeasible solution
for the irrational choices.

Value
Probabilities of the types that expresses common belief in rationality for optimal
choices

Figure 2: type Function

Application of the Traveler’s Dilemma

We applied the two functions to Basu’s well-known The Traveler’s Dilemma (Basu, 1994) game to
underscore the practical usefulness of this work. Each player has 99 strategies between 2 and 100. The
utility matrices for the players are created according to the utility function of the Traveler’s Dilemma
game.

Applying esdc Function
The arguments for esdc function are assigned as given below. For this numerical example, the “itera-
tion” argument is taken as 500. The name of choices of both players (“choices.A” and “choices.B”) are
denominated by the numbers between 2 to 100.

n = 99
m = 99
iteration = 500
esdc(n,m,A,choices. A,B,choices. B,iteration)

The Reduced Utility Matrices
With the execution of “esdc” function the algorithm eliminates all strictly dominated choices from
the utility matrices A and B. For these matrices 196 times elimination occurred. The reduced utility
matrices are displayed below. In the last reduced game, the players have only one choice left, which is
choosing a price of “2”. Therefore, they can only rationally choose a price of “2” under common belief
in rationality.

[1] "ELIMINATION IS OVER."
[1] "The Last Reduced Matrix For Player 1:"

2 3
[1,] 2 4
[1] "The Last Reduced Matrix For Player 2:"

[,1]
[1,] 2

Applying type Function
The type function is executed for finding types for rational choices under common belief in rationality
given in the reduced matrices for both players. The definitions of arguments are shown below.
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A<-matrix(c(2),1,1)
B<-matrix(c(2),1,1)
choices.A = c("2")
choices.B = c("2")
type(A,B,choices. A,choices. B)

The Output of type Function
The output of type function includes the coefficients of the linear equation system, the types that
supports relevant choice under common belief in rationality and the maximum utility of the player.
For this example, the output of type function is displayed below.

type(A,B,choices.A,choices.B)
[1] "The utility matrix of Player 1:"
2
2 2
Player 1's type for the strategy 2 : 1
Success: the objective function is 2
[1] "The utility matrix of Player 2:"
2
2 2
Player 2's type for the strategy 2 : 1
Success: the objective function is 2

The epistemic model of the first player was created as follows using belief probabilities from the
output of type function that make every rational choice of the first player optimal under common
belief in rationality.

Type: T1 ={t2
1}

Belief for the first player:

b1(t2
1) = (2, t2

2)

The epistemic model is constructed by using the values for the second player from the output of
type function as follows:

Type: T2 ={t2
2}

Belief for the second player:

b2(t2
2) = (2, t2

1)

Consequently, the first player will choose his choice “2”, if he believes that second player will
choose “2” with the probability 1. In a similar way, the second player will choose “2”, if he believes
that first player will choose “2” with the probability 1 and they will end up getting two units of money
each.

Conclusion

Game theory has been investigated with epistemic approaches in recent years. Theorists and practi-
tioners do research for analyzing the logic underlying game theory in a broader and more realistic
perspective. Although epistemic game theory has a strong theoretical background, there is a lack of
tools to work on large-scale problems in practice. This study based on common belief in rationality
which can be considered as the heart of epistemic game theory. In two-player games, we developed a
systematic way to find out types that optimize their rational choices under common belief in rationality
for every player together with maximizing their utility. Thus, this study brings flexibility to producing
solutions of large-scale problems within the scope of epistemic game theory. The algorithms which
have been used are transformed into software. R is preferred because of its open-source software
feature, and an R package has been created to bring the program into use. It is thought that this
study will serve as an example for future work in computational epistemic game theory field and it is
planned to adapt this approach to n-person games as well.
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