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cchs: An R Package for Stratified
Case-Cohort Studies
by Edmund Jones

Abstract The cchs package contains a function, also called cchs, for analyzing data from a stratified
case-cohort study, as used in epidemiology. For data from this type of study, cchs calculates Estimator
III of Borgan et al. (2000), which is a score-unbiased estimator for the regression coefficients in the
Cox proportional hazards model. From the user’s point of view, the function is similar to coxph
(in the survival package) and other widely used model-fitting functions. Convenient software has
not previously been available for Estimator III since it is complicated to calculate. SAS and S-Plus
code-fragments for the calculation have been published, but cchs is easier to use and more efficient
in terms of time and memory, and can cope with much larger datasets. It also avoids several minor
approximations and simplifications.

Introduction

One common type of study in epidemiology is the cohort study, in which participants are recruited
and followed over time. Participants who experience a certain type of event (e.g., a heart attack or the
diagnosis of a disease) are called cases, and participants who do not are called non-cases or controls.
A related type of study is the case-cohort study, which is nested within a cohort study. In a case-cohort
study, some of the covariates are only measured for the cases and the subcohort—the subcohort is a
randomly selected subset of the cohort. These covariates are not measured for the other participants.
A case-cohort study can often estimate effect-sizes almost as accurately as the corresponding cohort
study, but at much lower cost since measuring all the covariates on all the participants is expensive.

The case-cohort dataset contains only the cases and the subcohort, and is usually analyzed with a
Cox proportional hazards regression model (Cox, 1972). A common way to fit the Cox model is to
use the estimator of Prentice (1986), who proposed the case-cohort design. More advanced kinds of
analysis sometimes use information on the full cohort, such as the values of those covariates that were
measured for all the participants.

In a stratified case-cohort study, the selection of the subcohort is stratified. The cohort is divided
into strata and each stratum is assigned a sampling fraction, which is the number of participants in
that stratum who will be in the subcohort divided by the total number of participants in the stratum.
The purpose of the stratification is usually to improve the efficiency of the estimator. To fit a Cox
model to data from a stratified case-cohort study, one possible estimator is the time-fixed version of
Estimator III of Borgan et al. (2000). This estimator is optimal in the sense that it is score-unbiased; this
criterion is explained in the section “Comparison with other estimators”. In this article, “Estimator III”
means the time-fixed version of Borgan et al.’s Estimator III, unless otherwise stated.

The subject of this article is the cchs package (version 0.4.0; Jones, 2017), which has made Estimator
III available in a convenient form. The package consists of a single function, also called cchs, which
calculates the estimator, and an example dataset, called cchsData.

Previous software for calculating Estimator III includes SAS code (SAS Institute Inc., 1999) that
appears in Langholz and Jiao (2007a) and S-Plus code (Tibco Software Inc., 2007) in the appendix of
Cologne et al. (2012). S-Plus is no longer available for purchase but is very similar to R; Cologne et al.
(2012)’s code works in R if one function, match.data.frame, is imported from S-Plus.

The previously published SAS and S-Plus code-fragments both analyze specific datasets with
specific models. They could be rewritten to work more generally, but even then with some datasets they
would give slightly inaccurate results, and with others they would use far too much computational
time or memory to be usable, as explained later in the article. Langholz and Jiao wrote more general
SAS code (available at Langholz and Jiao, 2007b), but this still has the problems with inaccurate results
and computational resources and is less easy to use than cchs. Cologne et al. (2012) state that Estimator
III can be calculated by an application called Epicure, which is now sold by Risk Sciences International.
The estimator was also calculated by Borgan et al. themselves, but their code is not publicly available.

The cch function in the survival package (Therneau, 2017; Therneau and Grambsch, 2000) can
calculate several estimators for case-cohort data, including the estimator of Prentice (1986) and
Estimators I and II of Borgan et al. (2000). The functionality of cchs could be added to cch as a single
additional option. But Estimator III is complicated to calculate and cchs has numerous features that
cch lacks. Other software for stratified case-cohort studies includes the survey and NestedCohort
packages, which use inverse probability weights (Lumley, 2004, 2017a; Mark and Katki, 2006; Katki
and Mark, 2008), and the code for Estimator II in Samuelsen et al. (2007).
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The next five sections discuss the model, the estimator, and how to use cchs. The function is easy
to use for anyone who is accustomed to the syntax of model-fitting functions in R such as lm or coxph.
The subsequent sections discuss how cchs works internally compared to the previously published
SAS and S-Plus code. The previously published code makes several approximations and is unable to
cope with large datasets, but cchs avoids these drawbacks by manipulating the data in an economical
way, leading to huge savings in computational time and memory.

Parts of cchs are based on code from coxph, cch, and the appendix of Cologne et al. (2012), and
the mathematical formulas and some of the computational methods are from Therneau and Li (1999),
Borgan et al. (2000), Langholz and Jiao (2007a), and Cologne et al. (2012), but a major part of the
computational methods is original, as discussed in the section “How cchs works”.

The idea of creating cchs came from work on EPIC-InterAct (InterAct Consortium, 2011) and EPIC-
CVD (Danesh et al., 2007), two stratified case-cohort studies that are nested within the cohort from EPIC,
the European Prospective Investigation of Cancer and Nutrition (Bingham and Riboli, 2004). EPIC-
InterAct is a study of incident type 2 diabetes with data from 29 centers in eight European countries,
where the subcohort was stratified by center or country. EPIC-CVD is a study of cardiovascular disease
that uses most of the same centers as EPIC-InterAct and the same subcohort in those centers. In
Jones et al. (2015), data from EPIC-InterAct was used to compare five different models for data from
stratified case-cohort studies, and a pre-release version of cchs was used to fit two of those models.

The model and the estimator

The Cox model for survival-time data is commonly defined by this equation:

hi(t) = h0(t) exp(β>zi),

where

hi is the hazard function for participant i,

t is the time to the event,

h0 is the baseline hazard function,

β is the regression coefficients (log hazard ratios), and

zi is the covariates for participant i.

If all the event-times are distinct, then the partial likelihood is

∏
j

exp(β>zij )

∑k Yk(tj) exp(β>zk)
,

where

tj is the jth event-time,

ij is the participant whose event happened at time tj,

Yk(tj) =

{
1 if tj ∈ (t0k, t1k]

0 otherwise
,

t0k is the entry-time for participant k (often zero for all participants), and

t1k is the exit-time for participant k (i.e. the time at which they had the event or were censored).

The product is over all the cases and the sum is over all the participants. The time-interval (t0k, t1k] is
participant k’s “at-risk time” and Yk(tj) is an indicator variable for whether participant k is at risk at
time tj.

For case-cohort data, zi is only known for the cases and subcohort members, so the partial
likelihood cannot be evaluated and it is impossible to estimate the regression coefficients using
the method of maximum likelihood. Instead, the coefficients are estimated by maximizing pseudo-
likelihoods, which are approximations of the partial likelihood. The pseudo-likelihood for Estimator
III is

∏
j

α−1
s(ij)

exp(β>zij )

∑k∈R(tj) Yk(tj)α
−1
s(k) exp(β>zk)

,

where

s(i) is the stratum that contains participant i,
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αs is the sampling fraction for stratum s (the proportion of stratum s that appears in the
subcohort),

R(tj) =

{
C if ij ∈ C
C ∪ {ij} \ {Js(ij)} if ij /∈ C

,

C is the subcohort, and

Js is a participant randomly selected from C ∩ s (where s is a stratum).

Borgan et al. (2000) called this a “swapper” method because of the way R(tj) is defined for ij /∈ C. As
shown above, Js(ij) is removed from C and ij is added. If Js(ij) is not at risk at time tj, then its removal
from R(tj) makes no difference to the pseudo-likelihood since YJs(ij )

(tj) = 0. It is recommended to

use an asymptotic covariance estimator rather than a robust one (Jiao, 2001); see the section “The
calculation of the covariance matrix”.

Langholz and Jiao (2007a) discuss two situations in which a case-cohort study might be stratified,
which they call “exposure stratified” and “confounder stratified.” In the exposure stratified situation,
the strata are defined by levels of one or more covariates, and the purpose of the stratification is to
increase the efficiency of the estimator. In the confounder stratified situation, the strata are defined
by a covariate that is believed to confound the relation between the exposure of interest and the
event-time (e.g., the center in a multi-center study). For an exposure stratified study, it is usual to fit
a single unstratified Cox model to the data, and this is is the situation for which Estimator III was
designed. For a confounder stratified study, it is more natural to fit a stratified Cox model—in which
each stratum s has its own baseline hazard h0s(t) and hi(t) = h0s(i)(t) exp(β>zi)—and for this, the
estimator of Prentice (1986) should be used; but it is still possible to fit an unstratified model using
Estimator III.

Comparison with other estimators

Borgan et al. (2000) described three estimators for the Cox model with data from a stratified case-cohort
study. These have been investigated in several simulation studies: Borgan et al. used cohorts of size
1000 with subcohorts of size 100, and found that there was little to choose between Estimators II and III,
but both performed better than Estimator I; Cologne et al. (2012) made similar findings but reported
that Estimator III did slightly better than Estimator II when the sampling fraction was very small; and
Samuelsen et al. (2007) found that Estimator II performed well.

Of the three estimators, only Estimator III is score-unbiased. This is one of the main desirable
criteria for estimators for case-cohort data. It means that the expectation of the pseudo-score (the
derivative of the pseudo-likelihood) is zero when the coefficients take their true values (Godambe,
1960, 1976; Lindsay, 1982; Severini, 2011; Cologne et al., 2012). On the other hand, Estimator II has
smaller asymptotic variance (this was hinted at in Borgan et al., 2000, stated in Samuelsen et al., 2007,
and explained most clearly in Samuelsen et al., 2006).

Recall that “Estimator III” refers to the time-fixed version of that estimator, as calculated by
cchs. Borgan et al. also described time-dependent versions of the three estimators, which have
smaller asymptotic variance (Kulich and Lin, 2004). The time-dependent version of Estimator III is
score-unbiased (Borgan et al., 2000), but it is even more complicated to calculate than the time-fixed
version.

Estimator II can be improved using covariate data on the whole cohort, if that is available (Breslow
et al., 2009a,b; Yan et al., 2017). The estimator of Prentice (1986) can also be adapted to work with
stratified case-cohort studies. Its pseudo-likelihood is

∏
j

exp(β>zij )

∑k∈C∪{ij} Yk(tj) exp(β>zk)
.

This estimator is only score-unbiased if for ij /∈ C the C in the above expression is replaced by
(C ∩ s(ij)). This is less efficient than Estimator III since the denominator includes fewer participants.

For stratified case-cohort data it is also possible to use general methods based on inverse probability
weights. These methods are suitable for a wide range of complex sampling schemes (Mark and Katki,
2006; Lumley, 2017b), but no claim is made that the estimators are score-unbiased. This approach
has been used by Gray (2009), Liu et al. (2012), and Payne et al. (2016). In other research, Kulich and
Lin (2004) presented a framework that covered many case-cohort estimators and the possibility of
stratified subcohort-selection, and Zeng and Lin (2007) and Kim et al. (2013) described wide classes
of sampling schemes and regression models for survival analysis, of which the stratified case-cohort
design and the Cox model are special cases.
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How to use cchs

From the user’s point of view, cchs is reasonably similar to coxph. The most important arguments are:

formula, which specifies the model (the left-hand side must be a "Surv" object),

data, a data frame or environment that contains the variables in the formula,

inSubcohort, an indicator for whether each participant is in the subcohort,

stratum, the stratum variable,

samplingFractions, the sampling fraction for each stratum,

cohortStratumSizes, the size of each stratum in the full cohort, and

precision, discussed below.

If the data is supplied as a data frame, it is assumed to be in the usual form where each row corresponds
to one observation (i.e., one participant in the case-cohort study) and each column corresponds to
a variable. The inSubcohort and stratum arguments can either be columns or elements of data or
separate objects that are named in the call to cchs.

One of samplingFractions or cohortStratumSizes must be specified, but not both. If the latter
is specified, then cchs uses it to calculate the former—for each stratum, it divides the size of the
subcohort by the size of the cohort, which is given by cohortStratumSizes. If the sampling fractions
are not stored as a column of data, then they can be passed to cchs as a named vector. For example, if
the stratum variable takes the values "London" and "Paris" and the sampling fractions are 0.1 and 0.2
respectively, then this vector should be c(London = 0.1, Paris = 0.2).

The precision argument must be set if there are any tied event-times. Estimator III requires
all event-times to be distinct, so cchs changes tied event-times by small amounts, as suggested by
Langholz and Jiao (2007a), and it uses precision to work out suitable values. If the times are all
integers, then precision should be set to 1. In datasets from EPIC-InterAct and EPIC-CVD, the times
are recorded to the nearest day but stored as numbers of years, so precision should be set to 1 /
365.25.

Additional arguments are discussed in “Obscure aspects of the calculation”.

An example analysis

cchsData is an artificial stratified case-cohort dataset that was created from the nwtco dataset in the
survival package. The original nwtco data comes from two clinical trials run by the National Wilms
Tumor Study Group in the United States (D’Angio et al., 1989; Green et al., 1998). Different artificial
case-cohort datasets based on nwtco have been used by Kulich and Lin (2004), Breslow et al. (2009a),
and Breslow et al. (2009b).

In cchsData, the event is relapse of Wilms tumor and the subcohort-selection is stratified by the
result of a histological examination. The most important variables are time (the time to the event
or censoring), isCase (the event-indicator), inSubcohort (the indicator for being in the subcohort),
localHistol (the stratum variable), and sampFrac (the stratum-specific sampling fractions). The times
are stored as numbers of days, and some of them are tied, so the precision argument of cchs should
be set to 1 (or 1/2, 1/3, etc.).

The sampling fractions in cchsData are 5% and 20%. The subcohort is about half as big as the
set of cases. In case-cohort studies in general, the sampling fraction is typically in the area of 5%
but sometimes larger (Sharp et al., 2014), and the subcohort is usually larger than the set of cases
(Juraschek et al., 2013; Lamb et al., 2013; Jones et al., 2015) but occasionally smaller (Huxley et al.,
2013).

The following command uses Estimator III to fit a Cox model to cchsData. The covariates are age
at diagnosis (ageAtDiagnosis) and stage of cancer at diagnosis (stage):

> cchs(Surv(time, isCase) ~ ageAtDiagnosis + stage, data = cchsData,
+ inSubcohort = inSubcohort, stratum = localHistol,
+ samplingFractions = sampFrac, precision = 1)

The cchs function returns an object of S3 class "cchs" that contains many of the same elements as
a "coxph" object and several additional elements. When a "cchs" object is printed, information about
the dataset and the changes to the tied event-times appears before the coefficients. The output from
the above command is:
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Call: cchs(formula = Surv(time, isCase) ~ stage + ageAtDiagnosis,
data = cchsData, inSubcohort = inSubcohort, stratum = localHistol,
samplingFractions = sampFrac, precision = 1)

Number of observations/rows: 785, of which
subcohort non-cases: 214
subcohort cases: 48
non-subcohort cases: 523

179 of 571 discretized event-times were changed by up to 0.01 to deal
with ties.
Number of strata for subcohort-selection: 2
Coefficients (HR = hazard ratio, CI = 95% confidence interval, SE = standard
error):

HR CIlower CIupper p logHR SElogHR
ageAtDiagnosis 1.101685 1.029489 1.178944 0.005104173 0.09684087 0.03458127
stageII 1.397695 0.915168 2.134635 0.121219767 0.33482413 0.21606100
stageIII 1.794611 1.156081 2.785816 0.009150320 0.58478850 0.22436755
stageIV 2.367953 1.382691 4.055282 0.001686931 0.86202589 0.27449190

This output can be interpreted like output from any other function that fits the Cox model. For
example, the hazard is estimated to be 79% higher for patients who were at stage III when diagnosed
compared to patients who were at stage I, adjusting for age at diagnosis. The level for the confidence
intervals in the output is determined by the confidenceLevel argument to cchs, whose default is 0.95.

If the output of cchs is stored as an object called result, then the coefficients are available as
result$coefficients and the covariance matrix is available as result$var. The table at the bottom
of the output is stored as result$coeffsTable for convenience. For example, this can be used to get
the confidence intervals for the hazard ratio for ageAtDiagnosis:

> result <- cchs(Surv(time, isCase) ~ ageAtDiagnosis + stage, data = cchsData,
+ inSubcohort = inSubcohort, stratum = localHistol,
+ samplingFractions = sampFrac, precision = 1)
> result$coeffsTable["ageAtDiagnosis", c("CIlower", "CIupper")]

Other issues for the user

Calling cchs twice with the same arguments will not necessarily give exactly the same results, which
is unusual for estimators that maximize a likelihood or pseudo-likelihood. This happens for two
reasons: first, Estimator III involves randomness in the choice of Js(ij); and second, if there are tied
event-times, these are changed in a random way. To get exactly the same results, set the random seed
(using set.seed) just before the call to cchs.

Another approach would be to call cchs multiple times, using the replicate command, then
combine the results, perhaps by using Rubin’s rules (Rubin, 1987; Schafer, 1999), which are normally
used for multiple imputation. With this approach, for each term in the model the coefficient estimate
is the mean of the separate estimates, and the variance is the mean of the separate variances plus a
term to account for the between-replication variability. It might be worth expressly comparing the
within-replication variability (the separate variance estimates) with the between-replication variability
(the variability due to the randomness of the estimator). Figure 1 shows the point-estimates and
confidence intervals that appear in the previous section, and the quartiles and ranges of the point-
estimates produced by 1000 calls to cchs with the same arguments. Here, the between-replication
variability is small, and very small compared to the within-replication variability.

In coxph, model formulas can contain certain special terms. Of these, cchs allows offset terms,
but it does not allow cluster (for identifying correlated groups of rows), strata (for fitting a stratified
Cox model), or tt (for time-varying covariates). If the data are from a stratified case-cohort study and
it is desired to fit a stratified Cox model where the strata in the baseline hazard are the same as the
strata for the subcohort-selection, then Prentice’s estimator should be used (Langholz and Jiao, 2007a).

All error and warning messages produced by cchs are designed to be meaningful. This is achieved
by checking the arguments and raising an error if any of them have illegal values, and by adding extra
messages to any errors or warnings raised by model.frame or coxph when they are called internally
by cchs. The addition of the extra messages results in the call stack, which can be viewed by typing
traceback(), being longer and more complicated than usual. Therefore if traceback() is going to be
used to diagnose problems, it is advisable to switch the extra messages off by setting annotateErrors
= FALSE.
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Figure 1: The dots and horizontal lines show the point-estimates and confidence intervals from the
output in “An example analysis”; this is within-replication variability. The boxes and whiskers show
the hazard ratios from 1000 replications of cchs, using the dataset and model in the same section; this
is between-replication variability. The boxes show the quartiles and the whiskers show the full ranges.

How cchs works

The cchs function works differently from the previously published SAS and S-Plus code in several
ways, and these novel aspects of its implementation affect the amount of computational time and
memory that it uses and enable it to work with much bigger datasets. They also affect the numbers in
the output. These issues are discussed here for cautious or curious users who want to know how cchs
works or compare it with other software for Estimator III.

Functions that calculate estimators for the Cox model with case-cohort data invariably work by
manipulating the data or the model-formula in various ways—for example, duplicating rows and
changing entry-times, or appending weights to the rows and including the weight in the model-
formula—and then passing the data and model-formula to a second model-fitting function (in R,
coxph) whose original purpose is to fit the Cox model with the standard estimator. The manipulation is
done in such a way that when the second function attempts to maximize the partial likelihood, what it
actually maximizes is the pseudo-likelihood for the case-cohort estimator. The second function returns
the estimates of the regression coefficients and their covariance matrix, and the top-level function
usually then makes adjustments to the covariance matrix.

This method works because the standard partial likelihood and the various pseudo-likelihoods all
have similar forms. They have the same number of multiplicative terms, one for each case, and the
same values in the numerators (apart from multiplicative factors, which are easy to deal with). The
only differences are the sets of participants who appear in the denominators and, for some pseudo-
likelihoods, multiplicative factors in the denominators. These sets are dealt with by duplicating or
excluding rows and changing entry- and exit-times, and any multiplicative factors are dealt with by
using an offset term in the model-formula.

For Estimator III, the manipulations are rather complicated because of the swapping. The cchs
function manipulates the data as follows:

1. Define a small number ε, which is smaller than any of the differences between consecutive
event-times.

2. For each ij /∈ C, change the entry-time to tj − ε, where tj is the exit-time.

3. For each stratum s:

3.1 Choose a random participant Js from C ∩ s. Denote the entry-time for Js by t0s and the
exit-time by t1s.

3.2 Let Us = {tj : ij ∈ s, ij /∈ C, t0s < tj ≤ t1s}. Sort Us into increasing order as us(1), . . . , us(|Us |).

3.3 Replace Js’s row by |Us|+ 1 new rows with variables as follows.

Row 1: entry-time t0s, exit-time us(1) − ε, event-indicator zero.
Row 2: entry-time us(1), exit-time us(2) − ε, event-indicator zero.
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. . .
Row |Us|: entry-time us(|Us |−1), exit-time us(|Us |) − ε, event-indicator zero.

Row |Us|+ 1: entry-time us(|Us |), exit-time t1s, event-indicator as in the original row.

These steps are best understood by referring to the earlier definition of R(tj) and bearing in mind
that coxph takes a row’s at-risk time to be the half-open interval, (entry-time, exit-time]. The purpose
of step 1 is to choose ε to be sufficiently small that steps 2 and 3 do not have any unintended effects
on other terms in the pseudo-likelihood. Step 2 has the effect of removing the non-subcohort cases
from R(tj), except for ij itself, which is not removed. Step 3 makes the further changes to R(tj) that are
needed if ij /∈ C. Note that it deals with one Js, not one ij, at a time. Step 3.1 chooses Js. Step 3.2 defines
Us to be the event-times that lie in the range of Js’s at-risk time and correspond to non-subcohort cases
in s. Step 3.3 excises a short stretch of at-risk time from Js at each time in Us by splitting Js’s row into
multiple rows with separate stretches of at-risk time.

The effect of step 3 is to remove Js(ij) from R(tj) when ij /∈ C, as required by the definition of R(tj).
For a non-subcohort case in s whose event-time is not in Us, it makes no difference whether Js(ij) is in
R(tj) or not, because YJs(ij )

(tj) is zero; so for such cases this manipulation is not necessary.

One other change to the data is needed. An extra column is created that contains − log αs(k) for
participant k, and this is included as an offset term in the model-formula that cchs passes to coxph.
This has the effect of inserting the α−1

s(k) factors that are needed in the denominators.

The calculation of the covariance matrix

The cchs function uses an asymptotic covariance estimator, as recommended by Jiao (2001). Internally,
after it manipulates the data and calls coxph, the final step is to adjust the covariance matrix. This is
done by using the matrix of “dfbeta” residuals, D, produced by residuals.coxph; dij is the change in
the estimate of regression coefficient j when row i is dropped from the data (or an approximation of that
change). The covariance matrix is adjusted by adding ∑s ms(1− αs)Cov DC∩s, where ms = |C ∩ s|,
DC∩s is the rows of D that correspond to C ∩ s, and Cov DC∩s is the empirical covariance matrix
D>C∩sDC∩s/(ms − 1).

This adjustment corresponds to Equation (17) in Borgan et al. (2000). The use of D is based on the
formula for the adjustment to the covariance matrix with unstratified case-cohort data, which appears
on page 102 of Therneau and Li (1999) and as Equation (5) in Langholz and Jiao (2007a). There is a small
discrepancy between the formulas in these two publications. To explain this, let DC be the rows of D
that correspond to C and let α = m/n be the sampling fraction, where m is the size of the subcohort
and n is the size of the cohort. According to Therneau and Li, the quantity to add to the covariance
matrix is (1− α)D>C DC, but according to Langholz and Jiao it is m(n−m)

n Cov DC = (1− α) m
m−1 D>C DC.

These expressions differ by a factor of m/(m− 1), which is unimportant if m is large, but makes a
difference if m is small. The cchs function does the calculation in the same way as Langholz and Jiao
and Cologne et al. (2012).

How the SAS code and S-Plus code work

The previously published SAS and S-Plus code-fragments for Estimator III manipulate the data in a
completely different way from cchs:

1. Define a small number ε, which is smaller than any of the differences between consecutive
event-times.

2. For each ij /∈ C, change the entry-time to tj − ε.

3. Replace the dataset with a new dataset that is constructed as follows. For each ij:

3.1 Make one copy of all the rows.

3.2 Drop those of the new rows that are not at risk at tj.

3.3 For all rows, set the entry-time to tj − ε and the exit-time to tj, and set the event-indicator
to 1 for ij and 0 for the other rows.

4. For each ij /∈ C, choose a random participant Js(ij) from C ∩ s(ij) and remove the row that
contains Js(ij) and has exit-time tj.

Step 3 radically changes the dataset and greatly increases its size. The result of the manipulations is
that when the data is passed to coxph in S-Plus or proc phreg in SAS, each row corresponds to exactly
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one additive term in the numerator or denominator of one multiplicative term of the pseudo-likelihood.
The α−1

s(k) terms and the adjustment to the covariance matrix are dealt with in the same way as in cchs.

The advantage of this method is that steps 3 and 4 are relatively simple—the “swapping” in
step 4 just consists of choosing and removing a single row each time. The disadvantages are that if
the original dataset is medium or large in size then this method uses a gigantic amount of memory
and requires coxph to deal with a gigantic dataset. For step 3.1, the S-Plus code creates a data frame
that contains one row for every combination of a case and a participant. In EPIC-CVD, a typical
dataset that was supplied to an investigator contained about 31, 000 participants, of whom 14, 000 were
cases, and this took up about 4.4MB as a binary file. So the data frame created by step 3 would have
31, 000× 14, 000 ≈ 434 million rows and take up about 62GB. This is too big for a desktop computer to
store in memory, and even after some rows are removed in step 4, the data frame would be far too big
for coxph to process in a reasonable amount of time.

In contrast, when cchs is used on the same dataset, the manipulated dataset has fewer than
31, 000 + 14, 000 = 45, 000 rows. This 45, 000 was calculated by supposing that for every case an extra
row is created, whereas in reality some cases are in the subcohort and it is likely that some “swapper”
rows are not at risk at the relevant event-times, and for these no extra rows are created, so the true
number of rows in the manipulated dataset is less than 45, 000.

The manipulation of the data by the SAS and S-Plus code can be regarded as maximal, in the sense
that each row ultimately corresponds to a single additive term in a single multiplicative term of the
pseudo-likelihood. The manipulation by cchs can be regarded as minimal, since it makes only the
manipulations that are strictly necessary in order for coxph to calculate the correct pseudo-likelihood,
and it leaves the data with the smallest possible number of rows.

Obscure aspects of the calculation

Three obscure issues arise in calculating Estimator III. Under normal circumstances users of cchs can
ignore these, but for development or testing it may be necessary to understand these issues or, as
described below, set the relevant logical arguments to different values.

The first issue has to do with the dropNeverAtRiskRows argument, which determines whether rows
should be dropped if their at-risk time does not contain any of the event-times. The dropped rows make
no difference to the regression coefficients output by cchs, but they do affect the covariance-estimates
and confidence intervals, because of the approximation that residuals.coxph uses to calculates the
dfbeta residuals. The SAS code and S-Plus code drop these rows (in step 3.2), but Borgan et al. (2000)
and Langholz and Jiao (2007a) make no mention of this issue. In cchs, dropNeverAtRiskRows is TRUE
by default but can be set to FALSE if desired.

The second issue has to do with the dropSubcohEventsDfbeta argument. When the adjustment
to the covariance matrix is calculated, the correct way is to use all the rows of the matrix of dfbeta
residuals that correspond to subcohort members. The SAS code and S-Plus code both omit the rows
that correspond to subcohort cases at their event-times, presumably because this makes the code
simpler and is unlikely to change the output greatly. By default, cchs calculates the adjustment to the
covariance matrix in the strictly correct way. But if dropSubcohEventsDfbeta is TRUE, then it calculates
the adjustment in the same way as the SAS and S-Plus code, as follows. For each ij ∈ C, it splits
that row of the data at tj − ε and replaces it with two rows; the first row has entry-time t0ij , exit-time
tj − ε, and event-indicator 0; and the second row has entry-time tj − ε, exit-time tj, and event-indicator
1. When calculating the adjustment to the covariance matrix, cchs excludes the row of the dfbeta
residuals that corresponds to the second of these two rows.

The third issue is that the “swapper” Js(ij) is supposed to be selected once for each stratum (see
Section 3 of Borgan et al., 2000), but the SAS and S-Plus both select it once for each case. The cchs
function selects the swapper correctly. It has no logical argument to specify how the swapper should
be selected, since it manipulates the data in a completely different way from the SAS and S-Plus code.

Discussion

In case-cohort studies, stratified selection of the subcohort seems to be common (Sharp et al., 2014),
so there are likely to be plenty of investigations where cchs may be useful. The way in which cchs
manipulates the data makes it faster and more computationally efficient than the previously published
SAS and S-Plus code. The three obscure issues described in the previous section should not greatly
affect most analyses, but will make a difference with small datasets.
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