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onewaytests: An R Package for One-Way
Tests in Independent Groups Designs
by Osman Dag, Anil Dolgun and Naime Meric Konar

Abstract One-way tests in independent groups designs are the most commonly utilized statistical
methods with applications on the experiments in medical sciences, pharmaceutical research, agri-
culture, biology, engineering, social sciences and so on. In this paper, we present the onewaytests
package to investigate treatment effects on the dependent variable. The package offers the one-way
tests in independent groups designs, which include ANOVA, Welch’s heteroscedastic F test, Welch’s
heteroscedastic F test with trimmed means and Winsorized variances, Brown-Forsythe test, Alexander-
Govern test, James second order test and Kruskal-Wallis test. The package also provides pairwise
comparisons, graphical approaches, and assesses variance homogeneity and normality of data in each
group via tests and plots. A simulation study is also conducted to give recommendations for applied
researchers on the selection of appropriate one-way tests under assumption violations. Furthermore,
especially for non-R users, a user-friendly web application of the package is provided. This application
is available at http://www.softmed.hacettepe.edu.tr/onewaytests.

Introduction

There are many statistical procedures for one-way independent groups designs. The one-way fixed
effects analysis of variance (ANOVA) is the most common one being used for comparing k independent
group means. Independence of the observations in each group and between groups, normality (i.e.,
k samples come at random from normal distribution) and variance homogeneity (i.e., k populations
have equal variances) are three basic assumptions of ANOVA. ANOVA is a valid and powerful
test for identifying group differences provided that these assumptions are held. However, most of
the data sets in practice are not normally distributed and group variances are heterogeneous, and
it is difficult to find a data set that satisfies both assumptions. When the assumptions underlying
ANOVA are violated, the drawn inferences are also invalid. There have been remarkable efforts to
find an appropriate and robust test statistic under non-normality and variance heterogeneity. Several
procedures alternative to ANOVA were proposed, including Welch’s heteroscedastic F test (Welch,
1951), Welch’s heteroscedastic F test with trimmed means and Winsorized variances (Welch, 1951),
Alexander-Govern test (Alexander and Govern, 1994), James second order test (James, 1951, 1954),
Brown-Forsythe test (Brown and Forsythe, 1974a,b) and Kruskal-Wallis test (Kruskal and Wallis, 1952).

In the literature, there are many studies in which the comparison of ANOVA and its alternative
tests was made with respect to type I error rate and power when the assumptions of ANOVA are not
satisfied. The effects of sample size (balanced/unbalanced case), non-normality, unequal variances,
and combined effects of non-normality and unequal variances were investigated in details (Wilcox,
1988; Cribbie et al., 2012; Lantz, 2013; Gamage and Weerahandi, 1998; Parra-Frutos, 2013; Cribbie et al.,
2007). In the light of these studies, we conduct a Monte Carlo simulation study in an attempt to give
recommendations for applied researchers on the selection of appropriate one-way tests.

ANOVA, Welch’s heteroscedastic F test, Welch’s heteroscedastic F test with trimmed means and
Winsorized variances, Kruskal-Wallis test, and Brown-Forsythe test are available under some packages
(given in Table 1) on the Comprehensive R Archive Network (CRAN). Alexander-Govern test and
James second order test are also found to be robust to assumption violations, but have been overlooked
as their calculation and implementation were not easily available elsewhere.

In this paper, we introduce an R package, onewaytests (Dag et al., 2017) which implements
Alexander-Govern test and James second order test, in addition to the ANOVA, Welch’s heteroscedastic
F test, Welch’s heteroscedastic F test with trimmed means and Winsorized variances, Kruskal-Wallis
test, and Brown-Forsythe test. Besides the omnibus tests, the package provides pairwise comparisons
to investigate which groups create the difference providing that a statistically significant difference is
obtained by the omnibus test. Moreover, the package offers several graphic types such as grouped
box-and-whisker plot and error bar graph. Also, it provides statistical tests and plots (i.e. Q-Q plot
and histogram) to assess variance homogeneity and normality, in the package version 1.5 and later.
The onewaytests package is publicly available on the CRAN.

The organization of this paper is presented as follows. First, we give the theoretical background
on the one-way tests in independent groups designs. Second, we introduce the onewaytests package
and demonstrate the applicability of the package using two real-life datasets. Third, the web interface
of the onewaytests package is introduced. A Monte Carlo simulation study is also conducted to give
recommendations for applied researchers on the selection of appropriate tests included in the package.
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Results of this simulation study and the general conclusions on the effects of assumption violations
are mentioned.

One-way tests in independent groups designs

In this section, the statistical tests that are used to test the equality of several populations in the one-
way independent groups designs are explained. Among these tests, ANOVA, Welch’s heteroscedastic
F test (Welch, 1951), Alexander-Govern test (Alexander and Govern, 1994), James second order test
(James, 1951, 1954) and Brown-Forsythe test (Brown and Forsythe, 1974a,b) test the null hypothesis
H0 : µ1 = µ2 = . . . = µk versus alternative H1 : at least one µj (j = 1, 2, . . . , k) is different. Welch’s
heteroscedastic F test with trimmed means and Winsorized variances (Welch, 1951) tests the equality
of population trimmed means, H0 : µt1 = µt2 = . . . = µtk versus alternative H1 : at least one µtj is
different, where µtj represents the trimmed mean of the jth population (j = 1, 2, . . . , k). Kruskal-Wallis
test (Kruskal and Wallis, 1952) tests the null hypothesis H0 : θ1 = θ2 = . . . = θk versus alternative H1 :
at least one θj (j = 1, 2, . . . , k) is different. For the Kruskal-Wallis test, θj represents sum of the ranks of
the jth population.

ANOVA

The one-way fixed effects analysis of variance (ANOVA) is the most common statistical procedure to
test the equality of k independent population means. Underlying assumptions associated with ANOVA
include homogeneity of group variances, normality of distributions and statistical independence of
errors. Under these conditions, the ANOVA test statistic,

F =
∑j nj(X̄.j − X̄..)2/(k− 1)

∑i ∑j(Xij − X̄.j)2/(N − k)
, (1)

follows an F distribution with k− 1 degrees of freedom for the numerator and N− k degrees of freedom
for the denominator. In Equation (1), k is the number of groups, N is the total number of observations,
and nj is the number of observations in the jth group. Xij is the ith observation (i = 1, 2, . . . , nj) in
the jth group (j = 1, 2, . . . , k), ∑j nj = N, X̄.. is the overall mean, where X̄.. = ∑j nj(X̄.j)/N and X̄.j is
sample mean for the jth group, where X̄.j = ∑i Xij/nj. ANOVA is more powerful if the assumptions of
normality and variance homogeneity hold true. Non-normality has minimal effect on the type I error
when the variances are equal (Lantz, 2013) but when the variances are not equal, ANOVA provides
poor control over the type I and type II error rates (Bishop, 1976).

Welch’s heteroscedastic F test

Welch (1951) proposed a heteroscedastic alternative to ANOVA that is robust to the violation of
variance homogeneity assumption. Under the null hypothesis H0 : µ1 = µ2 = . . . = µk, the test
statistic Fw,

Fw =
∑j wj(X̄.j − X

′
..)

2/(k− 1)[
1 + 2

3 ((k− 2)ν)
] , (2)

follows an F distribution with degrees of freedom k− 1 for the numerator and 1/ν degrees of freedom
for the denominator. In Equation (2), wj = nj/S2

j , S2
j = ∑i(Xij − X̄.j)

2/(nj − 1),

X
′
.. =

∑j wjX̄.j

∑j wj
,

and

ν =

3 ∑j

[(
1− wj

∑j wj

)2
/(nj − 1)

]
k2 − 1

.

Welch’s heteroscedastic F test is robust and less sensitive to heteroscedasticity when compared to
the ANOVA as within groups variance is based on the relationship between the different sample sizes
in the different groups instead of a simple pooled variance estimate (Lantz, 2013).
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Welch’s heteroscedastic F test with trimmed means and Winsorized variances

Welch’s heteroscedastic F test with trimmed means and Winsorized variances (Welch, 1951) is a
robust procedure that tests the equality of means by substituting trimmed means and Winsorized
variances for the usual means and variances. Therefore, this test statistic is relatively insensitive
to the combined effects of non-normality and variance heterogeneity (Keselman et al., 2008). Let
X(1)j ≤ X(2)j ≤ . . . ≤ X(nj)j be the ordered observations in the jth group and gj = ‖εnj‖, ε is the
proportion to be trimmed in each tail of the distribution. After trimming, the effective sample size for
the jth group becomes hj = nj − 2gj. Then jth sample trimmed mean is

X̄tj =
1
hj

nj−gj

∑
i=gj+1

X(i)j,

and jth sample Winsorized mean is

X̄wj =
1
nj

nj

∑
i=1

Yij,

where

Yij =


X(gj+1)j if Xij ≤ X(gj+1)j ,

Xij if X(gj+1)j < Xij < X(nj−gj)j,

X(nj−gj)j if Xij ≥ X(nj−gj)j.

The sample Winsorized variance is

s2
wj =

1
(nj − 1)

nj

∑
i=1

(Yij − X̄wj)
2.

Let

qj =
(nj − 1)s2

wj

hj(hj − 1)
,

wj =
1
qj

,

U = ∑
j

wj,

X̃ =
1
U ∑

j
wjX̄tj,

A =
1

k− 1 ∑
j

wj(X̄tj − X̃)2,

B =
2(k− 2)
k2 − 1 ∑

j

(1− wj/U)2

hj − 1
.

Under H0 : µt1 = µt2 = . . . = µtk, Welch’s heteroscedastic F test with trimmed means and
Winsorized variances Fwt,

Fwt =
A

B + 1
, (3)

follows an approximately F distribution with k− 1 and ν′ degrees of freedom, where ν′ is

ν′ =

 3
k2 − 1 ∑

j

(1− wj/U)2

hj − 1

−1

.

Fwt is not only less sensitive to heteroscedasticity and non-normality but also robust to the negative
effects of outliers as it utilizes the trimmed means and Winsorised variances (Keselman et al., 2008).
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Brown-Forsythe test

Brown and Forsythe (1974a,b) proposed the following test statistic:

FBF =
∑j n.j(X̄.j − X̄..)2

∑j(1− nj/N)S2
j

. (4)

Under the null hypothesis, FBF statistic has an approximately F distribution with k− 1 and f degrees
of freedom, where f is obtained with

f =

∑
j

c2
j /(nj − 1)

−1

,

and

cj =
(1− nj/N)S2

j[
∑j(1− nj/N)S2

j

] .

FBF is a modification of ANOVA which has the same numerators as the ANOVA but an altered
denominator. This test is more powerful when some variances appear unusually low (Brown and
Forsythe, 1974a).

Alexander-Govern test

Alexander and Govern (1994) presented another robust test that is alternative to ANOVA, and it is
used when group variances are not homogeneous. The test statistic for Alexander-Govern test is

χ2
AG =

k

∑
j=1

z2
j . (5)

Under the null hypothesis, χ2
AG is distributed as χ2 distribution with k− 1 degrees of freedom. In

Equation (5),

zj = c +
(c3 + 3c)

b
− (4c7 + 33c5 + 240c3 + 855c)

(10b2 + 8bc4 + 1000b)
,

where c = [α× ln(1 + t2
j /vj)]

1/2, b = 48α2, α = vj − 0.5 and vj = nj − 1. The t statistic for each group
is

tj =
X̄.j − X+

S′j
. (6)

The variance-weighted mean is X+ = ∑k
j=1 wjX̄.j and the standard error for the jth group is

S
′

j =

[
∑

nj

i=1(Xij − X̄.j)
2

nj(nj − 1)

]1/2

.

Also, weights for each group are defined as

wj =
1/S

′2
j

∑k
j=1 1/S′2j

. (7)

χ2
AG is another modification of ANOVA under heterogeneity of variance using the normalizing

transformation of the one-sample t statistic. This test provides a good control of type I and II error
rates for normally distributed data, but it is not robust to non-normality (Myers, 1998).

James second order test

An alternative test to ANOVA was proposed by James (1951). This test statistic (J) is

J = ∑
j

t2
j , (8)
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where tj is given in Equation (6). The test statistic, J, is compared to a critical value, h(α), where

h(α) = r +
1
2
(3χ4 + χ2)T +

1
16

(3χ4 + χ2)
2
(

1− k− 3
r

)
T2

+
1
2
(3χ4 + χ2)(8R23 − 10R22 + 4R21 − 6R2

12 + 8R12R11 − 4R2
11)

+ (2R23 − 4R22 + 2R21 − 2R2
12 + 4R12R11 − 2R2

11)(χ2 − 1)

+
1
4
(−R2

12 + 4R12R11 − 2R12R10 − 4R2
11 + 4R11R10 − R2

10)(3χ4 − 2χ2 − 1)

+ (R23 − 3R22 + 3R21 − R20)(5χ6 + 2χ4 + χ2)

+
3
16

(R2
12 − 4R23 + 6R22 − 4R21 + R20)(35χ8 + 15χ6 + 9χ4 + 5χ2)

+
1

16
(−2R22 + 4R21 − R20 + 2R12R10 − 4R11R10 + R2

10)(9χ8 − 3χ6 − 5χ4 − χ2)

+
1
4
(−R22 + R2

11)(27χ8 + 3χ6 + χ4 + χ2) +
1
4
(R23 − R12R11)(45χ8 + 9χ6 + 7χ4 + 3χ2).

For any integers s and t, Rst = ∑j(nj − 1)−swt
j , χ2s = rs/ [( k− 1)(k + 1) . . . (k + 2s− 3)] where r

is the (1− α) centile of a χ2 distribution with k− 1 degrees of freedom, T = ∑j(1−wj)
2/(nj − 1) and

wj is defined in Equation (7). If the test statistic, J, exceeds h(α), then the null hypothesis is rejected.

The James second order test has been acknowledged as the best option for both normal het-
eroscedastic data (Alexander and Govern, 1994) and non-normal symmetric heteroscedastic data
(Oshima and Algina, 1992). The disadvantage of this method is the complexity of the computation of
critical values.

Kruskal-Wallis test

Kruskal and Wallis (1952) proposed the nonparametric alternative to ANOVA. Let rij denote the rank

of Xij when N = n1 + . . . + nk observations are ranked from smallest to largest. Rj = ∑
nj

i=1 rij is the
sum of ranks assigned to the observations in the jth group and R̄j = Rj/nj is the average rank for
these observations. Under these definitions, the Kruskal-Wallis test statistic is given by

χ2
KW =

1
S2

 k

∑
j=1

R2
j

nj
− N(N + 1)2

4

 , (9)

where

S2 =
1

N − 1

 k

∑
j=1

nj

∑
i=1

r2
ij −

N(N + 1)2

4

 .

When nj → ∞, χ2
KW has an asymptotic χ2 distribution under the null hypothesis H0 : θ1 = θ2 =

. . . = θk. We reject H0 if χ2
KW ≥ χ2

k−1,α where χ2
k−1,α is the upper α percentile for the χ2 distribution

with k− 1 degrees of freedom. Note that, when there are no ties, S2 simplifies to N(N + 1)/12.

The Kruskal-Wallis test is robust to non-normality as it utilizes ranks instead of actual values.
However, it assumes that the observations in each group come from populations with the same shape
of distribution. Therefore, if different groups have different shapes (e.g., some are skewed to the right
and another is skewed to the left), the Kruskal-Wallis test may give inaccurate results (Fagerland and
Sandvik, 2009).

There are other R packages including one-way tests in independent groups designs; namely,
stats (R Core Team, 2017), lawstat (Gastwirth et al., 2017), coin (Hothorn et al., 2006), car (Fox and
Weisberg, 2011), WRS2 (Mair et al., 2017), welchADF (Villacorta, 2017). The aov.test (onewaytests)
can be seen as a simplified version of anova (stats) and Anova (car), but the latter two are more flexible
and comprehensive in a way that they can handle two or more variables (e.g., two-way ANOVA,
multivariate ANOVA, repeated measures ANOVA, etc.). Amongst the alternatives, the onewaytests
is the first package including seven different one-way independent design tests that are covered in
one package. A brief comparison between these packages and onewaytests is given in Table 1. In
Table 1, the numbers in parentheses indicate the rankings of the functions in terms of computational
speed and the checks indicate the availability of the specific one-way design test in the packages. The
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onewaytests package has the fastest running times except for Welch’s heteroscedastic F test, where the
stats’s function elapse time is 0.001 seconds faster. Note that the computational time is system-specific
and may vary according to the number of iterations and the inclusion of additional arguments in the
functions.

Table 1: Comparison of R packages including one-way independent design tests

Test stats car lawstat welchADF WRS2 coin onewaytests
F (2)X (3)X (1)X
Fw (1)X (4)X (3)X (2)X
Fwt (3)X (2)X (1)X
FBF (2)X (1)X
χ2

AG X
J X
χ2

KW (2)X (3)X (1)X

Demonstration of the onewaytests package

The onewaytests package includes several functions specially designed for one-way independent
groups designs along with functions for assessing fundamental assumptions via relevant tests and
plots. In this section, we demonstrate the usage of onewaytests package by using two different data
sets from different fields.

Iris data

In this part, we work with iris data set, collected by Anderson (1935), available in R. Fisher (1936)
introduced this data set as an application of the linear discriminant analysis. At present, the popularity
of the data set still continues within a variety of studies; examples include the studies related to data
mining (Hu, 2005), multivariate normality assessment (Korkmaz et al., 2014), and so on.

This data set includes iris flowers’ length and width measurements of sepal and petal characteristics
in centimeters along with a grouping variable indicating the type of iris flowers (setosa, virginica and
versicolor). For illustrating the implementation of our package, we use sepal length measurements as
a response variable and iris types as a grouping variable. This data set has a total of 150 observations
(50 observations in each type of iris flowers).

After installing and loading onewaytests package, the functions designed for one-way indepen-
dent groups designs are available to be used. One-way tests in this package generally give test statistics
and p-values to decide on the hypothesis of the statistical process, except for James second order test.
In this test, test statistic and critical value are given as an output since the asymptotic distribution of
the test statistic is not available.

The onewaytests package is also able to give some basic descriptive statistics of the given groups.

# obtain some basic descriptive statistics
R> describe(Sepal.Length ~ Species, data = iris)

n Mean Std.Dev Median Min Max 25th 75th Skewness Kurtosis NA
setosa 50 5.006 0.3524897 5.0 4.3 5.8 4.800 5.2 0.1164539 2.654235 0
versicolor 50 5.936 0.5161711 5.9 4.9 7.0 5.600 6.3 0.1021896 2.401173 0
virginica 50 6.588 0.6358796 6.5 4.9 7.9 6.225 6.9 0.1144447 2.912058 0

For all functions in the onewaytests package, the argument must be specified as a formula in
which left and right-hand sides of the formula give sample values and its corresponding groups,
respectively. The left and right-hand sides of the formula must have one variable. The variable on
the left must be a numeric while the variable on the right must be a factor. Otherwise, each function
returns an error message.

The functions for one-way design tests are coded from scratch. The function for pairwise compari-
son is coded for pairwise comparison of one-way independent groups designs by using the p-value
adjustment methods available in the p.adjust function under stats package. For checking assump-
tions, the tests are used from different packages (stats, car and nortest (Gross and Ligges, 2015)) and
adapted for one-way independent groups designs. The function for the graphics is coded from scratch
using the ggplot2 package (Wickham, 2009).
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One-way tests in independent groups designs

The onewaytests package includes seven one-way tests in independent groups designs. In this part,
the implementations of these tests are presented.

ANOVA: aov.test(...)

The aov.test is utilized to test the equality of k independent population means.

R> aov.test(Sepal.Length ~ Species, data = iris, alpha = 0.05, na.rm = TRUE,
verbose = TRUE)

One-Way Analysis of Variance
---------------------------------------------------------
data : Sepal.Length and Species

statistic : 119.2645
num df : 2
denom df : 147
p.value : 1.669669e-31

Result : Difference is statistically significant.
---------------------------------------------------------

Here, the statistic is the ANOVA test statistic distributed as F with the degrees of freedom for
the numerator (num df) and denominator (denom df). Also, p.value is the significance value of the test
statistic. Since the p-value, derived from aov.test, is lower than 0.05, it can be concluded that there is
statistically significant difference between the iris species (F = 119.2645, p-value = 1.669669×10−31).

alpha is the level of significance to assess the statistical difference. Default is set to alpha = 0.05.
na.rm is a logical value indicating whether NA values should be stripped before the computation
proceeds. Default is na.rm = TRUE. verbose is a logical for printing output to R console. Default is set
to verbose = TRUE. These arguments are available in the functions for one-way tests and checking
assumptions. The users who would like to use the statistics in the output in their programs can use
the following codes.

R> result <- aov.test(Sepal.Length ~ Species, data = iris, alpha = 0.05, na.rm = TRUE,
verbose = FALSE)

# the ANOVA test statistic
R> result$statistic
[1] 119.2645

# the degrees of freedom for numerator and denominator
R> result$parameter
[1] 2 147

# the p-value of the test
R> result$p.value
[1] 1.669669e-31

Here, the codes for how to obtain the statistics from the ANOVA output are given. Since all
one-way design tests return similar outputs, similar codes are not repeated in the other tests. For all
tests, the level of significance is taken as 0.05.

Welch’s heteroscedastic F test: welch.test(...)

One may use the welch.test function in the onewaytests package to perform Welch’s heteroscedastic
F test.

R> welch.test(Sepal.Length ~ Species, data = iris)

Welch's Heteroscedastic F Test
---------------------------------------------------------
data : Sepal.Length and Species
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statistic : 138.9083
num df : 2
denom df : 92.21115
p.value : 1.505059e-28

Result : Difference is statistically significant.
---------------------------------------------------------

In the output, similar to aov.test, the statistic is the Welch’s test statistic distributed as F with
the degrees of freedom for the numerator (num df) and denominator (denom df). One can conclude that
the difference between the species is statistically significant (Fw = 138.9083, p-value = 1.505059×10−28).

Welch’s heteroscedastic F test with trimmed means and Winsorized variances: welch.test(...)

The welch.test function in the onewaytests package is also used to perform Welch’s heteroscedastic
F test with trimmed means and Winsorized variances.

R> welch.test(Sepal.Length ~ Species, data = iris, rate = 0.1)

Welch's Heteroscedastic F Test with Trimmed Means and Winsorized Variances
-----------------------------------------------------------------------------
data : Sepal.Length and Species

statistic : 123.6698
num df : 2
denom df : 71.64145
p.value : 5.84327e-24

Result : Difference is statistically significant.
-----------------------------------------------------------------------------

Here, the statistic is the test statistic distributed as F with the degrees of freedom for the numer-
ator (num df) and denominator (denom df). Moreover, the rate is the rate of observations trimmed
and Winsorized from each tail of the distribution. If rate = 0, it performs Welch’s heteroscedastic F
test. Otherwise, one can perform Welch’s heteroscedastic F test with trimmed means and Winsorized
variances. Default is set to rate = 0. One can conclude that there is a statistically significant difference
between the species (Fwt = 123.6698, p-value = 5.84327×10−24).

Brown-Forsythe test: bf.test(...)

One may use the bf.test function in the onewaytests package to perform Brown-Forsythe test to
compare more than two groups.

R> bf.test(Sepal.Length ~ Species, data = iris)

Brown-Forsythe Test
---------------------------------------------------------
data : Sepal.Length and Species

statistic : 119.2645
num df : 2
denom df : 123.9255
p.value : 1.317059e-29

Result : Difference is statistically significant.
---------------------------------------------------------

In the output, the statistic is the Brown-Forsythe test statistic distributed as F with the degrees
of freedom for numerator (num df) and denominator (denom df). It can be concluded that there is a
statistically significant difference between the iris species (FBF = 119.2645, p-value = 1.317059×10−29).

Alexander-Govern test: ag.test(...)

The ag.test function in the onewaytests package is used to perform Alexander-Govern test.
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R> ag.test(Sepal.Length ~ Species, data = iris)

Alexander-Govern Test
-----------------------------------------------------------
data : Sepal.Length and Species

statistic : 146.3573
parameter : 2
p.value : 1.655451e-32

Result : Difference is statistically significant.
-----------------------------------------------------------

Here, statistic is the Alexander-Govern test statistic distributed as χ2 with the degrees of freedom
(parameter). One can conclude that the difference between the species is statistically significant (χ2

AG
= 146.3573, p-value = 1.655451×10−32).

James second order test: james.test(...)

One may use the james.test function in the onewaytests package to perform James second order test.

R> james.test(Sepal.Length ~ Species, data = iris, alpha = 0.05)

James Second Order Test
---------------------------------------------------------------
data : Sepal.Length and Species

statistic : 279.8251
criticalValue : 6.233185

Result : Difference is statistically significant.
---------------------------------------------------------------

Here, alpha is the significance level, statistic is the James second order test statistic, J, criticalValue
is the critical value, h(α), corresponding to the significance level, α. If J exceeds h(α), then the null
hypothesis is rejected. Since J = 279.8251, obtained from james.test, is higher than h(α) = 6.233185,
it can be concluded that there is a statistically significant difference between the iris species.

Kruskal-Wallis test: kw.test(...)

The kw.test function in the onewaytests package is utilized to perform Kruskal-Wallis test.

R> kw.test(Sepal.Length ~ Species, data = iris)

Kruskal-Wallis Test
---------------------------------------------------------
data : Sepal.Length and Species

statistic : 96.93744
parameter : 2
p.value : 8.918734e-22

Result : Difference is statistically significant.
---------------------------------------------------------

In the output, statistic is the Kruskal-Wallis test statistic distributed as χ2 with the degrees
of freedom (parameter). One can conclude that the difference between the species is statistically
significant (χ2

KW = 96.93744, p-value = 8.918734×10−22).

Pairwise comparisons

In this part, we present the pairwise comparisons to investigate which groups create the difference.
We utilized the p.adjust function under the stats package (R Core Team, 2017) for our paircomp
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function. The paircomp function has also the same p-value adjustment methods as p.adjust, including
bonferroni, holm (Holm, 1979), hochberg (Hochberg, 1988), hommel (Hommel, 1988), BH (Benjamini
and Hochberg, 1995), BY (Benjamini and Yekutieli, 2001), and none. The default is set to "bonferroni".
Pairwise comparisons are made by adjusting p-values according to the specified method, except when
the method is James second order test, which requires adjusting the significance level instead of the
p-value.

One-way tests return a list with class "owt" except for James second order test. The reason for
returning a list with class "owt" is to introduce the output to the paircomp function for pairwise
comparison adjusting p-values according to the specified method. Besides, James second order test
returns a list with class "jt" introducing the output to the paircomp function for pairwise comparison
by adjusting the significance level instead of the p-value.

In the iris example, there is a statistically significant difference between iris species in terms of sepal
length measurements. All pairwise comparisons of groups can be conducted using paircomp function.
For simplicity, the Bonferroni correction is applied to show the usage of the pairwise comparisons
following the significant result obtained by Alexander-Govern test and James second order test.

# Alexander-Govern test
R> out <- ag.test(Sepal.Length ~ Species, data = iris, verbose = FALSE)
R> paircomp(out, adjust.method = "bonferroni")

Bonferroni Correction (alpha = 0.05)
------------------------------------------------------

Level (a) Level (b) p.value No difference
1 setosa versicolor 8.187007e-17 Reject
2 setosa virginica 1.105024e-25 Reject
3 versicolor virginica 5.913702e-07 Reject
------------------------------------------------------

# James second order test
R> out <- james.test(Sepal.Length ~ Species, data = iris, verbose = FALSE)
R> paircomp(out, adjust.method = "bonferroni")

Bonferroni Correction (alpha = 0.0166666666666667)
----------------------------------------------------------------

Level (a) Level (b) statistic criticalValue No difference
1 setosa versicolor 110.6912 5.959328 Reject
2 setosa virginica 236.7350 5.992759 Reject
3 versicolor virginica 31.6875 5.938643 Reject
----------------------------------------------------------------

In both Alexander-Govern and James second order tests with Bonferroni correction, statistical
differences between all types of iris flowers are significant in terms of sepal length measurements.

Checking assumptions via tests and plots

Two main assumptions, normality and variance homogeneity, can be checked through the onewaytests
package. One can assess the variance homogeneity via homog.test, which has options including
Levene (Levene’s test), Bartlett (Bartlett’s test) and Fligner (Fligner-Killeen test). Also, the normality
of data in each group can be checked through nor.test, which has options including SW (Shapiro-Wilk
test), SF (Shapiro-Francia test), LT (Lilliefors test known as Kolmogorov-Smirnov test), AD (Anderson-
Darling test), CVM (Cramer-von Mises test), PT (Pearson Chi-square test). Moreover, the nor.test has
options to assess the normality of data in each group through plots (Q-Q plots and Histograms with
normal curves).

# Bartlett's homogeneity test
R> homog.test(Sepal.Length ~ Species, data = iris, method = "Bartlett")

Bartlett's Homogeneity Test
-----------------------------------------------
data : Sepal.Length and Species

statistic : 16.0057
parameter : 2
p.value : 0.0003345076
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Result : Variances are not homogeneous.
-----------------------------------------------

Bartlett’s homogeneity test results reveal that the variances between iris species are not homoge-
neous (χ2 = 16.0057, p-value = 0.0003345076).

# Shapiro-Wilk normality test
R> nor.test(Sepal.Length ~ Species, data = iris, method = "SW", plot = "qqplot-histogram")

Shapiro-Wilk Normality Test
--------------------------------------------------
data : Sepal.Length and Species

Level Statistic p.value Normality
1 setosa 0.9776985 0.4595132 Not reject
2 versicolor 0.9778357 0.4647370 Not reject
3 virginica 0.9711794 0.2583147 Not reject
--------------------------------------------------

Shapiro-Wilk normality test results state that there is not enough evidence to reject the normality
of sepal length values in each iris species since all p-values are greater than 0.05. Also, the normality of
data in each group can be assessed visually by Q-Q plots and histograms with normal curves (Figure
1).
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Figure 1: Q-Q plots and histograms with normal curves

Graphical approaches

The users can obtain several graphic types of given groups via the gplot, which has options involving
box-and-whisker plot with violin line - a rotated density line on each side - (Figure 2a), box-and-
whisker plot (Figure 2b), mean ± standard deviation graph (Figure 2c) and mean ± standard error
graph (Figure 2d). These graphics can be obtained via the following codes:

# Box-and-whisker plot with violin line
R> gplot(Sepal.Length ~ Species, data = iris, type = "boxplot")

# Box-and-whisker plot
R> gplot(Sepal.Length ~ Species, data = iris, type = "boxplot", violin = FALSE)
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# Mean +- standard deviation graph
R> gplot(Sepal.Length ~ Species, data = iris, type = "errorbar", option = "sd")

# Mean +- standard error graph
R> gplot(Sepal.Length ~ Species, data = iris, type = "errorbar", option = "se")
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(a) Box-and-whisker plot with violin line
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(c) Mean ± standard deviation graph
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(d) Mean ± standard error graph

Figure 2: Graphics of given groups

German breast cancer data

In this part, we utilize German breast cancer study group (GBSG) data set, available in the mfp package
(Ambler and Benner, 2015) in R. This data set was collected from a cohort study and measurements
from patients with primary node positive breast cancer were taken between July 1984 and December
1989. Seven risk factors, including menopausal status, tumor size, tumor grade, age, number of
positive lymph nodes, progesterone and oestrogen receptor concentrations were examined in the work
done by Sauerbrei et al. (1999). For illustrative purposes, we take the dependent variable as recurrence
- free survival times of patients, of whom an event for recurrence-free survival occurs, and the factor
as tumor grade. This factor is a three-level categorical variable: 1 = grade I, 2 = grade II , and 3 = grade
III. A total of 299 observations (18, 202, 79 observations in each group, respectively) are available.

The objective of adding GBSG dataset is showing the usage of the package in practice rather than
demonstrating the usage of all functions in the onewaytests package. After checking the normality
and variance homogeneity assumptions, an appropriate one-way test is decided to compare groups.
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Also, pairwise comparisons are applied when it is necessary to determine which groups create the
difference.

After installing and loading the mfp package, GBSG dataset can be reached by using the following
R code.

# load GBSG data
R> data("GBSG")

# select the patients of whom an event for recurrence-free survival occurs
R> GBSG_subset <- GBSG[GBSG$cens == 1,]

# obtain the descriptive statistics of the tumor grades in terms of recurrence-free
# survival times
R> describe(rfst ~ tumgrad, data = GBSG_subset)

n Mean Std.Dev Median Min Max 25th 75th Skewness Kurtosis NA
1 18 1052.1111 444.5332 969.0 476 1990 729 1290.25 0.8712495 2.938206 0
2 202 845.9505 511.2683 729.5 72 2456 487 1160.75 0.9484978 3.253876 0
3 79 616.6076 432.2091 476.0 98 2034 312 758.00 1.4487566 4.698735 0

The assumptions of variance homogeneity and normality are assessed by using homog.test and
nor.test, respectively.

# Bartlett's homogeneity test
R> homog.test(rfst ~ tumgrad, data = GBSG_subset, method = "Bartlett")

Bartlett's Homogeneity Test
-----------------------------------------------
data : rfst and tumgrad

statistic : 3.262419
parameter : 2
p.value : 0.1956927

Result : Variances are homogeneous.
-----------------------------------------------

Bartlett’s homogeneity test results reveal that there is no enough evidence to reject the variance
homogeneity (χ2 = 3.262419, p-value = 0.1956927) since p-value is larger than 0.05.

# Shapiro-Wilk normality test
R> nor.test(rfst ~ tumgrad, data = GBSG_subset, method = "SW")

Shapiro-Wilk Normality Test
--------------------------------------------------
data : rfst and tumgrad

Level Statistic p.value Normality
1 1 0.9097324 8.510408e-02 Not reject
2 2 0.9195909 4.749653e-09 Reject
3 3 0.8489033 1.708621e-07 Reject
--------------------------------------------------

Shapiro-Wilk normality test results state that there is not enough evidence to reject the normality
of recurrence - free survival times of the patients with tumor grade I since p-value is greater than 0.05.
The normality of recurrence - free survival times of the patients with tumor grade II and III is not
met since the p-value is smaller than 0.05. Our simulation study results suggest that ANOVA is the
appropriate one-way test in such case.

R> aov.test(rfst ~ tumgrad,data = GBSG_subset)

One-Way Analysis of Variance
---------------------------------------------------------
data : rfst and tumgrad
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statistic : 8.875494
num df : 2
denom df : 296
p.value : 0.000180542

Result : Difference is statistically significant.
---------------------------------------------------------

Since the p-value, derived from aov.test, is lower than 0.05, it can be concluded that there is a
statistically significant difference between the tumor grades with respect to recurrence - free survival
times (F = 8.875494, p-value = 0.000180542).

On the other hand, we observe that recurrence - free survival times of the patients with tumor
grade II and III have few outliers and positively-skewed distributed. Liao et al. (2016) suggests that
Kruskal-Wallis test should be used in such cases. Therefore, this test is also utilized along with ANOVA
to compare groups.

R> kw.test(rfst ~ tumgrad, data = GBSG_subset)

Kruskal-Wallis Test
---------------------------------------------------------
data : rfst and tumgrad

statistic : 23.42841
parameter : 2
p.value : 8.176855e-06

Result : Difference is statistically significant.
---------------------------------------------------------

One can conclude that the difference between the tumor grades with respect to recurrence - free
survival times is statistically significant (χ2

KW = 23.42841, p-value = 8.176855×10−06) since p-value is
smaller than 0.05.

Both ANOVA and Kruskal-Wallis test results reveal that there is a statistically significant difference
between tumor grade groups in terms of recurrence-free survival times. In the next step, we need to
determine which groups create the difference.

# ANOVA
R> out <- aov.test(rfst ~ tumgrad, data = GBSG_subset, verbose = FALSE)
R> paircomp(out, adjust.method = "bonferroni")

Bonferroni Correction (alpha = 0.05)
------------------------------------------------------
Level (a) Level (b) p.value No difference

1 1 2 0.2980174599 Not reject
2 1 3 0.0006698433 Reject
3 2 3 0.0014901832 Reject
------------------------------------------------------

# Kruskal-Wallis test
R> out<- kw.test(rfst ~ tumgrad, data = GBSG_subset, verbose = FALSE)
R> paircomp(out, adjust.method = "bonferroni")

Bonferroni Correction (alpha = 0.05)
------------------------------------------------------
Level (a) Level (b) p.value No difference

1 1 2 0.0949942647 Not reject
2 1 3 0.0001333143 Reject
3 2 3 0.0002457434 Reject
------------------------------------------------------

Pairwise comparisons with Bonferroni correction after both ANOVA and Kruskal-Wallis test
indicate that there is no statistically significant difference between the patients with tumor grade I and
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those with tumor grade II in terms of recurrence-free survival times. On the other hand, there exists a
statistically significant difference between the patients with tumor grade I/II and those with tumor
grade III.

Web interface of onewaytests package

The objective of this package is to provide the users with one-way tests in independent groups designs,
pairwise comparisons, graphical approaches, and assess variance homogeneity and normality of data
in each group via tests and plots. At times, it is difficult for new R users or applied researchers to deal
with R codes. Thus, we have developed a web interface of onewaytests package by using shiny (Chang
et al., 2017). The web interface is available at http://www.softmed.hacettepe.edu.tr/onewaytests.

(a) Data upload (b) Describe data

(c) One-way tests (d) Graphics

Figure 3: Web interface of onewaytests package

Users can upload their data to the tool via Data upload tab (Figure 3a). There exist two demo
datasets on this tab for the users to test the tool. Basic descriptive statistics can be obtained through
Describe data tab (Figure 3b). Moreover, assumptions of variance homogeneity and normality can be
checked via this tab to decide on which one-way test is appropriate to test the statistical difference.
Variance homogeneity is checked by variance homogeneity tests (Levene’s test, Bartlett’s test, Fligner-
Killeen test). The normality of data in each group is assessed by normality tests (Shapiro-Wilk,
Cramer-von Mises, Lilliefors (Kolmogorov-Smirnov), Shapiro-Francia, Anderson-Darling, Pearson
Chi-Square tests) and plots (Q-Q plot and Histogram with a normal curve). After describing the data,
users can test statistical difference between groups through One-way tests tab (Figure 3c). In this tab,
there exist one-way tests (ANOVA, Welch’s heteroscedastic F, Welch’s heteroscedastic F test with
trimmed means and Winsorized variances, Brown-Forsythe, Alexander-Govern, James second order
test, Kruskal-Wallis tests) and pairwise comparison methods (Bonferroni, Holm, Hochberg, Hommel,
Benjamini-Hochberg, Benjamini-Yekutieli, no corrections). Moreover, users can obtain the graphics of
given groups (Figure 2) through Graphics tab (Figure 3d).

Simulation study

In this section, it is aimed to compare the performances of seven tests in terms of type I error and
adjusted power (Lloyd, 2005), and give some general suggestions on which test(s) should be used or
avoided under the violations of assumptions. The adjusted power, R(α), is

R(α) = Φ(δ̂ + Φ−1(α)), (10)

with
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δ̂ = Φ−1(1− β̂)−Φ−1(α̂).

In Equation (10), α̂ is the estimated type I error, β̂ is the estimated type II error, α is the nominal
size for type I error, Φ and Φ−1 are the cumulative and inverse cumulative distribution functions of
the standard normal distribution, respectively.

Simulation design

A Monte Carlo simulation is implemented to illustrate the performances of these tests for the scenarios
in which the assumptions of normality and/or variance homogeneity are held or not. The algorithm
of the simulation study can be depicted as follows:

i) Generate three random samples from normal or skew normal distribution with means µ1, µ2 and
µ3 and standard deviations σ1, σ2, σ3. Group standard deviations are taken as σ1 = σ2 = σ3 = 1
for homogeneous case, and σ1 = 1, σ2 =

√
2, σ3 = 2 for heterogeneous case. Skewness γ is set

to γ = 0 for normal distribution, γ = 0.5 for positive skew normal distribution and γ = −0.5
for negative skew normal distribution with different sample size combinations (balanced and
unbalanced). Set µ1 = µ2 = µ3 = 0 for gathering type I error; µ1 = 0, µ2 = 0.25, µ3 = 0.5 or
µ1 = 0, µ2 = 0.5, µ3 = 1 or µ1 = 0, µ2 = 1, µ3 = 2 for power.

ii) Check whether groups are different by the corresponding one-way test in independent groups
designs at the level of significance α (α = 0.05).

iii) Repeat steps i) - ii) for 10,000 times and calculate the probability of rejecting the null hypothesis
when the null hypothesis is true (type I error) or false (power).

iv) Calculate adjusted power (given in Lloyd (2005)) by using the estimated type I error and power
found in iii).

Results

In this section, the performances of one-way tests in independent groups designs are investigated
through type I error and adjusted power. All results are not given here to protect the content integrity,
but attached as supplementary tables 2–4.

Type I error rates

In this part, we compare seven one-way tests in terms of their type I errors. We observed that the type
I errors get closer to nominal level as sample size increases under the data generated from normal
distribution (γ = 0) with equal variances (σ1 = σ2 = σ3 = 1). Kruskal-Wallis test tends to be more
conservative compared to the rest of them in the unbalanced small sample sizes (n1 = 6, n2 = 9, n3 =
15). When variance homogeneity is not held under normality, unbalance of sample sizes causes a
decline in type I error rates of ANOVA and Kruskal-Wallis test regardless of sample size.

When the data in each group come from right skew normal distribution (γ = 0.5) with un-
balanced small sample size setting, type I error rate of ANOVA is estimated to be 0.052 under
variance homogeneity (σ1 = σ2 = σ3 = 1) whereas it declines to 0.026 under variance heterogeneity
(σ1 = 1, σ2 =

√
2, σ3 = 2). The type I error rate of ANOVA is negatively affected by the combined effect

of heterocedasticity and unbalanced sample size. Especially, when the smaller variances are associated
with groups having smaller sample size, the empirical type I error rate of ANOVA is halved compared
to the homoscedastic case. Kruskal-Wallis test is dramatically affected by variance heterogeneity. It
tends to be conservative in the unbalanced case whereas it becomes liberal in the balanced case.

James second order test, Alexander-Govern test, Welch’s heteroscedastic F test and Welch’s het-
eroscedastic F test with trimmed means and Winsorized variances control the type I error rate at the
nominal size for all simulation scenarios. Brown-Forsythe test is not able to control type I error rate;
especially when the variances are heterogeneous, it becomes liberal.

Adjusted powers

Adjusted power is important to compare tests having different type I errors since it adjusts power
with respect to type I error. The results are illustrated in Figures 4–5 to see the clear difference among
the tests.

Within the tests discussed in this study, ANOVA is the best one with respect to adjusted power
when the sample sizes are not equal under normality (γ = 0) and variance homogeneity (σ1 = σ2 =
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σ3 = 1). Under the same condition, ANOVA and Brown-Forsythe test are superior to the rest of
them in terms of adjusted power when the design of sample size is balanced. As expected, ANOVA
performs poor under normality when variances are unstable (σ1 = 1, σ2 =

√
2, σ3 = 2); however,

Alexander-Govern, James and Welch’s heteroscedastic F tests have higher adjusted powers compared
to other tests. Brown-Forsythe and Kruskal-Wallis tests perform poorly compared to the others under
the same condition.

When the data are generated from positive skew normal distribution (γ = 0.5) with equal variances,
ANOVA and Kruskal-Wallis test perform better than other tests. ANOVA is slightly better than
Kruskal-Wallis test for small sample sizes and vice versa is true for the medium sample sizes. James,
Alexander-Govern and Welch’s heteroscedastic F tests have the highest adjusted powers among the
whole tests for all scenario combinations under the data generated from a positive skew normal
distribution with heterogeneous variances.

ANOVA, Brown-Forsythe test and Kruskal-Wallis test perform better than the other tests when the
data are generated from negative skew normal distribution (γ = −0.5) with homogeneous variances
and equal sample sizes; however, Kruskal-Wallis test is slightly superior to ANOVA and Brown-
Forsythe test. The adjusted power of ANOVA seems not to be affected by the skewness and it performs
best under the same condition when the design of sample size is unbalanced. When the data are
generated from the negative skew normal distribution with heterogeneous variances, Kruskal-Wallis
test performs best for low (µ1 = 0, µ2 = 0.25, µ3 = 0.5) and medium (µ1 = 0, µ2 = 0.5, µ3 = 1) effect
sizes while Welch’s heteroscedastic F test with trimmed mean and Winsorized variance has higher
performance compared to other tests for high effect size (µ1 = 0, µ2 = 1, µ3 = 2).

It is noted that the Kruskal-Wallis test is affected by the skewness of the distribution especially
under heterogeneity of variance (σ1 = 1, σ2 =

√
2, σ3 = 2). Kruskal-Wallis test has the highest

adjusted power when the data are generated from a negatively skewed distribution (γ = −0.5). On
the other hand, it has the lowest adjusted power when the data are generated from a positively skewed
distribution (γ = 0.5).
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Figure 4: Estimated adjusted power results under homogeneous-variance (σ1 = σ2 = σ3 = 1) scenarios
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Figure 5: Estimated adjusted power results under heterogeneous-variance (σ1 = 1, σ2 =
√

2, σ3 = 2)
scenarios

Summary and further research

One-way tests in independent groups designs are the most commonly utilized statistical methods with
applications on the experiments in medical sciences, pharmaceutical research, agriculture, biology,
chemistry, engineering, and social sciences. In this paper, we present the onewaytests package for
researchers to investigate treatment effects on the dependent variable.

The onewaytests package includes well-known one-way tests in independent groups designs
including one-way analysis of variance, Kruskal-Wallis test, Welch heteroscedastic F test, Brown-
Forsythe test. In addition to these well-known tests, Alexander-Govern test, James second order test
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and Welch heteroscedastic F test with trimmed means and Winsorized variances, not available in most
statistical software, are able to be reached via this package. Also, pairwise comparisons can be applied
if the statistically significant difference is obtained.

Normality and variance homogeneity are the vital assumptions for the selection of the appropriate
test. Therefore, this package also enables the users to check these assumptions via variance homo-
geneity and normality tests. It also enables the users some basic descriptive statistics and graphical
approaches.

ANOVA is the most commonly used method for one-way independent groups designs. However,
this method has two certain assumptions, homogeneity of variances and normality, to be satisfied.
When these assumptions are not met, there are some other alternatives for one-way independent
groups designs, which include Welch’s heteroscedastic F test, Welch’s heteroscedastic F test with
trimmed means and Winsorized variances, Alexander-Govern test, James second order test, Brown-
Forsythe test and Kruskal-Wallis test.

In this paper, we also compared seven one-way tests in onewaytests package with respect to
the type I error rate and adjusted power. In the light of Monte Carlo simulation, it is noted that the
normality assumption does not have a negative effect on the adjusted power of the tests as severe
as variance homogeneity assumption. ANOVA is suggested to be used if the variance homogeneity
assumption is held. Otherwise, Alexander-Govern, James second order and Welch’s heteroscedastic
F tests are recommended to be utilized. It is pointed out that under the negatively skew normal
distribution with heterogeneous variances, Kruskal-Wallis test performs best with small and medium
effect sizes while the Welch’s heteroscedastic F test with trimmed means and Winsorized variances
has the highest adjusted power with large effect size.

At present, the onewaytests package offers the one-way tests in independent groups designs,
pairwise comparisons, graphical approaches, and assessment of variance homogeneity and normality
via tests and plots. The package and its web-interface will be updated at regular intervals.
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Supplementary Material

Table 2: Estimated type I error rates

Distribution σ1, σ2, σ3 n1, n2, n3 F Fw Fwt FBF χ2
AG J χ2

KW

6, 9, 15 0.046 0.047 0.047 0.046 0.046 0.047 0.041
10, 10, 10 0.052 0.050 0.050 0.050 0.049 0.051 0.047
18, 27, 45 0.049 0.051 0.051 0.048 0.051 0.051 0.048

1, 1, 1 30, 30, 30 0.051 0.052 0.053 0.051 0.052 0.052 0.051
60, 90, 150 0.050 0.049 0.050 0.051 0.049 0.049 0.050

Normal 100, 100, 100 0.051 0.050 0.052 0.051 0.050 0.050 0.050

(γ = 0) 6, 9, 15 0.023 0.045 0.047 0.051 0.043 0.046 0.029
10, 10, 10 0.058 0.051 0.051 0.053 0.050 0.052 0.054
18, 27, 45 0.025 0.050 0.050 0.053 0.049 0.050 0.032

1,
√

2, 2 30, 30, 30 0.058 0.052 0.051 0.056 0.051 0.052 0.055
60, 90, 150 0.025 0.051 0.051 0.055 0.051 0.051 0.034

100, 100, 100 0.059 0.052 0.052 0.059 0.052 0.052 0.059
6, 9, 15 0.052 0.055 0.053 0.051 0.056 0.055 0.047

10, 10, 10 0.048 0.048 0.048 0.046 0.048 0.050 0.045
18, 27, 45 0.053 0.054 0.052 0.052 0.053 0.054 0.050

1, 1, 1 30, 30, 30 0.047 0.046 0.045 0.047 0.045 0.046 0.046
60, 90, 150 0.046 0.046 0.050 0.046 0.046 0.046 0.049

Skew Normal 100, 100, 100 0.052 0.052 0.052 0.052 0.052 0.052 0.050

(γ = 0.5) 6, 9, 15 0.026 0.052 0.051 0.053 0.052 0.053 0.032
10, 10, 10 0.059 0.051 0.051 0.054 0.051 0.053 0.052
18, 27, 45 0.023 0.051 0.053 0.055 0.050 0.051 0.038

1,
√

2, 2 30, 30, 30 0.053 0.046 0.046 0.052 0.046 0.046 0.057
60, 90, 150 0.022 0.048 0.052 0.052 0.048 0.048 0.052

100, 100, 100 0.058 0.050 0.053 0.058 0.050 0.050 0.082
6, 9, 15 0.048 0.050 0.051 0.048 0.053 0.051 0.045

10, 10, 10 0.051 0.048 0.048 0.048 0.048 0.048 0.043
18, 27, 45 0.048 0.051 0.049 0.049 0.050 0.051 0.047

1, 1, 1 30, 30, 30 0.048 0.047 0.048 0.048 0.047 0.047 0.045
60, 90, 150 0.049 0.051 0.050 0.050 0.050 0.051 0.049

Skew Normal 100, 100, 100 0.053 0.054 0.054 0.053 0.053 0.054 0.052

(γ = −0.5) 6, 9, 15 0.024 0.047 0.049 0.048 0.047 0.049 0.031
10, 10, 10 0.058 0.051 0.051 0.054 0.050 0.052 0.053
18, 27, 45 0.024 0.049 0.049 0.053 0.048 0.049 0.037

1,
√

2, 2 30, 30, 30 0.054 0.048 0.048 0.052 0.047 0.048 0.059
60, 90, 150 0.022 0.050 0.050 0.054 0.049 0.050 0.054

100, 100, 100 0.058 0.054 0.055 0.058 0.054 0.054 0.085
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Table 3: Adjusted power results

Distribution σ1, σ2, σ3 n1, n2, n3 µ1, µ2, µ3 F Fw Fwt FBF χ2
AG J χ2

KW

0, 0.25, 0.5 0.141 0.129 0.127 0.130 0.132 0.130 0.136
6, 9, 15 0, 0.5, 1 0.447 0.400 0.392 0.417 0.404 0.399 0.428

0, 1, 2 0.961 0.937 0.931 0.948 0.937 0.937 0.951

0, 0.25, 0.5 0.140 0.136 0.136 0.141 0.133 0.138 0.139
10, 10, 10 0, 0.5, 1 0.449 0.436 0.436 0.451 0.430 0.437 0.433

0, 1, 2 0.973 0.963 0.963 0.973 0.961 0.964 0.963

0, 0.25, 0.5 0.353 0.335 0.324 0.351 0.334 0.334 0.335
1, 1, 1 18, 27, 45 0, 0.5, 1 0.911 0.897 0.886 0.905 0.895 0.896 0.894

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.367 0.356 0.343 0.368 0.356 0.356 0.347
30, 30, 30 0, 0.5, 1 0.937 0.930 0.915 0.937 0.929 0.930 0.920

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.861 0.858 0.848 0.859 0.858 0.858 0.842
60, 90, 150 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.891 0.890 0.877 0.891 0.891 0.890 0.874
100, 100, 100 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Normal 0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(γ = 0) 0, 0.25, 0.5 0.091 0.093 0.089 0.086 0.096 0.093 0.087
6, 9, 15 0, 0.5, 1 0.214 0.228 0.220 0.209 0.232 0.229 0.207

0, 1, 2 0.682 0.721 0.703 0.691 0.724 0.723 0.677

0, 0.25, 0.5 0.084 0.089 0.089 0.086 0.087 0.089 0.082
10, 10, 10 0, 0.5, 1 0.200 0.217 0.217 0.200 0.217 0.219 0.195

0, 1, 2 0.657 0.697 0.697 0.655 0.702 0.700 0.647

0, 0.25, 0.5 0.164 0.192 0.186 0.175 0.192 0.193 0.170
1,
√

2, 2 18, 27, 45 0, 0.5, 1 0.562 0.629 0.612 0.574 0.630 0.630 0.568
0, 1, 2 0.995 0.997 0.996 0.996 0.997 0.997 0.995

0, 0.25, 0.5 0.167 0.185 0.180 0.166 0.187 0.185 0.165
30, 30, 30 0, 0.5, 1 0.553 0.615 0.600 0.554 0.619 0.615 0.561

0, 1, 2 0.996 0.997 0.997 0.996 0.998 0.997 0.994

0, 0.25, 0.5 0.491 0.559 0.545 0.496 0.558 0.560 0.496
60, 90, 150 0, 0.5, 1 0.987 0.994 0.992 0.987 0.994 0.994 0.988

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.483 0.553 0.545 0.482 0.554 0.553 0.483
100, 100, 100 0, 0.5, 1 0.988 0.994 0.992 0.988 0.994 0.994 0.985

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0, 0.25, 0.5 0.128 0.137 0.127 0.135 0.136 0.137 0.134

6, 9, 15 0, 0.5, 1 0.419 0.395 0.372 0.410 0.392 0.393 0.418
0, 1, 2 0.955 0.919 0.906 0.924 0.918 0.917 0.944

0, 0.25, 0.5 0.150 0.141 0.141 0.149 0.138 0.141 0.144
10, 10, 10 0, 0.5, 1 0.472 0.450 0.450 0.470 0.443 0.450 0.463

0, 1, 2 0.972 0.964 0.964 0.971 0.961 0.964 0.967

0, 0.25, 0.5 0.348 0.350 0.345 0.352 0.351 0.350 0.359
Skew Normal 1, 1, 1 18, 27, 45 0, 0.5, 1 0.907 0.891 0.887 0.895 0.892 0.891 0.907

(γ = 0.5) 0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.397 0.395 0.386 0.397 0.396 0.395 0.398
30, 30, 30 0, 0.5, 1 0.942 0.939 0.934 0.942 0.940 0.939 0.943

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.875 0.868 0.851 0.867 0.869 0.868 0.870
60, 90, 150 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.890 0.887 0.882 0.890 0.887 0.887 0.894
100, 100, 100 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4: Adjusted power results continued

Distribution σ1, σ2, σ3 n1, n2, n3 µ1, µ2, µ3 F Fw Fwt FBF χ2
AG J χ2

KW

0, 0.25, 0.5 0.072 0.085 0.077 0.083 0.085 0.085 0.068
6, 9, 15 0, 0.5, 1 0.181 0.216 0.193 0.199 0.215 0.216 0.172

0, 1, 2 0.664 0.691 0.659 0.684 0.687 0.693 0.652

0, 0.25, 0.5 0.072 0.072 0.072 0.069 0.072 0.073 0.067
10, 10, 10 0, 0.5, 1 0.180 0.194 0.194 0.176 0.194 0.192 0.170

0, 1, 2 0.672 0.693 0.693 0.661 0.693 0.692 0.653

0, 0.25, 0.5 0.169 0.199 0.174 0.171 0.200 0.198 0.109
Skew Normal 1,

√
2, 2 18, 27, 45 0, 0.5, 1 0.573 0.625 0.591 0.579 0.627 0.625 0.475

(γ = 0.5) 0, 1, 2 0.997 0.997 0.995 0.996 0.997 0.997 0.993

0, 0.25, 0.5 0.167 0.189 0.167 0.166 0.188 0.189 0.111
30, 30, 30 0, 0.5, 1 0.584 0.639 0.593 0.582 0.638 0.639 0.483

0, 1, 2 0.997 0.998 0.997 0.997 0.998 0.998 0.994

0, 0.25, 0.5 0.514 0.573 0.489 0.516 0.573 0.573 0.246
60, 90, 150 0, 0.5, 1 0.991 0.994 0.989 0.991 0.994 0.994 0.949

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.487 0.554 0.486 0.487 0.554 0.554 0.245
100, 100, 100 0, 0.5, 1 0.990 0.994 0.990 0.990 0.994 0.994 0.946

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0, 0.25, 0.5 0.144 0.111 0.120 0.120 0.107 0.111 0.135

6, 9, 15 0, 0.5, 1 0.432 0.364 0.386 0.396 0.355 0.365 0.417
0, 1, 2 0.961 0.940 0.946 0.962 0.935 0.940 0.959

0, 0.25, 0.5 0.142 0.142 0.142 0.142 0.138 0.142 0.150
10, 10, 10 0, 0.5, 1 0.455 0.449 0.449 0.457 0.439 0.451 0.470

0, 1, 2 0.972 0.966 0.966 0.972 0.963 0.966 0.970

0, 0.25, 0.5 0.358 0.322 0.325 0.340 0.322 0.322 0.356
1, 1, 1 18, 27, 45 0, 0.5, 1 0.917 0.908 0.903 0.920 0.907 0.908 0.921

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.391 0.392 0.376 0.390 0.390 0.393 0.401
30, 30, 30 0, 0.5, 1 0.941 0.939 0.929 0.941 0.937 0.939 0.943

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.867 0.860 0.862 0.868 0.861 0.860 0.867
60, 90, 150 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.884 0.880 0.874 0.884 0.880 0.880 0.892
100, 100, 100 0, 0.5, 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Skew Normal 0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(γ = −0.5) 0, 0.25, 0.5 0.101 0.094 0.098 0.092 0.091 0.094 0.102
6, 9, 15 0, 0.5, 1 0.240 0.229 0.243 0.225 0.223 0.230 0.249

0, 1, 2 0.672 0.720 0.728 0.691 0.707 0.720 0.694

0, 0.25, 0.5 0.094 0.103 0.103 0.094 0.102 0.104 0.104
10, 10, 10 0, 0.5, 1 0.220 0.240 0.240 0.220 0.242 0.242 0.243

0, 1, 2 0.658 0.713 0.713 0.649 0.717 0.713 0.692

0, 0.25, 0.5 0.188 0.197 0.207 0.178 0.197 0.197 0.242
1,
√

2, 2 18, 27, 45 0, 0.5, 1 0.579 0.635 0.645 0.582 0.633 0.636 0.666
0, 1, 2 0.993 0.999 0.999 0.996 0.999 0.999 0.998

0, 0.25, 0.5 0.180 0.213 0.225 0.183 0.213 0.212 0.238
30, 30, 30 0, 0.5, 1 0.574 0.646 0.658 0.576 0.647 0.646 0.659

0, 1, 2 0.994 0.997 0.998 0.994 0.997 0.997 0.997

0, 0.25, 0.5 0.518 0.576 0.624 0.517 0.577 0.576 0.659
60, 90, 150 0, 0.5, 1 0.988 0.994 0.996 0.988 0.994 0.994 0.996

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0, 0.25, 0.5 0.487 0.552 0.595 0.486 0.552 0.552 0.630
100, 100, 100 0, 0.5, 1 0.984 0.992 0.994 0.984 0.992 0.991 0.995

0, 1, 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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