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Semiparametric Generalized Linear
Models with the gldrm Package
by Michael J. Wurm and Paul J. Rathouz

Abstract This paper introduces a new algorithm to estimate and perform inferences on a recently
proposed and developed semiparametric generalized linear model (glm). Rather than selecting a
particular parametric exponential family model, such as the Poisson distribution, this semiparametric
glm assumes that the response is drawn from the more general exponential tilt family. The regression
coefficients and unspecified reference distribution are estimated by maximizing a semiparametric like-
lihood. The new algorithm incorporates several computational stability and efficiency improvements
over the algorithm originally proposed. In particular, the new algorithm performs well for either small
or large support for the nonparametric response distribution. The algorithm is implemented in a new
R package called gldrm.

Introduction

Rathouz and Gao (2009) introduced the generalized linear density ratio model (gldrm), which is a
novel semiparametric formulation of the classical glm. Although Rathouz and Gao did not use the
term gldrm, we refer to it as such because it is a natural extension of the density ratio model (see e.g.
Lovric (2011)). Like a standard glm, the gldrm relates the conditional mean of the response to a linear
function of the predictors through a known link function g. To be specific, let the random variable Y
be a scalar response, and let X be a p× 1 covariate vector for a particular observation. The model for
the mean is

E(Y|X = x) = g−1(xT β) . (1)

Because Equation 1 holds for both gldrm and glm, the regression coefficients have the same inter-
pretation for both models. The gldrm relaxes the standard glm assumption that the distribution of
Y|X comes from a particular exponential family model. Instead, assume that Y|X comes from an
exponential tilt model of the form

f (y|X = x) = f0(y) exp{θy− b(θ)} , (2)

where
b(θ) = log

∫
f0(y) exp(θy) dλ(y) , (3)

and θ is defined implicitly as the solution to

g−1(xT β) =
∫

y exp{θy− b(θ)} dλ(y) . (4)

Here f0 is an unspecified probability density with respect to a measure λ. We call f0 the reference
distribution. Measure λ is Lebesgue if Y|X is continuous, a counting measure if Y|X is discrete, or a
mixture of the two if Y|X has a mixture distribution. Note that E(Y|X) = b′(θ) and Var(Y|X) = b′′(θ),
which are standard glm properties.

The regression coefficients β and reference distribution f0 are estimated by maximizing a semi-
parametric likelihood function, which contains a nonparametric representation of f0 that has point
mass only at values of Y observed in the data. The quantity θ is not a parameter in this model, but
rather a function of the free parameters β and f0, as well as of X. This work was fully developed
by Huang and Rathouz (2012), who first focused on the case where the covariate vector takes one
of finitely many values, drawing on theoretical arguments advanced in the empirical likelihood
literature (e.g. Owen et al. (2001)). Drawing on semiparametric profile likelihood methods, Huang
(2014) went on to fully generalize the asymptotic arguments, proving consistency and asymptotic
normality of the regression coefficient estimators, and deriving the asymptotic variance matrix using
the profile likelihood. Huang also proved pointwise asymptotic normality of the reference cumulative
distribution function estimator.

Despite these important theoretical advances, computation for this model has remained a practical
challenge. The original algorithm in Rathouz and Gao (2009) is somewhat rudimentary and applies
mostly to cases with finite support. It does not scale well, and stability and speed are challenges.
This paper proposes a new algorithm to address these challenges and render the model more widely
applicable.

In particular, the issue of optimizing the semiparametric likelihood over the f0 point masses is
improved with application of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique (Broyden, 1970;
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Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). Because the number of parameters in the semiparametric
likelihood associated with f0 is equal to the number of unique points in the response vector, the rank of
the Hessian matrix can become unwieldy, especially for continuous response data. The BFGS method
uses an easily-computed rank-two approximate Hessian matrix that has an inverse which is much less
computationally intensive to calculate.

The optimization techniques in this paper have been incorporated into the R package gldrm
(Wurm and Rathouz, 2018), the first CRAN package for gldrm. This package estimates the gldrm
model and provides coefficient standard errors. In addition, since the publication of Rathouz and Gao
(2009), Huang (2014) developed likelihood ratio tests and likelihood ratio-based confidence intervals
for regression coefficients and demonstrated their strong properties. The gldrm package provides
utilities for likelihood ratio tests of nested models, as well as confidence intervals.

We present our optimization algorithm in Section 2. In Section 3, we present simulation experi-
ments to check the finite sample performance of the gldrm estimators and the accuracy of estimated
standard errors using this algorithm. In Section 4, we discuss methods for inference. Section 5, we
present a simulation that benchmarks the computational time and how it scales with the number of
observations and number of covariates. In Section 6, we present a summary of the functions in the
gldrm package. In Section 7, we demonstrate the functionality of the gldrm package with an example
in R. In Section 8, we make concluding remarks.

Optimization algorithm

Suppose we have an observed sample (x1, y1), . . . , (xn, yn) generated by the model specified in Equa-
tions 1-4. The xi can be fixed or random, and the yi are conditionally independent given the covariates.
Let S = (s1, . . . , sK) be the observed support, i.e. a vector containing the unique values in the set
{y1, . . . , yn}. If the response follows a continuous distribution, then K will equal n. Otherwise K may
be less than n due to ties. Let the vector f̃0 = ( f1, . . . , fK) represent probability mass at the points
(s1, . . . , sK). This is a nonparametric representation of f0 because the true reference density may be
continuous or have probability mass at values not contained in S .

The semiparametric log-likelihood is

`(β, f̃0) =
n

∑
i=1

{
θiyi − log

K

∑
k=1

fk exp(θisk) +
K

∑
k=1

I(yi = sk) log fk

}
, (5)

where each θi is defined implicitly as the solution to

g−1(xT
i β) =

K
∑

k=1
sk fk exp{θisk}

K
∑

k=1
fk exp{θisk}

. (6)

There exists a θi that satisfies Equation 6 as long as g−1(xT
i β) ∈ (m, M) for all i, where m ≡ min(S)

and M ≡ max(S).
We obtain parameter estimates from this likelihood as arg max

(β, f̃0)

`(β, f̃0), subject to the following

constraints:

C1. g−1(xT
i β) ∈ (m, M) for all i

C2. fk > 0 for all k = 1, . . . , K

C3.
K
∑

k=1
fk = 1

C4.
K
∑

k=1
sk fk = µ0 for some chosen µ0 ∈ (m, M)

Constraint (C4) is necessary for identifiability because for any nonparametric density f̃0 = ( f1, . . . , fk)
T ,

the “exponentially tilted” density f̃ (α)0 = ( f1eαs1 , . . . , fKeαsK )T/
K
∑

k=1
fkeαsk has the same semiparametric

log-likelihood for any α ∈ R, i.e. `(β, f̃0) = `(β, f̃ (α)0 ) for all β. We can set µ0 to be any value within the
range of observed response values, but choosing a value too extreme can lead to numerical instability

in estimating f̃0. It usually works well to choose µ0 = 1
n

n
∑

i=1
yi.
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To perform the optimization, we take an iterative approach, alternating between optimizing over
f̃0 and over β (Rathouz and Gao, 2009). Each optimization step marginally optimizes the log-likelihood
over one set of parameters, holding the other fixed. Neither optimization step has a closed form
solution, so iterative procedures must be used. To update f̃0, we propose using the BFGS technique. To
update β, we use Fisher scoring, which is equivalent to iteratively re-weighted least squares (IRLS). We
propose iterating BFGS until convergence for each f̃0 update, while only using a single IRLS iteration
to update β in between f̃0 updates; this is tantamount to a profile likelihood approach to estimation
of β.

Although the log-likelihood in Equation 5 is a function of (β, f̃0), we have expressed it in terms of
(θ1, . . . , θn); each θi is implicitly a function of (β, f̃0). The score function is also best expressed in terms
of the θi’s (see Equations 12 and 15). Consequently, our optimization algorithm requires the θi’s to be
computed each time β or f̃0 is updated. To do this, we use an iterative Newton-Raphson procedure
after each iteration of the β update or the f̃0 update procedures.

In what follows, we detail updates of the θi’s, of f̃0, and of β. We use the notation b(θ) to denote
the function defined in Equation 4 with respect to the discrete probability distribution specified by f̃0,

i.e. b(θ) = log
K
∑

k=1
fk exp(θsk). We also define µi ≡ g−1(xT

i β).

θ update procedure

θi is defined implicitly as the solution to Equation 6, which can be written as

µi = b′(θi) . (7)

To calculate θi, we use the Newton-Raphson procedure provided in Appendix C of Rathouz and Gao
(2009). To satisfy equation 7, we need to find θ such that µi = b′(θ), or equivalently gl(µi) = gl{b′(θ)},
where gl(s) = logit

( s−m
M−m

)
= log

( s−m
M−s

)
. (The transformation, gl , stabilizes the solution.)

We use Newton-Raphson to find the root of t(θ) = gl{b′(θ)} − gl(µi). Let θ(r) denote the ap-
proximate solution at the rth Newton-Raphson iteration. The Newton-Raphson update is given by

θ(r+1) = θ(r) −
{

t′(θ(r))
}−1

t(θ(r)) , (8)

where
t′(θ) =

M−m
{b′(θ)−m}{M− b′(θ)} b′′(θ) , (9)

and

b′′(θ) =
K

∑
k=1

{
sk − b′(θ)

}2 fk exp {θsk − b(θ)} . (10)

We typically initialize θ(0) to be the value obtained from the previous θ update procedure. The
first time θ is updated, we initialize θ(0) to zero for every observation. We define convergence when
|t(θ(r))| < ε, where ε is a small threshold such as 10−10.

As µi → M from the left, θi → +∞. Likewise, as µi → m from the right, θi → −∞. To prevent
numerical instability when µi is at or near these boundaries, we cap |θi| at a maximum value (500
by default). The appropriateness of this threshold would depend on the scale of response variable.
Rather than adjust the threshold, we center and scale the response variable to the interval [-1, 1] (see
the subsequent section on “response variable transformation”).

f̃0 optimization procedure

Holding β fixed at its current estimate, we need to marginally optimize the log-likelihood `(β, f̃0)
over f̃0, subject to constraints (C2)-(C4). The linear constraints (C3) and (C4) could be enforced using
constrained optimization techniques such as Lagrange multipliers or reducing the dimension of the
parameter space by two. Huang and Rathouz (2012) used the former technique, while Rathouz and
Gao (2009) used the latter. We propose a different method, based on the BFGS technique, that is
more computationally efficient. At each iteration, we apply a BFGS update to f̃0 to improve the
unconstrained log-likelihood and then transform f̃0 to satisfy constraints (C3) and (C4). Application
of the constraints does not affect the log-likelihood of the estimate, as the constraints are only required
for identifiability (i.e. uniqueness of the optimal f̃0). For any set of positive f̃0 values, there exists a
unique set of values with equal log-likelihood that satisfies both constraints (C3) and (C4).

We define the transformation g̃0 = (g1, . . . , gk) = (log f1, . . . , log fK) and consider the log-
likelihood as a function of g̃0 only, with β held fixed. Working on the log scale enforces constraint (C2)
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and also improves numerical stability. Specifically, numerical stability is improved by working with
the score and Hessian as a function of g̃0 rather than f̃0.

BFGS is a quasi-Newton procedure, which makes iterative updates using an approximate Hessian

matrix along with the exact score function. Let g̃(t)0 be the estimate at the tth iteration. The updates
take the form

g̃(t+1)
0 ← g̃(t)0 − H−1

t S(g̃(t)0 ; β) . (11)

Here, S(g̃0; β) is the score as a function of g̃0 only, holding β fixed. It has kth element

{S(g̃0; β)}k =
n

∑
i=1

{
I(yi = sk)−

exp(gk + θisk)

exp{b(θi)}
− exp(gk + θisk)

exp{b(θi)}
sk − µi
b′′(θi)

(yi − µi)

}
(12)

for k = 1, . . . , K (derivation in Appendix A). Note that this score function ignores constraints (C3)
and (C4). The matrix Ht is an approximation to the Hessian of the log-likelihood as a function of g̃0

only, holding β fixed. This estimate is updated with each iteration. Letting ut = g̃(t)0 − g̃(t−1)
0 and

vt = S(g̃(t)0 ; β)− S(g̃(t−1)
0 ; β), we can write the BFGS estimate of the Hessian recursively as

Ht = Ht−1 +
vtvT

t
uT

t vt
− Ht−1utuT

t Ht−1

uT
t Ht−1ut

. (13)

Ht is a rank-2 update to Ht−1 that satisfies the secant condition: Htut = vt. Furthermore, Ht is
guaranteed to be symmetric and positive definite, even though the true Hessian is not full rank. (The
true Hessian is not full rank because without imposing constraints (C3) and (C4), the log-likelihood
does not have a unique optimum.) The BFGS update in Equation 11 requires the inverse of Ht, which
can be calculated efficiently and directly, without calculating Ht. By the Sherman-Morrison-Woodbury
formula,

H−1
t = H−1

t−1 +
(uT

t vt + vT
t H−1

t−1vt)(utuT
t )

(uT
t vt)2

−
H−1

t−1vtuT
t + utvT

t H−1
t−1

uT
t vt

. (14)

For an initial estimate, we propose H−1
0 = αIK , where IK is the K× K identity matrix. We perform a

line search along the gradient to choose an appropriate value for α such that `(β, f̃ (1)0 ) > `(β, f̃ (0)0 ).

As previously mentioned, constraints (C3) and (C4) are only required for identifiability. After each
BFGS iteration, we impose these constraints on the f̃0 estimate, which does not affect the log-likelihood
of the estimate. Specifically, we apply (C3) by scaling our estimate of f̃0 to sum to one. We then
“exponentially tilt” the estimate to enforce constraint (C4). In other words, we compute θ such that

K
∑

j=1
sj f jeθsj /

K
∑

j=1
f jeθsj = µ0, and set our final estimate for the iteration to be fk ← fkeθsk /

K
∑

j=1
f jeθsj for

all k.

We initialize g̃(0)0 to the log of the f̃0 estimate obtained from the previous f̃0 update procedure. We
suggest using the empirical response distribution as an initial estimate of f̃0. We define convergence
using the relative change in the log-likelihood. Our default convergence threshold is 10−10. If the log-

likelihood decreases after any iteration, we backtrack by half steps, setting g̃(t+1)
0 ← 1

2

(
g̃(t+1)

0 + g̃(t)0

)
until the log-likelihood improves. In our experience, we have found that the log-likelihood improves
after most iterations without taking half steps, but log-likelihood decreases can occur sporadically
(both at early and late iterations).

β optimization procedure

Holding f̃0 fixed at its current estimate, we could marginally optimize the log-likelihood over β using
iteratively re-weighted least squares (IRLS). Rather than iterating until convergence, however, we
propose using a single IRLS iteration to update β in between f̃0 updates. The IRLS algorithm is simply
the Newton-Raphson algorithm, but using the Fisher information in place of the negative Hessian
matrix. This technique is commonly referred to as Fisher Scoring. As we now show, the Fisher Scoring
update minimizes a weighted least squares expression, which is why we can refer to the algorithm as
IRLS. The score function is given by

S(β; f̃0) =
n

∑
i=1

xi

(
1

g′(µi)

)(
1

b′′(θi)

)
(yi − µi) = XTWr , (15)
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(derivation in Appendix C) and the Fisher information is

I(β; f̃0) = E
(

S(β; f̃0)S(β; f̃0)
T
∣∣∣∣X1 = x1, . . . , Xn = xn

)
=

n

∑
i=1

xi

(
1

g′(µi)

)2 ( 1
b′′(θi)

)
xT

i

= XTWX ,

(16)

where X is an n× p matrix with rows xT
i , W is an n× n diagonal matrix with entries

(
1

g′(µi)

)2 1
b′′(θi)

,

and r is an n× 1 vector with entries g′(µi)(Yi − µi).

Let β(0) be the estimate obtained from the previous β update procedure. The IRLS step between
β(0) and the updated estimate, β(1), is

β(1) − β(0) =
{
I(β(0); f̃0)

}−1
S(β(0); f̃0)

=
(

XTWX
)−1

XTWr .
(17)

This is the solution to a weighted least squares expression, which can be computed efficiently using
QR decomposition.

Response variable transformation

Numerical stability issues can occur if the exp{θisk} terms become too large or small during op-
timization. To prevent these terms from exceeding R’s default floating-point number range, we
transform the response vector to the interval [-1, 1]. Specifically, the response values are transformed
to y∗i = (yi − m+M

2 ) · 2
M−m . It turns out the semiparametric log-likelihood function with the trans-

formed response and modified link function g∗(µ) = g(m+M
2 + M−m

2 µ) is equivalent to the original
log-likelihood. The parameters β and f̃0 that optimize the modified log-likelihood also optimize the
original log-likelihood (proof in Appendix D).

As mentioned in the “θ update procedure” section, we choose to cap |θ| for each observation at
500 by default, thereby restricting the rescaled θisk terms to the interval [-500, 500]. Note that the
optimization function in the gldrm R package returns the estimated θi values for each observation,
and these values are on the original scale of the response variable.

Inference

The gldrm R package (Wurm and Rathouz, 2018) can perform inference on the regression coefficients
using likelihood ratio tests for nested models. It can also calculate likelihood ratio, Wald, or score
confidence intervals. All three confidence intervals should yield similar results for large samples, but
the Wald form may be preferred for its computational simplicity. Likelihood ratio and score confidence
intervals are more computationally expensive to calculate. Huang (2014) recommends likelihood ratio
tests for small samples.

The Wald asymptotic variance estimate for the β estimator can be obtained from the inverse of
the information matrix given in Equation 16. Recall this information matrix is calculated with the f̃0
parameters held fixed. Its inverse is a valid asymptotic variance matrix because the full information
matrix is block diagonal; i.e., the β and f̃0 estimators are asymptotically independent. The gldrm
optimization function returns standard error estimates for each coefficient, which are displayed by the
print method along with p-values. Wald confidence intervals are straightforward to calculate from the
standard errors and can be obtained from the gldrmCI function. For these single-coefficient hypothesis
tests and confidence intervals, we approximate the null distribution by a t-distribution with n− p
degrees of freedom, where n is the number of observations and p is the rank of the covariate matrix.

Likelihood ratio tests for nested models are based on the usual test statistic: 2 times the log-
likelihood difference between the full and reduced model. Following Huang (2014), we approximate
the null distribution by an F-distribution with q and n− p degrees of freedom, where q is the difference
in the number of parameters between the full and reduced models. This test can be performed by the
gldrmLRT function.

Likelihood ratio and score confidence intervals for a single coefficient can be obtained from
the gldrmCI function. These confidence intervals are more computationally expensive than Wald
confidence intervals because an iterative method is required to search for the interval boundaries. We
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use the following bisection method.

Suppose we want to obtain the lower boundary of a confidence level 1− α interval for a single
coefficient β∗, and that the gldrm estimate of this coefficient is β̂∗. For the lower boundary, we need to
find β∗lo such that β∗lo < β̂∗ and the one-sided likelihood ratio test has a p-value equal to α/2 under
the null hypothesis H0 : β∗ = β∗lo. As explained in the next paragraph, we can compute the p-value
for any guess of β∗lo. We begin by finding a guess that is too low (p-value less than α/2) and a guess
that is too high (p-value greater than α/2). We then obtain the p-value of the midpoint. If the p-value
is less than α/2 then the midpoint becomes the new low guess, and if it is greater than α/2 then the
midpoint becomes the new high guess. We iterate this process, each time halving the distance between
the low guess and high guess, until we have a guess of β∗lo that has a p-value arbitrarily close to α/2.
The same procedure can be used to solve for β∗hi.

Let β0 be any constant. To calculate the likelihood ratio or score test p-value of H0 : β∗ = β0, we
need to optimize the log-likelihood over f̃0 and all other β values, holding β∗ fixed at β0. This can be
done by multiplying β0 with the column of the X matrix corresponding to β∗ and treating this vector
as an offset to the linear predictor. In other words, this vector contains a fixed component of the linear
predictor for each observation. The β∗ column is dropped from X, and the model is optimized with
the offset term.

Goodness of fit

To check the model fit, we calculate the randomized probability inverse transform (Smith, 1985). This
is done by evaluating the fitted conditional cdf (i.e., the cumulative distribution function, conditional
on the covariates) of each observed response value. If the model fit is good, the probability inverse
transform values should roughly follow a uniform distribution on the interval (0, 1). Because the
gldrm fitted cdf is discrete, we use randomization to make the distribution continuous as follows.

Let F̂(y|X = x) denote the fitted cdf conditional on a covariate vector x evaluated at y, and let

y−i = max
(
{yj : yj < yi}

⋃{−∞}
)

. For each observation, we draw a random value from a uniform

distribution on the interval
(

F̂(yi|X = xi), F̂(y−i |X = xi)
)
.

To illustrate a good gldrm fit, we generate 1,000 independent pairs (x, y) where x ∼ Normal(mean
= 0, sd = 1) and y|x ∼Normal(mean = x, sd = 1). The mean of y|x is linear in x, and the data generating
mechanism is an exponential tilt family, so we expect the gldrm fit to be good. We fit the model and
then do a visual check by plotting the histogram and uniform QQ plot of the randomized probability
inverse transform values (Figure 1).

Figure 1: Scatterplot and probability inverse transform histogram and QQ plot for a good gldrm
model fit.

To illustrate a poor gldrm fit, we generate 1,000 independent pairs (x, y) where x ∼ Normal(mean
= 0, sd = 1) and y|x ∼ Normal(mean = x, sd = x2). The mean of y|x is again linear in x, but this data
generating mechanism is not an exponential tilt family. The diagnostic plots (Figure 2) confirm that
the gldrm fit is not ideal. The probability inverse transform values are concentrated near the center of
the interval (0, 1) rather than being uniformly distributed. The gldrm still provides a good estimate of
the regression coefficients and the mean of y|x, but it is not the correct model for the cdf of y|x. .
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Figure 2: Scatterplot and probability inverse transform histogram and QQ plot for a poor gldrm model
fit.

Simulation experiments

Under four different simulation scenarios, we check the finite sample performance of the regression
coefficient estimators, β̂, as well as the reference distribution cdf estimator F̂0(). For β̂, we also check
the accuracy of the estimated standard errors.

For each simulation, the data generating mechanism is a gamma glm. The covariates are the
same under each simulation setting, and their values are fixed, not random. The covariate vector is
x = (x0, x1, x2, x3). Variable x0 is an intercept column of ones. Variable x1 is an indicator with exactly
20% ones in each sample (observations 5, 10, 15, 20, . . . have x1 = 1, and the rest have x1 = 0). Variable
x2 is a continuous variable that follows a uniform sequence between zero and one in each sample (the
first observation has x2 = 0, and the last observation has x2 = 1). Lastly, x3 = x1 · x2.

The coefficient values were (β1, β2, β3) = (1, 1,−2) for all simulation scenarios. The intercepts
were β0 = 0 for simulations 1 & 2, and β0 = 1 for simulations 3 & 4. These values were selected so the
mean response values were centered close to one and, for the identity link scenarios, guaranteed to be
positive.

The log link was used for simulations 1 & 2, and the identity link was used for simulations 3 & 4.
For all four simulations, the response was drawn from a gamma distribution with Var(y|x) = φE(y|x)2,
where φ varies by simulation to achieve different R2 values. R2 is defined as the squared correlation
between the response and linear combination of predictors.

1. Simulation 1: log link and high R2 (φ = 0.5, R2 ≈ 0.13)

2. Simulation 2: log link and low R2 (φ = 4, R2 ≈ 0.019)

3. Simulation 3: identity link and high R2 (φ = 0.25, R2 ≈ 0.13)

4. Simulation 4: identity link and low R2 (φ = 2, R2 ≈ 0.018)

A gldrm was fit to each data set with correct link function and with f̃0 constrained to have mean
µ0 = 1. If we had followed our usual practice of choosing µ0 to be the sample mean of the observed
response values, then the reference distribution would have a different mean for each simulation
replicate. By choosing µ0 = 1 for all replicates, the true f0 always follows a gamma distribution
with mean one and variance φ, where φ varies by simulation scenario. The value µ0 = 1 was chosen
because, by design, it fell within the range of observed response values for all 2,000 replicates of each
simulation scenario. The cumulative reference distribution estimate, denoted as F̂0(·), was computed
at percentiles 0.1, 0.25, 0.5, 0.75, 0.9.

For each simulation scenario, we display four tables. The first table (Tables 1, 5, 9, and 13) contains
the sample mean of each β estimator. For comparison, we also calculated the gamma glm coefficient
estimates for each simulated data set and display the sample mean alongside in parentheses.

The second table (Tables 2, 6, 10, and 14) contains the root mean squared error (rmse) of each

β estimator. The rmse is calculated as
√

1
2000 ∑2000

i=1 (β̂i − β)2, where β̂i is the estimator of the ith

simulation replicate, and β is the true parameter value. For comparison, we also show the relative
efficiency compared to the gamma glm estimator. Relative efficiency is calculated as mseglm/msegldrm,
where mse is the mean squared error (not rmse).

The third table (Tables 3, 7, 11, and 15) contains Wald confidence interval coverage rates for each
β estimator. Confidence intervals were calculated based on a t-distribution with n− 4 degrees of
freedom.

The fourth table (Tables 4, 8, 12, and 16) contains the mean of F̂0(), calculated at the true 10th, 25th,
50th, 75th, and, 90th percentiles.
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To summarize the results, the gldrm estimators perform as expected. In all four simulation
scenarios, the bias of β̂ and F̂0() goes to zero as the sample size increases. For the high R2 scenarios,
there is very little bias even at n = 25. Also, the relative efficiency of the β estimators compared to the
gamma glm estimators goes to one as the sample size increases. This is expected because, as Rathouz
and Gao (2009) demonstrated, the β and f0 estimators are asymptotically orthogonal, so gldrm and
glm have equal asymptotic efficiency when the glm model is correctly specified. For the high R2

scenarios, the relative efficiency is close to one even at n = 25. For the low R2 scenarios, the gldrm
estimator is actually more efficient than the glm estimator for small sample sizes.

The standard error estimates for gldrm β estimators are consistently low for small sample sizes,
as demonstrated by low Wald confidence interval coverage rates. The coverage rates improve with
increasing sample size, demonstrating good asymptotic properties of the standard error estimators.
Likelihood ratio confidence intervals can be calculated with the gldrm R package and may have better
small sample performance, as demonstrated by Huang (2014).

Simulation 1

Simulation 1 uses log link with β = (0, 1, 1,−2) and φ = 0.5. This results in an R2 of approximately
0.13. The simulation was replicated 2,000 times.

β̂ mean (gamma glm mean)
n = 25 n = 100 n = 400

β0 = 0 -0.02 (-0.02) 0.00 (0.00) 0.00 (0.00)
β1 = 1 0.93 (0.92) 0.98 (0.99) 0.99 (0.99)
β2 = 1 0.99 (1.00) 0.99 (1.00) 1.00 (1.00)

β3 = −2 -2.00 (-2.00) -2.00 (-2.01) -1.99 (-1.99)

Table 1: Sample mean of β̂. For comparison, the gamma glm sample mean is shown in parentheses.

β̂ rmse (relative efficiency)
n = 25 n = 100 n = 400

β0 0.31 (0.99) 0.16 (1.00) 0.08 (1.00)
β1 0.81 (0.96) 0.38 (1.01) 0.18 (1.00)
β2 0.54 (1.00) 0.27 (1.00) 0.14 (0.99)
β3 1.27 (0.96) 0.63 (1.00) 0.30 (1.00)

Table 2: Root mean squared error (rmse) of β̂. In parentheses is the relative efficiency compared to the
gamma glm estimator.

80% C.I. 90% C.I. 95% C.I.
n = 25 n = 100 n = 400 n = 25 n = 100 n = 400 n = 25 n = 100 n = 400

β0 0.755 0.799 0.805 0.870 0.896 0.899 0.920 0.945 0.944
β1 0.677 0.764 0.800 0.782 0.860 0.900 0.837 0.919 0.949
β2 0.742 0.784 0.810 0.853 0.883 0.896 0.910 0.940 0.950
β3 0.681 0.767 0.806 0.800 0.869 0.907 0.867 0.920 0.948

Table 3: Wald confidence interval coverage rate for β.

F̂0(y) mean
F0(y) y n = 25 n = 100 n = 400

0.10 0.27 0.082 0.097 0.099
0.25 0.48 0.222 0.244 0.249
0.50 0.84 0.487 0.498 0.499
0.75 1.35 0.759 0.751 0.750
0.90 1.94 0.911 0.902 0.900

Table 4: Sample mean of F̂0 at selected true percentiles.
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Simulation 2

Simulation 2 uses log link with β = (0, 1, 1,−2) and φ = 4. This results in an R2 of approximately
0.019. The simulation was replicated 2,000 times.

β̂ mean (gamma glm mean)
n = 25 n = 100 n = 400

β0 = 0 -0.16 (-0.19) -0.05 (-0.06) -0.02 (-0.02)
β1 = 1 0.21 (0.29) 0.80 (0.84) 0.96 (0.97)
β2 = 1 0.90 (0.96) 0.99 (1.01) 1.00 (1.00)

β3 = −2 -1.74 (-1.98) -1.93 (-2.01) -1.99 (-2.00)

Table 5: Sample mean of β̂. For comparison, the gamma glm sample mean is shown in parentheses.

β̂ rmse (relative efficiency)
n = 25 n = 100 n = 400

β0 0.94 (1.14) 0.45 (1.04) 0.23 (1.00)
β1 2.83 (1.43) 1.12 (1.09) 0.51 (1.02)
β2 1.62 (1.19) 0.78 (1.05) 0.39 (1.01)
β3 4.18 (1.59) 1.88 (1.14) 0.89 (1.02)

Table 6: Root mean squared error (rmse) of β̂. In parentheses is the relative efficiency compared to the
gamma glm estimator.

80% C.I. 90% C.I. 95% C.I.
n = 25 n = 100 n = 400 n = 25 n = 100 n = 400 n = 25 n = 100 n = 400

β0 0.704 0.770 0.782 0.806 0.877 0.888 0.869 0.933 0.945
β1 0.626 0.724 0.781 0.732 0.832 0.883 0.794 0.897 0.935
β2 0.680 0.755 0.774 0.795 0.862 0.881 0.869 0.925 0.939
β3 0.633 0.722 0.762 0.750 0.829 0.879 0.819 0.895 0.935

Table 7: Wald confidence interval coverage rate for β.

F̂0(y) mean
F0(y) y n = 25 n = 100 n = 400

0.10 0.00 0.093 0.100 0.101
0.25 0.01 0.230 0.247 0.250
0.50 0.17 0.465 0.496 0.499
0.75 1.04 0.727 0.747 0.749
0.90 3.00 0.903 0.899 0.900

Table 8: Sample mean of F̂0 at selected true percentiles.

Simulation 3

Simulation 3 uses identity link with β = (1, 1, 1,−2) and φ = 0.25. This results in an R2 of approxi-
mately 0.13. The simulation was replicated 2,000 times.

β̂ mean (gamma glm mean)
n = 25 n = 100 n = 400

β0 = 1 1.00 (1.00) 0.99 (0.99) 1.00 (1.00)
β1 = 1 1.01 (1.01) 1.00 (1.00) 0.99 (0.99)
β2 = 1 1.01 (1.01) 1.01 (1.01) 1.00 (1.00)

β3 = −2 -2.02 (-2.01) -2.01 (-2.01) -1.99 (-1.99)

Table 9: Sample mean of β̂. For comparison, the gamma glm sample mean is shown in parentheses.
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β̂ rmse (relative efficiency)
n = 25 n = 100 n = 400

β0 0.25 (0.99) 0.13 (0.99) 0.07 (1.00)
β1 0.88 (0.96) 0.40 (0.99) 0.20 (1.00)
β2 0.55 (0.98) 0.28 (0.99) 0.14 (1.00)
β3 1.26 (0.98) 0.63 (0.98) 0.32 (1.00)

Table 10: Root mean squared error (rmse) of β̂. In parentheses is the relative efficiency compared to
the gamma glm estimator.

80% C.I. 90% C.I. 95% C.I.
n = 25 n = 100 n = 400 n = 25 n = 100 n = 400 n = 25 n = 100 n = 400

β0 0.735 0.793 0.802 0.830 0.888 0.892 0.888 0.939 0.947
β1 0.670 0.789 0.799 0.785 0.875 0.892 0.847 0.931 0.949
β2 0.737 0.782 0.796 0.849 0.885 0.893 0.916 0.941 0.943
β3 0.667 0.773 0.792 0.800 0.876 0.896 0.872 0.937 0.942

Table 11: Wald confidence interval coverage rate for β.

F̂0(y) mean
F0(y) y n = 25 n = 100 n = 400

0.10 0.44 0.077 0.095 0.098
0.25 0.63 0.219 0.244 0.249
0.50 0.92 0.492 0.498 0.499
0.75 1.28 0.769 0.753 0.751
0.90 1.67 0.913 0.903 0.901

Table 12: Sample mean of F̂0 at selected true percentiles.

Simulation 4

Simulation 4 uses identity link with β = (1, 1, 1,−2) and φ = 2. This results in an R2 of approximately
0.018. The simulation was replicated 2,000 times.

β̂ mean (gamma glm mean)
n = 25 n = 100 n = 400

β0 = 1 1.02 (1.02) 1.01 (1.01) 1.00 (1.00)
β1 = 1 0.91 (0.89) 0.97 (1.00) 0.99 (0.99)
β2 = 1 0.99 (1.02) 0.97 (0.98) 0.99 (1.00)

β3 = −2 -1.86 (-1.85) -1.92 (-1.95) -1.98 (-1.99)

Table 13: Sample mean of β̂. For comparison, the gamma glm sample mean is shown in parentheses.

β̂ rmse (relative efficiency)
n = 25 n = 100 n = 400

β0 0.73 (1.17) 0.39 (1.02) 0.19 (1.00)
β1 2.35 (1.05) 1.16 (1.09) 0.58 (1.02)
β2 1.58 (1.18) 0.81 (1.03) 0.40 (1.00)
β3 3.27 (1.18) 1.83 (1.11) 0.92 (1.02)

Table 14: Root mean squared error (rmse) of β̂. In parentheses is the relative efficiency compared to
the gamma glm estimator.
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80% C.I. 90% C.I. 95% C.I.
n = 25 n = 100 n = 400 n = 25 n = 100 n = 400 n = 25 n = 100 n = 400

β0 0.661 0.761 0.794 0.754 0.845 0.893 0.802 0.893 0.938
β1 0.595 0.718 0.767 0.692 0.822 0.868 0.741 0.870 0.921
β2 0.665 0.769 0.779 0.777 0.864 0.895 0.847 0.910 0.943
β3 0.666 0.711 0.777 0.789 0.824 0.877 0.871 0.892 0.932

Table 15: Wald confidence interval coverage rate for β.

F̂0(y) mean
F0(y) y n = 25 n = 100 n = 400

0.10 0.02 0.085 0.097 0.100
0.25 0.10 0.223 0.246 0.249
0.50 0.45 0.474 0.493 0.499
0.75 1.32 0.741 0.749 0.750
0.90 2.71 0.907 0.902 0.900

Table 16: Sample mean of F̂0 at selected true percentiles.

Likelihood ratio and score confidence intervals

To support our claim that likelihood ratio confidence intervals may have better small sample perfor-
mance, we compared the Wald, likelihood ratio, and score 95% confidence interval coverage rates
under the settings of Simulation 1 with n = 25. The coverage rates are shown in Table 17. The Wald
coverage rates are similar to those in Table 3, but not identical because this experiment used a new set
of 2,000 replicates.

While the Wald confidence intervals tend to be too narrow, the score confidence intervals tend
to be a bit too wide. The likelihood ratio intervals have coverage rates much closer to 0.95 than the
corresponding Wald or score intervals. This is consistent with the findings of Huang (2014).

β0 β1 β2 β3
Wald 0.918 0.823 0.909 0.859

Likelihood ratio 0.969 0.939 0.958 0.944
Score 0.976 0.966 0.967 0.967

Table 17: Coverage rates for 95% confidence intervals under the settings of Simulation 1.

Computational time and scaling

The following simulation explores the computation time of gldrm and how it scales with the number
of observations n and number of covariates p. For each value of n and p, we fit gldrm to 100 randomly
generated data sets. A gldrm was fit once to each data set.

Covariates were drawn independently from a standard normal distribution, and coefficients were
drawn independently from a uniform distribution on the interval (-1, 1). Simulation 1 used an identity
link function with response drawn from a normal distribution with variance function V(µ) = 1.
Simulation 2 used a log link function with response drawn from an exponential distribution, i.e. a
gamma distribution with variance function V(µ) = µ2.

Iteration limits were set at 100 per θ update, 1,000 per f0 update, and 100 for the outer loop (for
which each iteration consists of a single-iteration β update, followed by an f0 update). Convergence
thresholds were set at 10−10 for the θ update, f0 update, and outer loop update. This experiment was
run using a 2.2 GHz AMD Opteron 6174 processor. Figures 3 and 4 show the average CPU seconds for
Simulations 1 and 2, respectively.

We also repeated this experiment with the number of support points fixed at 25. To do this, we
generated n response values from the model. The first 25 values were designated as the support, and
the remaining response values were matched to the nearest support value and set to that value. This
discrete data generating model is not actually a gldrm model, but we are only using it to evaluate
computation time. Figures 5 and 6 show the average CPU seconds for Simulations 1 and 2, respectively,
with support size fixed at 25.
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In summary, the computation time scales roughly linearly with n when the support is fixed at 25.
When the support grows with n, the computation time grows faster than linearly. Computation time
increases with p, but there is not a consistent pattern, especially with fixed support.

●● ● ● ●
●

●

●● ● ● ●
●

●

●● ● ● ●
●

●

●● ● ● ●
●

●

●● ● ● ●

●

●

0

200

400

600

0 500 1000 1500

n

tim
e 

(s
ec

on
ds

)

p
●

●

●

●

●

1

2

4

8

16

Figure 3: Mean computation time for Simulation 1. Error bars represent ±2 standard errors over 100
replicates.
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Figure 4: Mean computation time for Simulation 2. Error bars represent ±2 standard errors over 100
replicates.
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Figure 5: Mean computation time for Simulation 1 with support size fixed at 25. Error bars represent
±2 standard errors over 100 replicates.
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Figure 6: Mean computation time for Simulation 2 with support size fixed at 25. Error bars represent
±2 standard errors over 100 replicates.

R package: gldrm

The gldrm package (Wurm and Rathouz, 2018) was written entirely in the R programming language.
Its primary functions are the following.

• gldrm is the main function for fitting gldrm models.

• gldrmLRT performs a likelihood ratio test between nested gldrm models. The test statistic is
calculated as 2× (llik− llik0)/r, where r is the difference is the number of parameters between
the full and null models. Under the null hypothesis, the test statistic follows an asymptotic F
distribution with degrees of freedom r and n− p, where n is the number of observations and p
is the number of parameters in the full model.

• gldrmCI calculates Wald or likelihood ratio confidence intervals for a single coefficient.

• predict.gldrmFit is a predict method, which is modeled after the print.glm method in the
stats package. Predictions can be obtained on the scale of the response or linear predictor, or the
tilted nonparametric density for each observation can be returned.

• gldrmPIT Returns a set of randomized probability inverse transform values and plots the
histogram and uniform QQ plot.

R example: iris data

We demonstrate the gldrm package using the Iris data set from the datasets package. This is a data
set of n = 150 observations. We choose sepal length to be the response variable. This variable has
35 unique values, so the support is K = 35. We first demonstrate how to fit a gldrm model with the
optimization function, which is simply called gldrm. We demonstrate how to perform inference on
the regression coefficients. We check the goodness of fit using the randomized probability inverse
transform. Finally we show how to obtain predictions for a set of observations, including the predicted
mean and nonparametric estimate of the distribution function.

Fit gldrm model

The gldrm optimization function takes a formula and data argument, similar to R’s glm function.
Instead of passing both an error distribution and link function through a family argument, the gldrm
only requires a link function. The link argument will accept the name of a link function (any function
supported by make.link in the stats package is accepted). Alternatively, a custom link function can
be passed as a list containing three items:

1. linkfun A vectorized link function.

2. linkinv The corresponding inverse link function, also vectorized.

3. mu.eta The derivative of the inverse link function, also vectorized.

This list structure is the same as that of link-glm class objects, which are constructed by the make.link
function. The custom link option allows great flexibility, but it is imperative that the user correctly
specifies the inverse link and its derivative.
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R> ### Load gldrm package and Iris data from datasets package
R> library(gldrm)
R> data(iris, package = "datasets")

R> ### Fit gldrm with all variables
R> fit <- gldrm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species,
R+ data = iris, link = "log")
R> fit

Summary of gldrm fit

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.1832 0.0369 32.10 < 2e-16 ***
Sepal.Width 0.0788 0.0128 6.17 6.4e-09 ***
Petal.Length 0.1128 0.0102 11.04 < 2e-16 ***
Petal.Width -0.0350 0.0248 -1.41 0.162
Speciesversicolor -0.0561 0.0395 -1.42 0.157
Speciesvirginica -0.0994 0.0557 -1.79 0.076 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Likelihood ratio test against null model:
F-statistic: 57.4
Numerator degrees of freedom: 5
Denominator degrees of freedom: 144
P-value: < 2e-16

Inference

The gldrmLRT function performs a semiparametric likelihood ratio test between two nested models. We
demonstrate this on the Iris data by fitting a sub-model that excludes "Species", which is a categorical
variable with three levels and two degrees of freedom. We also obtain Wald and likelihood ratio
confidence intervals for the petal width coefficient.

R> ### Fit gldrm without the categorical variable "Species"
R> fit0 <- gldrm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
R+ data = iris, link = "log")

R> ### Likelihood ratio test for the nested models
R> gldrmLRT(fit, fit0)

Likelihood ratio test:

F-statistic: 2.03
Numerator degrees of freedom: 2
Denomicator degrees of freedom: 144
P-value: 0.135

R> ### Wald 95% confidence interval for Petal.Width
R> gldrmCI(fit, term = "Petal.Width", test = "Wald", type = "2-sided", level = .95)

95% Wald confidence interval for Petal.Width:
(-0.084, 0.014)

R> ### Likelihood ratio 95% confidence interval for Petal.Width
R> gldrmCI(fit, term = "Petal.Width", test = "LRT", type = "2-sided", level = .95)

95% likelihood ratio confidence interval for Petal.Width:
(-0.094, 0.025)
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Goodness of fit

The gldrmPIT function produces goodness of fit plots using the probability inverse transform. In
addition to plotting, this function also returns the inverse transform values as a vector.

R> pit <- gldrmPIT(fit)

Prediction

We obtain predictions for three selected observations in the data set: one from each Species. These
observations were contained in training data, but we could obtain predictions for out-of-sample
observations in the same way. Using the predict method, we obtain the fitted mean response value
for each observation, which is the estimate of E(Y|X = x).

We also use the predict method to obtain the nonparametric estimate of the conditional density
f (y|X = x). This is obtained by setting the argument type = "fTilt", which returns an n× K matrix
with (i, k)th entry f̃k exp{θisk − b(θi)}. Each row contains the nonparametric conditional density
estimate for a given observation and sums to one. We use this matrix to calculate the conditional
probabilities for the form P(y1 < Y ≤ y2|X = x) for each observation. Note that all observed support
values (sepal length values) fall between four and eight, so all probability mass falls within this
interval.

R> ### Select three observations; one from each Species
R> newdata <- iris[c(1, 51, 101), ]

R> ### Fitted mean Sepal.Length
R> fitted_mean <- predict(fit, newdata = newdata, type = "response")
R> fitted_mean <- round(fitted_mean, 2)

R> ### Estimated Sepal.Length distribution of each observation
R> ### Note: all Sepal.Length values are between 4 and 8
R> fTilt <- predict(fit, newdata = newdata, type = "fTilt")
R> spt <- fit$spt
R> F4 <- rowSums(fTilt[ , spt <= 4])
R> F5 <- rowSums(fTilt[ , spt <= 5])
R> F6 <- rowSums(fTilt[ , spt <= 6])
R> F7 <- rowSums(fTilt[ , spt <= 7])
R> F8 <- rowSums(fTilt[ , spt <= 8])
R> Ftilt <- cbind(F5-F4, F6-F5, F7-F6, F8-F7)
R> Ftilt <- round(Ftilt, 3)
R> colnames(Ftilt) <- c("P(4=Y<=5)", "P(5<Y<=6)", "P(6<Y<=7)", "P(7<Y<=8)")
R> cbind(newdata, fitted_mean, Ftilt)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species fitted_mean
1 5.1 3.5 1.4 0.2 setosa 5.00
51 7.0 3.2 4.7 1.4 versicolor 6.43
101 6.3 3.3 6.0 2.5 virginica 6.91

P(4<Y<=5) P(5<Y<=6) P(6<Y<=7) P(7<Y<=8)
1 0.625 0.375 0.000 0.000
51 0.000 0.136 0.832 0.032
101 0.000 0.006 0.649 0.344
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Discussion

We introduced a new optimization algorithm for gldrm, which computationally scales better with the
number of unique observed response values. This is especially useful for estimation of continuous
response data where the number of parameters in the f̃0 parameter equals the sample size. In particular,
the BFGS technique dramatically speeds up the f̃0 optimization step, and makes gldrm much more
computationally feasible for either discrete or continuous response data. The new algorithm is
implemented in the gldrm package. Simulation results show that the algorithm and software obtain
accurate estimates and standard errors. Computational time was shown to be feasible for support
sizes well over one thousand.

Future research directions could include the incorporation of random effects into the gldrm
framework. Optimization techniques for generalized linear mixed models, such as adaptive Gaussian
quadrature, may be useful for model estimation (Pinheiro and Chao, 2006; Pinheiro and Bates, 1995).
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Appendix

Notation

In this appendix, we use ∂ to denote the partial derivative and d to denote the total derivative. We
require this notation for chain rule derivatives, specifically to derive the score function with respect
to β and f̃0. Each θi is implicitly a function of (β, f̃0) and hence should not be held fixed when
differentiating the log-likelihood with respect to either β or f̃0. We also let

`i = θiyi − log
K

∑
k=1

fk exp(θisk) +
K

∑
k=1

I(yi = sk) log fk (18)

denote the contribution of the ith observation to the log-likelihood.

A. Score function for f̃0

We derive Equation 12, which gives the score function with respect to f̃0, holding β fixed. Using the
definition of `i in Equation 18 and applying the chain rule, the kth element of the score function is

{S( f̃0; β)}k =
d`(β, f̃0)

d fk
=

n

∑
i=1

d`i
d fk

=
n

∑
i=1

(
∂`i
∂ fk

+
dθi
d fk

∂`i
∂θi

)
. (19)

The first term on the RHS of Equation 19 is

∂`i
∂ fk

=
I(yi = sk)

fk
− exp{θisk}

K
∑

m=1
fm exp{θism}

. (20)

The second term on the RHS of Equation 19 is

∂`i
∂θi

= yi −

K
∑

k=1
sk fk exp{θsk}

K
∑

k=1
fk exp{θsk}

= yi − µi . (21)

Recall that µi = g−1(xT
i β), which does not vary with f̃0. Therefore,

0 =
d

d fk
µi =

∂µi
∂ fk

+
dθi
d fk

∂µi
∂θi

, (22)

and the third term on the RHS of Equation 19 is

dθi
d fk

= − ∂µi
∂ fk

/
∂µi
∂θi

= − exp{θisk}(sk − µi)

exp{b(θi)}

/
b′′(θi) . (23)

Plugging the results of Equations 20, 21, and 23 into Equation 19, we obtain

{S( f̃0; β)}k =
n

∑
i=1

{
I(yi = sk)

fk
− exp(θisk)

exp{b(θi)}
− exp(θisk)

exp{b(θi)}
sk − µi
b′′(θi)

(yi − µi)

}
. (24)

We obtain the result of Equation 12 by applying the Jacobian transformation {S(g̃0; β)}k = fk{S( f̃0; β)}k.
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B. Information matrix for f̃0

The f̃0 information matrix is not used during the BFGS optimization routine. However, we derive it
here to correct a missing term in the Rathouz and Gao (2009) derivation. Each matrix element is

{
I( f̃0; β)

}
(k,m) = E

({
S( f̃0; β)

}
k
{

S( f̃0; β)
}

m

∣∣∣∣Xk = xk, Xm = xm

)
=

n

∑
i=1

E {Ak Am − 2AkBm + BkBm|Xk = xk, Xm = xm} ,
(25)

where

Ak =
I(yi = sk)

fk
− exp(θisk)

exp{b(θi}
and

Bk =
exp(θisk)

exp{b(θi)}
− exp(θisk)

exp{b(θi)}
sk − µi
b′′(θi)

(yi − µi) .

From here on, all expectations are conditional on Xk = xk, Xm = xm, but we suppress the conditional
expression. The first term on the RHS of Equation 25 is

E(Ak Am) =
exp(θisk)I(k = m)

fk exp{b(θi)}
− exp(θisk + θism)

exp{2b(θi)}
. (26)

The second term on the RHS of Equation 25 is

E(BkBm) =
exp(θisk + θism)

exp{2b(θi)}
(sk − µi)(sm − µi)

b′′(θi)
, (27)

where we use the fact that E{(yi − µi)
2} = Var(yi) = b′′(θi). The third term on the RHS of Equation

25 is

E(AkBm) =
exp(θisk + θism)

exp{2b(θi)}
(sk − µi)(sm − µi)

b′′(θi)
, (28)

where we use the fact that E{I(yi = sk)(yi − µi)} = (yk − µi) fk exp(θisk)/ exp{b(θi)}. Plugging the
results of Equations 26-28 into Equation 25, we obtain

{
I( f̃0; β)

}
(k,m) =

n

∑
i=1

{
exp(θisk)I(k = m)

fk exp{b(θi)}
− exp(θisk + θism)

exp{2b(θi)}
− exp(θisk + θism)

exp{2b(θi)}
(sk − µi)(sm − µi)

b′′(θi)

}
.

(29)

C. Score function for β

We derive Equation 15, which gives the score function with respect to β, holding f̃0 fixed. By the chain
rule, each element is

S(β; f̃0) =
d`(β, f̃0)

dβ
=

n

∑
i=1

d`i
dβ

=
n

∑
i=1

dµi
dβ

dθi
dµi

∂`i
∂θi

(30)

We already derived the first term on the RHS of Equation 30 in Equation 21. Because µi = b′(θi),

dθi
dµi

= 1/
(

dµi
dθi

)
=

1
b′′(θi)

. (31)

Because g(µi) = xT
i β,

dµi
dβ

= xi

(
1

g′(µi)

)
. (32)

Plugging the results of Equations 21, 31, and 32 into Equation 30, we obtain the result of Equation 15.
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D. Proof that transformed response with modified link function has equiv-
alent log-likelihood

Let ν ≡ m+M
2 and ρ ≡ M−m

2 . Let y∗i = (yi − ν)/ρ and s∗k = (sk − ν)/ρ. Equation 18 can be rewritten

`i = θi(ν + ρy∗i )− log
K

∑
k=1

fk exp {θi(ν + ρs∗k )}+
K

∑
k=1

I(y∗i = s∗k ) log fk

= θ∗i y∗i − log
K

∑
k=1

fk exp{θ∗i s∗k}+
K

∑
k=1

I(y∗i = s∗k ) log fk ,

(33)

where θ∗i = θiρ. Equation 6 can be rewritten as

g−1(xT
i β) =

K
∑

k=1
(ν + ρs∗k ) fk exp

{
θi(ν + ρs∗k )

}
K
∑

k=1
fk exp{θi(ν + ρs∗k )}

= ν + ρ


K
∑

k=1
s∗k fk exp

{
θ∗i s∗k

}
K
∑

k=1
fk exp{θ∗i s∗k}

 .

(34)

Hence, if we define a modified link function g∗(µ) = g(ν+ ρµ) with inverse g−1
∗ (η) = (g−1(η)− ν)/ρ,

we can write

g−1
∗ (xT

i β) =


K
∑

k=1
s∗k fk exp{θ∗i s∗k}

K
∑

k=1
fk exp{θ∗i s∗k}

 . (35)

In other words θ∗i has the same implicit definition as θi when the modified link function and trans-
formed response variable are used in place of the oginal. This shows that, as a function of (β, f̃0), the
log-likelihood with the transformed response and modified link function is equivalent to the original
log-likelihood. Note that θ∗i must be multiplied by 1/ρ if one would like calculate θi on the original
scale.
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