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ICSOutlier: Unsupervised Outlier
Detection for Low-Dimensional
Contamination Structure
by Aurore Archimbaud, Klaus Nordhausen, and Anne Ruiz-Gazen

Abstract Detecting outliers in a multivariate and unsupervised context is an important and ongoing
problem notably for quality control. Many statistical methods are already implemented in R and
are briefly surveyed in the present paper. But only a few lead to the accurate identification of
potential outliers in the case of a small level of contamination. In this particular context, the Invariant
Coordinate Selection (ICS) method shows remarkable properties for identifying outliers that lie on
a low-dimensional subspace in its first invariant components. It is implemented in the ICSOutlier
package. The main function of the package, ics.outlier, offers the possibility of labelling potential
outliers in a completely automated way. Four examples, including two real examples in quality control,
illustrate the use of the function. Comparing with several other approaches, it appears that ICS is
generally as efficient as its competitors and shows an advantage in the context of a small proportion of
outliers lying in a low-dimensional subspace. In quality control, the method may help in properly
identifying some defective products while not detecting too many false positives.

Introduction

The unsupervised detection of multivariate outliers is a timeless subject of interest in statistics, see
Aggarwal (2017), Hodge and Austin (2004), Hadi et al. (2009) for a complete overview. Indeed, this
can be the goal of the analysis, like in fraud detection, in medical applications or manufacturing-defect
detection. It can also be used for preprocessing in almost any statistical analysis that is sensitive to
the presence of outliers, e.g. Principal Component Analysis (PCA). Many statistical methods exist
and have already been implemented in R through tens of packages. Only some of these packages are
dedicated to the unsupervised context and are mentioned below. One of the most common methods
for multivariate outlier detection is the Mahalanobis Distance (MD), and many packages are based
on this distance: mvoutlier (Filzmoser and Gschwandtner, 2017), CerioliOutlierDetection (Green
and Martin, 2017a), rrcovHD (Todorov, 2016), faoutlier (Chalmers and Flora, 2015). Additionally,
traditional methods such as the angle-based methods are implemented in the packages abodOutlier
(Jimenez, 2015), HighDimOut (Fan, 2015), the distribution-based methods in alphaOutlier (Rehage
and Kuhnt, 2016), extremevalues (van der Loo, 2010), HDoutliers (Fraley, 2016), outliers (Komsta,
2011), the density-based methods in DMwR2 (Torgo, 2016), HighDimOut, ldbod (Williams, 2017),
Rlof (Hu et al., 2015) and the depth-based methods in depth (Genest et al., 2017). Finally, other
approaches have been implemented, such as the one based on Projection Pursuit (PP) in REPPlab
(Fischer et al., 2016b), and PCA in OutlierDC (Eo and Cho, 2014), pcadapt (Luu and Blum, 2017),
rrcov (Todorov and Filzmoser, 2009) and rrcovHD. However, it is important to note that all the
implemented functions do not necessary return outlierness measures and the identities of the outlying
observations. Limiting only to some packages fulfilling these conditions and to multivariate methods
for numerical variables leads to focusing on mvoutlier, CerioliOutlierDetection and rrcov. These
packages implement modified versions of the robust Mahalanobis distance, different algorithms for
the outlier identification in high dimensions (Filzmoser and Todorov, 2013), classical and robust
PCA. In PCA, the labelling of the outliers is based on the comparison of two outlierness measures: a
score distance (SD) based on the first principal components and a distance in the orthogonal space
(OD). All these methods rely on distances. To extend the analysis, we include comparisons with
Local Outlier Factor (LOF) (Rlof package) and Angle-Based Outlier Factor (ABOD) (abodOutlier
package) approaches even if they only return outlierness measures and not the identities of the outlying
observations.

These methods dedicated to outlier detection in an unsupervised context have different properties.
Contrary to PCA, the Mahalanobis distance and its modified versions are invariant under any affine
transformation as long as the location and scatter estimators are affine equivariant. However, several
drawbacks have been noticed in the use of these distances. First, Filzmoser et al. (2005) highlight the
fact that an outlier is not necessarily an extreme value. So, using a fixed threshold to label outliers
for every data set is not the wisest solution and the threshold should be adjusted to the sample
size. Moroever, as Cerioli (2010) notes, the threshold used usually is not adapted to the case in
which there is no outlier in the data. Finally, for Cerioli (2010), the comparison of the distances
of each observation to the threshold should not be performed independently without taking into
account any simultaneous adjustments. Otherwise, the method may lead to many false positives,
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i.e non outlying observations that are identified as outliers. Note that this is a serious concern that
applies to almost all the outlier-detection methods. To the best of our knowledge, the mvoutlier and
CerioliOutlierDetection packages are the first ones that tend to correct these drawbacks, but only for
the robust Mahalanobis distance with the Minimum Covariance Determinant (MCD) estimators.

The ICSOutlier (Archimbaud et al., 2016) package is another approach to the detection of outliers.
It appears that ICS is as efficient as its competitors in many situations and shows an advantage
in the case of a small proportion of outliers lying in a low-dimensional subspace. This method is
well-designed in particular for quality control. Its current version is able to handle a small proportion
of outliers that lie on a subspace, using the affine equivariant Invariant Coordinate Selection (ICS)
method, as presented by Archimbaud et al. (2018). The method relies on a generalized diagonalization
and on the selection of the invariant components associated with the largest eigenvalues. Note that
when more than say 10% of the observations are suspected to be outlying, invariant components
associated with the smallest eigenvalues may also be of interest and this alternative will be considered
in a future version of the package. ICS fulfills all the properties mentioned previously: (i) detect the
absence of outliers, (ii) not be sensitive to the standardization of the data and (iii) be a multivariate
method which controls the number of observations identified as outliers. The restriction to a small
proportion of outliers that belong to a subspace is of interest in some areas of manufacturing products
with a high level of quality control (e.g. automotive, avionics or aerospace).

In the following sections, the principle of the Invariant Coordinate Selection (ICS) method is
recalled as well as the three steps of the outlier detection procedure: (i) invariant components selection,
(ii) outlierness measure definition and (iii) outlier identification. Then, we explain how to use the
ICSOutlier package and finally we analyze the efficiency of the ICS method compared to other
methods on four examples, including a new real data set included in the package.

Invariant Coordinate Selection (ICS) for outlier detection

Principle

The ICS method is a powerful method designed for exploring multivariate data by revealing their
structure (Nordhausen et al., 2008). As explained in Tyler et al. (2009), it is based on a simultaneous
spectral decomposition of two scatter matrices and leads to an affine invariant coordinate system.
Readers not so familiar with the concept of scatter matrices are refered for example to Rousseeuw
and Hubert (2013), Nordhausen and Tyler (2015) and references therein for definitions, examples and
properties.

Following Archimbaud et al. (2018), for a p-variate dataset Xn = (x1, . . . , xn)′, let V1(Xn) and
V2(Xn) be two affine equivariant scatter matrices (symmetric and positive definite) and m1(Xn) and
m2(Xn) their associated location estimators. ICS is looking for the diagonal p × p matrix D(Xn)
containing the eigenvalues of V1(Xn)−1V2(Xn) in decreasing order and the p× p matrix B(Xn) =
(b1, . . . , bp)′ containing the corresponding eigenvectors as its rows and such that

B(Xn)V1(Xn)B′(Xn) = Ip.

We have:
V1(Xn)

−1V2(Xn)B(Xn)
′ = B(Xn)

′D(Xn).

Letting V1(Xn) be “more robust” than V2(Xn), the interpretation of these eigenvalues is the main
point of the ICS method: they correspond to some kurtosis measure that depends on the choice of
V1(Xn) and V2(Xn) . For example if V1 is the usual empirical variance-covariance matrix and V2 is the
scatter matrix based on the fourth moments (the default in the ics.outlier function), the eigenvalues
are ordered according to their classical Pearson kurtosis values in decreasing order. In this case and
for a small proportion of outliers, it is advisable to analyze the projections that maximize the kurtosis
and are associated with the largest eigenvalues (Archimbaud et al., 2018).

Then, using the location estimator m1(Xn) associated with the scatter matrix V1(Xn) , the corre-
sponding centered scores are obtained as zi = B(Xn)(xi −m1(Xn)) for i = 1, . . . , n, so that:

Zn = (z1, . . . , zn)
′ = (Xn − 1nm′1(Xn))B′(Xn).

They are called the invariant components (IC) because of their affine invariance property in the sense
that if X∗n = XnA + 1nb′ for any p× p regular matrix A and any p-vector b,

(X∗n − 1nm1(X∗n)
′)B(X∗n)

′ = (Xn − 1nm1(Xn)
′)B(Xn)

′J,

where 1n is a n-vector of ones and J is a p× p diagonal matrix with diagonal elements ±1, which
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means the invariant coordinates change at most their signs.

These scores are related to the Mahalanobis Distance (MD). For any observation xi with i = 1, . . . , n,
the squared Euclidian norm of its centered invariant coordinates is exactly the squared Mahalanobis
distance from m1(Xn) in the sense of V1(Xn):

z′izi = (xi −m1(Xn))
′V1(Xn)

−1(xi −m1(Xn)).

The added value of using ICS over MD is realized when the structure of the data is on a subspace of
dimension q < p. In this context and with a small percentage of outliers, it is of interest to focus only
on the q projections that maximize a kurtosis measure. Indeed, if the number k of selected Invariant
Coordinates corresponds to the dimension q of the subspace on which the outliers lie, then the ICS
method is expected to recover the subspace of interest for outlier detection. As detailed in Tyler et al.
(2009), this subspace corresponds to Fisher’s discriminant subspace in case of mixtures of Gaussian
distributions. Nevertheless, the main difficulty is to correctly estimate this dimension k.

Invariant coordinates selection

Depending on the combination of the scatters V1(Xn) and V2(Xn) chosen, the ICSOutlier package
incorporates automated ways to select these k invariant coordinates. The two approaches proposed
in Archimbaud et al. (2018) are implemented here: a test based on a quasi-inferential procedure and
some normality tests. Considering V1(Xn) be more robust than V2(Xn) and a small percentage of
outliers (less than 10% is recommended), the structure of the outlierness should be contained in the
first k non-normal components. Note that the structure may be also contained in the last components
(associated with the smallest eigenvalues) if the proportion of outliers is large. What is meant by
“large” depends on the scatter pair but also on the distribution of the data as detailed in Archimbaud
et al. (2018). Since the invariant coordinates are already ordered decreasingly according to a kurtosis
measure, it is enough to test whether each component is Gaussian beginning by the one associated
with the largest eigenvalue and stop the test procedure as soon as we find a Gaussian component. So,
if k + 1 denotes the rank of the first Gaussian component, the components are sequentially tested at the
adapted level αj = α/j, for j = 1, . . . , k, as in Dray (2008). Because of the sequentiality, the Bonferroni
correction adjusts the significance of each test and ensures a nominal level α.

The first approach is a Parallel Analysis (PA) based on Monte Carlo simulations of eigenvalues
for Gaussian populations of the same dimension as the initial dataset. This method is common for
selecting components in PCA as described in Peres-Neto et al. (2005). It is based on mEig simulations
of a Gaussian population and, for each j = 1, . . . , p, the computation of the 1− αj percentile of the
jth eigenvalue of ICS which is considered as a cut-off for the jth component. Then, sequentially from
j = 1, if the observed jth eigenvalue exceeds the cut-off then the jth invariant component is declared
non-Gaussian and is selected. As soon as one eigenvalue is smaller than its associated cut-off, the
invariant component is considered as Gaussian and the test procedure is stopped.

The second approach is directly based on usual normality tests and is applied to the invariant
coordinates. In the package the user can choose out of the following five tests: the D’Agostino test
of skewness (DA), the Anscombe-Glynn (AG) test of kurtosis, the Bonett-Seier (BS) test of Geary’s
kurtosis, the Jarque-Bera (JB) test for normality which is based on both skewness and kurtosis measures
and the Shapiro-Wilk (SW) normality test (see Yazici and Yolacan (2007) and Bonett and Seier (2002)
for a complete description of each). The process of testing is still sequential with an adaptation of the
level of each test. Once the first normal coordinate is found, the test procedure stops and only the
non-Gaussian coordinates are selected.

Measure of outlierness

Let k denote the number of invariant components selected by one of the two test procedures detailed
previously or by looking at the screeplot of the eigenvalues. Then, for each observation xi, i = 1, . . . , n,
its squared ICS distance is computed based on the k selected invariant coordinates by:

ICSD2
V1(Xn)−1V2(Xn)

(xi, k) = z′i,kzi,k.

where zi,k = B(Xn, k)(xi −m1(Xn)), for i = 1, . . . , n, and the k× p matrix B(Xn, k) contains the k first
rows of B(Xn).
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Outlier identification

Finally, the outliers are identified based on the comparison of their ICS distance with the expectation
under the Gaussian distribution as in Archimbaud et al. (2018). The cut-off is derived from mDist
Monte Carlo simulations of a Gaussian population of the same dimension as the initial dataset. For
each observation, the ICS distance is computed using the k selected components. For a given level β,
the cut-off corresponds to the average of the 1− β percentiles of the distances over all the simulations.
An observation is labeled as outlier if its ICS distance is higher than this cut-off. By default, β = 5%.

Using the package ICSOutlier

The main function available in ICSOutlier is ics.outlier which directly calls all the other functions
included in the package. First it is necessary to apply the ics2 function from the ICS (Nordhausen
et al., 2008) package in order to create an object of class ics2. The ICS package has been available for a
few years, and contains a function called ics for implementing the ICS method. However, the ics
function cannot be used directly for outlier detection, and a new function, ics2, had to be added to
the ICS package (version 1.3-0). The arguments of ics2 are mostly the same as those of the function
ics, except for now it is necessary to add the location vectors associated with the scatter estimators.
The main function ics.outlier of the package ICSOutlier uses the output of the ics2 function as an
input. The function ics.outlier implements the three steps necessary for outlier detection using ICS
in an automated way:

(i) Select the invariant coordinates which recover at best the subspace where the outliers are lying
using some test procedure.

(ii) Compute the ICS distance based on the selected invariant coordinates as an outlierness measure
for each observation.

(iii) Label the outliers using the cut-off value obtained through simulations.

The links between the ics2 function from the ICS package and the functions available in the
ICSOutlier package are illustrated on Figure 1.

ICS ics2

Outlier detection ics.outlier

1. Invariant components
selection

2. ICS distances compu-
tation

comp.simu.test comp.norm.test

ics.distances

3. Cut-off computation
for outlier identification

dist.simu.test

4. Outlier interpretation summaryprint plot

Figure 1: Organization chart of the functions called by ics.outlier

The ics.outlier function only takes as parameter an object of class ics2 and not an object of
class ics because this later returns only uncentered invariant coordinates contrary to the ics2 class.
From a practical point a view, the S1 and S2 arguments of the ics2 function should be the name of the
function which returns a list with the first (resp. second) location vector m1 (resp. m2) and the first
scatter matrix V1 (resp. V2).
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In addition to this ics2 object, there are other parameters of ics.outlier that can be tuned,
including an option to parallelize the computations in order to increase the speed of the function:

• method: name of the method used to select the ICS components. Options are "simulation" for
the parallel analysis approach and "norm.test" for the normality tests approach. Depending
on the method, either comp.norm.test or comp.simu.test is used.

• test: name of the marginal normality test to use if method = "norm.test". Possibilities are
"jarque.test", "anscombe.test", "bonett.test", "agostino.test", "shapiro.test". Default
is "agostino.test".

• mEig: number of simulations performed to derive the cut-off values for selecting the ICS
components. Only if method = "simulation". See comp.simu.test for details.

• level.test: level for the comp.norm.test or comp.simu.test functions. The inital level for
selecting the invariant coordinates.

• adjust: logical. For selecting the invariant coordinates, the level of the test can be adjusted
for each component to deal with multiple testing. See comp.norm.test and comp.simu.test for
details. Default is TRUE.

• level.dist: level for the dist.simu.test function. The (1-level(s))th quantile(s) used to
determine the cut-off value(s) for the ICS distances.

• mDist: number of simulations performed to derive the cut-off value for the ICS distances. See
dist.simu.test for details.

• type: currently the only option is "smallprop" which means that only the first ICS components
can be selected. See comp.norm.test or comp.simu.test for details.

• ncores: number of cores to be used in dist.simu.test and comp.simu.test. If NULL or 1, no
parallel computing is used. Otherwise makeCluster with type = "PSOCK", from the parallel
package, is used.

• iseed: The seed passed on to clusterSetRNGStream if parallel computation is used. Default is
NULL which means no fixed seed is used.

• pkg: A character vector listing all the packages which need to be loaded on the different cores
via require if parallel computation is used. Must be at least "ICSOutlier" and must contain the
packages needed to compute the scatter matrices.

• qtype: specifies the quantile algorithm used in quantile.

By default the ics2 function performs ICS with the usual mean vector and the usual empirical
variance-covariance matrix returned by MeanCov and the location vector based on the third moments
associated to the scatter matrix based on the fourth moments returned by Mean3Cov4.

Examples

In the following examples, we illustrate first, using an artifical data set, how ics.outlier behaves in
the case of no outlier and then apply the function to three data sets available in R. For reproducibility
all examples have a fixed seed.

Example with no outlier

One of the advantages of using ICS for outlier detection is its ability to detect the absence of outliers.
If the first invariant coordinate is considered normal that means there is no outlier in the data set. So,
in presence of a normal multivariate data set the function should select in most cases no component
and hence will not detect outliers.

For the first example we simulate a bivariate normally distributed data set with 500 observations
and we determine the cut-offs for identifying the outliers at the level 2.5% for all methods.

library("ICSOutlier", quietly = TRUE)
# Data simulation
set.seed(123)
X <- matrix(rnorm(1000, 0, 0.1), 500, 2)

Using the default ICS setting and choosing the Jarque-Bera test of kurtosis to select the components
at the default level 5% can easily be done as follows.
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icsX <- ics2(X)
icsOutlierJB <- ics.outlier(icsX, test = "jarque", level.test = 0.05,

level.dist = 0.025)
print(icsOutlierJB)

R> [1] "0 components were selected and no outliers were detected."

Hence in this outlier-free normal data no component was considered non-normal and therefore as
desired no outliers were detected.

As a comparison we compute the robust Mahalanobis distances using the MCD with a breakdown
point of 25% and compute the commonly used cut-off value coming from the χ2

2 distribution and the
adjusted cut-off value from (Green and Martin, 2017b) as implemented in the package CerioliOut-
lierDetection.

# Robust Mahalanobis distance with MCD estimates with a breakdown point of 25%
library("robustbase")
MCD <- covMcd(X, alpha = 0.75)
RD <- mahalanobis(X, MCD$center, MCD$cov)

# Cut-off based on the chi-square distribution
cutoff.chi.sq <- qchisq(0.975, df = ncol(X))
cutoff.chi.sq

R> [1] 7.377759

# Cut-off based Green and Martin (2017)
library("CerioliOutlierDetection")
cutoff.GM <- hr05CutoffMvnormal(n.obs = nrow(X), p.dim = ncol(X), mcd.alpha = 0.75,

signif.alpha = 0.025, method = "GM14",
use.consistency.correction = TRUE)$cutoff.asy

cutoff.GM # This dollar sign works around the mathjax bug: $

R> [1] 14.22071

To visualize these results, the robust squared Mahalanobis distances are plotted with two different
cut-off values in Figure 2.

# Code for the Figure 2
colPoints <- ifelse(RD >= min(c(cutoff.chi.sq, cutoff.GM)), 1, grey(0.5))
pchPoints <- ifelse(RD >= min(c(cutoff.chi.sq, cutoff.GM)), 16, 4)
plot(seq_along(RD), RD, pch = pchPoints, col = colPoints,

ylim=c(0, max(RD, cutoff.chi.sq, cutoff.GM) + 2), cex.axis = 0.7, cex.lab = 0.7,
ylab = expression(RD**2), xlab = "Observation Number")

abline(h = c(cutoff.chi.sq, cutoff.GM), lty = c("dashed", "dotted"))
legend("topleft", lty = c("dashed", "dotted"), cex = 0.7, ncol = 2, bty = "n",

legend = c(expression(paste(chi[p]**2, " cut-off")), "GM cut-off"))

Hence in this example using the χ2
2 cut-off yields 12 outliers while the more sophisticated cut-off

does not classify any observation as outlying.

Another situation where the ics.outlier function can conclude to an absence of outliers is when
the squared ICS distances are below the corresponding cut-off for all observations, as illustrated in the
help file of the function: ?ics.outlier.

HTP data set

The real data set HTP, introduced in Archimbaud et al. (2018), is included in this package. The data set
provides the results of 88 numerical tests for 902 high-tech parts. Based on these results the producer
considered all parts functional and all of them were sold. However two parts, 581 and 619, showed
defects in use and were returned to the manufacturer. These two observations can thus be considered
as outliers and the objective is to detect them. We use the ics.outlier function with its default
settings, as most users initially would do but with the parallelizing option for the computations.

# HTP dataset
library("ICSOutlier")
set.seed(123)
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Figure 2: Squared robust Mahalanobis distances and two different cut-off values.

data(HTP)
outliers <- c(581, 619)

# default ICS
icsHTP <- ics2(HTP)

# Outlier detection with selection of components based on normality tests
# by default it can take quite long as mDist = 10000 so we choose to
# use all but one available cores to parallelize the simulations.
library(parallel)
icsOutlierDA <- ics.outlier(icsHTP, ncores = detectCores()-1, iseed = 123)
summary(icsOutlierDA)

R>
R> ICS based on two scatter matrices and two location estimates
R> S1: MeanCov
R> S2: Mean3Cov4
R>
R> Searching for a small proportion of outliers
R>
R> Components selected at nominal level 0.05: 14
R> Selection method: norm.test (agostino.test)
R> Number of outliers at nominal level 0.025: 43

# Code for the Figure 3
plot(icsOutlierDA, cex.lab = 0.7, cex.axis = 0.7)
points(outliers, icsOutlierDA@ics.distances[outliers], pch = 5)
text(outliers, icsOutlierDA@ics.distances[outliers], outliers, pos = 2, cex = 0.7)

Based on this result we are able to identify the two outliers among the 5% of the observations
declared as outliers, taking into account the 14 first components selected by the D’Agostino normality
test.

However, following Archimbaud et al. (2018), a simple alternative for selecting components is to
use the screeplot of the icsHTP object, in a similar way as for PCA. Note that while the eigenvalues
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Figure 3: Squared ICS distances for HTP data with default parameters.

plotted on the screeplot are related to the variance, for PCA they correspond to a generalized kurtosis
for ICS (see Tyler et al. (2009)).

# Code for the Figure 4
screeplot(icsHTP, cex.lab = 0.7, cex.axis = 0.7, cex.names = 0.7, cex.main = 0.7)

Based on this screeplot, three components might be a reasonable choice and then the functions
ics.distances and dist.simu.test can be used to obtain the desired distances and cut-off value.

ics.dist.scree <- ics.distances(icsHTP, index = 1:3)
# by default it can take quite long as m = 10000, so we choose to
# use all but one available cores to parallelize the simulations.
library(parallel)
ics.cutOff <- dist.simu.test(icsHTP, 1:3, ncores = detectCores()-1, iseed = 123)
ics.cutOff

R> 97.5%
R> 12.80771

Before visualizing these results we also apply two competing outlier detection methods. First
the Finite-Sample Reweighted MCD (FSRMCD) outlier detection test of Cerioli (Cerioli, 2010), imple-
mented in the package CerioliOutlierDetection and secondly the SIGN1 algorithm (Filzmoser et al.,
2008) implemented in the package mvoutlier. For the FSRMCD algorithm, we choose as nominal level
α = 1− γ1/n for the individual outlier tests, with γ the nominal size of the intersection test and n the
number of observations. Then the ICS distances based on the three selected components are plotted
against the distances from the two competing methods together with the corresponding cut-off values.

# FSRMCD
library("CerioliOutlierDetection")
FSRMCD <- cerioli2010.fsrmcd.test(HTP, signif.alpha = 1 - 0.975**(1/nrow(HTP)),

mcd.alpha = 0.75)
# Two critical values: one for points included in the reweighted MCD (weights == 1)
# and one for points excluded from the reweighted MCD (weights == 0)).
FSRMCD.cutoffs <- unique(FSRMCD$critvalfcn(FSRMCD$signif.alpha))
FSRMCD.cutoffs
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Figure 4: Screeplot of ICS eigenvalues for HTP data and default parameters.

R> [1] 144.8583 183.2797

# SIGN1
library("mvoutlier", quietly = TRUE)
SIGN1 <- sign1(HTP, qcrit = 0.975)

# Code for the Figure 5
par(mfrow = c(1, 2))
par(mar = c(4, 4, 2, 0.2))

# Comparison ICS vs FSRMCD
colPoints <- ifelse(ics.dist.scree >= ics.cutOff , 1, grey(0.5))
pchPoints <- ifelse(ics.dist.scree >= ics.cutOff, 16, 4)
plot(FSRMCD$mahdist.rw, ics.dist.scree, col = colPoints, pch = pchPoints,

cex.lab = 0.7, cex.axis = 0.7, cex.main = 0.7,
main = "ICS vs FSRMCD", ylab = "ICS Distances", xlab = "FSRMCD") # This dollar sign works around the mathjax bug: $

points(FSRMCD$mahdist.rw[outliers], ics.dist.scree[outliers], pch = 5)
text(FSRMCD$mahdist.rw[outliers], ics.dist.scree[outliers], labels = outliers, pos = 2,

cex = 0.7)
abline(h = ics.cutOff, v = FSRMCD.cutoffs, lty = "dashed")

# Comparison ICS vs SIGN1
plot(SIGN1$x.dist, ics.dist.scree, col = colPoints, pch = pchPoints,

cex.lab = 0.7, cex.axis = 0.7, cex.main = 0.7,
main = "ICS vs SIGN1", ylab = "ICS Distances", xlab = "SIGN1")

points(SIGN1$x.dist[outliers], ics.dist.scree[outliers], pch = 5)
text(SIGN1$x.dist[outliers], ics.dist.scree[outliers], labels = outliers, pos = 2,

cex = 0.7)
abline(h = ics.cutOff, v = SIGN1$const, lty = "dashed")

As illustrated in Figure 5, the cut-offs used for the FSRMCD and SIGN1 algorithms plotted on
the x-axis lead to too many false positives. Even when focusing only on the rank of the outlying
observations it is clear that the ICS method outperforms the other methods. The outlier labelled 619
is obviously outlying with all methods, but the outlier labelled 581 has the 4th highest squared ICS
distance compared to 15th and 12th for the distances computed with FSRMCD and SIGN1 algorithms.
Note that the data set contains highly collinear variables and it is well-known that high-breakdown
point methods are not optimal in this case.

Archimbaud et al. (2018) contains a more detailed analysis of this dataset comparing ICS with
other methods and also gives the impact of the choice of different scatter matrices. For the present data
set the default scatter combination used here seems the best. In this analysis, it is also interesting to
notice that the first component highlights only the two defective parts. The other two observations are
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Figure 5: Squared ICS distances with 3 components against FSRMCD (left panel) and SIGN1 (right
panel) measures of outlierness for HTP data with cut-offs at level of 2.5%.

detected on the second and the third components of ICS and as far as we know they are not defective
parts but false positives.

Reliability data set

The Reliability data set comes also from an industrial context and is part the of REPPlab package. It
contains 55 variables measured during the production process of 520 units. The challenge for this data
is to identify the produced items with a fault not detected by the marginal tests. According to Fischer
et al. (2016a), the observations numbered 414 and 512 are most likely outliers.

A special feature of this data set is that for example variable 24 is nearly constant which makes
this data set hard to use with high-breakdown methods. For example the MCD cannot be computed
for this data set when all variables are used. The use of ICS and other distance-based outlier detection
methods is also detailed in Archimbaud et al. (2018).

Let us now illustrate the use of other scatter matrices than the default one together with the way
to pass arguments to some of the functions. This time the invariant components are selected using
simulations (Parallel analysis) with an initial decision level of 5%. These results are then compared to
two methods not included in Archimbaud et al. (2018), namely the Local Outlier Factor (LOF, (Breunig
et al., 2000)) and the Angle-Based Outlier Factor (Kriegel et al., 2008) outlier detection methods.
First, we apply the LOF method with the lof function from the Rlof package which parallelizes
the computation of the local outlier factor using l neighbours for each observation. The number
of neighbours is determined based on the guidelines from Breunig et al. (2000): we compute the
outlierness measures for l between 5 and 50 and we aggregate the results by taking the maximum
of the local outlier factor for each observation. However, the distribution of the LOF values (and of
the aggregated indices) is not known and therefore, there exists no theoretical cut-off to identify the
outlying observations. In practice, observations with LOF values much higher than one are considered
as potentially outlying. Second, we calculate the angle-based outlier factor for each observation
through the abod function from the abodOutlier package on a random sample of 10% (the default)
of the data (not on the entire data set because it is too time-consuming). As for the LOF method,
the distribution of the outlyingness indices is unknown. But for this method, a potentially outlying
observation is indicated by a small index value.

The location and scatter combinations we use here are the regular mean vector and covariance
matrix and the joint maximum likelihood estimation of location and scatter of a t-distribution with
one degree of freedom, also known as Cauchy MLE estimate. The function MeanCov returns the mean
vector and regular covariance matrix as required for ics2 and for the Cauchy MLE we use the function
tM where the degree of freedom is specified using the argument df. As the Cauchy MLE is considered
the more robust estimator it should be specified in ics2 as S1.

# ReliabilityData example: the observations 414 and 512 are suspected to be outliers
library("ICSOutlier")
library("REPPlab")
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set.seed(123)
data(ReliabilityData)
outliers <- c(414, 512)

# ICS with MLE Cauchy and the Mean-Cov
icsReliabilityData <- ics2(ReliabilityData, S1 = tM, S2 = MeanCov,

S1args = list(df = 1))

# Outlier detection with selection of components based on simulations
# it can take quite long as mEig = 5000 and mDist = 5000, so we choose
# to use all but one available cores to parallelize the simulations.
icsOutlierPA <- ics.outlier(icsReliabilityData, method = "simulation",

level.test = 0.05, mEig = 5000,
level.dist = 0.01, mDist = 5000,
ncores = detectCores()-1, iseed = 123)

icsOutlierPA

R> [1] "39 components were selected and 86 outliers were detected."

# LOF: Local Outlier Factor
library("Rlof", quietly = TRUE)
X.lof <- lof(ReliabilityData, 5:50, cores = 2)
X.lof.max <- apply(X.lof, 1, max)

# ABOD: Angle-Based Outlier Factor
library("abodOutlier", quietly = TRUE)
X.abod <- abod(ReliabilityData, method = "randomized")

# Code for the Figure 6
par(mfrow = c(1, 2))
par(mar = c(4, 4, 2, 0.2))

# Comparison ICS vs LOF
plot(X.lof.max, icsOutlierPA@ics.distances, cex.lab = 0.7, cex.axis = 0.7, pch = 4,

cex.main = 0.7, main = "ICS vs LOF", ylab = "ICS Distances", xlab = "LOF")
text(X.lof.max[outliers], icsOutlierPA@ics.distances[outliers], labels = outliers,

pos = 4, cex = 0.7)

# Comparison ICS vs ABOD
plot(X.abod, icsOutlierPA@ics.distances, cex.lab = 0.7, cex.axis = 0.7, cex.main = 0.7,

main = "ICS vs ABOD", ylab = "ICS Distances", xlab = "ABOD", pch = 4)
text(X.abod[outliers], icsOutlierPA@ics.distances[outliers], labels = outliers,

pos = 4, cex = 0.7)

This analysis shows that ICS selects here quite many components and suggests 86 outliers at
the level of 1%. For their part, the LOF and ABOD methods do not provide cut-offs for identifying
outlying observations. So we only consider the ranks of the observations. When looking at the ICS
distances on Figure 6, the observations 414 and 512 are clearly separated from the main bulk of the
data while the two observations do not differ at all from the rest of the data using the LOF and ABOD
methods (see also Archimbaud et al. (2018) for more details on this exmaple).

HBK data set

The hbk data set is included in the robustbase package (Rousseeuw et al., 2017). It is an artificial
data set created by Hawkins et al. (1984) for illustrating the so-called masking effect of outliers. It
contains two groups of outliers with observations 1-10 in the first group and observations 11-14 in the
second group, over the 75 observations characterized by the three explanatory variables. Usually with
non-robust methods only the observations 12, 13 and 14 are identified as outliers. For this example
the percentage of outliers is around 19% and so is larger than the percentage we recommend for the
current version of the package. Our aim is to illustrate that in such a situation, the choice of the scatter
matrices may have a large impact on the results.

First, the combination of the highly robust MCD estimates with the mean vector and regular
covariance matrix is studied. Note that in order to be able to use the MCD via the function CovMcd a
wrapper needs to be written around the function so that it returns the proper list as expected by ics2.
Using then the D’Agostino test for skewness for selecting the invariant components leads to select two
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Figure 6: Squared ICS distances with 39 components against LOF (left panel) and ABOD (right panel)
measures of outlierness for Reliability data.

components at the default level of 5%. The level of the quantile used for deriving the cut-off for outlier
identification is the default, 2.5%. For this combination, ICS performs equally well as the MCD-based
Mahalanobis distances, as illustrated in the first three plots of the Figure 7. All outliers are correctly
identified, no false positive is detected and the two groups of outliers are clearly separated.

Next, we consider the combination of two non-robust location vectors and scatter matrices which
are the default in ICS, with the same parameters for selecting the components and for identifying the
outliers as previously. The results are presented on the fourth plot of Figure 7.

library("rrcov")
set.seed(123)
# HBK data set
data(hbk)

# ICS with MCD estimates and the usual estimates
# Need to create a wrapper for the CovMcd function to return first the location estimate
# and the scatter estimate secondly.
myMCD <- function(x,...){
mcd <- CovMcd(x,...)
return(list(location = mcd@center, scatter = mcd@cov))

}
icsHBK_mcd <- ics2(hbk[, 1:3], S1 = myMCD, S2 = MeanCov, S1args = list(alpha = 0.75))

# Outlier detection with selection of components based on the D'Agostino test for
# skewness. It can take quite long as mEig = 10000 and mDist = 10000, so we choose
# to use all but one available cores to parallelize the simulations.
library(parallel)
icsOutlierDA.MCD <- ics.outlier(icsHBK_mcd, mEig = 10000, level.dist = 0.025,

mDist = 10000,
ncores = detectCores()-1, iseed = 123,
pkg = c("ICSOutlier", "rrcov"))

icsOutlierDA.MCD

R> [1] "2 components were selected and 14 outliers were detected."

# Robust Mahalanobis distance with MCD estimates with a breakdown point of 25%
MCD <- covMcd(hbk[, 1:3], alpha = 0.75)
RD <- mahalanobis(hbk[, 1:3], MCD$center, MCD$cov)
cutoff.chi.sq <- qchisq(0.975, df = ncol(hbk[, 1:3]))

# Cut-off based Green and Martin (2017)
library("CerioliOutlierDetection")
cutoff.GM <- hr05CutoffMvnormal(n.obs = nrow(hbk[, 1:3]), p.dim = ncol(hbk[, 1:3]),
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mcd.alpha = 0.75, signif.alpha = 0.025, method = "GM14",
use.consistency.correction = TRUE)$cutoff.asy #This dollar sign works around the mathjax bug: $

# ICS with non robust estimates
icsHBK <- ics2(hbk[,1:3], S1 = MeanCov, S2 = Mean3Cov4)

# Outlier detection with selection of components based on the D'Agostino test for
# skewness. It can take quite long as mEig = 10000 and mDist = 10000, so we choose
# to use all but one available cores to parallelize the simulations.
icsOutlierDA <- ics.outlier(icsHBK, mEig = 10000, level.dist = 0.025,

mDist = 10000,
ncores = detectCores()-1, iseed = 123,
pkg = c("ICSOutlier", "rrcov"))

icsOutlierDA

R> [1] "2 components were selected and 2 outliers were detected."

# Code for the Figure 7
par(mfrow = c(1, 3))
par(mar = c(4, 2, 2, 0.2))

# Robust Mahalanobis distance with MCD estimates
colPoints <- ifelse(RD >= cutoff.chi.sq, 1, grey(0.5))
pchPoints <- ifelse(RD >= cutoff.chi.sq, 16, 4)
plot(RD, col = colPoints, pch = pchPoints, xlab = "Observation Number",

cex.lab = 0.7, cex.axis = 0.7, main = "Robust MD", cex.main = 0.7)
abline(h = c(cutoff.chi.sq, cutoff.GM), lty = 1:2)
legend("topright", lty = 1:2, cex = 0.7, bty = "n",

legend = c(expression(paste(chi[p]**2, " cut-off")), "GM cut-off"))

# ICS with MCD estimates and regular covariance
plot(icsOutlierDA.MCD, cex.lab = 0.7, cex.axis = 0.7, main = "ICS MCD-COV",

cex.main = 0.7)

# ICS with default non-robust estimates
plot(icsOutlierDA, cex.lab = 0.7, cex.axis = 0.7, main = "ICS COV-COV4",

cex.main = 0.7)

Here the default ics2 scatter combination does not perform well. Only three outliers from the
second group are detected, although the distance plot indicates three distance levels but the cut-
off value is not good and the separation not clear especially when compared with the MCD-COV
combination. However, when looking at the invariant coordinates on Figure 8, we can see that
the default scatter combination reveals the 14 outliers and the masking effect appears only when
computing the ICS distances.

# Code for the Figure 8
plot(icsHBK, col = rep(3:1, c(10, 4, 61)))

Conclusion and future developments

The use of ICSOutlier for outlier detection has been illustrated on several examples. The results are
already pretty good with the default parameters as soon as the percentage of outliers is small. Note
however that the components selection procedure can be improved sometimes by a visual inspection
of the screeplot and the cut-off for outlier identification can be adjusted by looking at the ICS distances
plot. The ability of the method to check for the absence of outliers is an advantage compared with
methods such as the Mahalanobis distance. In the same vein, the number of false positives, i.e the
number of non-outliers declared as outliers, is restricted thanks to the use of the cut-off derived from
simulations. Moreover, the real HTP data set included in the package shows that the ICS method is
useful for outlier detection in the context of quality control, among possible applications. Finally the
ICS method competes with common approaches based on distances (the Mahalanobis distance, its
robust version, the PCA methods, its variants and improvements) as well as other methods based on
the density (LOF) or on angles (ABOD).

The computation time for cut-offs for the selection of the non-Gaussian invariant components,
on the one hand, and for the threshold for labeling the outliers, on the other hand, can be reduced
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Figure 7: Squared robust Mahalanobis distance based on the MCD (left panel), squared ICS distances
with MCD and Mean-Cov (middle panel), and squared ICS distances with default scatters (right
panel). All cut-offs values are at level of 2.5%

by using the parallelizing option. Moreover, for now, the function can only select the first invariant
components which is relevant when the percentage of outliers is small. For a large percentage, the
invariant components associated with the smallest eigenvalues may also be of interest and this is a
current perspective of the present package. A generalization of the ICS method in case of perfectly
collinear variables is also a work in progress.
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