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Small Area Disease Risk Estimation and
Visualization Using R
by Paula Moraga

Abstract Small area disease risk estimation is essential for disease prevention and control. In this
paper, we demonstrate how R can be used to obtain disease risk estimates and quantify risk factors
using areal data. We explain how to define disease risk models and how to perform Bayesian inference
using the INLA package. We also show how to make interactive maps of estimates using the leaflet
package to better understand the disease spatial patterns and communicate the results. We show an
example of lung cancer risk in Pennsylvania, United States, in year 2002, and demonstrate that R
represents an excellent tool for disease surveillance by enabling reproducible health data analysis.

Introduction

Disease risk mapping analyses can help to better understand the spatial variation of the disease, and
allow the identification of important public health determinants. These analyses are essential to inform
programmes of disease prevention and control. The increased availability of geospatial disease and
population data has enabled to study a number of health outcomes worldwide such as influenza and
cancer in developed countries (Moraga and Ozonoff, 2013; Moraga and Kulldorff, 2016), and neglected
tropical diseases (Moraga et al., 2015; Hagan et al., 2016).

Areal disease data often arise when disease outcomes observed at point level locations are ag-
gregated over subareas of the study region due to several reasons such as patient confidentiality.
Producing disease risk estimates at areal level is complicated by the fact that raw rates can be very
unstable in areas with small populations and for rare diseases, and also by the presence of spatial
correlation that may exist due to spatially correlated risk factors (Leroux et al., 2000). Thus, generalized
linear mixed models are often used to obtain disease risk estimates since they enable to improve local
estimates by accommodating spatial correlation and the effects of explanatory variables. Bayesian
inference in these models may be performed using the Integrated Nested Laplace Approximation
(INLA) approach (Rue et al., 2009) which is a computational alternative to MCMC that allows to do
approximate Bayesian inference in latent Gaussian models. This approach is implemented in the R
package called INLA (Rue et al., 2017) (http://www.r-inla.org/).

Small area disease estimates can be visualized through maps, greatly facilitating effective commu-
nication. R provides excellent tools for visualization including packages for making interactive maps
such as leaflet (Cheng et al., 2017). The maps created with leaflet support interactive panning and
zooming which is very convenient to examine small areas in detail.

In this paper, we illustrate the use of R for performing disease risk mapping analysis using areal
data. First, we introduce disease risk models for areal data and give a brief overview of INLA. In
Section 2.4 we show how to estimate lung cancer risk and quantify risk factors in Pennsylvania, United
States, in year 2000. Specifically, we discuss how to compute the observed and expected disease
counts in the Pennsylvania counties, how to obtain disease risk estimates by fitting a spatial disease
risk model using INLA, and how to build interactive maps showing the risk estimates using leaflet.
Finally, the conclusions are presented.

Disease risk models

Disease risk estimates in areas can be obtained by computing the Standardized Incidence Ratios (SIRs).
For area i, i = 1, . . . , n, the SIR is obtained as the ratio of the observed to the expected disease counts:
SIRi = Yi/Ei. The expected counts represent the total number of disease cases that one would expect
if the population of the specific area behaved the way the standard (or regional) population behaves.
The expected counts can be calculated using indirect standardization as

Ei =
m

∑
j=1

r(s)j nj,

where r(s)j is the disease rate in stratum j of the standard population, and nj is the population in
stratum j of the specific area. The SIR corresponding to area i, SIRi, indicates whether the area i has
more (SIRi > 1), equal (SIRi = 1) or fewer (SIRi < 1) cases observed than expected from the standard
population. When applied to mortality data, the ratio is commonly known as the Standardized
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Mortality Ratio or SMR.

Although in some situations SIRs can give a sense of the disease’s spatial variability, very extreme
values can occur in areas with small populations owing to the small sample sizes involved. In contrast,
disease models are preferred to obtain disease risks estimates because they enable to incorporate
covariates and borrow information from neighboring areas to improve local estimates, resulting in
the smoothing or shrinking of extreme values based on small sample sizes (Gelfand et al., 2000). A
common approach is to model the observed counts Yi, i = 1, . . . , n, using a Poisson distribution with
mean Ei × θi, where Ei is the expected counts and θi is the relative risk in area i. Then, the log risks are
modeled with a sum of an intercept to model the overall disease risk level, and random effects that
account for extra-Poisson variability in the observed data (Lawson, 2009). Areas with relative risks
θ > 1 and θ < 1 are areas with high and low risks, respectively. Areas with θ = 1 have the same risk
as expected from the standard population.

The general model in disease mapping is expressed as

Yi ∼ Po(Ei × θi), i = 1, . . . , n,

log(θi) = α + ui + vi.

Here, α denotes the overall risk level, ui is a spatial structured random effect that models the spatial
dependence between the relative risks, and vi is an unstructured exchangeable random effect that
models uncorrelated noise. Often, other covariates or random effects are also included to quantify risk
factors and deal with other sources of variability.

A model commonly used in disease mapping is the Besag-York-Mollié (BYM) model (Besag
et al., 1991). In this model, the spatially structured component ui is modelled with the conditional
autoregressive (CAR) distribution which smoothes the data according to a certain adjacency structure
given by a neighborhood matrix that specifies two areas are neighbours if they have a common
boundary. The CAR distribution is expressed as

ui|u−i ∼ N
(

ūδi ,
σ2

u
nδi

)
,

where ūδi = n−1
δi

∑j∈δi
uj, and δi and nδi represent, respectively, the set of neighbours and the number

of neighbours of area i. The unstructured component vi is modelled using independent and identically
distributed normal variables with zero-mean and variance equal to σ2

v .

INLA

Traditionally, Bayesian inference has been implemented via MCMC methods which make inference
tractable for complex models but may present convergence and computation time problems. Inte-
grated Nested Laplace Approximation (INLA) is a computational less-intensive alternative to MCMC
designed to perform approximate Bayesian inference in latent Gaussian models (Rue et al., 2009).
These models include a very wide and flexible class of models ranging from generalized linear mixed
to spatial and spatio-temporal models. Specifically, models are of the form

yi|x, θ ∼ π(yi|xi, θ),

x|θ ∼ N(0, Q(θ)−1),

θ ∼ π(θ),

where y are the observed data, x represents a Gaussian field, and θ are hyperparameters. Observations
yi are assumed to belong to an exponential family with mean µi = g−1(ηi). The linear predictor ηi
accounts for effects of various covariates in an additive way,

ηi = α +
nβ

∑
k=1

βkzki +
n f

∑
j=1

f (j)(uji).

Here, α is the intercept, {βk}’s quantify the linear effects of covariates {zki} on the response, and
{ f (j)(·)}’s are a set of non-linear or smooth functions defined in terms of some covariates {uji}. This
formulation permits to accommodate a wide range of models thanks to the very different forms that
the functions { f (j)} can take including the disease risk models previously introduced. INLA uses a
combination of analytical approximation and numerical integration to obtain approximated posterior
distributions of the parameters that can then be post-processed to compute quantities of interest like
posterior expectations and quantiles.
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The INLA approach is implemented in the R package INLA. This package is not on CRAN because
it uses some external C libraries that make difficult to build the binaries. Therefore, when we install
the package we need to use install.packages() adding the URL of the INLA repository:

install.packages("INLA", repos = "https://inla.r-inla-download.org/R/stable",
dep = TRUE)

To fit a model using INLA we need to take two steps. First, we need to write the linear predictor of
the model as a formula object in R. Then, we run the model calling the inla() function where we
specify the formula, the family, the data and other options. Results can be inspected with the summary()
function and the posterior distributions can be post-processed using a set of specific functions provided
by INLA. Further details about how to use all these functions will be given in the disease mapping
example in next Section.

Example: lung cancer risk in Pennsylvania

In this Section we present an example of small area disease mapping study where we estimate the
risk of lung cancer in Pennsylvania counties in year 2002. We use the data contained in the R package
SpatialEpi (Kim and Wakefield, 2016). The data contain the counties population which was obtained
from the 2000 decennial census, and the lung cancer and smoking proportions which were obtained
from the Pennsylvania Department of Health. We show how to calculate the observed and expected
disease cases, and the the SIRs in each of the counties. We also obtain disease risk estimates and
quantify risk factors by fitting a Bayesian model using INLA. Finally, we show how to make interactive
maps of the risk estimates using leaflet.

Data

We start by loading the SpatialEpi package and attaching the pennLC data.

library(SpatialEpi)
data(pennLC)

By typing ?pennLC we see pennLC is a list with the following elements:

• geo: a data frame of county ids, and longitude and latitude of the geographic centroid of each
county,

• data: a data frame of county ids, number of cases, population and strata information,
• smoking: a data frame of county ids and proportion of smokers,
• spatial.polygon: a SpatialPolygons object with the map of Pennsylvania.

pennLC$data contains the number of lung cancer cases and the population at county level, stratified on
race (white and non-white), gender (female and male) and age group (under 40, 40-59, 60-69 and 70+).

We now create a data frame called d with columns containing the counties ids, the observed and
expected number of cases, the smoking proportions and the SIRs. Specifically, d will contain the
following columns:

• id: id of each county,
• Y: observed number of cases in each county,
• E: expected number of cases in each county,
• smoking: smoking proportion in each county,
• SIR: SIR of each county.

Observed cases

pennLC$data contains the cases in each county stratified by race, gender and age. We can obtain the
number of cases in each county, Y, by aggregating the rows of pennLC$data by county and adding up
the observed number of cases.

d <- aggregate(x = pennLC$data$cases, by = list(county = pennLC$data$county),
FUN = sum)

aggregate() returns a data frame where the first row is the county and the second column is the
observed number of cases in each of the counties. We set the column names of the returned object
equal to id and Y.

names(d) <- c("id", "Y")
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Expected cases

Now we calculate the indirectly standardized expected number of cases in each county as explained
in Section 2.2. That is, we use the strata-specific rates from the the Pennsylvania population (standard
population), and apply them to the population distribution of the county. The expected counts
represent the total number of disease cases one would expect if the population in the county behaved
the way the Pennsylvania population behaves. We can do this by using the expected() function of
SpatialEpi. This function has three arguments, namely,

• population: a vector of population counts for each strata in each area,

• cases: a vector with the number of cases for each strata in each area,

• n.strata: number of strata considered.

Vectors population and cases have to be sorted by area first and then, within each area, the counts for
all strata need to be listed in the same order. All strata need to be included in the vectors, including
strata with 0 cases. Hence, to get the expected counts we first sort the data using the order() function
where we specify the order as county, race, gender and finally age.

pennLC$data <- pennLC$data[order(pennLC$data$county, pennLC$data$race,
pennLC$data$gender, pennLC$data$age), ]

Then we call the expected() function to obtain the expected counts E in each county. In the function
we set population equal to pennLC$data$population and cases equal to pennLC$data$cases. There
are 2 races, 2 genders and 4 age groups for each county, so number of strata is set to 2 x 2 x 4 = 16.

population <- pennLC$data$population
cases <- pennLC$data$cases
n.strata <- 16
E <- expected(population, cases, n.strata)

Now we add the vector E to the data frame d which contains the counties ids (id) and the
observed counts (Y), making sure the E elements correspond to the counties in d$id in the same
order. To do that, we use match() to calculate the vector of the positions that match d$id in
unique(pennLC$data$county) which are the corresponding counties of E. Then we rearrange E using
that vector.

d$E <- E[match(d$id, unique(pennLC$data$county))]

Smokers proportions

We also add to d the variable smoking which represents the proportion of smokers in each county. We
add this variable using the merge() function where we specify the columns for merging as id in d and
county in pennLC$smoking.

d <- merge(d, pennLC$smoking, by.x = "id", by.y = "county")

SIRs

Finally, we compute the vector of SIRs as the ratio of the observed to the expected counts, and add it
to the data frame d.

d$SIR <- d$Y/d$E

Add data to map

The map of Pennsylvania counties is given by the SpatialPolygons object called pennLC$spatial.polygon.
Using this object and the data frame d we can create a SpatialPolygonsDataFrame called map, that will
allow us to make maps of the variables in d. In order to do that, we first set the row names of the data
frame d equal to d$id. Then we merge pennLC$spatial.polygon and d matching the SpatialPolygons
member Polygons ID slot values with the data frame row names.

library(sp)
rownames(d) <- d$id
map <- SpatialPolygonsDataFrame(pennLC$spatial.polygon, d, match.ID = TRUE)
head(map@data)
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## id Y E smoking SIR
## adams adams 55 69.62730 0.234 0.7899200
## allegheny allegheny 1275 1182.42804 0.245 1.0782897
## armstrong armstrong 49 67.61012 0.250 0.7247435
## beaver beaver 172 172.55806 0.276 0.9967660
## bedford bedford 37 44.19013 0.228 0.8372910
## berks berks 308 300.70598 0.249 1.0242563

Mapping variables

We can visualize the observed and expected disease counts, the SIRs, as well as the smokers proportions
in an interactive chropleth map using the leaflet package. We create the map by first calling leaflet()
and adding the default OpenStreetMap map tiles to the map with addTiles(). Then we add the
Pennsylvania counties with addPolygons() where we specify the areas boundaries color (color) and
the stroke width (weight). We fill the areas with the colours given by the color palette function
generated with colorNumeric(), and set fillOpacity to a value less than 1 to be able to see the
background map. We use colorNumeric() to create a color palette function that maps data values
to colors according to a given palette. We create the function using the parameters palette with
the color function that values will be mapped to, and domain with the possible values that can be
mapped. Finally, we add the legend by specifying the color palette function (pal) and the values used
to generate colors from the palette function (values). We set opacity to the same value as the opacity
in the areas, and specify a title and a position for the legend.

library(leaflet)
l <- leaflet(map) %>% addTiles()
pal <- colorNumeric(palette = "YlOrRd", domain = map$SIR)
l %>% addPolygons(color = "grey", weight = 1, fillColor = ~pal(SIR),

fillOpacity = 0.5) %>%
addLegend(pal = pal, values = ~SIR, opacity = 0.5, title = "SIR",

position = "bottomright")

We can improve the map by highlighting the counties when the mouse hovers over them, and
showing information about the observed and expected counts, SIRs, and smoking proportions. We
do this by adding the arguments highlightOptions, label and labelOptions to addPolygons(). We
choose to highlight the areas using a bigger stroke width (highlightOptions(weight = 4)). We create
the labels using HTML syntax. First, we create the text to be shown using the function sprintf()
which returns a character vector containing a formatted combination of text and variable values and
then applying htmltools::HTML() which marks the text as HTML. In labelOptions we specify the
labels style, textsize, and direction. Possible values for direction are left, right and auto and
this specifies the direction the label displays in relation to the marker. We choose auto so the optimal
direction will be chosen depending on the position of the marker.

labels <- sprintf("<strong> %s </strong> <br/> Observed: %s <br/> Expected: %s <br/>
Smokers proportion: %s <br/> SIR: %s",

map$id, map$Y, round(map$E, 2), map$smoking, round(map$SIR, 2)) %>%
lapply(htmltools::HTML)

l %>% addPolygons(color = "grey", weight = 1, fillColor = ~pal(SIR), fillOpacity = 0.5,
highlightOptions = highlightOptions(weight = 4), label = labels,
labelOptions = labelOptions(style = list("font-weight" = "normal",

padding = "3px 8px"),
textsize = "15px",
direction = "auto")) %>%

addLegend(pal = pal, values = ~SIR, opacity = 0.5, title = "SIR",
position = "bottomright")

Figure 1 shows a snapshot of the interactive map created using leaflet showing the SIRs in the
Pennsylvania counties. We can examine the map and see which counties have SIR equal to 1 indicating
observed counts are the same as expected counts, and which counties have SIR greater (or smaller)
than 1, indicating observed counts are greater (or smaller) than expected counts.

This map gives a sense of the disease risk across Pennsylvania. However, SIRs are misleading
and insufficiently reliable in counties with small populations. In contrast, model-based approaches
enable to incorporate covariates and borrow information from neighboring counties to improve local
estimates, resulting in the smoothing of extreme values based on small sample sizes. In the next
section we will show how to obtain disease risk estimates using a Bayesian model using INLA.
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Figure 1: Snapshot of the interactive map created using leaflet showing the lung cancer SIRs in
Pennsylvania counties in 2002.

Modeling

In this Section we specify the model for the data, and detail the required steps to fit the model and
obtain the disease risk estimates using INLA.

Model

We specify a model assuming that the observed counts Yi are conditionally independently Poisson
distributed,

Yi|θi ∼ Po(Ei × θi), i = 1, . . . , n,

where Ei is the expected count and θi is the relative risk in area i. The logarithm of θi is expressed as
follows:

log(θi) = β0 + β1 × smokingi + ui + vi,

where β0 is the intercept, β1 is the coefficient of the smokers proportion covariate, ui is an structured

spatial effect, ui|u−i ∼ N(ūδi ,
σ2

u
nδi

), and vi is an unstructured spatial effect, vi ∼ N(0, σ2
v ).

Neighbourhood matrix

We create the neighbourhood matrix needed to define the spatial random effect using the poly2nb()
and the nb2INLA() functions of the spdep package (Bivand, 2017). First, we use poly2nb() to create a
neighbours list based on areas with contiguous boundaries. Then, we use nb2INLA() to convert this
list into a file with the representation of the neighbourhood matrix as required by INLA that is saved
in the working directory. Then we read the file using the inla.read.graph() function of INLA, and
store it in the object g which we will later use for specifying the spatial disease model with INLA.

library(spdep)
library(INLA)
nb <- poly2nb(map)
head(nb)

## [[1]]
## [1] 21 28 67
##
## [[2]]
## [1] 3 4 10 63 65
##
## [[3]]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=spdep


CONTRIBUTED RESEARCH ARTICLE 501

## [1] 2 10 16 32 33 65
##
## [[4]]
## [1] 2 10 37 63
##
## [[5]]
## [1] 7 11 29 31 56
##
## [[6]]
## [1] 15 36 38 39 46 54

nb2INLA("map.adj", nb)
g <- inla.read.graph(filename = "map.adj")

Inference using INLA

As stated in Section 2.4.3, the model includes two random effects, namely, ui for modeling spatial
residual variation, and vi for modeling unstructured noise. We need to include two vectors in the
data that denote the indices of these random effects. We call re_u the vector denoting ui, and re_v the
vector denoting vi. We set both re_u and re_v equal to 1, . . . , n, where n is the number of counties. In
our example, n = 67 and this can be obtained with the number of rows in the data (nrow(map@data)).

map$re_u <- 1:nrow(map@data)
map$re_v <- 1:nrow(map@data)

We specify the model formula by including the response in the left-hand side, and the fixed and
random effects in the right-hand side. Random effects are set using f() with parameters equal to the
name of the variable and the chosen model. For ui, we use model = "besag" with neighbourhood
matrix given by g. For vi we choose model = "iid".

formula <- Y ~ smoking + f(re_u, model = "besag", graph = g) + f(re_v, model = "iid")

We fit the model by calling the inla() function. We specify the formula, family, data, and the
expected counts, and set control.predictor equal to list(compute = TRUE) to compute the posterior
means of the linear predictors.

res <- inla(formula, family = "poisson", data = map@data, E = E,
control.predictor = list(compute = TRUE))

Results

We can inspect the results object res using summary().

summary(res)

##
## Call:
## c("inla(formula = formula, family = \"poisson\", data = map@data, ", " E = E,
## control.predictor = list(compute = TRUE))")
##
## Time used:
## Pre-processing Running inla Post-processing Total
## 0.3179 1.1198 0.2155 1.6531
##
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) -0.3236 0.1503 -0.6212 -0.3234 -0.0279 -0.3231 0
## smoking 1.1567 0.6247 -0.0809 1.1582 2.3853 1.1619 0
##
## Random effects:
## Name Model
## re_u Besags ICAR model
## re_v IID model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant
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## Precision for re_u 93.05 49.95 30.95 81.84 220.42
## Precision for re_v 17956.92 18118.49 1155.86 12549.06 65967.91
## mode
## Precision for re_u 63.63
## Precision for re_v 3103.11
##
## Expected number of effective parameters(std dev): 18.61(4.366)
## Number of equivalent replicates : 3.60
##
## Marginal log-Likelihood: -320.53
## Posterior marginals for linear predictor and fitted values computed

We see the intercept β̂0= -0.3236 with a 95% credible interval equal to (-0.6212, -0.0279), and the
coefficient of smoking is β̂1 = 1.1567 with a 95% credible interval equal to (-0.0810, 2.3853). This
indicates that the smokers proportion has a positive although non significant effect on disease risk.
We can plot the posterior distribution of the smoking coefficient. We do this by calculating a spline
smoothing of the marginal distribution of the coefficient with inla.smarginal() and then plot it with
ggplot() of ggplot2 package (Wickham and Chang, 2016) (see Figure 2).

library(ggplot2)
marginal <- inla.smarginal(res$marginals.fixed$smoking)
marginal <- data.frame(marginal)
ggplot(marginal, aes(x = x, y = y)) + geom_line() +
labs(x = expression(beta[1]), y = "Density") +
geom_vline(xintercept = 0, col = "blue") + theme_bw()

Figure 2: Posterior distribution of the coefficient of covariate smokers proportion.

The disease risk estimates and uncertainty for each of the counties are given by the mean posterior
and the 95% credible intervals of θi, i = 1, . . . , n which are in the data frame res$summary.fitted.values.
Here, column mean is the mean posterior and 0.025quant and 0.975quant are the 2.5 and 97.5 per-
centiles, respectively. We add these data to map to be able to make maps of these variables. We assign
column mean to the estimate of the relative risk, and columns 0.025quant and 0.975quant to the lower
and upper limits of 95% credible intervals of the risks.

head(res$summary.fitted.values)

## mean sd 0.025quant 0.5quant 0.975quant
## fitted.Predictor.01 0.8793912 0.05856462 0.7633052 0.8797123 0.9943822
## fitted.Predictor.02 1.0597516 0.02768817 1.0067707 1.0592960 1.1153106
## fitted.Predictor.03 0.9632142 0.05186119 0.8555748 0.9649813 1.0612639
## fitted.Predictor.04 1.0270184 0.05121187 0.9270286 1.0267054 1.1289998
## fitted.Predictor.05 0.9076782 0.05497745 0.7978867 0.9081541 1.0156557
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## fitted.Predictor.06 0.9951907 0.04023105 0.9184425 0.9943119 1.0770673
## mode
## fitted.Predictor.01 0.8808707
## fitted.Predictor.02 1.0583769
## fitted.Predictor.03 0.9685918
## fitted.Predictor.04 1.0262831
## fitted.Predictor.05 0.9096874
## fitted.Predictor.06 0.9927333

map$RR <- res$summary.fitted.values[, "mean"]
map$LL <- res$summary.fitted.values[, "0.025quant"]
map$UL <- res$summary.fitted.values[, "0.975quant"]

Mapping disease risk

We show the estimated disease risk in an interactive map using leaflet. In the map, we add labels
that appear when mouse hovers over the counties showing information about observed and expected
counts, SIRs, smokers proportions, RRs, and lower and upper limits of 95% credible intervals.

pal <- colorNumeric(palette = "YlOrRd", domain = map$RR)

labels <- sprintf("<strong> %s </strong> <br/> Observed: %s <br/> Expected: %s <br/>
Smokers proportion: %s <br/> SIR: %s <br/> RR: %s (%s, %s)",
map$id, map$Y, round(map$E, 2), map$smoking, round(map$SIR, 2),
round(map$RR, 2), round(map$LL, 2), round(map$UL, 2)) %>%

lapply(htmltools::HTML)

leaflet(map) %>% addTiles() %>%
addPolygons(color = "grey", weight = 1, fillColor = ~pal(RR), fillOpacity = 0.5,

highlightOptions = highlightOptions(weight = 4), label = labels,
labelOptions = labelOptions(style = list("font-weight" = "normal",

padding = "3px 8px"),
textsize = "15px", direction = "auto")) %>%

addLegend(pal = pal, values = ~RR, opacity = 0.5, title = "RR",
position = "bottomright")

A snapshot of the interactive map created is shown in Figure 3. We observe counties with greater
disease risk are located in the west and south east of Pennsylvania, and counties with lower risk are
located in the center. The 95% credible intervals give a measure of the uncertainty in the risk estimates.

Figure 3: Snapshot of the interactive map created using leaflet showing the lung cancer RRs in
Pennsylvania counties in 2002.
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By typing range(map@data$SIR) and range(map@data$RR) we see that the range of SIRs is much
wider about 1 compared to the range of RRs: (0.32 to 1.37) versus (0.85 to 1.15). We can also see the
shrinkage of the RRs toward 1 by comparing maps of SIRs and RRs created using the same scale on
the SIR gradient legend (see Figure 4). For example, in the SIRs map, in the central, less populated part
of the state, there are 3 counties with extreme high values (dark colour) and 3 counties with extreme
low values (light colour). In the RRs map, these extreme values shrink toward values closer to 1.

pal <- colorNumeric(palette = "YlOrRd", domain = map$SIR)

leaflet(map) %>% addTiles() %>%
addPolygons(color = "grey", weight = 1, fillColor = ~pal(RR), fillOpacity = 0.5,

highlightOptions = highlightOptions(weight = 4), label = labels,
labelOptions = labelOptions(style = list("font-weight" = "normal",

padding = "3px 8px"),
textsize = "15px", direction = "auto")) %>%

addLegend(pal = pal, values = ~RR, opacity = 0.5, title = "RR",
position = "bottomright")

Figure 4: Snapshot of the interactive maps created using leaflet showing the lung cancer SIRs (left)
and RRs (right) in Pennsylvania counties in 2002 using the same scale.

Summary

In this article we have shown how to obtain small area disease risk estimates, and generate interactive
maps that help the understanding and interpretation of the results. First, we have introduced disease
risk models using areal data, and have given an overview of the INLA package for performing
Bayesian inference. Then, we have given a practical example where we have estimated lung cancer risk
in Pennsylvania in 2002. We have conducted the analyses using several R packages such as spdep for
spatial data manipulation, SpatialEpi for calculating the expected disease counts in the Pennsylvania
counties, INLA for performing Bayesian inference, and leaflet and ggplot2 for visualization of the
results.

One limitation of disease models based on areal data is that they are often subject to ecological
bias. This bias occurs when associations obtained from analyses that use variables at an aggregated
level lead to conclusions different from analyses that use the same variables measured at an individual
level (Robinson, 1950). Therefore, whenever point data are available, it is preferable to use disease
models without aggregating data and predict disease risk in a continuous surface (Moraga et al., 2017;
Diggle et al., 2013).

It is also possible to use R to build tools to better communicate the results to stakeholders and
the general public. For instance, summaries and maps of disease risk estimates can be presented
in interactive dashboards using flexdashboard (Allaire, 2017), and web applications using shiny
(Chang et al., 2017). One example of such web application is the SpatialEpiApp package (Moraga,
2017a,b) which is useful for disease risk mapping and the detection of clusters. This is an easy to
use application where users simply need to upload their data and click several buttons that execute
the tasks and process the outputs, making spatial analysis methods accessible to multiple disciplines.
SpatialEpiApp creates interactive visualizations by using the packages leaflet for rendering maps,
dygraphs (Vanderkam et al., 2017) for plotting time series, and DT (Xie, 2016) for displaying data
tables, and enables the generation of reports by using rmarkdown (Allaire et al., 2017). In conclusion,
R represents an excellent tool for disease surveillance by enabling reproducible health data analysis.
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