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Profile Likelihood Estimation of the
Correlation Coefficient in the Presence of
Left, Right or Interval Censoring and
Missing Data

by Yanming Li, Brenda W. Gillespie, Kerby Shedden, John A. Gillespie

Abstract We discuss implementation of a profile likelihood method for estimating a Pearson correla-
tion coefficient from bivariate data with censoring and/or missing values. The method is implemented
in an R package clikcorr which calculates maximum likelihood estimates of the correlation coefficient
when the data are modeled with either a Gaussian or a Student ¢-distribution, in the presence of left,
right, or interval censored and/or missing data. The R package includes functions for conducting
inference and also provides graphical functions for visualizing the censored data scatter plot and
profile log likelihood function. The performance of clikcorr in a variety of circumstances is evaluated
through extensive simulation studies. We illustrate the package using two dioxin exposure datasets.

Introduction

Partially observed data present a challenge in statistical estimation. Simple approaches like complete
case analysis allow traditional estimators to be used, but sacrifice precision and may introduce bias.
More sophisticated approaches that incorporate information from partially observed cases have the
potential to achieve greater power, but can be much more difficult to implement. As a case in point,
the Pearson correlation coefficient is easily estimated by the familiar moment-based formula,

I (xi — %) (yi — 7)
(Ey (i = %)2 2y (i — 9)%]1/2
and under certain conditions, uncertainty in the estimate can be assessed using Fisher’s variance
stabilizing transformation (Fisher, 1915). Howevet, it is not obvious how this approach can be extended
to accommodate partially observed data.
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Partially observed bivariate data (x, y) can take several forms. If either x or y is completely missing,
the observation provides no direct information about the correlation coefficient, but is informative
about the marginal distributions. If x and/or y is censored, but neither is completely missing, then
the observation provides information about the correlation parameter as well as about the marginal
distributions.

Here we discuss a likelihood-based method for estimating the correlation coefficient from partially-
observed bivariate data, and present an R package implementing the method, clikcorr (“Censored
data likelihood based correlation estimation”) (Li et al., 2016). clikcorr calculates maximum likelihood
estimates of the parameters in a model, in particular the correlation coefficient, in the presence of left,
right, and interval censored data and missing values. clikcorr also has functions to help visualize
bivariate datasets that contain censored and/or missing values.

The package emphasizes the role of the profile likelihood function for the correlation parameter. It
provides functions to visualize the profile likelihood function, and uses likelihood ratio test inversion
to provide confidence intervals for the correlation coefficient. This circumvents difficulties that arise
when using Wald-type confidence intervals for a parameter that lies in a bounded domain, and that
may have an asymmetric sampling distribution.

This project was motivated by the need to calculate correlation coefficients with left-censored
chemical assay data. Such data often arise in the context of toxicology, chemistry, environmental
science and medical laboratory applications, where some measurements fall below a limit of detection
(LOD) (Jaspers et al., 2013). The limit of detection must be known or approximated. Estimating the
correlation coefficient from bivariate censored data has been studied (Li et al., 2005), but issues in both
methodology and software remain.

The paper is organized as follows. Section 24.1 develops model-based frameworks for correlation
estimation based on Gaussian and Student-t models. Section 24.2 describes clikcorr, including the
data input format, the output format, and program features such as the plotting functions. Section
24.3 presents simulations to address the performance of clikcorr under a range of scenarios, focusing
on run time and coverage probability of the confidence intervals. In Section 24.4 we use clikcorr to
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analyze dioxin data from both Jaspers et al. (2013) and the National Health and Nutrition Examination
Survey (NHANES). Some further details on using the R package clikcorr are provided in Section 24.5

Models for correlation parameter estimation

Working in a model-based framework of a bivariate distribution with a correlation parameter opens
up several paths for handling partially observed data. A likelihood for the observed data can be
calculated by integrating a “complete data” likelihood over all data configurations that are consistent
with the observed data. The resulting “observed data likelihood” is seen as preserving full information
from the data, and can be used with any standard likelihood-based inference approach, including
maximum likelihood (ML) estimation, Wald-type inference, likelihood ratio testing, and profile
likelihood analysis.

The bivariate Gaussian distribution is a natural starting point for model-based estimation of
a correlation coefficient. The distribution has five parameters: two marginal means (ux, jty), two
marginal standard deviations (¢, 0y), and the correlation coefficient pxy. The joint density function
of the bivariate Gaussian distribution for standardized data (jtx = py = 0,02 = 0y = 1) is

4yt - Znyxy) @
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When the data are complete, the maximum likelihood estimates of the parameters in the bivariate
Gaussian distribution are the sample means (¥ and 7), the sample standard deviations (scaled by
v/ (1 —1)/n), and the sample correlation coefficient, respectively. These are all closed-form estimators,
with the correlation coefficient estimator r given by (1).

The fact that the Gaussian distribution maximum likelihood estimates coincide with the standard
method of moments estimates implies some desirable properties. In particular, in the complete data
setting, the Gaussian ML estimates will be consistent whenever the law of large numbers can be
invoked to give consistency of the sample moments, regardless of whether the data are actually
Gaussian. This makes it an appealing foundation for developing an approach that accommodates
partially observed cases.

However, inference based on the Gaussian distribution may be misleading if the true distribution
is far from Gaussian. In the complete data setting, traditional maximum likelihood (ML) techniques
such as likelihood ratio testing and Wald-type inference are seldom performed, with approaches based
on Fisher’s (Fisher, 1915) variance stabilizing transformation being much more common. An approach
to estimation and inference for the correlation parameter in the setting of partially observed data based
on Fisher’s transformation has been developed (Li et al., 2005). All these approaches may produce
misleading results if the data are strongly non-Gaussian, or if the conditions under which Fisher’s
transformation actually stabilizes the variance do not hold.

The approach we implement here is fully model-based and does not rely on variance stabilizing
transformations. Instead, we use standard maximum-likelihood approaches for estimation and
inference. The model-based framework discussed here can be used with any model for bivariate data
that includes an explicit correlation parameter (including any “elliptic distribution” with density of
the form ¢ - ¢((z — u)’Z~1(z — p))). Most such models will involve additional nuisance parameters
describing the marginal distributions. Likelihood ratio testing and profile likelihood analysis are
especially useful in settings where several nuisance parameters must be estimated along with the
parameter of interest.

To explore the sensitivity of the estimates and inferences to the model specification, we also
implemented our approach for the setting where the data follow a bivariate Student-t distribution.
The density for this distribution when x and y have zero mean, unit variance and degree of freedom d
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Note that the parameter pxy retains the “product moment” interpretation of the Pearson correlation
coefficient — that is, pxy = E[xy]/(SD(x) - SD(y)).

fo(x,y;d) = 3)

Partially observed data
Our main goal here is to accommodate partially observed data. In the presence of left-, right-, and/or

interval-censored data, the univariate likelihood function can be written in terms of density functions
(for exact observed values), cumulative distribution functions (CDF, Fy(x) = P(X < x), for left-
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censored values), survival functions (Sp(x) = P(X > x), for right-censored values) and differences
between cumulative distribution functions (Fy(b) — Fy(a), for interval-censored values in an interval
(a, b]). Here 0 represents a generic vector of parameters including the correlation coefficient of interest
along with any nuisance parameters.

We adopt a convention to treat all three censoring types and exact observed values in a unified
representation, with all bein% special cases of interval censorin% SPecifically every case is known
to lie in an interval (xﬁ“w”,xi b Er], with —c0 < x%"w” =X =x PP’ o for exact observed cases,

—00 = xf"w” < x?pp " < oo for left censored cases, —oco < xf"w” < xtPPe

i
;‘pper = oo for right censored cases. In addition, we define —co = xf"w"’ <

= oo for missing cases; in this case the likelihood contribution is F(c0) — F(—c0) =1 -0 =1,
equivalent to omitting the missing values. However, this convention will be useful to handle missing x
or y in the bivariate case. Similar unified representations can be also found in Allison (2010) and Giolo
(2004). For example, for k; left-censored values with LODs x?p P i =1,...,kq; followed by k» — kg

interval-censored values with censoring interval bounds (xfow”, x?p P er],i =ky+1,..,ky; k3 — kp right-

censored at values xfowe’,i =ky+1,..., k3; and n — k3 exact values x;,i = k3 + 1, ..., n, the univariate
likelihood function would be

< oo for interval censored

cases, and —oo < xf"w"’ <x
upper
i

k1 ko k3 n
L(0) =[TFR("")- TT [Fe(xi""") = Fo(x™ )] - [T 1 =Fo(x™)]- TT folx)- @
i=1 i=k+1 i=kpy+1 i=kz+1

For the bivariate setting of (X, Y), extending the likelihood function to accommodate censored
data is complicated by the number of types of data pairs to consider. Each of the X and Y variables can
be one of the following cases: completely observed, left censored, interval censored, right censored
and missing. This yields 52 =25 types of data pairs. For example, when there are only left-censored
and complete data, four cases must be considered: (1) x and y both complete, (2) x left-censored and
y complete, (3) x complete and y left-censored, and (4) both x and y left-censored. Each factor in
the likelihood (4) is one of these four cases. For case 1, the factor is f(x;,y;), as in the complete data
situation. For case 2, the factor is Fy|y (x;[y;) - f(yi), where Fxjy(x[y;) is the conditional distribution
function of X, given y;. For case 3, the factor is Fy|x (vi|x;) - f(x;), where Fy|x(y|x;) is the conditional
distribution function of Y, given x;. For case 4, the factor is F(x;,y;) = P(X < x;,Y < y;), ie, the
bivariate cumulative distribution function evaluated at (x;, ;).

In the Gaussian model, for cases 2 and 3 we can take advantage of the fact that the conditional
distributions are also Gaussian, with means and variances that are easily calculated (Rao, 1973). Thus
we calculate Fyy (x;|y;) - f(y;) rather than P(X < x;, Y = y;), because the former eases the calculation
by reducing the dimension of the distribution functions from bivariate to univariate. This method can
be applied to right-censored data in a similar way. In case 4, because F(x;,y;) does not have a closed
form expression, it must be evaluated by integration of the joint density over a 2-dimensional region
in the bivariate domain. Efficient methods for this calculation are provided by the mvtnorm R package.

Besides censoring, missing data can also be present in bivariate data (Little and Rubin, 2002). When
both members of a pair are missing, the likelihood contribution factor is 1, and these observations can
be omitted from the analysis. When one member of a pair is missing, the observed member of the pair
can be used to improve estimation of parameters describing its marginal distribution.

The likelihood function L(#) is the product of n factors, one per observation pair, with the form
of each term depending on whether members of the pair are observed, censored or missing. Table 1
lists all the possible cases of such pairs and the corresponding factor of the likelihood function in the
bivariate normal case. We use the conditional distribution whenever possible to make the calculations
easier.

Alternative models

When data arise from an underlying heavy tailed bivariate distribution, estimates based on the
bivariate normal model may yield confidence intervals with poor coverage probabilities. This is
especially a concern when partially observed data are present. We provide the bivariate Student-t
model as an alternative approach to estimation in this setting.

The bivariate ¢ distribution does not have the useful property held by the bivariate normal
distribution that the conditional distributions have the same distributional form as the marginal
distributions. Consequently, we do not have a simple expression for the conditional distributions of
the bivariate t distribution. Instead, we construct the likelihood through numerical integration over
certain regions of the bivariate domain for each likelihood factor. Specifically, the likelihood factors
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Pair type Factor to the likelihood Pair type Factor to the likelihood

Xo., Yo. f(xi,yi) Xo., Yle. Fy x (i ]xi) * fx(xi)

Xo., Yre 1= Fyx(yilx)] * fx(xi) | Xo., Yie.  [Fyx(y¥|xi) — FY|X(]/1|x )= fx (xi)
Xo., Y m. fx(x;) Xle., Yo. Fypy (xlyi) * fy (vi)
Xle,Yle. E(xt,yt) Xle., Y re. P(X g XY >y

Xle., Y ic. P(X < xl?‘,yf <Y <y¥) Xle., Y m. Fx(x¥)

Xre,Yo. 1- FX|Y(xf\yi)] * fy (i) Xre,Yle. P(X >xlY <y¥)
Xre,Yrc. P(X > xﬁ,Y> yf) Xre., Yic. P(X > xf,yf <Y <y¥)
Xre., Y m. 1— Fx(x}) Xic, Yo [Fxy(x¥|yi) — Fxpy (xilyi)] * fy (vi)
Xic., Y lc. P(xl< X <xb,Y<y') | Xic,Yre lP(xl <X <xY>yh
Xic, Yie. P(xl<X<axd,yl <Y <y) | Xic, Ym. Fx(x!) — Fx(x})
Xm.,Yo. fy(vi) Xm.,Yl. Fy(y})

Xm., Y rc 1—Fy(yh) Xm.,Yic Fy(y¥) — Fy(y})

Xm., Ym. 1

Table 1: Contributing factors to the likelihood function for each case of observed, censored or missing

u

values in pairs from the bivariate normal distribution. “o0." = observed; “lc." = left censored; “rc. —rlght

< . M er upper
censored; “ic." = interval censored; “m." = missing. x; —xl‘"""’ xi = p P ,yl yf"we’, v =y; PP

are given by

Kipper yt_xpper

xluzm’y ylower f(]’ll V)dde’ (5)
where f(x,y) is the bivariate ¢ density, and (x l”w”, x?pp “") are the censoring intervals as defined in
Section 24.1.2. Table 2 lists the likelihood contrlbutlon for each case. We use the mvtnorm package in R
to approximate these values.

Pair type  Factor to the likelihood & Pair type  Factor to the likelihood

Xo.,Yo. f(xi,yi) Xo., Yle. g’; f(x,v)dv
Xo., Yrc. f;f f(x,v)dv Xo., Yic. ji f(x;,v)dv
Xo., Y m. ) [X(xi) Xle, Yo. ffg%f(y,yi)d‘u
Xle,Yle. [V [Y f(uv)dudv | Xle, Yre. [T [5 f(u,v)dudv
Xle., Y ic. fyy; ffzo f(u,v)dudv | Xle., Y m. Fx (xt)

Xre, Yo. foof (,y;)du Xre, Yle. Z;:,o [T f(p,v)dudy
Xre, Yre f f f(pu,v)dudv Xre., Yic. y,? [ f(p,v)dudv
Xre., Y m. 1— Fx(x}) Xic., Yo. fj f(u,y;)du
Xic., Y le. fy’y fxy f(u,v)dudv | Xic., Y rc. Sy fj f(u,v)dpdv
Xic., Y ic. fyl f f w,v)dudv | Xic, Y m. Fx(x¥) — Fx(x})
Xm.,Yo. fy(]/l> Xm.,Yle. Fy(y¥)

Xm., Y rc 1—Fy(yh) Xm.,Yic Fy(y¥) — Fy(y})
Xm., Ym. 1

Table 2: Contributing factors to the likelihood function for each case of observed, censored or missing

values in pairs from the bivariate t- dlstrlbutlon 0 = observed; “lc." left censored; “rc." =right

s w s _ ~lower. “PP” lower. “PP”
censored; “ic." = interval censored; “m." = missing. x = x;70; il = ,yl Y ,yl =y,

Inference

For large , the likelihood ratio (LR) test for the null hypothesis pxy = po is obtained by evaluating
the log profile likelihood function at the maximum likelihood estimator (MLE) and at a given value
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po, taking twice the (positive) difference between them, and comparing to a chi-squared distribution
with 1 degree of freedom (Murphy and van der Vaart, 2000). The p-value for the test is the chi-squared
probability of a value as or more extreme as the one obtained. A profile likelihood-based confidence
interval for pyy is obtained by inverting the likelihood ratio test, i.e., by finding the values (or, pi7)
above and below the profile MLE for which the LR test would first reject (at significance level «) the
null hypothesis that pxy = pr, and similarly p;. Specifically, the confidence interval with coverage
probability 1 — « is constructed to be the set

{o: 21tp) - maxt(p)] < g0~}

where £(p) = maxuy,uy,ox,0v £(Hx, Wy, 0%, 0y, p) is the profile log likelihood for p and qx%(l —a)is
the 1 — a upper critical value of the chi-squared distribution with 1 degree of freedom (Venzon and
Moolgavkar, 1988; Stryhn and Christensen, 2003).

Profile likelihood based confidence intervals have some advantages over other methods such as
the commonly used Wald-type confidence intervals obtained from the limiting distribution of the MLE.
Wald-type intervals may give poor performance when the parameter is close to the boundary of its
domain, in which case the parameter estimate assumes a skewed distribution (Stryhn and Christensen,
2003). The profile likelihood based approach is robust to this skewness by providing an asymmetric
confidence interval estimate. Zhou et al. (2012) compared confidence interval estimates for a logistic
regression setting using (1) the Wald method, (2) the Bootstrap method and (3) the profile likelihood
based method. In our setting, the profile likelihood based method is more computationally efficient
than the bootstrap method and is more robust to cases of parameter estimates with markedly skewed
distributions than the Wald method.

An R package, clikcorr

We implemented an R package clikcorr (Li et al., 2016) to facilitate inference on the correlation
coefficient from bivariate data in the presence of censored and/or missing values. The package is able
to handle all combinations of observed, censored (left-, right-, or interval-censored) or missing data on
each of the bivariate components. Most of the currently available software for estimating correlation
coefficient between bivariate censored data focus on the left-truncated and right-censored data (Li
et al., 2005; Schemper et al., 2013). To the best of our knowledge, clikcorr is the first available software
that can handle data with a complex mixture types of censoring and missing. The package also has
graphical functions to help visualize bivariate censored data and the shape of the profile log likelihood
function.

We note the large set of routines for left-censored data given in the NADA (Non-detects and
Data Analysis) package (IHelsel, 2012, 2005). NADA currently has no function for the Pearson cor-
relation coefficient with left-censored data, although it does include a function for Kendall’s 7. The
implementation described here is not currently included in NADA.

clikcorr requires a special input data format. Each input variable is represented by two columns
for the interval bounds discussed in section 24.1.3, with t-oco replaced by “NA” values. The same input
data format is also adopted in the LIFEREG procedure of SAS software (Allison, 2010) and in the “Surv"
class of the survival package (Therneau, 2015) in R when type=interval2. Table 3 gives an example
dataset formatted for input into clikcorr, with a pair of variables, Variablel and Variable2, each given
with lower and upper interval endpoints. For the first sample ID, both variables are exactly observed
at values 10.9 and 37.6 respectively. For the second to the fifth samples, Variablel is exactly observed
but Variable? is, in order, left-censored at 7.6, right censored at 26.7, interval-censored at (11.7,20.9)
and missing. For sample ID 6, both variables are left censored, and for sample ID 7, both variables are
interval censored. clikcorr functions rightLeftC2DF and intervalC2DF can transform input data from
“Surv" class formats into the clikcorr required input format. rightLeftC2DF transforms the right- or
left- censored data in the “Surv" class and “intervalC2DF" transforms interval-censored data (either
interval or interval?) in the “Surv" class.

clikcorr has three main functions, one estimating function and two graphical functions. The
estimating function calculates the correlation coefficient estimate, its confidence interval and the p-
value from the likelihood ratio test of the null hypothesis that the underlying true correlation coefficient
is zero. The user can specify either a bivariate normal (the default) or a bivariate ¢ distribution to use
for inference.

Below is an example of calling the estimation function and the output assuming (by default)
the bivariate normal distribution. Here ND is an example dataset contained in the clikcorr package.
See Li et al. (2016) for details about the ND dataset. ("t1_0CDD", "t1_HxCDF_234678") and ("t2_0CDD",
"t2_HxCDF_234678") are column names for the lower and upper interval bounds for input variables
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Sample ID Lower bound of Upper bound of Lower bound of Upper bound of
the 1st variable  the 1st variable the 2nd variable the 2nd variable

1 10.9 10.9 37.6 37.6
2 12.8 12.8 NA 7.6

3 8.7 8.7 26.7 NA
4 13.2 13.2 11.7 20.9
5 9.8 9.8 NA NA
6 NA 10.0 NA 6.9

7 11.4 16.3 10.8 18.7

Table 3: An example input data frame for clikcorr with two input variables.

“0CDD" and “HxCDF_234678", respectively . cp is the user specified coverage probability (confidence
level) of the confidence interval, with the default set to 0.95. The print method of “clikcorr" class
outputs the coefficients matrix, which contains the estimated correlation coefficient coefficients,
the lower and upper bounds for the confidence interval CI.lower and CI.upper, and the p-value,
p.value, from the likelihood ratio test of the null hypothesis that pxy = 0.

R> data(ND)
R> logND <- log(ND)
R> clikcorr(data = logND, lower1 = "t1_0CDD", upperl = "t2_0CDD",
+ lower2 = "t1_HxCDF_234678", upper2 = "t2_HxCDF_234678", cp=.95)

Call:
clikcorr.default(data = logND, lowerl = "t1_0CDD", upperl = "t2_0CDD",
lower2 = "t1_HxCDF_234678", upper2 = "t2_HxCDF_234678", cp = 0.95)

coefficients 95%CI.lower 95 %CI.upper p.value
0.472657898 -0.006538307 0.769620179 0.053083585

The summary method further outputs the vector of estimated means $Mean, the estimated variance-
covariance matrix $Cov and the log likelihood value at the MLE $Loglike.

R> obj <- clikcorr(data=logND, lower1="t1_0CDD", upperi="t2_0CDD",
+ lower2="t1_HxCDF_234678", upper2="t2_HxCDF_234678", cp=.95)
R> summary(obj)

$call
clikcorr.default(data = logND, lowerl = "t1_0CDD", upperl = "t2_0CDD",
lower2 = "t1_HxCDF_234678", upper2 = "t2_HxCDF_234678", cp = 0.95)

$coefficients
coefficients 95%CI.lower 95%CI.upper p.value
0.472657898 -0.006538307 0.769620179 0.053083585

$mean
[1] 5.3706036 -0.4655811

$Cov

[,1] [,2]
[1,] 0.5938656 0.3100190
[2,] 0.3100190 @.7244269

$loglik
[1]1 -37.97112

attr(,"class"”)
[1] "summary.clikcorr”

As we will illustrate in a later section, when data are generated from a heavy tailed distribution,
inference assuming the bivariate normal distribution can result in poor performance. The option
“dist=t" can be used to specify a bivariate f distribution. The option “df" specifies the degrees of
freedom (d.f.) of the bivariate ¢ distribution and by default is set to 4. Smaller d.f. give t distributions
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with heavier tails; larger d.f. (e.g., >30) give t distributions that are similar to the normal distribution.
Below is an example of calling the estimation function using dataset ND, and the output assuming the
bivariate t distribution. The variable names are the same as given above.

R> obj <- clikcorr(ND, lower1="t1_0CDD", upper1="t2_0CDD", lower2="t1_HxCDF_234678",
+ upper2="t2_HxCDF_234678", dist="t", df=10)
R> summary(obj)

$call

clikcorr.default(data = logND, lowerl = "t1_0CDD", upperl = "t2_0CDD",
lower2 = "t1_HxCDF_234678", upper2 = "t2_HxCDF_234678", dist = "t",
df = 10, nlm = TRUE)

$coefficients
coefficients 95%CI.lower 95%CI.upper p.value
0.77229746 -0.09201948 0.72893732 0.10812589

$mean
[1] 5.5240929 -0.3338772

$Cov

[,1] [,2]
[1,] 0.5996139 0.4886447
[2,] 0.4886447 0.6676448

$loglik
[1] -104.0848

attr(,"class")
[1] "summary.clikcorr”

clikcorr also provides two graphical functions. Visualizing the data and the analytic outputs
is often useful, and is sometimes invaluable for understanding the results. A barrier to graphing
censored data is finding a way to plot the range of possible data values. The function splot provides
an effective way of visualizing bivariate censored and/or missing data. With splot, censored values
can be identified with different colors or plotting symbols, depending on the data types, as described
in sections 24.1.2 and 24.1.3. For example, the plotting symbol could be an arrow showing the direction
of uncertainty. Since the ND dataset in clikcorr package only contains right censored data points, to
demonstrate the fact that clikcorr can provide a visual representation for all types of censored and/or
missing data, in the following examples, we illustrate the clikcorr plotting functions using a simulated
dataset. Denote by SimDat an input data matrix, generated from a tri-variate normal distribution
with pairwise correlation coefficient 0.5 and with missing values and all types of censoring randomly
introduced. Let "L1" and "U1" be column names for the lower and upper interval bounds for input
variable 1. Similar notations are also adopted for variable 2 and variable 3. A single scatterplot
of Variable 2 versus Variable 1, or ("L2", "U2") versus ("L1", "U1"), would be plotted by calling
splot2(SimDat, c("L1","L2"), c("U1","U2"). The following syntax calls splot and produces a
scatterplot matrix with all combinations of three input variables, as shown in Figure 1. Note that a
censored observation has its position indicated by the tail of an arrow and the head of the arrow is
pointed to the censoring direction.

R> splot(SimDat, c(”L1", "L2", "L3"), c("U1", "U2", "U3"))

The S3 function plot of the clikcorr class produces a plot of the profile log likelihood function. The
following syntax calls the plot function using the bivariate normal and the bivariate t —distributions
respectively. The output profile plots are given in Figure 2, and illustrate that specifying the appropriate
distribution is important for both optimum point and confidence interval estimation.

R> modN <- clikcorr(SimDat, "L1", "U1", "L2", "U2", cp=.95)

R> plot(modN)

R> modT <- clikcorr(SimDat, "L1", "U1", "L2", "U2", dist="t", df=3)
R> plot(modT)

The clikcorr main estimating function requires that the following other R functions be loaded: the

R package mvinorm (Genz and Bretz, 2009; Genz et al., 2012; Hothorn et al., 2013), as well as function
“optim", and function “integrate" when using the bivariate t—distribution.
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Figure 1: Example scatter plots from a simulated data frame.

Simulation studies

Extensive simulations have been done to demonstrate different aspects of the performance of clikcorr
under various settings of sample size, percent censoring, and underlying distribution. We show these
results in the following subsections.

Coverage probability of the confidence interval

First, we investigate the coverage probability of the confidence intervals with two types of right
censoring, termed “fixed point” and “random”, as described further below. Data were generated from
the bivariate normal distribution, and inference assumed the same distribution.

In the fixed point right censoring setting, all observations were censored at the same value.
Different fixed points were calculated to give expected censoring rates of 0%, 25% and 75%. For the
random right censoring setting, values were censored at randomly generated thresholds, which were
generated from normal distributions with means set at different values to produce data with specific
expected censoring proportions. Tables 4 and 5 give the simulated coverage probabilities for different
settings of sample sizes and censoring rates. In the completely observed cases in Table 4, coverage
probabilities calculated using the Fisher transformation rather than the profile likelihood approach are
given in parentheses for comparison.

It can be seen from Tables 4 and 5 that clikcorr gives satisfying confidence interval coverage
probabilities in both the fixed and random censoring settings. In the completely observed cases,
coverage probabilities for both profile likelihood and Fisher transformation based confidence intervals
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Figure 2: Example of profile likelihood plots. Input data are simulated from the bivariate normal
distribution with true pxy = 0.5. The upper panel shows the profile likelihood using the bivariate
normal distribution; the lower panel shows the profile likelihood using the bivariate f—distribution.

are very close to the nominal level of 0.95

Run time, bias and mean squared error (MSE)

Table 6 shows the run time of clikcorr under different settings of sample sizes and censoring proportion
configurations, using the bivariate normal distribution for both data generation and inference. The
censoring proportion configurations, for example “X15%, XY15%, Y15%" means that 15% of the
observations are censored only for X, 15% are censored for both X and Y, and 15% are censored only
for Y. It can be seen that longer run time is needed for larger sample size, larger proportion with both
X and Y being censored, or larger magnitude of the correlation. A typical run time ranges from a few
seconds to a few minutes.

For the bivariate ¢ distributions, the run time is generally slower than for the bivariate normal
distributions in the same setting. The reason for this is that the bivariate ¢ setting requires numerical
integration to calculate the joint distribution over a 2-dimensional domain as illustrated in (5) in the
case of either X or Y censored, whereas the analogous calculation for the bivariate normal setting has
a closed form.

Table 7 shows the estimates of the bias and MSE for inference on p using the bivariate normal
distribution for data generation and inference, and with random right censoring. Essentially, clikcorr
provides an unbiased estimator of the correlation coefficient.
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Gaussian versus Student t models

When the underlying marginal distributions are heavy tailed rather than normal, basing inference on
the bivariate normal can result in poor confidence interval coverage probabilities. This is illustrated in
Table 8, where the data were generated from correlated marginal ¢ distributions and the correlation
coefficients were estimated using the bivariate normal distribution. When the degrees of freedom
of the underlying marginal ¢ distributions are small (~ 3 to 5) or the true underlying correlation
coefficient is very high (~ 0.9), the confidence intervals have poor coverage probabilities (~ 60% to
80%).

The coverage probabilities within the parentheses in Table 8 are for confidence intervals constructed
using the bivariate t distributions. Compared to inference based on the bivariate normal distribution,
using the bivariate ¢ distribution provides much better coverage probabilities in settings with very
heavy-tailed distributions and high correlations.

The clikcorr package does not provide a way to test whether the data are drawn from a heavy
tailed distribution or not, nor does it estimate the best value of d.f. to use. The users could refer to
Bryson (1974); Resnick (2007) or use QQ plots to guide their decision on which model to use.

Dioxin exposure datasets

In this section, we used clikcorr to analyze two real world datasets and compared the results to
conventional approaches.

Owl feather data

The first dataset was analyzed in (Jaspers et al., 2013) which used an early version of clikcorr to
estimate correlations for left-censored (below detection) data. The data contain Perfluorooctane
sulfonate (PFOS) substances in feathers and soft tissues (liver, muscle, adipose tissue and preen glands)
of barn owl road-kill victims collected in the province of Antwerp, Belgium. Figure 3 gives an example
scatter plot (upper panel) and an example plot of the profile log likelihood of the correlation between
PFOS in liver tissue and feathers using clikcorr. Figure 4 shows the scatter plot matrix across tail
feather and the tissues generated by clikcorr. The asymmetrical shape of the profile likelihood reflects
the asymmetrical sampling distribution, and leads to a confidence interval that is longer to the left
than to the right of the point estimate.

NHANES data

In the second analysis using clikcorr, we analyzed dioxin data from the 2002-2003 National Health
and Nutrition Examination Survey (NHANES). NHANES is one of the most widely-used datasets
describing the health and nutritional status of people residing in the US. The data we analyzed
contained 22 chemicals, including 7 dioxins, 9 furans and 6 polychlorinated biphenyls (PCBs) across
1643 individuals. Correlations between these chemicals are common, and are of interest for several
reasons. First, dioxins with high correlations measured in the environment may arise from the same or
similar sources. In addition, levels of two chemicals in the body that have high correlations may have
similar pathways for entering the body. For two chemicals with high correlations, it may be sufficient
to monitor one of them (to reduce cost), as was the goal in Jaspers” barn owl example. Finally, exposure
to pairs of correlated chemicals may confound an investigation of health effects, since distinguishing
the individual effects of each chemical would be difficult. Therefore estimating correlations between
those compounds is of scientific interest. The chemicals in our dioxin data are all subject to detection
limits, and have a wide range of percentage of left-censored values. It is important to incorporate
information from partially observed cases in the data to provide accurate estimation and inference
results on the correlations between the compounds.

The pairwise correlation coefficients calculated from clikcorr are given in upper-right trian-
gle of Table 9. For each pair, the MLE of the correlation coefficient and associated LRT p-value
(in parentheses) are calculated assuming the bivariate normal distribution. The highly correlated
pairs (with estimated correlation coefficient > .80) are in boldface type. Chemicals within each
group (dioxin, furan or PCB) tend to be more highly correlated than chemicals from different
groups. Abbreviated names of each chemical were used in Table 9. The full names and the de-
tail information about each chemical can be found at Agency for Toxic Substances and Disease
Registry (ATSDR) (http://www.atsdr.cdc.gov/substances), which is part of the U.S. Centers for
Disease Control and Prevention. The chemical indices and names are corresponding as follow-
ing: for dioxind, d1=TCDD; d2=PeCDD; d3=HxCDD123478; d4=HxCDD123678; d5=HxCDD123789;
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Figure 3: Output graphics from analyzing the owl feather data using clikcorr. Upper panel: scatter
plot of PFOS in liver tissue vs. feathers; Lower panel: profile log likelihood plot for the correlation
coefficient between PFOS concentration in liver and in feathers.

d6=HpCDD; d7=0CDD. For furan, f1=TCDF; f2=PeCDF12378; f3=PeCDF23478; f4A=HxCDF123478;
f5=HxCDF123678; t6=HxCDF234678; {7=HpCDF1234678; {8=HpCDF1234789; f9=OCDF. For PCB,
p1=PCB105; p2=PCB118; p3=PCB156; p4=PCB157; p5=PCB167; p6=PCB189. p-values less than 0.01 are
recoded as 0’s in Table 9.

The pairs of chemicals with the highest correlation in each group are shown in Figure 6. Both
the MLE of the correlation coefficient calculated from clikcorr k.o, and the Pearson correlation
coefficients calculated from only the complete cases fo, pletes are given, along with the complete case
sample size, 1compiere- When the proportion of pairs with censored values is 1ow, p¢jikcorr and Peomplete
are very similar; on the other hand, when the proportion of pairs with censored values (in either or
both variables) is high, the two correlation coefficients are different since g jjxco;+ can utilize the extra
information from the censored data.

Some chemicals in the dataset appear to have highly skewed marginal distributions. It is common
to apply a symmetrization transformation in such a setting. The correlation coefficient between
transformed values estimates a different population parameter, but this parameter may be of as
much or greater inference than the correlation computed on the original scale. To demonstrate the
effect of such a transformation, we log-transformed the data for each chemical and recalculated the
correlation coefficient using the bivariate normal model. The estimation and inference results from the
transformed data are given in the lower-left triangle in Table 9.

Using the bivariate normal model for transformed data is an example of using bivariate Gaussian
copulas to allow a wide range of distributions to be analyzed using software developed for Gaussian
models. A general approach of this type would be to transform X using F 15 f,, where F is the
empirical CDF of X and F is the standard Gaussian CDF (Y would be transformed analogously). This
approach is quiet flexible, and would allow clikcorr to be used for correlation parameter inference
in a wide range of settings. One limitation of this approach is that the marginal transformations
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Figure 4: Scatter plot matrix from analyzing the owl feather data using clikcorr.

are estimated from the data, but the uncertainty in this estimation is not propagated through to the
estimation of the correlation parameter. This would mainly be a concern with small datasets.

Figure 5 demonstrates the difference between using data on the original and the log-transformed
scales. When the observed marginal distributions are highly skewed, assuming a bivariate normal
true distribution could lead to false results. For example, the correlation effect could be leveraged
away by the “outlier" points on tail of either marginal distributions. As in Figure 5 (c), the original
values between chemicals OCDD(d7) and HxCDF234678 (f6) were not significantly correlated due to
the divergent effect of the points on the marginal tails. While after the log transformation, the marginal
sample distributions are more normally shaped and thus make the bivariate normal assumption
more likely to be true, and the two chemicals are significantly correlated with a moderate correlation
coefficient.

Further details on clikcorr

This section gives technical details regarding function maximization and gives some examples of
additional plotting options.

We note that clikcorr depends on the R function optim, which is used to find the maximum of
the log likelihood, or profile log likelihood. For some starting values of ux, 1y, ox, oy and pxy, the
procedure gives an error message “function cannot be evaluated at initial parameters". In
such cases, manually adjusting the initial parameter values is recommended.

Figure 7 illustrates two example profile log likelihood functions for parameters of the bivariate
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distribution of PFOS in Tail feather and Adipose tissue in the owl feather dataset. Each plot shows
the log likelihood for certain parameters with the other parameters fixed. In the upper panel, the
log likelihood of (log(c%),log(02)) remains at —oo over the lower left triangular region of the plot.
So if the starting values of ox and oy are set such that the pair (log(c%),log(c2)) falls in that region,
then the value of the joint log likelihood will be trapped in the region and the above error message
will show up. In the lower panel graph, the log likelihood of the covariance drops steeply when the
covariance parameter value is greater than 2000. Therefore, if the starting value of pxy is set such
that the starting covariance is much larger than 2000, say 5000, then the profile log likelihood might
underflow the limit of a floating number adopted in the “optim" function and give the above error
message.

It is worth the effort to make the input starting parameter values as close to the true parameters as
possible, if these are known. By default, clikcorr uses the sample means, the log transform of sample
variances and the sample correlation based on the complete observations as the starting values. It also
allows the user to specify the starting values and pass them to the “optim" function by using the option
sv. This option is especially useful when the number of exact observations is small. For example, if
a dataset contains only one complete observation, then the starting values of (log(c%),log(¢2)) can
not be effectively estimated (both will be estimated as —o0). In such cases, it is suggested that users
make their own reasonable guesses on the starting parameter values rather than using the default. An
example is given in the following syntax:

R> clikcorr(owlData, "feather_L", "feather_U", "AT_L", "AT_U", cp=.95, dist=t,
+ df=5, sv=c(23, 240, 6, 1300, 12))

The default optimization method for searching for the MLE in clikcorr is the default method used
in “optim", which is the Nelder-Mead method (R Core Team, 2013b). clikcorr also allows the user to
use other optimization methods implemented in “optim" or use the non-linear minimization function
“nlm" (R Core Team, 2013a). For example:

R> clikcorr(owlData, "feather_L", "feather_U", "AT_L", "AT_U", cp=.95, dist="t",
+ df=3, method="BFGS")

R> clikcorr(owlData, "feather_L", "feather_U", "AT_L", "AT_U", cp=.95, dist="t",
+ df=3, nlm=TRUE)

We note here that the default optimization method in “optim" function does not use derivative (or
gradient) information but rather does a greedy simplex search on the function values, which makes it
work relatively slowly. In future work, we plan to implement some independent gradient-directed
types of optimization algorithms into clikcorr to hasten the convergence speed. It would be especially
helpful in searching for the confidence interval bounds of the correlation coefficient.

"o

clikcorr also allows R plotting options such as “xlab", “xlim", “bg" etc., in the “splot" and “plot"
functions. For example, in Figure 6 the individual panels are generated respectively by

R> splot2(NHANESD, "t1_TCDD”, "t2_TCDD", "t1_PeCDD", "t2_PeCDD", xlab="d1=TCDD",
+ ylab="d2=PeCDD", bg="#FFBOQF", cex.lab=2.0)

R> splot2(NHANESD, "t1_HxCDF_123478", "t2_HxCDF_123478", "t1_HxCDF_123678",
+ "t2_HxCDF_123678", xlab="f4=HxCDF123478", ylab="f5=HxCDF123678", bg="#FFB9QF",
+ cex.lab=2.0)

R> splot2(NHANESD, "t1_PCB_156", "t2_PCB_156", "t1_PCB_157", "t2_PCB_157",
+ xlab="p3=PCB156", ylab="p4=PCB157", bg="#FFBYOF", cex.lab=2.0)

R> splot2(NHANESD, "t1_PCB_105", "t2_PCB_105", "t1_PCB_118", "t2_PCB_118",
+ xlab="p1=PCB105", ylab="p2=PCB106", bg="#FFBYOF", cex.lab=2.0).
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Figure 5: Example scatter plots between compound pairs with and without log transformation.
Between TCDD(d1) and ODD(d7): (a) d1-d7 without log transformation, p = 0.22, p ~ 0; (b) d1-d7
with log transformation, p = 0.60, p =~ 0. Between OCDD(d7) and HxCDF234678(f6): (c) d7-f6 without
log transformation, p = —0.05, p =~ 1; (d) d7-f6 with log transformation, p = 0.38, p ~ 0. The
histograms on top and right of each plot are marginal sample distributions from observed data.
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Figure 7: Illustration of effects of starting values on parameter estimates from profile log likelihood
surfaces or curves. Upper panel: the profile joint log likelihood of parameters (log(c%), log(02)) with
the mean and correlation parameters set at certain starting values. Values from highest to lowest are
colored in order of white, yellow and red; Lower panel: the profile likelihood of covariance parameter
with mean and variance parameters fixed at certain starting values.
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