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The utiml Package: Multi-label
Classification in R
by Adriano Rivolli and Andre C. P. L. F. de Carvalho

Abstract Learning classification tasks in which each instance is associated with one or more labels
are known as multi-label learning. The implementation of multi-label algorithms, performed by
different researchers, have several specificities, like input/output format, different internal functions,
distinct programming language, to mention just some of them. As a result, current machine learning
tools include only a small subset of multi-label decomposition strategies. The utiml package is a
framework for the application of classification algorithms to multi-label data. Like the well known
MULAN used with Weka, it provides a set of multi-label procedures such as sampling methods,
transformation strategies, threshold functions, pre-processing techniques and evaluation metrics. The
package was designed to allow users to easily perform complete multi-label classification experiments
in the R environment. This paper describes the utiml API and illustrates its use in different multi-label
classification scenarios.

Introduction

Multi-label classification (MLC) is a classification task where an instance can be simultaneously
classified in more than one of the existing classes. Labeled data extracted from several domains,
like text, web pages, multimedia (audio, image, videos), and biology are intrinsically multi-labeled.
Additionally, the number of application domains with MLC data is growing fast.

Many current, real-world data science applications are MLC by nature. They are problems
from very diverse domains, like labeling newspaper articles by subject and classification of proteins
according to their functions. MLC algorithms have been successfully used in these and other MLC
tasks (Diplaris et al., 2005). In a recent application, MLC algorithms were used to recommend food
truck cuisines (Rivolli et al., 2017), assuming that a person can have more than one cuisine preference,
and with the same level of preference.

Despite its growing relevance, there is a lack of comprehensive and easy to use tools for the R
environment. A tool frequently used in MLC experiments is MULAN (Tsoumakas et al., 2011), which
is a Java library built on top of Weka (Hall et al., 2009) to allow Weka users to deal with MLC data.
Its popularity in the research community can be attributed to its ease of use, its large number and
variation of its functionalities. The MLC alternative to Python users is the scikit-multilearn (Szymański,
2017), which provides a set of MLC algorithms and an interface for the MULAN library. Although
other simpler tools, like MEKA (Read et al., 2016) and general data mining software (Gibaja and
Ventura, 2015) include good functionalities to deal with MLC tasks, they address few MLC features
and are not available in R.

It is important to mention that there are packages that offer some level of support for MLC in R.
The most complete is the mldr package, an exploratory tool for the manipulation and analysis of MLC
datasets (Charte and Charte, 2015). Although it does not contain MLC strategies, it supports the ARFF
variation for MLC data, largely used for data mining and machine learning (ML) experiments, and has
useful features, such as dataset characterization, MLC evaluation measures, and a rich user interface
for the data exploration.

Some works use the mlr package, which was not specifically designed for MLC. As a result, it
provides only a few multi-label strategies (Probst et al., 2017) and does not support the MLC ARFF
format. In fact, it is a general purpose package, with an interface to more than one hundred algorithms
that supports several ML tasks (Bischl et al., 2016). Another related package, MLPUGS, is a simple
MLC package that contains only the implementation of the classifier chains (CC) strategy (Read et al.,
2009).

Although the previous packages make it easier to perform some procedures related to MLC
learning, their adoption in MLC experiments require more efforts from the developer/researcher than
MULAN, available for Weka uses, which motivated the authors to design utiml, a more comprehensive,
specific, easy to use, and extensible solution. The main features of the utiml package include:

• Pre-processing techniques: a set of techniques for the preparation and pre-possessing of MLC data
to be used in experiments. These techniques deal with simple tasks, like removal of predictive
attributes, instances and labels, replacement of nominal attribute values by numerical values,
and data normalization.

• Sampling: a set of methods used to split MLC data through the holdout and k-fold methodologies.
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Random or stratified strategies can be used for data partitioning.

• Classification/Ranking: the main MLC strategies. The transformation strategies support several
base algorithms and the result can be seen as bipartition, probability/score, and ranking.

• Threshold: score-based and ranking-based threshold functions to be employed after the label
prediction, so that bipartition values can be changed.

• Evaluation: traditional MLC evaluation measures and MLC confusion matrix for the summariza-
tion of classification result.

This paper describes the main aspects and resources of the utiml package. The current version
is 0.1.4 and an updated list with all resources available will be maintained in the vignette document
and the reference manual. The following section provides a brief review of MLC learning. Next, the
package API is detailed, its resources are presented and some illustrative examples are provided.
Finally, the main issues regarding the package use are highlighted in the summary section.

Multi-label classification learning

MLC tasks have attracted a growing attention in the ML community (de Carvalho and Freitas, 2009;
Tsoumakas et al., 2010; Gibaja and Ventura, 2014). While in multi-class classification only a single
class label is predicted, in MLC, more than one class label can be simultaneously predicted. In the
same way as multi-class classification tasks can be seen as a generalization of binary classification
tasks, which restricts to two the number of classes, MLC can be seen as a generalization of multi-class,
which restricts to one the number of predicted classes (de Carvalho and Freitas, 2009). The main MLC
approaches are prediction of multiple labels, label ranking, and multi-label ranking (Tsoumakas et al., 2010).

Multi-Label Classification (MLC), the most common task (Tsoumakas et al., 2010), induces a pre-
dictive model h(x) → Y from a set of training data, which later assigns one or more labels to each
new example. This task can be formally defined as: let D be a set of labeled instances E, such that
D = {E1, E2, ..., En}. Every labeled instance Ei = (xi, Yi) is composed of xi = (xi1, xi2, ..., xid), which
describes its position in aRd input space, and Yi ⊆ L | L =

{
λ1, λ2, ..., λq

}
, which describes a position

in a {0, 1}q output space.

The Label Ranking (LR) task can be characterized by a function f (x, λi), which, for each class label,
outputs a score value in the interval [0.0, 1.0], indicating the relevance, confidence, or probability of
instance x belonging to the class whose label is λi. The higher the score value, the better the ranking
position. While MLC predicts bipartitions and LR predicts scores, Multi-label Ranking (MLR) generates
both. Since MLC can be derived from the LR formulation (Gibaja and Ventura, 2015)1, if a strategy can
be used in the LR task, it can also be used in the two other tasks.

These models can be obtained by two approaches (Tsoumakas et al., 2010), problem transformation
and algorithm adaptation. Problem transformation converts the original MLC task into a set of binary or
multi-class classification subtasks. Afterwards, any classification algorithm, here called base algorithm,
can be used to induce models for the subtasks. In the algorithm adaptation approach, the multi-label
support is embedded into the algorithm structure. Thus, while transformation fits data to algorithms,
adaptation fits algorithms to data (Zhang and Zhou, 2014).

The transformation approach can be performed in three different ways: binary, pairwise, and
powerset. Binary transformation generates at least one dataset per label, as in the one-versus-all
multiclass strategy. Pairwise transformation, instead, creates one dataset for each pair of labels,
similarly to one-versus-one multiclass strategy. Finally, powerset is a multi-class transformation that
uses labelsets as classes. The adaptation approach, on the other hand, modifies conventional ML
algorithms, like Decision Tree Induction Algorithms (DT), K-Nearest Neighbors (KNN), Random
Forest (RF), and Support Vector Machines (SVM).

Other steps required for the application of ML algorithms need to be adapted to deal with MLC
tasks. For example, stratified sampling for MLC data must take into account multiple targets and the
predictive performance evaluation must consider situations like partially correct results and ranking
accuracy. A complete overview of the alternatives to deal with these issues can be seen in Zhang and
Zhou (2014) and Gibaja and Ventura (2015).

1Where h(x) = {λ | f (x, λ) ≥ τ(x), λ ∈ L}, where τ(x) is a threshold function.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 26

The utiml package

Handling multi-label classification data

The predictive performance of MLC tasks can be strongly affected by the use of data pre-processing
techniques. For such, utiml uses the mldr package (Charte and Charte, 2015), which provides the
support for data pre-processing. Moreover, when utiml is installed/loaded, the mldr package is
automatically installed/loaded. Specially, it supports the MLC ARFF format, which has an additional
XML file describing the label columns2.

By default, the mldr package handles categorical data as "character", instead of "factor", which
is not supported by the implementation of some traditional machine learning algorithms available in
R, like Random Forest from the randomForest package. To address this limitation, the mldata function
converts all text columns to factors of an "mldr" dataset. For example, the function mldata should be
used to load the ‘flags’ dataset3, contains categorical attributes, like

> flags <- mldata(mldr("flags"))

After a dataset is loaded, pre-processing techniques can be applied to it. Table 1 shows the pre-
processing techniques available in the utiml package. All these functions receive an "mldr" dataset as
argument and return a pre-processed version of this dataset.

Pre-processing function Description

fill_sparse_mldata(mdata) Exchanges the NA values present in the dataset to 0 or
"", according to the attribute type.

normalize_mldata(mdata) Re-scales all numerical attribute values to values be-
tween 0 and 1 according to the min-max transforma-
tion. The lowest value is modified to 0.0 and the
highest value is converted to 1.0.

remove_attributes(mdata, attributes) Removes the specified attributes from the dataset.

remove_labels(mdata, labels) Removes the specified labels from the dataset.

remove_unique_attributes(mdata) Removes from the dataset attributes whose values are
the same for all instances.

remove_unlabeled_instances(mdata) Removes from the dataset instances without class la-
bels.

remove_skewness_labels(mdata, t) Removes from the dataset highly infrequent or highly
frequent labels, according to a specific threshold value.
The threshold t indicates the minimum number of
positive and negative instances associated with each
label.

replace_nominal_attributes(mdata) Replaces categorical attributes by binary attributes.
An attribute with n different values will be mapped
to n− 1 new columns containing binary values.

Table 1: Pre-processing techniques available in the utiml package

The utiml package also supports the main methodologies for data sampling, as shown in Table
2. The holdout and k-fold sampling can partition a dataset randomly and in a stratified way. They
are selected by a parameter named method, which determines the sampling algorithm that creates
the partitions. According to Sechidis et al. (2011), the accepted values are "random", "iterative",
and "stratified", where the latter two are different stratification options. The "iterative" process
stratifies a MLC dataset considering each label independently, while "stratified" is based on the
different combinations of labels, also known as labelset.

These techniques were designed to improve the mldr package and to simplify the data preparation
for the learning step. Concerning the analysis of the MLC data, utiml does not provide additional
resources in this current version. However, it is possible to use the mldr package, which enables the
understanding and exploration of several data aspects through an interactive interface (Charte and
Charte, 2015).

2The complete specification is available at http://mulan.sourceforge.net/format.html.
3This dataset, available at http://mulan.sourceforge.net/datasets-mlc.html.
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Sampling function Description

create_holdout_partition(mdata,
partitions, method)

Splits the data into at least two distinct parts.
The second parameter defines the name and size
of the partitions and method defines the type of
sampling.

create_kfold_partition(mdata, k, method) Creates an object that contains the k distinct
parts of the dataset using the method for split-
ting the folds. It should be used in combination
with partition_fold(object, fold), which
provides the training and testing data to a spe-
cific fold. The parameter object is the result of
create_kfold_partition.

create_random_subset(mdata, instances,
attributes, replacement)

Creates a random subset of the dataset based
on the proportion of instances and attributes.
When replacement=TRUE, a same instance can
appear one more time in the training data.

create_subset(mdata, rows, cols) Creates a specific subset of the dataset based on
the instances (rows) and attributes (cols) speci-
fied.

Table 2: Sampling functions available in the utiml package

The utiml package also provides two MLC datasets: toyml, a synthetic dataset generated by the
Mldatagen tool (Tomás et al., 2014); and foodtruck, a dataset in which several food truck cuisines are
mapped as labels (Rivolli et al., 2017).

Multi-label classification strategies

The classification strategies are the heart of the utiml package. Table 3 shows the strategies available
in the current version of the package. Some of the implemented strategies, such as brplus, ctrl, dbr,
lift, prudent and rdbr were not found by the authors in other tools.

Transformation strategies build the multi-label models by using a ML base algorithm. The
base.algorithm parameter defines the base algorithm employed to create the internal models. Table 4
shows the ML algorithms currently supported by the package. Their use requires additional packages,
as indicated in column R function Called4. For example, "C5.0" algorithm requires the C50 package be
installed. Only the "MAJORITY" and "RANDOM" algorithms require no additional packages.

The arguments of the transformation strategies follow the pattern:

1. mdata: an "mldr" dataset object.

2. base.algorithm: a base algorithm, as listed in Table 4.

3. additional strategy parameters: specific parameters for each strategy. While the BR strategy
contains no additional parameters, the ensemble ECC receives 4 specific parameters, namely m,
subsample, attr.space and replacement5.

4. ...: extra parameters used by the base.algorithm selected. As illustration, if base.algorithm
= "SVM", the extra parameters can be those defined in the svm function of the e1071 package,
such as kernel,gamma,cost, among others.

5. cores: number of cores used for the parallelization of the training phase. Note some classifica-
tion strategies, as lp, ignore the parameter because the tasks can not be parallelized.

6. seed: a seed that ensures reproducibility. This is particularly important when the task is
parallelized. In other words, if cores = 1, the seed effect is similar to that of set.seed(seed).
However, if the cores are higher than 1, the set.seed(seed) command will not guarantee the
same result can be obtained, since the task will be performed in parallel.

4These packages are not installed together with utiml.
4The J48 algorithm has no support for task parallelization.
5These parameters denote, respectively, number of models in the ensemble, proportion of instances, attributes,

and a possible replacement of instances. The specific parameters of each strategy are reported in the reference
manual.
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Strategy function Description Approacha Reference

baseline Baseline - Metz et al. (2012)
br Binary Relevance BR Tsoumakas et al. (2010)
brplus BR+ BR, STA Cherman et al. (2012)
cc Classifier Chains BR, CC Read et al. (2009)
clr Calibrated Label Ranking PW Brinker et al. (2006)
ctrl ConTRolled Label correlation BR, ENS Li and Zhang (2014)
dbr Dependent Binary Relevance BR, STA Montañes et al. (2014)
ebr Ensemble of Binary Relevance BR, ENS Read et al. (2009)
ecc Ensemble of Classifier Chains BR, CC, ENS Read et al. (2009)
eps Ensemble of Pruned Set ENS, PS Read et al. (2008)
homer Hierarchy Of Multi-label classifiER HIE Tsoumakas et al. (2008)
lift Learning with Label specIfic FeaTures BR, CLU Zhang and Wu (2015)
lp Label Powerset PS Tsoumakas and Katakis (2007)
mbr Meta-BR, 2BR or stacking BR, STA Tsoumakas et al. (2009)
mlknn Multi-label kNN AD Zhang and Zhou (2007)
ns Nested Stacking BR, CC Senge et al. (2013)
ppt Pruned Problem Transformation PS Read et al. (2008)
prudent PRUned and confiDENT Stacking BR, STA Alali and Kubat (2015)
ps Pruned Set PS Read (2008)
rakel Random k-labelsets ENS, PS Tsoumakas and Vlahavas (2007)
rdbr Recursive Dependent Binary Relevance BR, ENS, STA Rauber et al. (2014)
rpc Ranking by Pairwise Comparison PW Hüllermeier et al. (2008)

a AD = Adaptation; BR = Binary transformation; CC = Chain of classifiers; CLU = Clustering based; ENS = Ensemble;
HIE = Hierarchy; PS = Powerset transformation; PW = Pairwise transformation; STA = Stacking

Table 3: Strategies available in the utiml package

base.algorithm value Description R function Called

"C5.0" C5.0 Decision Trees C50::C5.0
"CART" Classification and regression trees rpart::rpart
"KNN" K Nearest Neighbor kknn::kknn
"NB" Naive Bayes e1071::naiveBayes
"RF" Random Forest randomForest::randomForest
"SMO" Sequential Minimal Optimization RWeka::SMO
"SVM" Support Vector Machine e1071::svm
"XGB" eXtreme Gradient Boosting xgboost::xgboost

"MAJORITY" Majority class prediction -
"RANDOM" Random prediction -

Table 4: Base algorithms available in the utiml package

After the creation of a MLC model, the model can be applied to new data through the S3 predict
method. The arguments of predict are:

1. object: a multi-label classifier.

2. newdata: a "matrix", "data.frame" or "mldr" object, containing the data to be classified.

3. additional model parameters: specific parameters for each model. For example, the vote scheme to
be used in the ecc prediction function can be defined6.

4. probability: a logical value that indicates if the prediction result should be probability/score
or bipartition. If TRUE, a probability result is returned; otherwise, the bipartition is obtained. The
result can be changed, as observed next.

5. ...: extra parameters based on the predict method related to the base.algorithm selected.

6. cores: number of cores used for the parallelization of the prediction phase. Some models, like
CC, ignore this parameter because the tasks cannot be parallelized.

7. seed: a seed that ensures reproducibility. This is particularly important when the task is
parallelized and the base algorithm is not deterministic.

The prediction result is an "mlresult" type object and can be used directly as a matrix, where
each column is a label and each row is an instance. To change the type of result to bipartition, prob-
ability/score or a ranking matrix, the functions as.bipartition, as.probability, and as.ranking,
respectively, can be used.

6The specific parameters of each predict method are reported in the reference manual.
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Multi-label post-processing

Threshold functions adjust the bipartition result according to the score/probabilities predicted by the
predictive models. In MLC learning, these functions can be score-based or rank-based, depending on
the type of data used to define the threshold values. A single threshold value for all labels is named
global threshold, the use of one value per label is named label-wise, and the use of one value per
instance is named instance-wise (Al-Otaibi et al., 2014).

Table 5 shows the threshold functions available in the utiml package. All of them receive a
probability/score matrix or an "mlresult" object as input and return a new "mlresult" object with
different bipartitions as output. The only exception is scut_threshold, which returns threshold values,
instead of bipartitions, and should be combined with the fixed_threshold function. Additionally, the
subset_correction can be used as a threshold function (Senge et al., 2013). It changes the bipartition
based on the labelsets present in the training data and outputs only the known labelsets.

Threshold function Description Approach

fixed_threshold(prediction,
threshold)

Applies a fixed global or label-wise
threshold.

score-based

lcard_threshold(prediction,
cardinality)

Applies an instance-wise threshold us-
ing the cardinality measure.

rank-based

mcut_threshold(prediction) Applies an instance-wise threshold and
selects the subset of labels of the highest
interval between two sorted scores.

score-based

pcut_threshold(prediction, ratio) Applies a global or label-wise threshold
using the ratio value to define the pro-
portion of instances that will be relevant.

score-based

rcut_threshold(prediction, k) Applies an instance-wise threshold and
defines the k labels with highest scores
as relevant.

rank-based

scut_threshold(prediction,
expected, loss.function)

Returns a label-wise threshold using a
loss function that minimizes the differ-
ence between the value predicted and
the expected prediction value.

score-based

Table 5: Threshold functions available in the utiml package

Finally, utiml also supports the evaluation of MLC models. The multilabel_evaluate and
multilabel_confusion_matrix functions can be used during the evaluation. The first calculates
the traditional evaluation measures also available in mldr and MULAN, whereas the second generates
a multi-label confusion matrix ("mlconfmat" object) detailing labels and instances.

The multilabel_evaluate function receives an "mlresult" or an "mlconfmat" object and the
desired evaluation measures. One or more measures, likewise one or more group of measures can
be adopted. Figure 1 shows the measures values, currently supported. A complete review of MLC
evaluation measures can be found in Zhang and Zhou (2014) and Gibaja and Ventura (2015). Moreover,
if the hyperparameter labels=TRUE, the return will be a list that contains the multi-label and labels’
results detailed.

Default options

The utiml package uses the option function to customize some default parameters. For example, the
default base algorithm for all transformation strategies is "SVM". The utiml.base.algorithm option
can be used to change this parameter value. Table 6 shows the option’s names, a brief description of
each option parameter value, and their default value. The following code defines “Random Forest”
as the default base algorithm and sets the default number of cores to 8, to illustrate the setting of the
options.

> options(utiml.base.algorithm = "RF", utiml.cores=8)

The utiml.empty.prediction option defines whether the MLC strategies can predict no labels for
one or more instances. Among the alternatives to avoid an empty prediction (Liu and Chen, 2015),
utiml outputs the labels with the highest probability/score. It must be observed that this option may

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 30

- accuracy

- F1

- hamming-loss

- precision

- recall

- subset-accuracy

all

bipartitions

label-based

- average-precision

- coverage

- margin-loss

- one-error

- ranking-loss

ranking

- micro-AUC

- micro-precision

- micro-recall

- micro-F1

micro-based

- macro-AUC

- macro-precision

- macro-recall

- macro-F1

macro-based

example-based

Figure 1: Groups of multi-label evaluation measures

Option parameter values Description Default value

utiml.base.algorithm Default base algorithm used in the transformation
strategies.

"SVM"

utiml.cores Default number of cores used to parallelize the tasks. 1

utiml.seed Default seed used by the MLC strategies. NA

utiml.use.probs Default type of the expected prediction results. If
TRUE, the expected prediction is in the probability/s-
core format, otherwise, a bipartition prediction is ex-
pected.

TRUE

utiml.empty.prediction Default option concerning empty predictions. If TRUE,
predictions can contain instances without labels, oth-
erwise, the most important label is considered rele-
vant and no empty predictions are obtained.

FALSE

Table 6: Options used by the utiml package

directly interfere with the result of the bipartition evaluation measures. Thus, it must be set according
to the characteristics of the experiment being carried out.

How to use the package for multi-label classification experiments

The toyml dataset was used in the examples illustrated in this section. As toyml has two irrele-
vant attributes ("iatt8" and "iatt9") and one redundant ("ratt10") attribute, the pre-processing
remove_attributes function can be applied to remove them.

> new.toyml <- remove_attributes(toyml, c("iatt8", "iatt9", "ratt10"))

> pre.process <- function (mdata) {
+ aux <- remove_skewness_labels(mdata, 5) # Remove infrequent labels (less than 5)
+ aux <- remove_unlabeled_instances(aux) # Remove instances without labels
+ aux <- remove_unique_attributes(aux) # Remove constant attributes
+ return(mdata)
+ }

As toyml is already normalized and the dataset has a small number of instances, no other pre-
processing technique is required. Thus, the pre.process function has no effect if applied in this case.
For other datasets, the same procedure can be useful for their preparation for MLC experiments. Two
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scenarios that illustrate the use of utiml for the development of MLC experiments are presented next.
Finally, a simple experimental analysis is performed using the foodtruck dataset, illustrating the use
of the package in a more realist scenario.

Training and test experiment example using holdout

This example shows a MLC experiment using holdout, in which 70% of the dataset instances are used
for training and 30% for test. A BR model that uses “Random Forest” as a base algorithm is induced
and applied to the test instances. Next, predictions are assessed using MLC evaluation measures.

> set.seed(123)
> ds <- create_holdout_partition(new.toyml, c(train=0.7, test=0.3))
> model <- br(ds$train, "RF")
> predictions <- predict(model, ds$test)

> results <- multilabel_evaluate(ds$test, predictions, c("example-based", "macro-F1"))
> round(results, 4)
## accuracy F1 hamming-loss macro-F1 precision recall subset-accuracy
## 0.6444 0.7411 0.1933 0.4015 0.7833 0.7722 0.3000

A MLC baseline can be included among the strategies being experimentally compared. In the
following code, the general baseline (Metz et al., 2012) is induced. A subtle difference is observed in
"hamming-loss" and "F1" measures in favor of the BR model. The small number of labels are due to
very common combinations of them found in toyml favors the general baseline.

> base.preds <- predict(baseline(ds$train, "general"), ds$test)
> base.res <- multilabel_evaluate(ds$test, base.preds, c("hamming-loss", "F1"))

> round(base.res, 4)
## F1 hamming-loss
## 0.7311 0.2000

In both examples, the test set predictions compose an "mlresult" object and, by default, show the
score/probability produced by the base algorithm. For example:

> head(predictions)
## y1 y2 y3 y4 y5
## 23 0.336 0.640 0.178 0.922 0.122
## 19 0.106 0.860 0.366 0.670 0.280
## 62 0.094 0.776 0.526 0.688 0.090
## 1 0.196 0.618 0.204 0.758 0.162
## 67 0.090 0.964 0.210 0.700 0.234
## 92 0.060 0.856 0.162 0.598 0.454

The as.bipartition and as.ranking functions can be used to change, respectively, the proba-
bility/score to a bipartition matrix or the raking values, as illustrated next. Optionally, a threshold
function can be applied to change the bipartitions.

> head(as.bipartition(predictions))
## y1 y2 y3 y4 y5
## 23 0 1 0 1 0
## 19 0 1 0 1 0
## 62 0 1 1 1 0
## 1 0 1 0 1 0
## 67 0 1 0 1 0
## 92 0 1 0 1 0

> head(as.ranking(predictions))
## y1 y2 y3 y4 y5
## 23 3 2 4 1 5
## 19 5 1 3 2 4
## 62 4 1 3 2 5
## 1 4 2 3 1 5
## 67 5 1 4 2 3
## 92 5 1 4 2 3
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> head(mcut_threshold(predictions))
## y1 y2 y3 y4 y5
## 23 0 1 0 1 0
## 19 0 1 0 1 0
## 62 0 1 1 1 0
## 1 0 1 0 1 0
## 67 0 1 0 1 0
## 92 0 1 0 1 1

Three different ECC models are created in the following code to illustrate the use of different
parameters and base algorithms. Each model uses a specific base algorithm and configuration, which,
consequently, results in different models for the same data and MLC strategy.

> # Using KNN with k = 5 and changing ECC parameters
> model1 <- ecc(ds$train, "KNN", m=7, subsample=0.8, k=5)

> # Using C5.0 and changing ECC parameters
> model2 <- ecc(ds$train, "C5.0", subsample=0.6, attr.space=1)

> # Using SVM with cost = 10 and gamma = 0.5 and default ECC parameters
> model3 <- ecc(ds$train, "SVM", cost=10, gamma=0.5)

By default, the create_holdout_partition function creates two random partitions (train and test)
with 70% and 30% of the dataset instances, respectively. The number of partitions, sizes and sampling
method can be modified. The following code shows how to create three, label-stratified partitions,
named "train", "test", and "val" with 70%, 20%, and 10% of the instances, respectively. The "val"
partition can be used in a validation step for model selection or hyperparameter tuning.

> partitions <- c(train=0.7, test=0.2, val=0.1)
> strat <- create_holdout_partition(new.toyml, partitions, "iterative")

Training and test example experiment using k-fold cross validation

This section shows some examples of how to perform cross-validation MLC experiments. The cv
method can be used to encapsulate the whole procedure, which simplifies the respective task, such
that a 10-fold stratified cross-validation can be performed with few lines of code. For instance, the
RAkEL strategy using the "SVM" base algorithm can be evaluated in the following way:

# Defining the evaluation measures
> measures <- c("hamming-loss", "subset-accuracy", "one-error")

# Running 10-fold cross validation
> results <- cv(new.toyml, method="rakel", base.algorith="SVM", cv.folds=10,
+ cv.sampling="stratified", cv.measures=measures, cv.seed=123)

> round(results, 4)
## hamming-loss one-error subset-accuracy
## 0.212 0.160 0.240

To obtain detailed results by folds and/or labels, the hyperparameter cv.results=TRUE can be set.
In this case, a list is returned where the multi-label and labels’ results can be obtained as illustrated in
the next example.

> results <- cv(new.toyml, method="rakel", base.algorith="SVM", cv.results=TRUE,
+ cv.sampling="stratified", cv.measures=measures, cv.seed=123)

> t(results$multilabel)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## hamming-loss 0.2 0.18 0.18 0.2 0.22 0.22 0.22 0.2 0.24 0.26
## one-error 0.3 0.20 0.20 0.2 0.10 0.00 0.00 0.2 0.20 0.20
## subset-accuracy 0.3 0.30 0.30 0.3 0.20 0.20 0.20 0.2 0.20 0.20

> round(sapply(results$labels, colMeans), 4)
## y1 y2 y3 y4 y5
## accuracy 0.83 0.78 0.81 0.6900 0.83
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## balacc 0.50 0.50 0.50 0.5054 0.50
## TP 0.00 7.80 0.00 6.8000 0.00
## TN 8.30 0.00 8.10 0.1000 8.30
## FP 0.00 2.20 0.00 3.0000 0.00
## FN 1.70 0.00 1.90 0.1000 1.70

Any MLC strategy can be used in the cv method, as well as specific hyperparameters for them.
Additionally, the procedure can be parallelized, using cv.cores. The next example shows the ECC
algorithm with specific hyperparameters being executed using 5 folds and parallelized in 4 cores.

> results <- cv(new.toyml, method="ecc", base.algorith="RF", subsample=0.9,
+ attr.space=0.9, cv.folds=5, cv.cores=4)

Finally, to perform a cross-validation procedure manually, the methods create_kfold_partition
and partition_fold, can be used to create the folds and obtain the train and test dataset for each one
of them, respectively. A good example, is the code used in the cv method, such that

...
> cvdata <- create_kfold_partition(mdata, cv.folds, cv.sampling)
> results <- parallel::mclapply(seq(cv.folds), function (k){
+ ds <- partition_fold(cvdata, k)
+ model <- do.call(method, c(list(mdata=ds$train), ...))
+ pred <- predict(model, ds$test, ...)
+ multilabel_evaluate(ds$test, pred, cv.measures, labels=TRUE)
+ }, mc.cores=cv.cores)
...

Experiments with the food truck dataset

In order to show how the package can be used in a real world problem, this section illustrates the use
of the utiml to perform an exploratory analysis of the food truck dataset (Rivolli et al., 2017). First, the
br strategy is evaluated with different ML base algorithms ("C5.0", "RF", "SVM" and "XGB") to identify
the algorithm that produces the best macro and micro-F1 results.

> measures <- c("macro-F1", "micro-F1")
> algorithms <- c("C5.0", "RF", "SVM", "XGB")

> res <- sapply(algorithms, function(alg) {
+ cv(foodtruck, "br", base.algorithm=alg, cv.measures=measures, cv.seed=1)
+ })

> round(res, 4)
## C5.0 RF SVM XGB
## macro-F1 0.1764 0.1824 0.1188 0.1827
## micro-F1 0.4856 0.5340 0.4835 0.5130

Regarding the macro-F1 measure, XGB presented the best result, however the difference observed
between RF and C5.0 was small. For micro-F1, RF obtained the best result, followed closely by XGB.
The differences observed between the macro and micro measures, independently of the base algorithm,
may indicate that some infrequent labels had a poor F1 performance. To analyze this hypothesis,
br was run again with RF, which obtained the best performance in the previous cross-validation
procedure, with a new data subset. In the confusion matrix for the induced model, some patterns can
be observed.

The following code shows that six labels (mexican_food, chinese_food, japanese_food, arabic_food,
healthy_food and fitness_food) had no True Positive (TP) and False Positive (FP) predictions. Thus,
for these labels, all instances were predicted as negative. This explains the difference observed between
the macro and micro-F1 result, since the macro-F1 is the average labels’ F1, which is 0 for these labels.

> set.seed(1)
> ds <- create_holdout_partition(foodtruck, method="iterative")

> model <- br(ds$train, "RF")
> pred <- predict(model, ds$test)

> cm <- multilabel_confusion_matrix(ds$test, pred)
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> as.matrix(cm)
## TP TN FP FN
## street_food 88 5 32 0
## gourmet 13 81 8 23
## italian_food 1 113 0 11
## brazilian_food 3 104 0 18
## mexican_food 0 113 0 12
## chinese_food 0 121 0 4
## japanese_food 0 115 0 10
## arabic_food 0 118 0 7
## snacks 7 103 2 13
## healthy_food 0 116 0 9
## fitness_food 0 116 0 9
## sweets_desserts 11 66 13 35

It must be observed that the cm object is a list containing several information about the prediction,
like the confusion matrix values summarized by instances and labels. Any evaluation measure can
be computed using only the information provided by this object. As an example, the next code
summarizes the proportion of instances and the number of labels correctly predicted in the previous
example. The results show that the BR model was not able to predict a correct label for almost 20% of
the test instances; around 65% of the instances were correctly predicted with a single label; 12% were
correctly predicted with 2 labels; and 3% were correctly predicted with 3 labels.

> prop.table(table(cm$TPi))
## 0 1 2 3
## 0.200 0.648 0.120 0.032

These results show a researcher can simulate new scenarios and explore different solutions in order
to improve the predictive performance in a MLC task. The utiml package offers several resources that
simplify the most basic and recurrent procedures adopted in the MLC domain.

Summary

Data classification is one of the main ML tasks. Although ML classification algorithms are usually
designed and employed for single label classification tasks, in several application domains, an instance
can have more than one class label. This paper introduced the utiml package, which provides several
functions for MLC experiments in R. Similarly to MULAN, one of the most popular MLC tools, utiml
offers a wide set of functionalities. The provided functions implement procedures that cover several
MLC-related tasks, which include data pre-processing, data sampling model induction, optimization
and evaluation of MLC models. The package utiml also supports the intrinsic parallelization of tasks
and allows the reproducibility of MLC experiments.

To the best of the authors knowledge, some of the features present in utiml are not available in
any other R tool, such as the implementation of MLC stratification (Sechidis et al., 2011), baselines
(Metz et al., 2012), thresholds (Al-Otaibi et al., 2014) and an option that allow the users to avoid the
empty prediction problem (Liu and Chen, 2015). Moreover, as in MULAN which enables users to
take advantage of the resources available in the Weka environment, utiml users can benefit from the
several libraries available in R.

The most important limitation of this package is that some common MLC procedures, like feature
selection, imbalanced data, and classification strategies based on the algorithm adaptation approach
are not available yet. They will be implemented in the future as a natural progression of this work and
will be included in the next versions of the utiml package. The authors encourage other developers to
integrate their own algorithms in the utiml package7, so that it becomes a more robust and complete
MLC package.
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